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Cooperative emission of coherent radiation from multiple emitters (known as superradiance) has been
predicted and observed in various physical systems, most recently in CsPbBr3 nanocrystal superlattices. Su-
perradiant emission is coherent and occurs on timescales faster than the emission from isolated nanocrystals.
Theory predicts cooperative emission being faster by a factor of up to the number of nanocrystals (N). However,
superradiance is strongly suppressed due to the presence of energetic disorder, stemming from nanocrystal size
variations and thermal decoherence. Here, we analyze superradiance from superlattices of different dimensional-
ities (one-, two-, and three-dimensional) with variable nanocrystal aspect ratios. We predict as much as a 15-fold
enhancement in robustness against realistic values of energetic disorder in three-dimensional (3D) superlattices
composed of cuboid-shaped, as opposed to cube-shaped, nanocrystals. Superradiance from small (N � 103)
two-dimensional (2D) superlattices is up to ten times more robust to static disorder and up to twice as robust
to thermal decoherence than 3D superlattices with the same N . As the number of N increases, a crossover
in the robustness of superradiance occurs from 2D to 3D superlattices. For large N (>103), the robustness in
3D superlattices increases with N , showing cooperative robustness to disorder. This opens the possibility of
observing superradiance even at room temperature in large 3D superlattices, if nanocrystal size fluctuations can
be kept small.

DOI: 10.1103/PhysRevResearch.5.023068

I. INTRODUCTION

In 1954, Dicke [1] predicted a phenomenon he termed
superradiance (SR), which involves a collection of identical
light emitters spontaneously emitting intense coherent radia-
tion. Since then, superradiance has been observed in various
physical systems such as molecular aggregates [2,3], cold
atoms [4], diamond nanocrystals [5], semiconductor quantum
dot ensembles [6,7], and more recently, in both nanocrystal
(NC) superlattices [8–10] and hybrid perovskite thin films
[11]. SR can be used to develop ultra-narrow-linewidth lasers
for quantum metrology [12], efficient light-harvesting and
photon detecting devices [13], and is key to recently proposed
sunlight-pumped lasers [14].

Typically, the probability density that a single excited
particle emits a photon is exponentially distributed and is
characterized by a lifetime τ . If there are N entangled
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emitters, all in the excited state, SR theory predicts coop-
erative emission with ∼N2 times higher peak intensity than
that of a single emitter (in contrast to ∼N for unentangled
emitters). If the incident radiation is so weak that only one
excitation is present, single-excitation superradiance [15] can
result. In this case, if the excitation is coherently shared by N
emitters, its lifetime decreases by a factor of N and, in turn,
causes the emission intensity to scale by the same factor.

Experimentally, superfluorescence (a type of superradiance
where emitting dipoles are spontaneously entangled) has re-
cently been observed in three-dimensional (3D) superlattices
of 106 − 108 cube-shaped CsPbBr3 NCs [8]. At low fluence,
the observed radiative decay rate is only a factor of three faster
than that of individual nanocrystals. This is several orders of
magnitude smaller than what is predicted from a linear N
scaling. We have recently shown that this deviation can be
rationalized [16].

We use the radiative Hamiltonian approach to model SR
from NC superlattices, which is valid for all systems sizes in
the point-dipole approximation. This is in contrast to static
dipole-dipole coupling, used by, for example, Blach et al. [17],
which is only valid for distances smaller than the emission
wavelength. The radiative Hamiltonian was first used to study
lattices of atomic dipoles [18–20] and then successfully ap-
plied to study superradiance from perovskite NC superlattices
[16] by some of the authors of the present paper. Sierra et al.
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[21] also use a similar Hamiltonian to study the effect of
dimensionality on the critical distance needed to yield super-
radiance in arrays of atoms that have a single excited state,
whereas we model isotropic emission from NCs by consider-
ing three excited states along x, y, and z directions.

Through detailed modeling, we find that both energetic
disorder, stemming from NC size and band-gap variations,
as well as the collective effects of thermal decoherence (i.e.,
thermal noise due to a finite temperature) suppress SR rate
enhancements. Thus while superradiant enhancements of up
to O(103) are possible with a few thousand coupled NCs in
a superlattice, thermal decoherence and static disorder bring
this enhancement factor down to O(1).

Having established the origins of a smaller than expected
superradiant enhancement, we discuss approaches to over-
coming this suppression. SR occurs when nanocrystals couple
with each other through interactions between their transition
dipoles. Dipole-dipole interaction strengths are inversely pro-
portional to the cube of their separation. Bringing dipoles
closer therefore increases the coupling and should make su-
perradiance more robust to disorder. The interaction also
depends on the relative orientations of the dipoles, as well as
the angles between them and the mutual vector joining them.
If NCs are all arranged in a line (one dimension, 1D) or a
plane (two dimensions, 2D), all vectors joining dipoles lie on
the same line or in the same plane, respectively. This changes
the structure of dipolar couplings and affects how systems
respond to static and thermal disorder.

In this study we establish how changing superlattice di-
mensionality affects superradiance and its robustness to static
and thermal disorder. We also investigate the effect changing
component NC aspect ratios has on SR and its robustness.
This is done by simulating SR from cuboidal NC superlattices.
Our results show an interplay between superlattice dimen-
sionality and NC shape on SR enhancement. We show that
superlattices of cuboidal NCs are more superradiant and more
robust to static and thermal disorder for any number of NCs.
Moreover, SR from 2D superlattices can be more robust to
disorder if they are composed of a small number of NCs
(N < 103). On the other hand, for large superlattices, robust-
ness to disorder increases with superradiant decay rate. This
effect has been predicted previously and is known as “cooper-
ative robustness” [22–24]. Here we demonstrate cooperative
robustness in a realistic model of perovskite superlattices.
Since 3D superlattices show larger increases of the superra-
diant decay rate with system size, they possess cooperative
robustness that can yield superradiance even in the presence of
disorder, having energies comparable to room-temperature
thermal energy.

II. THEORETICAL MODEL AND NUMERICAL METHODS

A superlattice is defined here as a lattice consisting
of Nx, Ny, and Nz NCs self-assembled along x, y, and z di-
rections, respectively. Corresponding NC center-to-center
distances are ax, ay, and az, which are sums of NC edge
lengths and interparticle spacings along a given direction.
The total number of NCs (N) in a superlattice is N = Nx ×
Ny × Nz.

When Nx = Ny = Nz > 1, the arrangement is said to be a
regular 3D superlattice. If the number of NCs along any one
edge (say Nz) is equal to 1, and Nx = Ny > 1, the arrangement
is a regular 2D superlattice. In a 1D superlattice, NCs are
arranged only along one direction (say, Nx = Ny = 1 < Nz).
Figure 1 illustrates superlattices of different dimensionalities.

We define superlattice aspect ratio, ρ, as the ratio of center-
to-center distance along shorter and longer superlattice axes.
In 3D we assume that center-to-center distances along x and y
axes (e.g., ax and ay) are equal so that ρ ≡ az/ax. In 2D, there
are only two axes (e.g., x and y). Consequently, ρ = ax/ay. In
1D, aspect ratio is not defined because there is only one axis.
Figure 1 shows the various ways in which one can arrange
cuboidal NCs into superlattices with different ρ values.

SR from NC superlattices is modeled via lattices of inter-
acting transition dipoles. Such dipole lattices have previously
been studied theoretically and reveal the emergence of coop-
erative behavior when lattices are free of disorder [18–20]. In
these models each lattice site has a point dipole that can be
oriented in one of three directions (x, y, or z). Point dipoles
interact via their mutual radiation field. In this way, SR from
cold atomic clouds has been predicted and modeled [25–27].

Modeling is done in the so-called “single-excitation
superradiance” regime to capture behavior induced by low ex-
citation intensities employed in actual measurements [28,29].
In this limit there is only one excited NC in the superlattice.
This simplification reveals relevant SR trends because the in-
volved Hilbert space scales as N, in contrast to the 2N scaling
in the high-fluence limit. The approach has previously allowed
us to numerically study large superlattices of ∼104 interacting
dipoles [16].

NCs with edge lengths of l = 9–29 nm are studied
[9,30–32]. This corresponds to center-to-center distances of
10–30 nm, assuming an interparticle spacing of 1 nm. Such
NCs lie in the intermediate-to-weak confinement regime given
a CsPbBr3 Bohr exciton radius (aB) of 3.5 nm [30,33]. For
NC dimensions above aB, band gaps do not vary significantly
[33], allowing an assumption that transition dipole moments
are size independent [16]. The spacing between NCs is due to
a coating of organic ligands, specifically oleic acid and oley-
lamine [8,34,35]. The optical dielectric constants of CsPbBr3

[33], oleic acid [36], and oleylamine [37] are 4.8, 3.1, and
2.13, respectively. The exciton structure and coupling can be
affected by this dielectric mismatch when the size of the NCs
is smaller that the exciton Bohr radius [38], thus being another
reason for us to only consider larger NCs.

We use following non-Hermitian Hamiltonian [16] to
model the NC superlattice,

Ĥ = h̄
(
ω0 − i

γr

2

) ∑
α

N∑
n=1

|n, α〉〈n, α|

+
∑
α,β

N∑
m,n=1
m �=n

Jαβ
mn |m, α〉〈n, β|, (1)

where h̄ω0(≡E0) is the NC band gap, γr is the single NC
radiative decay rate, and α, β = x, y, z are transition dipole
directions. Jαβ

mn terms, which indicate the coupling between
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FIG. 1. Schematic figures showing superlattices with different dimensionalities and center-to-center distances. The top row shows su-
perlattices of cubic NCs, while the bottom row shows superlattices of cuboidal NCs. The key parameters in our model, the center-to-center
distances along different axes, are labeled on all figures. In 3D, the three different ways to arrange cuboidal NCs into a superlattice are all
equivalent (orange figures). In 2D there is one way to arrange cuboidal NCs (yellow) that does not change the center-to-center distances and
two equivalent ways (blue) that do. In 1D there is only one way (brown figure) to arrange cuboidal NCs that modifies the center-to-center
distance.

NCs, are given by

ReJαβ
mn = h̄γr

2

[
y0(krmn)êα · êβ − 1

2
y2(krmn)gαβ

mn

]
, (2)

ImJαβ
mn = − h̄γr

2

[
j0(krmn)êα · êβ − 1

2
j2(krmn)gαβ

mn

]
. (3)

Here, gαβ
mn denotes the geometric factor [êα · êβ − 3(êα ·

r̂mn)(r̂mn · êβ )], and yν and jν are spherical Bessel functions
of order ν. �rmn is the vector joining the centers of the mth and
nth NCs (rmn and r̂mn are the magnitude of �rmn and the unit
vector along �rmn, respectively), and k = 2π

λ
is the radiation

wave number inside the material. The vectors �rmn depend on
the superlattice parameters ax, ay, and az, that we defined
above. In our model, when we change the NC sizes and
aspect ratios, the corresponding center-to-center distances �rmn

will also change. CsPbBr3 parameters of E0 = 2.38 eV and
λ = 237 nm are used, corresponding to a vacuum wavelength
of 520 nm [8] for a refractive index of 2.2 [33]. Note that
the model is general and applicable to any NC superlattice
provided appropriate material parameters.

Equation (2) is a generalized dipole-dipole coupling term.
For small distances (krmn � 1), such as when we consider
the nearest-neighbor coupling, it is the usual dipole-dipole
interaction that is proportional to 1/r3

mn. The imaginary term,
Eq. (3), arises due to the field-mediated interaction between
dipoles. We define the nearest-neighbor coupling (J ) as the
maximum coupling between transition dipoles of neighboring
NCs, J = maxα,β{|Jαβ

m,m+1|}. The real part of the nearest-
neighbor coupling is much greater than the imaginary part.
For example, when the center-to-center distance (say, ax) is
10 nm, J is about 0.14 meV. When the center-to-center dis-
tance is 5 nm, J becomes 1.1 meV.

Diagonalizing Ĥ yields complex eigenvalues (denoted by
�), whose imaginary parts reflect NC decay rates. Real
parts represent the corresponding energy of emitted radiation.
States that decay faster or slower than a single NC are called
superradiant or subradiant, respectively. The maximum SR
rate, denoted by �SR, is defined as �SR ≡ max[−Im�]/(h̄/2).
The corresponding energy equivalent, h̄�SR, is called the
superradiant decay width. �SR is normalized by the emis-
sion rate of an individual, noninteracting NC to obtain a
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FIG. 2. Comparison of the maximum possible SR enhancement
from different superlattice dimensionalities composed of cube-
shaped NCs with a center-to-center distance of 10 nm (i.e., ax =
ay = az = 10 nm). Insets show illustrations of NC superlattices with
1D, 2D, and 3D dimensionalities. The arrows indicate when the
length of the superlattice becomes equal to the wavelength of inci-
dent radiation (N = 23 in 1D, N = 561 in 2D, and N = 1.33 × 104

in 3D).

dimensionless SR enhancement factor γenh = �SR
γr

. We also
define the spectral width as the range of the real parts of the
eigenvalues, E = max[Re{�}] − min[Re{�}].

SR energy shifts are obtained from the real parts of the
eigenvalues using E = Re� − E0. SR redshifts of 0.3 meV
are predicted, which do not reproduce the much larger red-
shifts observed in practice by Rainò et al., and Baranov et al.
[35]. We have therefore previously rationalized larger than
expected SR redshifts as due to SR from small, interacting
NC subensembles within superlattices [16].

III. RESULTS AND DISCUSSION

A. Superradiance in the absence of disorder

1. Influence of superlattice dimensionality

Figure 2 shows how superlattice dimensionality impacts
γenh for assemblies consisting of cube-shaped CsPbBr3 NCs
with a center-to-center distance of 10 nm. Superradiance from
three superlattice dimensionalities is compared, where the
total number of NCs ranges from 4 to 1.5 × 104. The fig-
ure shows that for large N , the 3D superlattice is the most
superradiant in absolute terms. This is followed by 2D and 1D
superlattices in this order.

Our model correctly captures a deviation from the linear
increase of γenh [16] as the system size becomes comparable
with λ (the wavelength of radiation inside the material), see
arrows in Fig. 2. For the 1D superlattice, saturation occurs
when N × a (the length of the superlattice) results in a physi-
cal distance of order λ. This is in agreement with an analogous
result for atomic lattices [21]. At small N where the entire
superlattice is smaller than the wavelength of light, γenh is
roughly equal for all three superlattice dimensionalities and
increases linearly with N .

One can also visualize the wave function corresponding
to different eigenstates of the Hamiltonian [Eq. (1)] for 2D
superlattices. Supplementary Material (SM) [47] Figs. S1 and
S2 show the real and imaginary parts of the wave function
corresponding to the most superradiant and a typical strongly
subradiant state. The wave function corresponding to the most
superradiant state has the fewest possible nodes for the size of
the superlattice, while that of a subradiant state oscillates with
a much smaller wavelength.

2. Dependence on NC aspect ratio

We now study the dependence of γenh on NC aspect ratio
for the 3D and 2D superlattices first considered in Fig. 2. It
is known that colloidal syntheses produce NCs with variable
aspect ratios. Classic examples include CdSe nanorods [39],
nanoplatelets [40,41], and nanowires [42–44], and more re-
cently, CsPbBr3 platelets [9,31]. It has also been possible to
self-assemble such cuboidlike NCs into superlattices [9,32].

In our model, Ĥ [Eq. (1)] depends only on the NC center-
to-center distance (�rmn). The aspect ratio (ρ) implicitly takes
into account NC shape and interparticle spacings due to the
presence of organic ligands. In the results that follow, the
number of NCs along each edge of a superlattice remains con-
stant. Therefore the overall aspect ratio of the superlattice is
equal to the ratio of NC center-to-center distances. In all cases,
NC dimensions are greater than aB so that strong confinement
effects can be ignored. For the same reason, we assume that
NC transition dipoles do not change significantly.

Figure 3(a) now reveals that as ρ decreases from ρ =
1–0.4, γenh increases. The reason for this increase in γenh

is the decrease in NC center-to-center distance along one
direction, which increases the number of NCs (and hence
emitters) per unit volume. Conversely, increasing center-to-
center distances reduces NC densities and suppresses γenh.
Figure 3(b) shows that γenh increases are even more significant
when low-aspect-ratio NCs are arranged into 2D superlattices.
See Supplementary Material (SM) Fig. S3 for the dependence
of γenh on ρ in 1D, which is equivalent to changing the NC
center-to-center distance along the superlattice direction.

Even though we predict a monotonic increase in super-
radiant enhancement as NC aspect ratio decreases, we have
avoided more extreme aspect ratios where we expect strong
confinement in one (nanosheets) or two (nanowires) dimen-
sions [45,46]. In such systems the response to light of the NCs
might become anisotropic.

B. Robustness to static disorder

We now investigate SR robustness to static disorder for
superlattices with different dimensionalities. In practice, a
finite NC size distribution exists within a superlattice. For
example, in the superlattices used by Rainò et al. [8], the
size of the NCs was 9.45 ± 0.41 nm. This size variation, in
turn, introduces electronic disorder into the system due to the
size dependency of NC band gaps [30]. In the intermediate-
to-weak confinement regimes, this disorder is of the order
of a few meV, which is much smaller than the band gap
but is comparable to the coupling between NCs. In order to
model this variation in band gaps, we add a random excitation
energy w to our Hamiltonian matrix [Eq. (1)]. The value of
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(a) (b)

FIG. 3. Comparison of the maximum possible superradiant enhancement from NCs of different shapes, all arranged in (a) a regular 3D
superlattice with 10 NCs along each side (N = 1000, Nx = Ny = Nz = 10); (b) a regular 2D superlattice with 32 NCs along each side (N =
1024, Nx = Ny = 32, Nz = 1), we use the perfect square that is closest to 1000. [Figure 2 shows that such a small change in N does not lead to
any significant changes in the superradiance rate, so we can compare plots (a) and (b).] The center-to-center distance on the x axis of the plots
refers to the two longer distances (ax and ay). The insets show (a) regular 3D and (b) regular 2D superlattices composed of cuboidal NCs.

w ranges from 0 to 8 meV [16]. The Hamiltonian with dis-
order, Hαβ

mn (w) = Hαβ
mn + δαβδmnW α

m , where W α
m are uniformly

distributed random real numbers on the domain [−w/2,w/2].
For the values of N that we simulate in this paper, the su-
perradiant enhancement becomes negligible at about 8 meV,
and hence systems with even greater static disorder are not
simulated.

1. Robustness in small superlattices

Figure 4(a) shows the relative robustness of 3D, 2D, and
1D cubic NC superlattices to w. For N ∼ 225, a 2D su-
perlattice shows a higher robustness to static disorder than
a corresponding 3D superlattice of the same size. This ro-
bustness may be a consequence of the fact that superradiant
states lie near the edges of the spectrum in 2D superlattices,
where the density of states is low. On the other hand, 3D
superlattices have fewer superradiant states and they lie close
to the center of the spectrum, where density of states is higher.
Therefore the superradiant states in 3D superlattices are more
susceptible to mixing with other eigenstates induced by static
disorder. This property is illustrated in SM [47] Fig. S4.

This increased robustness has limitations. When N is large,
SR from 2D superlattices becomes sublinear and is less than
that from 3D superlattices, as shown in Fig. 2. A higher
robustness to static disorder is insufficient to overcome this
sublinear scaling, resulting in 3D superlattices having greater
superradiance, despite being less robust to static disorder (see
SM [47], Fig. S5).

Next we study the sensitivity of 3D superlattice SR robust-
ness to NC aspect ratio and static disorder. We show results
for N = 729, because 3D superlattices are more superradiant

than 2D or 1D in this regime. The results are qualitatively
identical for other values of N (see SM [47], Fig. S6).
Figure 4(b) shows that 3D superlattices, consisting of cuboidal
NCs (e.g., ρ = 0.5), are as much as 15 times more robust than
corresponding 3D superlattices made of cube-shaped (ρ = 1)
NCs for realistic [16] disorder values (2 meV < w < 4 meV).
This is to be contrasted to the w = 0 case where only a ∼25%
enhancement is seen for ρ = 0.5 vs ρ = 1 [cf. Fig. 3(a)].
This robustness to static disorder is further enhanced when
cuboidal NCs are arranged into a 2D superlattice [see SM
[47], Fig. S7(a)].

Smaller aspect ratio cuboidal NCs are more robust to static
disorder due to the increased coupling between NCs. To con-
firm this, we plot γenh with respect to static disorder rescaled
by the nearest-neighbor coupling (w/J ). For small N , γenh

depends on the aspect ratio only through w/J , as shown
in SM [47], Fig. S6. This simple scaling does not work for
large N [see Fig. S6(c)]. As we discuss in the next section,
cooperative robustness plays a role when N is large.

2. Robustness in large superlattices: Cooperative robustness

We now examine how robustness to static disorder scales
with number of NCs in the superlattice for a fixed geometry.
Figure 4(c) shows the relative robustness of SR to static
disorder for different N in 3D superlattices of cubic NCs.
We see that as N increases, robustness to static disorder w

[measured through γenh(w)] increases proportionally with the
superradiant decay rate in the absence of disorder [γenh(0)].
This indicates the presence of cooperative robustness [22–24],
which occurs when the superradiant decay width (h̄�SR) is
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(a) (b) (c)

FIG. 4. Comparison of the robustness of the superradiant enhancement factor (γenh) to static disorder in superlattices of (a) different
dimensionalities (N = 216/225, ax = ay = 10 nm), (b) different NC aspect ratios (N = 729, ax = ay = 10 nm), and (c) different N (3D
superlattices of cubic NCs with ax = ay = az = 10 nm). In panel (c), the superradiant enhancement is normalized by its value in the absence
of static disorder and the static disorder is normalized by the SR decay width, while the inset shows the absolute values on both axes. The error
bars in all plots show the standard deviation of the eigenvalues over different disordered configurations.

much greater than the nearest-neighbor coupling (J ) [22]
(see SM [47], Fig. S8). The same effect is not seen in 2D
superlattices (see SM [47], Fig. S9) due to the sublinear
scaling of SR with N .

The origin of this effect can be qualitatively explained as
follows: A very large decay width implies a large coupling of
the system with the electromagnetic field. Such strong cou-
pling protects the system from disorder, which must become
comparable in magnitude to suppress SR. In more mathe-
matical terms, one can show that a large decay rate implies
that the superradiant eigenvalue is more separated from other
eigenvalues of the system in the complex plane, producing a
gap along the imaginary axis. When static disorder becomes
comparable to the difference between the energies of the
eigenvalues of the system, superradiance is suppressed. The
presence of a gap along the imaginary axis therefore protects
the system with respect to disorder, similar to an energy gap
along the real axis [24].

Figure 4(c) shows that in 3D superlattices, γenh is reduced
to half of its disorder-free value when static disorder is about
1.5 times the superradiant decay width (w ≈ h̄�SR). This sug-
gests that superradiance can resist static disorder of the order
of thermal energy (kBT ) at room temperature for a large 3D
superlattice. The number of nanocrystals in realistic superlat-
tices is at least 106, for which there can be a γenh of 104 in the
absence of static disorder [16]. Given that the natural decay
width (h̄γr) of a single perovskite nanocrystal corresponds
to 1.6 × 10−3 meV, this leads to a SR decay width (h̄�SR

of about 16 meV). Thus, for w = 24 meV (approximately
the room-temperature thermal energy) large superradiant en-
hancements are possible. For example, if the average size
is 10 nm, then an NC size variation of 10% (20%), that is
10 nm ± 1 nm (10 nm ± 2 nm), produces a static disorder of
25 meV (50 meV) [30].

Cuboidal superlattices produce even stronger superradi-
ance and as a result show an even greater cooperative

robustness to static disorder (see SM [47], Fig. S9). In large
3D superlattices of NCs with ρ = 0.5, the SR decay width
h̄�SR is about 24 meV, and they can show large SR enhance-
ments for up to w = 48 meV, which is approximately the
static disorder when the NC size variation is 10 nm ± 2 nm.

C. Robustness to thermal disorder

Given that any potential application of SR requires robust-
ness to temperature, the robustness of SR to thermal disorder
is investigated by defining a thermally averaged superradiance
rate [16], denoted �TH. This is an average superradiant decay
rate, weighted by Boltzmann distributions in energy:

�TH = −2

h̄

∑3N
j=1 Im� je−Re� j/kBT

∑3N
j=1 e−Re� j/kBT

. (4)

�TH captures the effects of a nonzero temperature on SR.
Equation (4) is only valid when thermalization, which typ-
ically occurs on the picosecond timescale [30], is faster than
other relaxation processes in the NC. This is usually true when
the superradiant decay rate is smaller than the thermalization
rate (γenh < 103) [16].

We define a thermal enhancement factor, similar to γenh,
as γTH = �TH/γr . Figure 5(a) now plots γTH for different
superlattice dimensionalities. We observe that 1D and 2D
superlattices are more robust to thermal decoherence than 3D
superlattices for N 
 216. The qualitative trend remains the
same for smaller N . However, when N becomes large (e.g.,
N = 729) 3D superlattices show the greatest superradiance
(see SM [47], Fig. S10).

To understand why superradiance from 2D superlattices is
more robust to thermal disorder than their 3D counterparts,
we study the spectra of the corresponding Hamiltonians. The
spectra of the Hamiltonians in the complex plane show the
energy (real part) distribution of the superradiant decay widths
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(a) (b)

FIG. 5. Comparison of the robustness of superradiant enhancement to thermal decoherence in superlattices of (a) different dimensionalities
(ax = ay = 10 nm, N 
 225) and (b) NC aspect ratios and dimensionalities (ax = ay = 10 nm, N 
 1.06 × 104). Insets in panels (a) and
(b) show the spectra of the Hamiltonian given in Eq. (1) for different dimensionalities and aspect ratios for the same N as in the corresponding
figure. In the insets, superradiant eigenvalues are indicated by red arrows and we have defined γ ′

r ≡ h̄γr/2.

(imaginary part). The energy of a superlattice’s most superra-
diant state strongly depends on its dimensionality.

In 1D and 2D, many superradiant states are concentrated
near the edges of the eigenvalue spectrum [see insets in
Fig. 5(a)]. In 3D, however, the most superradiant state lies
at the center. Eigenvalue maps in the insets of Fig. 5(a) show
that typical spectral widths are less than 1 meV. At very low
temperatures (�10 K = 0.86 meV/kB), the system is in one
of the lowest energy eigenstates with very high probability.
At room temperature or higher (T > 300 K = 25.8 meV/kB),
the system is almost equally likely to be in any of the eigen-
states. Thus, low-dimensional systems are favored at low
temperature and small N due to the fact that there are more
superradiant states close to the ground state, where the excita-
tion concentrates.

Next, we consider the effect of ρ and N on robustness
to thermal disorder. Figure 5(b) shows that superlattices of
all dimensionalities with cuboidal (ρ = 0.5) NCs are more
superradiant than those with cube-shaped (ρ = 1) NCs at all
temperatures. This is because the lowest energy eigenvalues
are more superradiant in such superlattices [Fig. 5(b), inset].
The spectral width in ρ = 0.5 NC superlattices is also over
two times greater than that in ρ = 1 NC superlattices, further
improving the superlattice’s robustness to thermal disorder.
Here, we have shown results for N = 223 
 1.06 × 104, be-
cause 3D superlattices are more superradiant than 1D and 2D
in this regime. For much smaller N (N < 1000), 3D super-
lattices with cuboidal (ρ = 0.5) NCs are just as superradiant
or slightly more superradiant than cubic NC superlattices at
T > 2 K (see SM [47], Fig. S11).

However, for very low temperatures (T � 2 K) the op-
posite is true, because lowest energy eigenvalues, which
contribute the most to radiative decay rate at low tempera-
ture, are subradiant in ρ = 0.5 NC superlattices when N is
small. As we did for static disorder, we can further increase
superradiance by combining the higher robustness to thermal

disorder of the 2D superlattice geometry (which occurs when
N � 729) and the higher/comparable robustness of cuboidal
NC shape by arranging cuboidal NCs in a 2D superlattice [see
SM [47], Fig. S7(b)].

The N dependence of SR’s robustness to thermal disorder
in 2D and 3D superlattices of cubic and cuboidal NCs is
shown in SM [47] Fig. S12. γTH increases monotonically with
N , reaching up to 102 at a temperature of about 6 K. The γTH

for large N shown in Figs. 5 and S12 is only the lower bound
due to cooperative robustness.

Our assumption that thermalization is the fastest timescale
fails for large system sizes where photons could be emitted
superradiantly before thermalization occurs. Based on prior
calculations, in the presence of static disorder of the same
order of magnitude as room-temperature energy, superradiant
decay widths are ∼16 meV. This corresponds to a superradiant
lifetime of about 80 fs, which is much shorter than typical
thermalization times of ∼1 ps. Studying superradiance in
this regime requires a nonequilibrium simulation of systems,
which will be investigated in a future study.

IV. CONCLUSIONS AND OUTLOOK

We have analyzed the dependence of NC superlattice SR
response with superlattice dimensionality, NC aspect ratio,
and number of interacting dipoles. We show that a dimen-
sional crossover occurs as the number of NCs increases in the
superradiance enhancement from nanocrystal superlattices.
Specifically, the main results obtained are the following:

(1) While one might think that 3D superlattices are always
better for achieving large, robust SR responses, we show that
this is not thee case for small numbers of interacting NCs.
2D superlattices made of less than 1000 NCs are more robust
both to static and thermal disorder than 3D superlattices with
the same number of NCs. Given that the coherent domains de-
termining SR response in large NC superlattices can be quite
small [8,16], our analysis can help guide future experiments.

023068-7



SUSHRUT GHONGE et al. PHYSICAL REVIEW RESEARCH 5, 023068 (2023)

(2) On the other hand, for large numbers of NCs, 3D
superlattices always produce larger and more robust su-
perradiance. Remarkably, we have shown that for large
superlattices robustness to static disorder increases with su-
perradiant decay width, which in 3D superlattices increases
with the system size. This implies the emergence of coopera-
tive robustness to disorder. Due to this effect we predict that
large 3D superlattices can show superradiance even at room
temperature, provided that the size fluctuations of the NCs
composing the superlattice can be controlled. For example,
if the average size is 10 nm, then the NC size variation should
be less than 10%, that is, 10 nm ± 1 nm for the static disorder
to be less than 25 meV.

(3) Changing NC aspect ratio can have a large impact on
SR response. We show that decreasing aspect ratios by pack-
ing NCs more closely together results in stronger coupling and
larger robustness of SR to both static and thermal disorder in
all superlattice dimensionalities.

Several challenges remain. If the fluence of the incident ra-
diation is high, the single-excitation assumption fails. Several
NCs may be excited simultaneously, leading to a N2 scaling of
SR enhancement. In addition, when superradiant decay times
are faster or comparable to the thermalization time, the decay
rate of superlattices will deviate from the thermal average of
the decay rates and the full nonequilibrium dynamics of the
open quantum system must be taken into account.
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