
PHYSICAL REVIEW RESEARCH 5, 023065 (2023)

Modified BB84 quantum key distribution protocol robust to source imperfections

Margarida Pereira ,1,2,3,4,* Guillermo Currás-Lorenzo ,1,2,3,4 Álvaro Navarrete ,1,2,3 Akihiro Mizutani,5 Go Kato ,6

Marcos Curty ,1,2,3 and Kiyoshi Tamaki 4

1Vigo Quantum Communication Center, University of Vigo, Vigo E-36315, Spain
2Escuela de Ingeniería de Telecomunicación, Department of Signal Theory and Communications, University of Vigo, Vigo E-36310, Spain

3atlanTTic Research Center, University of Vigo, Vigo E-36310, Spain
4Faculty of Engineering, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan

5Mitsubishi Electric Corporation, Information Technology R&D Center, 5-1-1 Ofuna, Kamakura-shi, Kanagawa 247-8501, Japan
6National Institute of Information and Communications Technology, Nukui-kita, Koganei, Tokyo 184-8795, Japan

(Received 24 October 2022; accepted 22 March 2023; published 27 April 2023)

The Bennett-Brassard 1984 (BB84) protocol is the most widely implemented quantum key distribution (QKD)
scheme. However, despite enormous theoretical and experimental efforts in the past decades, the security of
this protocol with imperfect sources has not yet been rigorously established. In this paper, we address this
shortcoming and prove the security of the BB84 protocol in the presence of multiple source imperfections,
including state preparation flaws and side channels, such as Trojan-horse attacks, mode dependencies and
classical correlations between the emitted pulses. To do so, we consider a modified BB84 protocol that exploits
the basis mismatched events, which are often discarded in standard security analyses of this scheme; and employ
the reference technique, a powerful mathematical tool to accommodate source imperfections in the security
analysis of QKD. Moreover, we compare the achievable secret-key rate of the modified BB84 protocol with
that of the three-state loss-tolerant protocol, and show that the addition of a fourth state, while redundant
in ideal conditions, significantly improves the estimation of the leaked information in the presence of source
imperfections, resulting in a better performance. This paper demonstrates the relevance of the BB84 protocol in
guaranteeing implementation security, taking us a step further towards closing the existing gap between theory
and practice of QKD.
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I. INTRODUCTION

Quantum key distribution (QKD) enables two remote
users, Alice and Bob, to securely establish cryptographic
keys over an untrusted quantum channel [1–3]. Undoubtedly,
the most widely used QKD scheme is the BB84 protocol,
proposed by Bennett and Brassard in 1984 [4]. Almost four
decades after its introduction, QKD has made an enormous
progress both in theory and practice. However, despite its
rigorous mathematical security proof, current physical im-
plementations of QKD suffer from security loopholes due
to inherent device imperfections and leakages of secret-key
information.

Recent years have witnessed large efforts to reduce this
discrepancy between theory and practice and guarantee the
implementation security of QKD. A crucial breakthrough
in this direction was the proposal of measurement-device-
independent QKD (MDI-QKD) [5], which effectively closes
all security loopholes on the detector side and is practical
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with existing hardware [6–10]. Moreover, a variant of MDI-
QKD, called twin-field QKD [11], has been shown to provide
a significant improvement on the achievable secret-key rate,
allowing us to reach longer distances than ever before in
fiber-based communications [12–14].

Having efficiently dealt with the measurement unit, the
focus is now on securing the source. Essentially, source
loopholes could arise from state preparation flaws (SPFs)
[15–20] and side channels, such as Trojan-horse attacks
(THAs) [20–25], mode dependencies [16,17,20,26–28], pulse
correlations [29–34] and through changes in, for example,
electromagnetic and acoustic radiation. Previous works have
often looked at each of these imperfections individually, and
developed experimental countermeasures and theoretical tools
to minimize their impact on the secret-key rate and restore
the security claim of QKD. For instance, the BB84 protocol
has been shown to be secure in the presence of SPFs [18,19]
and THAs [23–25,35]. However, one can only guarantee the
implementation security of the source if all loopholes are
taken into account simultaneously in the analysis, and thus
the security of this protocol with imperfect sources has not
yet been rigorously established.

The importance of achieving this level of security for the
BB84 protocol cannot be overstated. In particular, many ex-
isting experiments [36–38], field-test QKD networks [39–45]
and satellite-based quantum communication systems [46,47]
employ the BB84 protocol. Hence, it is crucial to ensure the
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practical security of their transmitting units. Moreover, while
in the absence of source imperfections the achievable secret-
key rate is exactly the same when using three or four states
[19], in the presence of imperfections the BB84 protocol may
allow for a better estimation of the leaked secret information.
As a consequence, this may lead to higher performances; a
significant step towards attaining implementation security at
an adequate level for practical QKD applications.

A recently proposed analytical tool for security proofs
of QKD, the reference technique (RT) [31], is particularly
well suited to address these issues, since it enables us to
estimate the leaked secret-key information in the presence of
multiple source imperfections. For this, one considers some
reference states that are similar to the actual states emitted
in the protocol, but whose simpler structure facilitates the
estimation of some intermediate parameters. Then, since the
two sets of states are close to each other, one can bound
the maximum deviation between their detection probabilities
using a Cauchy-Schwarz’s type inequality (denoted in [31] as
the G function), and estimate the final parameters needed to
guarantee the security of the actual protocol. The high flexi-
bility and the high tolerance to source imperfections displayed
by the RT with the G function comes at a cost, however,
as it requires the QKD protocol to be run sequentially, i.e.,
Alice only emits a particular pulse after Bob has measured the
previous one [48]. Nonetheless, unlike other security proof
approaches, the RT allows us to guarantee the security of
QKD protocols with practical light sources against coherent
attacks.

In this paper, we employ the RT with the G function
to prove the security of the BB84 protocol in the presence
of multiple source imperfections; including SPFs and side
channels, such as THAs, mode dependencies and classical
pulse correlations. To do so, we consider a modified BB84
protocol that exploits the basis mismatched events, which are
usually discarded in standard implementations of the protocol.
Our security proof only requires an upper bound on a few
parameters that quantify the quality of the source, i.e., no
detailed information about the side-channel states is needed,
thus facilitating the work of experimentalists. Additionally,
we compare the achievable secret-key rate of this modified
BB84 protocol with that of the three-state loss-tolerant pro-
tocol [19], and show that the emission of a fourth state,
while redundant in ideal conditions, offers a significant im-
provement on the secret-key rate in the presence of source
imperfections. This suggests that the modified BB84 protocol
provides a clear performance advantage over the three-state
protocol when dealing with imperfect sources.

The outline of the paper is as follows. In Sec. II, we
describe in detail the emitted states in the modified BB84
protocol, and then list the assumptions imposed by our se-
curity proof on Alice’s and Bob’s devices. In Sec. III, we
present our security analysis for the two different scenarios
considered for the source, namely, the setting-independent and
the setting-dependent scenarios. After that, in Sec. IV, we
show the secret-key rate obtainable for the modified BB84
protocol in the presence of multiple source imperfections, and
then compare it with that obtainable when using the three-state
loss-tolerant protocol. Finally, in Sec. V, we summarize our
findings.

II. DESCRIPTION OF THE EMITTED STATES
AND ASSUMPTIONS

For ease of discussion, we consider a modified BB84 pro-
tocol with an imperfect single-photon source (see Appendix A
for a full protocol description). Nevertheless, our analysis
could also be combined with the decoy-state method [49–51]
to deal with phase-randomized coherent sources, as explained
in [52]. In particular, we assume that the form of Alice’s emit-
ted states is affected by certain setting-choice-independent
factors, such as temperature drifts or power fluctuations, that
commonly arise in practical implementations of QKD. These
factors can be modelled as a sequence of possibly-correlated
random variables G := G1, . . . ,GN , where Gk represents all
the setting-independent factors that affect the state emitted in
the kth round and N is the total number of rounds. Since these
factors are independent of Alice’s encodings, for a given se-
quence of setting choices j1, . . . , jN , the global state emitted
is mixed over the probability distribution of G. However, as
shown in Appendix B, as long as one demonstrates that the
protocol is secure for any particular value g := g1, . . . , gN of
G, which can be assumed to have been fixed at the beginning
of the protocol, then it is also secure for the actual case in
which Alice emits mixed states. Thus, in the security proof, g
can essentially be treated as a fixed parameter that affects the
form of all the emitted states. Since the latter is mathemati-
cally equivalent to considering the mixed state case, here, we
take this view for simplicity of presentation.

In addition, we investigate two different scenarios for the
source. In the first one, the state of the emitted pulse on a
particular round k only depends on gk and on Alice’s kth
setting choice, i.e., it is independent of all her other setting
choices. This is known as setting-independent pulse corre-
lations and it was first modelled in [29]. The source model
considered in this paper, however, goes beyond that presented
in [29] even for this scenario, as the single-mode assumption
is removed and the effect of side channels is incorporated. In
the second scenario, the state of the emitted pulse on round
k may not only depend on gk and on Alice’s kth setting
choice, but also on Alice’s previous lc setting choices, for
some known correlation length lc. This is often denoted as
setting-dependent pulse correlations, and could arise, for in-
stance, from memory effects in the electronic devices inside
the transmitting unit [32]. The source model considered for
this latter case is similar to that introduced in [31], but here we
also take into account the dependence of the emitted pulses on
the setting-independent factors described above, whose effect
was disregarded in [31]. In both scenarios, we assume that,
given a particular sequence of setting choices j1, . . . , jN , the
global state emitted by Alice is a classical mixture of a tensor
product of N pure states. That is, we exclude the possibility of
quantum correlations in which the states emitted on different
rounds are entangled, which can hardly happen in typical
implementations of QKD.

In the setting-independent scenario, for each round k of
the protocol, Alice chooses a setting j ∈ {0Z , 1Z , 0X , 1X } and
emits a state to Bob. This state can be expressed as

|ψ j,g〉Bk ,Ek =
√

1 − ε
(k)
j,g |φ j,g〉Bk ,Ek +

√
ε

(k)
j,g |φ⊥

j,g〉Bk ,Ek , (1)
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where Bk is a two-dimensional system and Ek includes any
other systems that carry information about the kth pulse. In
practice, Bk is essentially the qubit system that Alice intends to
send to Bob, while Ek is a higher-dimensional system that has
been unintentionally sent to Bob, such as the back-reflected
light from a THA (see Appendix C for more details). Note
that |ψ j,g〉Bk ,Ek in Eq. (1) is a uniquely determined pure state
once j and gk are fixed. However, here we write g, rather
than gk , because as explained above, in our security proof
the parameter g, which contains gk for any k, is fixed at the
beginning of the protocol.

From construction, Eq. (1) is the most general descrip-
tion of the transmitted states within the framework of
setting-independent correlations, since it is simply an ex-
pansion of the most general state |ψ j,g〉Bk ,Ek in the basis
{|φ j,g〉Bk ,Ek , |φ⊥

j,g〉Bk ,Ek } [31,53]. In Eq. (1) the parameter ε
(k)
j,g ∈

[0, 1] quantifies the deviation of |ψ j,g〉Bk ,Ek from the qubit
state |φ j,g〉Bk ,Ek

:= |ω j,g〉Bk |λg〉Ek , where |ω j,g〉Bk is the state
that Alice would send to Bob in the absence of side channels
and |λg〉Ek is a setting-independent state for the current round.
Note that the state |ω j,g〉Bk incorporates any imperfections in a
qubit space, such as SPFs and phase fluctuations. The side
channels are represented in Eq. (1) by the state |φ⊥

j,g〉Bk ,Ek ,
which can live in a Hilbert space of arbitrary dimension and
is orthogonal to |φ j,g〉Bk ,Ek . In other words, the state |φ⊥

j,g〉Bk ,Ek

corresponds to unwanted and possibly unknown modes, and
it can incorporate side channels other than setting-dependent
pulse correlations, such as THAs and mode dependencies.

In the setting-dependent scenario, the emitted state for each
round k can instead be expressed as

∣∣ψ j,g| jk−1,..., jk−lc

〉
Bk ,Ek

=
√

1 − ε
(k)
j,g| jk−1,..., jk−lc

|φ j,g〉Bk ,Ek

+
√

ε
(k)
j,g| jk−1,..., jk−lc

|φ⊥
j,g| jk−1,..., jk−lc

〉Bk ,Ek ,

(2)

where jk−1, . . . , jk−lc represents the dependence of the kth
pulse on Alice’s previous lc setting choices. As before, Eq. (2)
is simply an expansion of the state |ψ j,g| jk−1,..., jk−lc

〉Bk ,Ek in
the basis {|φ j,g〉Bk ,Ek , |φ⊥

j,g| jk−1,..., jk−lc
〉Bk ,Ek }, and within the

framework of classical pulse correlations, this is the most
general description of the transmitted states. Note that the
state |φ⊥

j,g| jk−1,..., jk−lc
〉Bk ,Ek in Eq. (2), besides incorporating all

the side channels in |φ⊥
j,g〉Bk ,Ek , also takes into account setting-

dependent pulse correlations.
Importantly, due to the form of Eqs. (1) and (2), one can

apply the RT to prove the security of the modified BB84
protocol as long as the following assumptions hold.

A. Assumptions on Alice’s transmitting unit

(A1) For all rounds of the protocol, Alice chooses the
setting j with a fixed probability p j , with p0Z = p1Z .

Alice’s setting selection in a given round is independent
of those of other rounds, and Eve cannot tamper with her
selection probabilities.

(A2) As described above, we consider two different sce-
narios for the source, which result in two security analyses
with different assumptions:

(1) The emitted states do not depend on Alice’s previ-
ous setting choices—Eq. (1).

We assume that an upper bound εU � ε
(k)
j,g is known

for all k, j and g. Note that, even in this case, the
states emitted in different rounds of the protocol are not
necessarily independent and identically distributed (IID)
because the random variables G1, . . . ,GN that represent
the setting-independent factors may be correlated between
consecutive rounds. We show the security analysis under
this scenario in Sec. III A.

(2) The emitted states depend on Alice’s previous lc
setting choices—Eq. (2).

We assume that an upper bound ε′U � ε
(k)
j,g| jk−1,..., jk−lc

is
known for all k, j, g, and jk−1, . . . , jk−lc . Moreover, we
assume that the state of the kth pulse is affected by g and
Alice’s previous lc setting choices, and that lc is a known
parameter. The analysis under this scenario is given in
Sec. III B. As we shall see, the data postprocessing in this
case must be done differently. In particular, one needs to di-
vide the sifted key in (lc + 1) groups, and then perform the
parameter estimation and privacy amplification separately
for each group (see Appendix A). Note that, when lc = 0,
this scenario reduces to the setting-independent scenario
described in Assumption (A2.a).
We emphasize that, while knowing the upper bound εU

(ε′U) is a requirement to apply the RT, the characterization
of the side-channel states |φ⊥

j,g〉Bk ,Ek (|φ⊥
j,g| jk−1,..., jk−lc

〉Bk ,Ek ) is

not needed. In other words, the inner products 〈φ⊥
j,g|φ⊥

j′,g〉Bk ,Ek

(〈φ⊥
j,g| jk−1,..., jk−lc

|φ⊥
j′,g| jk−1,..., jk−lc

〉Bk ,Ek ) and 〈φ j,g|φ⊥
j′,g〉Bk ,Ek

(〈φ j,g|φ⊥
j′,g| jk−1,..., jk−lc

〉Bk ,Ek ) with j �= j′ can be unknown.
Importantly, this is not a necessary assumption but a fortunate
consequence originating from the freedom to choose the
reference states in the RT when using the particular inequality
G defined in Eq. (12). Since obtaining a full characterization
of the side-channel states is very challenging in practice,
previous theoretical works [31,53], as well as this paper,
have exploited this advantage to consider device models that
require minimal experimental characterization. Nonetheless,
it is important to emphasize that if any information about
the side channels is available it can be incorporated in
the RT framework. This would most likely lead to higher
performances because a better source characterization tends
to result in a more accurate estimation of the phase-error
rate. In fact, this has been recently shown for a particular
time-dependent side channel in [28].

(A3) A partial characterization of the qubit state |ω j,g〉Bk

in Eqs. (1) and (2) can be obtained.
In the analysis presented in [31] (see also [35,53]), for sim-

plicity, the qubit state |ω j,g〉Bk in |φ j,g〉Bk ,Ek := |ω j,g〉Bk |λg〉Ek is
assumed to be perfectly characterized and stable in time. Here,
we go a step further and allow |ω j,g〉Bk to vary slightly round
by round, hence its dependence on g. However, we assume
that one can at least partially characterize this state, such that
the upper bounds cU

τ, j and p(vir)U
τX

on certain quantities that
are defined later can be derived; see the discussion between
Eqs. (10) and (11) for more details, including the definition of
these parameters.

In Sec. IV A we show for illustration purposes that, for a
typical phase-encoding setup in which the qubit component

023065-3



MARGARIDA PEREIRA et al. PHYSICAL REVIEW RESEARCH 5, 023065 (2023)

|ω j,g〉Bk of all the emitted states is in a standard basis plane
(such as the XZ plane) and the exact encoded phase θ

(k)
j,g

fluctuates over time, this requirement translates to being able
to determine the range of these fluctuations, i.e., guaranteeing
that θ

(k)
j,g ∈ [θL

j , θU
j ] for all k, j, and g, where {θL

j , θU
j } is

known.
(A4) Alice only emits her kth pulse after Bob has per-

formed his k − 1th measurement [54].
This guarantees that the measurement operator M̂ (k)

γX
in

Eq. (6) [D̂(k)
γX

in Eq. (27)] satisfies 0 � M̂ (k)
γX

� 1̂ [0 � D̂(k)
γX

�
1̂] (see Appendices D and E2, respectively, for a proof of these
statements), which is needed to apply the RT with the G func-
tion defined in Eq. (12). We note that this assumption is also
required when using the generalized entropy accumulation
theorem [48] to prove the security of prepare-and-measure
protocols against coherent attacks.

We remark that Assumption (A1) is present in all security
proofs of QKD, Assumptions (A2) and (A4) are required
to apply the RT, and Assumption (A3) is the necessary
condition to take into account random fluctuations and setting-
independent pulse correlations.

B. Assumptions on Bob’s measurement unit

(B1) For all rounds of the protocol, Bob chooses a mea-
surement basis β ∈ {Z, X } with probabilities pZB and pXB ,
respectively.

Bob’s basis selection in a given round is independent of
those of other rounds, and Eve cannot tamper with his selec-
tion probabilities.

(B2) Bob’s measurements satisfy the basis-independent-
efficiency condition.

We assume that Bob’s measurements can be repre-
sented by the positive operator-valued measures (POVMs)
{m̂0β

, m̂1β
, m̂ f } where m̂0β

(m̂1β
) corresponds to Bob obtaining

the bit value 0 (1) when selecting the basis β, and m̂ f is as-
sociated with an inconclusive outcome. That is, the detection
efficiency of Bob’s unit is independent of his measurement
basis choice β. This assumption is required by many secu-
rity proofs of QKD to remove detector side-channel attacks
exploiting channel loss [56,57].

(B3) There are no side channels on Bob’s device.
All these assumptions on Bob’s device can be avoided by

considering a MDI-type protocol, which removes all detector
loopholes and to which our analysis could easily be extended
(see [58]).

III. SECURITY PROOF

Here, we show how the RT can be used to prove the
security of the modified BB84 protocol against coherent at-
tacks in the presence of multiple source imperfections. In
particular, we explain how to estimate the phase-error rate,
which bounds the amount of information leakage to a poten-
tial eavesdropper, Eve, and determines the amount of privacy
amplification that is needed to guarantee a secure final key.
We do this for two different security analyses that consider
the two scenarios described previously for the transmitting
unit. Namely, in Sec. III A, the emitted states only depend
on setting-independent factors and in Sec. III B, in addition

to these factors, the emitted states also depend on Alice’s
previous lc setting choices. Their corresponding assumptions
are (A2.a) and (A2.b) in Sec. II A, respectively.

A. Scenario in which the emitted states do not depend
on Alice’s previous setting choices

In this scenario, for each pulse emission, Alice sends a state
|ψ j,g〉Bk ,Ek given by Eq. (1) through the quantum channel to
Bob, who then performs his POVM measurements. The secret
key is distilled from the rounds in which both Alice and Bob
select the Z basis. As a basic framework to prove the security
of these events, we use the complementarity approach [59,60].
First, note that from Eve’s perspective, the key generation
rounds are equivalently described by an entanglement-based
scenario in which, after selecting the Z basis, Alice prepares
the following entangled state∣∣�Z

g

〉
Ak ,Bk ,Ek

= 1√
2

∑
τ∈{0,1}

|τZ〉Ak

∣∣ψτZ ,g
〉
Bk ,Ek

, (3)

sends systems Bk, Ek to Bob while keeping system Ak in her
laboratory, and then both Alice and Bob perform Z-basis mea-
surements on their local and received systems, respectively.

To prove the security of these events, we consider the num-
ber of phase errors that Alice and Bob would have obtained if
they had performed their measurements in the X basis instead.
This virtual scenario is equivalent to Alice sending Bob the
fictitious virtual states

∣∣ψ (vir)
τX ,g

〉
Bk ,Ek

=
∣∣ψ0Z ,g
〉
Bk ,Ek

+ (−1)τ
∣∣ψ1Z ,g
〉
Bk ,Ek

2

√
p̃(k,vir)

τX ,g

pZA

, (4)

where τ ∈ {0, 1}, with probabilities

p̃(k,vir)
τX ,g = 1

2 pZA

[
1 + (−1)τ	(〈ψ0Z ,g

∣∣ψ1Z ,g
〉
Bk ,Ek

)]
, (5)

who then performs X -basis measurements on the received
systems. In Eq. (5), p̃(k,vir)

τX ,g represents the joint probability that
Alice chooses the Z basis (pZA ) and prepares the virtual state
|ψ (vir)

τX ,g 〉Bk ,Ek .
A phase error occurs when Alice selects the virtual state

associated to 1X (0X ) and Bob obtains the bit value 0 (1) in
his X -basis measurement. In Appendix D, we show that the
probability of obtaining a phase error on round k, conditioned
on all the previous outcomes, can be expressed as

P(k)
g (ph|Act) :=

∑
τ,γ∈{0,1}

τ �=γ

p̃(k,vir)
τX ,g pZB Tr

[
σ̃ (k,vir)

τX ,g M̂ (k)
γX

]
, (6)

where σ̃ (k,vir)
τX ,g := |ψ (vir)

τX ,g 〉〈ψ (vir)
τX ,g |Bk ,Ek and {M̂ (k)

0X
, M̂ (k)

1X
, M̂ (k)

f } is
a set of operators that can be regarded as the effective POVM
that determines the X -basis detection statistics of the kth
pulse; its specific form depends on Bob’s actual POVM ele-
ments {m̂0X , m̂1X , m̂ f }, on Eve’s attack, and on the outcomes
of the k − 1 previous rounds [see Eq. (D7) in Appendix D for
more details].

The detection probabilities Tr[σ̃ (k,vir)
τX ,g M̂ (k)

γX
] in Eq. (6) are

not directly observed in the experiment because the virtual
states are not actually emitted. Moreover, estimating them
using the data collected in the protocol might be difficult due
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to the presence of multiple source imperfections. However,
thanks to the RT, we can overcome this difficulty by esti-
mating P(k)

g (ph|Act) indirectly. For this, we first select some
reference states that are similar to the actual states emitted in
the protocol, and which allow an easy estimate of the phase-
error probability that would be observed if they had been
emitted: P(k)

g (ph|Ref ). Then, by evaluating the deviation be-
tween the reference and actual states, we obtain P(k)

g (ph|Act)
from P(k)

g (ph|Ref ). Finally, by applying concentration in-
equalities we derive an upper bound on the phase-error rate.

Applying the reference technique. First, we define four ref-
erence states. Even though our choice of states is unrestricted,
higher secret-key rates are achieved if they are close to the
actual states. Here, we pick the set of reference states to be
{|φ j,g〉Bk ,Ek } j∈{0Z ,1Z ,0X ,1X }, which are defined in Eq. (1) as the
qubit part of the actual states. Then, by replacing the actual Z-
basis states by their corresponding reference states in Eq. (3),
we define

∣∣Z
g

〉
Ak ,Bk ,Ek

= 1√
2

∑
τ∈{0,1}

|τZ〉Ak

∣∣φτZ ,g
〉
Bk ,Ek

, (7)

analogous to |�Z
g 〉Ak ,Bk ,Ek . Similarly, we define the virtual

states |φ(vir)
τX ,g〉Bk ,Ek and the probabilities p(k,vir)

τX ,g , which are anal-
ogous to |ψ (vir)

τX ,g 〉Bk ,Ek and p̃(k,vir)
τX ,g , respectively. This allows us

to define the quantity

P(k)
g (ph|Ref ) :=

∑
τ,γ∈{0,1}

τ �=γ

p(k,vir)
τX ,g pZB Tr

[
σ (k,vir)

τX ,g M̂ (k)
γX

]
, (8)

where σ (k,vir)
τX ,g := |φ(vir)

τX ,g〉〈φ(vir)
τX ,g |Bk ,Ek . Here, P(k)

g (ph|Ref ) could
be interpreted as the probability of a phase error on the kth
round when using the reference states. We emphasize that
these replacements of actual states by their reference counter-
parts are purely mathematical. The reference states are never
prepared nor sent in an actual implementation of the protocol.

A convenient feature of Eq. (8) over Eq. (6) is that the states
σ (k,vir)

τX ,g live in the same qubit space as the reference states

σ
(k)
j,g := |φ j,g〉〈φ j,g|Bk ,Ek , and therefore one can employ the idea

of the loss-tolerant protocol [19] to write the former states as
a linear function of the latter. For simplicity, here we assume
that these states all lie in the XZ plane of the Bloch sphere;
see Appendix B in [61] for a more general treatment. Then,
we have that

σ (k,vir)
τX ,g =

∑
j

c(k)
τ, j,gσ

(k)
j,g , (9)

for j ∈ {0Z , 1Z , 0X , 1X }, where c(k)
τ, j,g are real coefficients. To

find these coefficients, one has to solve two systems of three
linear equations with four unknowns. These systems have
infinitely many solutions, and therefore one can choose the
solutions that provide the tightest bound on the phase-error
rate. This is the crucial difference with respect to the three-
state protocol, and the reason why the modified BB84 protocol
can provide higher secret-key rates (see Sec. IV C). We note
that, in the case of the three-state protocol, the 1X state is
not emitted and thus c(k)

1,1X ,g = c(k)
0,1X ,g = 0. This results in two

systems of three linear equations with three unknowns, which
have a unique solution each.

After substituting Eq. (9) in Eq. (8), we obtain

P(k)
g (ph|Ref ) =

∑
τ,γ∈{0,1}

τ �=γ

p(k,vir)
τX ,g pZB

∑
j

c(k)
τ, j,gTr
[
σ

(k)
j,g M̂ (k)

γX

]
,

(10)

where we have used the linearity of the trace operation. Note
that since the reference states σ

(k)
j,g depend on g, the coefficients

c(k)
τ, j,g and the probabilities p(k,vir)

τX ,g also depend on g, and there-
fore their exact value is in general unknown. Nevertheless, our
analysis only requires knowing upper bounds cU

τ, j � c(k)
τ, j,g and

p(vir)U
τX

� p(k,vir)
τX ,g on each of these quantities [see Assumption

(A3) in Sec. II A]. In Sec. IV A, we show how to derive
these upper bounds in practice for a particular device model.
Substituting them in Eq. (10), we obtain

P(k)
g (ph|Ref ) �

∑
τ,γ∈{0,1}

τ �=γ

p(vir)U
τX

pZB

∑
j

cU
τ, jTr
[
σ

(k)
j,g M̂ (k)

γX

]
. (11)

The fictitious probabilities Tr[σ (k)
j,g M̂ (k)

γX
] in Eq. (11) are also

unknown because, as mentioned before, the reference states
are never sent in the actual protocol. However, by evaluating
the deviation between the reference and the actual states we
are able to bound these probabilities, and consequently esti-
mate an upper bound on P(k)

g (ph|Ref). In doing so, we may
adopt a number of different inequalities; but here, we choose
the following inequality [31]:

G−(Tr[|A〉〈A|M̂], |〈A|R〉|)
� Tr[|R〉〈R|M̂]

� G+(Tr[|A〉〈A|M̂], |〈A|R〉|), (12)

where |A〉 and |R〉 are any two normalized states, and M̂
is a measurement operator satisfying 0 � M̂ � 1̂. The latter
imposes a restriction on the repetition rate of the protocol
[see Assumption (A4) in Sec. II A]. In Eq. (12), the func-
tions G−(y, z) and G+(y, z) are defined for 0 � y � 1 and
0 � z � 1 as

G−(y, z) =
{

g−(y, z) if y > 1 − z2

0 otherwise,
(13)

and

G+(y, z) =
{

g+(y, z) if y < z2

1 otherwise,
(14)

with

g±(y, z) = y + (1 − z2)(1 − 2y) ± 2z
√

(1 − z2)y(1 − y).

(15)

Next, we apply the bound in Eq. (12) to each term in
Eq. (11), by selecting the function G−(y, z) for the terms
whose coefficient is negative, and the function G+(y, z)
for the terms whose coefficient is positive, thus max-
imising P(k)

g (ph|Ref). We can then express P(k)
g (ph|Ref)

as a function of the detection probabilities of the actual
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states,

P(k)
g (ph|Ref )�

∑
τ,γ∈{0,1}

τ �=γ

p(vir)U
τX

pZB

⎡
⎢⎢⎢⎣
∑

j
cU
τ, j>0

cU
τ, jG+
(
Tr
[
σ̃

(k)
j,g M̂ (k)

γX

]
, |〈ψ j,g|φ j,g〉Bk ,Ek |

)+ ∑
j

cU
τ, j<0

cU
τ, jG−
(
Tr
[
σ̃

(k)
j,g M̂ (k)

γX

]
,|〈ψ j,g|φ j,g〉Bk ,Ek |

)
⎤
⎥⎥⎥⎦,

(16)

where σ̃
(k)
j,g := |ψ j,g〉〈ψ j,g|Bk ,Ek .

Using the definitions of the actual and reference states, we find that the inner products in Eq. (16) have the form

|〈ψ j,g|φ j,g〉Bk ,Ek | =
√

1 − ε
(k)
j,g . For simplicity, we now use the upper bound εU � ε

(k)
j,g for all k, j and g [see Assumption

(A2.a) in Sec. II A]. Using the fact that the functions G+(y, z) and −G−(y, z) are decreasing with respect to z and that√
1 − ε

(k)
j,g �

√
1 − εU, Eq. (16) can then be upper bounded by

P(k)
g (ph|Ref ) �

∑
τ,γ∈{0,1}

τ �=γ

p(vir)U
τX

pZB

⎡
⎢⎢⎢⎣
∑

j
cU
τ, j>0

cU
τ, jG+

(
P(k)

g ( j, γX |Act)

p j pXB

,
√

1 − εU

)
+
∑

j
cU
τ, j<0

cU
τ, jG−

(
P(k)

g ( j, γX |Act)

p j pXB

,
√

1 − εU

)⎤⎥⎥⎥⎦,

(17)

where P(k)
g ( j, γX |Act) := p j pXB Tr[σ̃ (k)

j,g M̂ (k)
γX

] is the joint probability that Alice prepares the actual state |ψ j,g〉Bk ,Ek , Bob chooses
the X basis and his measurement outcome is γ . Importantly, these probabilities are related to quantities directly observed in the
protocol, and all the other parameters in Eq. (17) are known.

Now that we have an upper bound on P(k)
g (ph|Ref), the next step is to obtain an upper bound on the probability of a phase

error in the actual protocol: P(k)
g (ph|Act). For this, first note that P(k)

g (ph|Ref) in Eq. (8) can be written as

P(k)
g (ph|Ref) = pZA pZB Tr

[∣∣Z
g

〉〈
Z

g

∣∣
Bk ,Ek

M̂ (k)
ph

]
, (18)

where

M̂ (k)
ph = P̂

( |0Z〉Ak
− |1Z〉Ak√

2

)
⊗ M̂ (k)

0X
+ P̂

( |0Z〉Ak
+ |1Z〉Ak√

2

)
⊗ M̂ (k)

1X
, (19)

with P̂(|·〉) = |·〉〈·|. Similarly, P(k)
g (ph|Act) in Eq. (6) can be written as

P(k)
g (ph|Act) = pZA pZB Tr

[∣∣�Z
g

〉〈
�Z

g

∣∣
Bk ,Ek

M̂ (k)
ph

]
. (20)

Hence, one can simply employ the bound in Eq. (12) again to obtain the following expression:

P(k)
g (ph|Act) � pZA pZB G+

(
P(k)

g (ph|Ref )

pZA pZB

,
∣∣〈�Z

g

∣∣Z
g

〉
Bk ,Ek

∣∣)

� pZA pZB G+

(
P(k)

g (ph|Ref )

pZA pZB

,
√

1 − εU

)
. (21)

In the last inequality of Eq. (21) we have used the fact that G+(y, z) is a decreasing function with respect to z, and the fact that

|〈�Z
g |Z

g 〉Bk ,Ek | = (
√

1 − ε
(k)
0Z ,g +
√

1 − ε
(k)
1Z ,g )/2 �

√
1 − εU.

The only missing step in the security analysis is to convert Eq. (21) into an expression in terms of observables. We start by
taking the average over all transmitted rounds N on both sides of Eq. (21) and then applying Jensen’s inequality [62] to the
right-hand side,

1

N

N∑
k

P(k)
g (ph|Act) � 1

N

N∑
k

pZA pZB G+

(
P(k)

g (ph|Ref )

pZA pZB

,
√

1 − εU

)

� pZA pZB G+

(
1

N

N∑
k

P(k)
g (ph|Ref )

pZA pZB

,
√

1 − εU

)
, (22)
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where in the second inequality we have used the concavity of the function G+(y, z) with respect to its argument y. Then, by
applying Jensen’s inequality to this argument we have that

1

N

N∑
k

P(k)
g (ph|Ref ) �

∑
τ,γ∈{0,1}

τ �=γ

p(vir)U
τX

pZB

⎡
⎢⎢⎢⎣
∑

j
cU
τ, j>0

cU
τ, jG+

(
1

N

N∑
k

P(k)
g ( j, γX |Act)

p j pXB

,
√

1 − εU

)

+
∑

j
cU
τ, j<0

cU
τ, jG−

(
1

N

N∑
k

P(k)
g ( j, γX |Act)

p j pXB

,
√

1 − εU

)⎤⎥⎥⎥⎦, (23)

where we have used Eq. (17) and the concavity of the functions G+(y, z) and −G−(y, z).
Now, we apply Azuma’s inequality [63] or Kato’s inequality [64] to substitute each sum of probabilities into its corresponding

observable. In particular, for the asymptotic case where N → ∞, we have that
∑N

k P(k)
g (ph|Act)  Nph, where Nph is the number

of phase errors. Similarly, for N → ∞, we find that
∑N

k P(k)
g ( j, γX |Act)  Nj,γX , where Nj,γX is the number of observed events

in which Alice’s setting choice is j, Bob selects the X basis and his measurement outcome is γ . Therefore, by using the fact that
G+(y, z) is an increasing function with respect to y, we combine Eqs. (22) and (23), then we multiply by N on both sides, and
apply Azuma’s or Kato’s inequality assuming N → ∞, thus arriving at the following bound:

Nph � N pZA pZB G+

⎛
⎜⎜⎜⎝
∑

τ,γ∈{0,1}
τ �=γ

p(vir)U
τX

pZA

⎡
⎢⎢⎢⎣
∑

j
cU
τ, j>0

cU
τ, jG+

(
Nj,γX

N p j pXB

,
√

1 − εU

)
+
∑

j
cU
τ, j<0

cU
τ, jG−

(
Nj,γX

N p j pXB

,
√

1 − εU

)⎤⎥⎥⎥⎦,
√

1 − εU

⎞
⎟⎟⎟⎠

=:NU
ph. (24)

Finally, we can calculate an upper bound on the phase-error
rate of the actual protocol by using

eU
ph := NU

ph

N (Z )
det

, (25)

where N (Z )
det is the number of detected rounds in which both

Alice and Bob selected the Z basis, i.e., the length of the sifted
key. Importantly, both Azuma’s and Kato’s inequalities allow
us to take into account the fact that, under a coherent attack by
Eve, the probabilities P(k)

g (ph|Act) and P(k)
g ( j, γX |Act) may

depend on the outcomes of the previous k − 1 rounds.
Note that it is straightforward to modify Eq. (24) to apply

it to the finite-key regime by simply including the deviation
terms of the concentration inequality employed, taking into
account that the functions G+(y, z) and G−(y, z) are increas-
ing with respect to y. Moreover, Kato’s inequality has been
shown to provide tight estimations for practical values of N
[35,61,65,66], and therefore the performance of the protocol
should not be significantly affected in the finite-key regime.
We remark, however, that due to the restriction imposed by
Assumption (A4) on the repetition rate of the protocol, the
time required to reach these values of N will increase.

B. Scenario in which the emitted states depend
on Alice’s previous lc setting choices

In this scenario, the state emitted on each round k is
|ψ j,g| jk−1,..., jk−lc

〉Bk ,Ek , defined in Eq. (2), which depends on
setting-independent factors and on Alice’s previous lc setting
choices. Note that, due to these setting-dependent pulse corre-
lations, information about Alice’s kth setting choice is leaked

to the subsequent pulses. However, this leakage of information
can essentially be regarded as a side channel to the kth pulse
[31]. In Appendix E 1, we show that one can consider the
states emitted in round k to be |ψ̃ j,g| jk−1,..., jk−lc

〉Bk ,E′
k

instead,
where E′

k includes not only system Ek but also the systems of
all rounds after the kth round.

As before, in the key generation rounds, we can then con-
sider that Alice prepares the entangled state∣∣�Z

g| jk−1,..., jk−lc

〉
Ak ,Bk ,E′

k

= 1√
2

∑
τ∈{0,1}

|τZ〉Ak

∣∣ψ̃τZ ,g| jk−1,..., jk−lc

〉
Bk ,E′

k
, (26)

and measures her ancilla system Ak in the Z basis. To prove the
security in this scenario, however, one cannot directly apply
the analysis presented in Sec. III A. The reason is the follow-
ing. To derive the state |ψ̃ j,g| jk−1,..., jk−lc

〉Bk ,E′
k

and Eq. (26), we
need to assume that, if any round in {k − 1, . . . , k − lc} was
a key-generation round, Alice measured her corresponding
ancilla system in the Z basis. However, in Sec. III A, we
considered a virtual protocol in which, in all key-generation
rounds, Alice measures her ancilla system in the X basis.
Thus, the description in Eq. (26) is not valid for this virtual
protocol.

To avoid this contradiction, we follow a similar approach to
that in [31,67], and assume that the users assign to each round
k ∈ {1, ..., N} a tag w ∈ {0, ..., lc} according to the value w =
k mod (lc + 1), and define the wth sifted key as the subset
of the total sifted key that originates from rounds with tag w

(see the protocol description in Appendix A). Then, to es-
timate the information leakage of the wth sifted key, we
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consider a virtual scenario in which Alice and Bob use the
X basis to check for phase errors only for the key rounds with
tag w, while for the rest of the key rounds they use the Z basis
as in the actual protocol. We refer to this scenario as the wth
virtual protocol, and we define the phase-error rate of the wth
sifted key, ew

ph, as the fraction of phase errors that Alice and
Bob would observe if they had run this wth virtual protocol.
By obtaining a bound on ew

ph, Alice and Bob can determine
the amount of privacy amplification that they need to apply to
the wth sifted key to turn it into a secret key. Importantly, note
that the (lc + 1) virtual protocols are not compatible with each
other, as Alice and Bob could not have run them at the same
time due to the noncommutativity of the X and Z basis mea-
surements. However, it turns out that the wth virtual protocol
allows us to prove the security of the wth key, and the security
of the total key is ensured by the universal composability of
each individual security proof, as shown in [67].

In the wth virtual protocol, if any round in {k − 1, . . . , k −
lc} is a key round, Alice uses the Z basis to measure her ancilla
system. Thus, the description in Eq. (26) is indeed valid for
this alternative scenario. As shown in Appendix E 2, it follows
that the probability that, in the wth virtual protocol, Alice
and Bob obtain a phase error on some round k with tag w,
conditioned on all the previous outcomes of the wth virtual
protocol, can be expressed as

P(k)
g (ph|Act) :=

∑
τ,γ∈{0,1}

τ �=γ

p̃(k,vir)
τX ,g| jk−1,..., jk−lc

pZB

× Tr
[
σ̃

(k,vir)
τX ,g| jk−1,..., jk−lc

D̂(k)
γX

]
, (27)

where

p̃(k,vir)
τX ,g| jk−1,..., jk−lc

= 1
2 pZA

[
1 + (−1)τ

× 	(〈ψ̃0Z ,g| jk−1,..., jk−lc

∣∣ψ̃1Z ,g| jk−1,..., jk−lc

〉
BkE′

k

)]
.

(28)

For simplicity of notation, in Eq. (27) we do not include
a subscript w to indicate that it refers to the wth vir-
tual protocol. Also, in this equation, D̂(k)

γX
with γ ∈ {0, 1}

is Bob’s effective POVM element for the kth pulse af-
ter Eve’s coherent attack [see Eq. (E15) in Appendix E 2
for more details], σ̃

(k,vir)
τX ,g| jk−1,..., jk−lc

:= P̂(|ψ (vir)
τX ,g| jk−1,..., jk−lc

〉Bk ,E′
k
)

where |ψ (vir)
τX ,g| jk−1,..., jk−lc

〉Bk ,E′
k

is defined as

∣∣ψ̃0Z ,g| jk−1,..., jk−lc

〉
Bk ,E′

k
+ (−1)τ

∣∣ψ̃1Z ,g| jk−1,..., jk−lc

〉
Bk ,E′

k

2

√
p̃(k,vir)

τX ,g| jk−1 ,..., jk−lc
pZA

. (29)

Importantly, note that Eq. (27) is very similar to Eq. (6),
and thus one can apply the RT in the same way as in Sec. III A
to derive an upper bound on the phase-error rate, as explained
below.

Applying the reference technique. In this case, we
choose the reference states to be {|φ j,g〉Bk ,E′

k
} j∈{0Z ,1Z ,0X ,1X },

defined in Eq. (E16), which live in a qubit space.
Then, one can follow a similar analysis to that de-
scribed between Eqs. (7) and (21) by making the
following substitutions: |ψ j,g〉Bk ,Ek → |ψ̃ j,g| jk−1,..., jk−lc

〉Bk ,E′
k
,

|�Z
g 〉Ak ,Bk ,Ek → |�Z

g| jk−1,..., jk−lc
〉Ak ,Bk ,E′

k
, |φ j,g〉Bk ,Ek → |φ j,g〉Bk ,E′

k

and |Z
g 〉Ak ,Bk ,Ek → |Z

g 〉Ak ,Bk ,E′
k
, where |Z

g 〉Ak ,Bk ,E′
k

is de-
fined in Eq. (E17). In the derivations, the inner products
|〈ψ̃ j,g| jk−1,..., jk−lc

|φ j,g〉Bk ,E′
k
| and |〈�Z

g| jk−1,..., jk−lc
|Z

g 〉Ak ,Bk ,E′
k
| will

now appear. In Appendix E 3, we show that these inner prod-
ucts are both upper bounded by

√
1 − εU, where εU = 1 −

(1 − ε′U)lc+1. Using this result, we obtain Eqs. (17) and (21),
which now apply to all rounds with tag w in the wth virtual
protocol. Then, taking the average over all rounds with tag w

on both sides of Eq. (21), and following a similar procedure
as in the previous subsection, we arrive at

Nph,w � Nw pZA pZB G+

⎛
⎜⎜⎜⎝
∑

τ,γ∈{0,1}
τ �=γ

p(vir)U
τX

pZA

⎡
⎢⎢⎢⎣
∑

j
cU
τ, j>0

cU
τ, jG+

(
Nj,γX ,w

Nw p j pXB

,
√

1 − εU

)
+
∑

j
cU
τ, j<0

cU
τ, jG−

(
Nj,γX ,w

Nw p j pXB

,
√

1 − εU

)⎤⎥⎥⎥⎦,
√

1 − εU

⎞
⎟⎟⎟⎠

=: NU
ph,w, (30)

where Nw = N
lc+1 is the number of rounds with a tag w and

Nj,γX ,w is the number of events with a tag w in which Alice’s
setting choice is j, Bob selects the X basis and his measure-
ment outcome is γ .

Finally, we obtain the upper bound on the phase-error rate
of the wth sifted key,

eU
ph,w := NU

ph,w

N (Z )
det,w

, (31)

where N (Z )
det,w is the number of detected rounds with a tag w

in which both Alice and Bob selected the Z basis. This means
that the users should now apply privacy amplification to the

wth sifted key sacrificing a fraction h(eU
ph,w ) of its bits, where

h(x) = −x log2 x − (1 − x) log2(1 − x) is the binary entropy
function.

The fraction of the total sifted key that Alice and Bob
sacrifice satisfies

lc∑
w=0

qwh(eU
ph,w ) � h

⎛
⎝ lc∑

w=0

qweU
ph,w

⎞
⎠ � h(eU

ph), (32)

where qw := N (Z )
det,w/N (Z )

det and eU
ph is the bound obtained using

Eq. (25) in Sec. III A, which in this case can be regarded as an
upper bound on the average phase-error rate. The first inequal-
ity in Eq. (32) is due to the concavity of the function h(x) and
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the second inequality is proved in Appendix F. This result is
useful if one is simply interested in computing a lower bound
on the asymptotic secret-key rate of the protocol. However,
we remark that, in practice, one cannot simply compute eU

ph
and then apply privacy amplification to the total sifted key
at once. One needs to compute each eU

ph,w, and apply privacy
amplification separately to each of the (lc + 1) sifted keys (see
the protocol description in Appendix A).

IV. RESULTS AND DISCUSSION

In this section, as an example, we apply our security proof
to the modified BB84 protocol with a phase-encoding scheme
in the presence of multiple source imperfections. In particular,
we show how to derive upper bounds on the coefficients c(k)

τ, j,g

and on the probabilities p(k,vir)
τX ,g . Then, we simulate the secret-

key rate that we would obtain in a practical implementation
of the protocol. Finally, we compare its performance with that
of the three-state loss-tolerant protocol [19] under the same
parameter regimes. We remark that the results and discussion
presented here apply to both security analyses in Sec. III.

A. Particular device model

In general, the state of the emitted pulses for each round
k is in the form of Eqs. (1) and (2), which take into account
the main source imperfections. As a particular example, we
assume here that the state |ω j,g〉Bk in the qubit part of these
equations: |φ j,g〉Bk ,Ek = |ω j,g〉Bk |λg〉Ek , satisfies

|ω j,g〉Bk = cos

(
θ

(k)
j,g

2

)
|0Z〉Bk

+ sin

(
θ

(k)
j,g

2

)
|1Z〉Bk

, (33)

where θ
(k)
j,g ∈ [0, 2π ) is the encoding phase, which depends

on the round k. Recall that the state in Eq. (33) incorporates
any imperfection in the qubit space, such as SPFs and phase
fluctuations.

When applying the RT to prove the security of this proto-
col, we relate the virtual states σ (k,vir)

τX ,g and the reference states

σ
(k)
j,g through Eq. (9). Then, for both virtual states, we choose

the unique solution of Eq. (9) such that c(k)
1,0X ,g = c(k)

0,1X ,g =
0, which provides the best numerical results for our device
model. We elaborate on this point in Sec. IV C. Using the
definition of |φ j,g〉Bk ,Ek and Eq. (33), we can solve the result-
ing systems of linear equations to find analytical expressions
for the other coefficients c(k)

τ, j,g as a function of the encoding

phases, i.e., c(k)
1, j,g(θ (k)

0Z ,g, θ
(k)
1Z ,g, θ

(k)
1X ,g) for j ∈ {0Z , 1Z , 1X } and

c(k)
0, j,g(θ (k)

0Z ,g, θ
(k)
1Z ,g, θ

(k)
0X ,g) for j ∈ {0Z , 1Z , 0X } (see Appendix G

for full expressions). Similarly, we can express p(k,vir)
τX ,g as a

function of θ
(k)
0Z ,g and θ

(k)
1Z ,g. While the exact phases for a par-

ticular round are unknown, we assume that one can guarantee
that they always fall in a known range, i.e., θ

(k)
j,g ∈ [θL

j , θU
j ] for

j ∈ {0Z , 1Z , 0X , 1X }. Then, we can obtain upper bounds cU
τ, j

and p(vir)U
τX

on each individual coefficient c(k)
τ, j,g and probability

p(k,vir)
τX ,g by considering the worst case scenario for the encoding

phases. In Appendix G, we provide their analytical solutions
in Eqs. (G2) and (G4), respectively.

Finally, by substituting these bounds into Eq. (25), we
obtain eU

ph. A lower bound on the asymptotic secret-key rate
can then be expressed as

R � YZ
[
1 − h
(
eU

ph

)− f h(ebit )
]
, (34)

where YZ is the joint probability that both Alice and Bob
select the Z basis and Bob obtains a detection event, f is
the error correction efficiency, and ebit is the bit-error rate.
Note that YZ and ebit would be directly observed in a practical
implementation of the protocol. The lower bound in Eq. (34)
applies both to the case in which the emitted states do not
depend on Alice’s previous setting choices, and to the case
in which they do depend on the previous lc setting choices;
the latter is due to Eq. (32). However, we emphasize that
this lower bound depends on the value of εU, whose def-
inition differs in the two cases. Namely, in the former, εU

is an upper bound on ε
(k)
j,g in Eq. (1); while in the latter,

εU = 1 − (1 − ε′U)lc+1≈ (lc + 1)ε′U , where ε′U is an upper
bound on ε

(k)
j,g| jk−1,..., jk−lc

in Eq. (2).

B. Simulation of the secret-key rate

To apply our analysis to this particular device model,
one needs to experimentally measure the parameter εU, and
{θL

j , θU
j } for all j, which represents the uncertainty on the

phase of the qubit component. Since there are no experimen-
tal works quantifying εU, in our simulations, we consider
a range of values for this parameter. Also, as an example,
we take the uncertainty on the phase to be the same for
all j, i.e., θL

j = θ̂ j − � and θU
j = θ̂ j + � for some known

θ̂ j and �. Moreover, we assume that θ̂ j deviates from the
ideal encoding angles due to SPFs; in particular, we assume
that θ̂0Z = 0, θ̂1Z = κπ , θ̂0X = κπ/2, and θ̂1X = κ3π/2, where
κ = 1 + δ/π and δ � 0 quantifies this deviation.

To simulate the data that one would obtain in an actual
experiment, we use the channel model described in [20]. In
particular, the model assumes that Alice sends a qubit state
with an exact phase θ̂ j when she selects the setting j. This
is because � and εU are both small, and do not result in
significantly different experimental results compared with the
ideal case. This does not contradict the assumptions of our
security proof: these imperfections could still exist and allow
Eve to learn some secret-key information, which our security
proof takes into account.

For the simulations, we assume the following channel,
device, and protocol parameters: � = 0.03 [16], δ = 0.063
[15,16], f = 1.16, and the dark count probability of Bob’s de-
tectors pd = 10−8 [2,12]. Here, we do not consider a specific
value for the detection efficiency of Bob’s detectors because
we represent the secret-key rate as a function of the overall
system loss. Moreover, we assume the efficient QKD scheme
[68], where pXA = pXB → 0 in the asymptotic scenario.

The results for the modified BB84 protocol are shown in
Fig. 1. This figure shows that, as εU increases, the secret-key
rate R decreases. This is expected because a higher value of
εU means that the emitted states may be more distinguishable,
and thus more vulnerable to, for example, an unambiguous
state discrimination (USD) attack [69,70], which could allow
Eve to learn key information without introducing any errors.
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FIG. 1. Secret-key rate R as a function of the overall system loss
(dB) for δ = 0.063 and different values of εU when applying the RT
to the modified BB84 protocol.

To ensure implementation security with practical secret-key
rates, it is therefore essential that experimentalists not only
quantify εU but also make an effort to minimize its magnitude,
for example, by employing additional optical components in
QKD setups, such as isolators and attenuators.

In addition, our security proof takes into account variable
modulation flaws and setting-independent pulse correlations,
allowing each emitted pulse to be different, i.e., non-IID, even
in the absence of side channels. We note that there are other
proof techniques that can also be employed to deal with source
loopholes, such as those using semi-definite-programming
(SDP) [66,71,72] or other convex optimization approaches
[73,74]. However, so far, none of them is able to guarantee this
level of implementation security, and therefore it is difficult to
make a fair comparison. In particular, the analyses in [66,71–
74] assume the emission of IID pulses. This assumption is
unrealistic since in practice the emission of non-IID pulses is
unavoidable due to fluctuations and pulse correlations.

C. Comparison between the three-state
and the modified BB84 protocols

For the comparison with the three-state protocol to be
fair, here we consider the same particular device model (see
Sec. IV A). There is, however, a difference in the security
proof: for the three-state protocol, Eq. (9) can only be ex-
pressed as

σ (k,vir)
τX ,g =

∑
j

c(k)
τ, j,gσ

(k)
j,g , (35)

for j ∈ {0Z , 1Z , 0X }. In this case, the coefficients c(k)
τ, j,g for

τ ∈ {0, 1} are both functions of the same encoding phases:
c(k)
τ, j,g(θ (k)

0Z ,g, θ
(k)
1Z ,g, θ

(k)
0X ,g). The form of these coefficients as well

as their upper bounds are defined in Appendix H. For the sim-
ulations, we take εU ∈ {10−6, 10−3} and δ ∈ {0.063, 0.126}
[15,16]. All the other experimental parameters are the same
as above.
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FIG. 2. Secret-key rate R as a function of the overall system loss
(dB) for different parameter regimes when applying the RT to the
modified BB84 protocol (BB84) and to the three-state protocol (3-
state). The solid lines correspond to δ = 0.063 and the dashed lines
correspond to δ = 0.126.

The results are presented in Fig. 2. This figure shows that
the modified BB84 protocol achieves better secret-key rates
in all parameter regimes investigated. For instance, in Fig. 2,
the blue lines are significantly better than the red lines for
εU ∈ {10−6, 10−3}. This indicates that using four states rather
than three, while redundant in an idealized scenario [19], is
advantageous in the presence of multiple source imperfec-
tions.

As pointed out in Sec. III A, this improvement comes from
the extra choice in the coefficients of Eq. (9) when adding
a fourth state. Loosely speaking, for each τ ∈ {0, 1}, the esti-
mation should be tightest when

∑
j |c(k)

τ, j,g| is minimized, since
higher absolute values for these coefficients result in increased
multiplicative factors for the deviation terms introduced by
the application of the bound in Eq. (12). Thus, since σ

(k)
1X ,g and

σ
(k,vir)
1X ,g (σ (k)

0X ,g and σ
(k,vir)
0X ,g ) are close in the Bloch sphere, if we

take c(k)
1,0X ,g = 0 (c(k)

0,1X ,g = 0), then c(k)
1,1X ,g (c(k)

0,0X ,g) is close to

one, while c(k)
1,0Z ,g and c(k)

1,1Z ,g (c(k)
0,0Z ,g and c(k)

0,1Z ,g) are close to
zero, minimizing the sum of absolute values. We have numer-
ically tested all possible combinations in which σ (k,vir)

τX ,g can

be expressed as a function of σ
(k)
j,g , for j ∈ {0Z , 1Z , 0X , 1X },

and confirmed that the choices c(k)
1,0X ,g = c(k)

0,1X ,g = 0 result in
the highest secret-key rates. This implies that the key-rate
advantage of the modified BB84 protocol with respect to the
three-state protocol comes from the ability to express σ

(k,vir)
1X ,g

as a function of σ
(k)
1X ,g rather than σ

(k)
0X ,g.

We remark that, recently, a similar conclusion has been
reached by employing a SDP-type security proof [28].
Namely, the MDI BB84 protocol has been shown to provide
higher secret-key rates than the MDI three-state protocol in
the presence of a particular time-dependent side channel. In
this paper, however, we show that the modified BB84 protocol
achieves a better performance than the three-state protocol
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in the presence of multiple source imperfections, including
classical pulse correlations, when using the RT.

Additionally, one can see in Fig. 2 that, as the SPFs in-
crease, the secret-key rate is roughly the same in all cases
investigated. That is, for both analyses the solid lines (cor-
responding to δ = 0.063) and the dashed lines (corresponding
to δ = 0.126) are close to one another for any value of εU.
This indicates that, when using the RT, an increase in δ has
a much smaller impact on the achievable secret-key rate than
an increase in εU. Intuitively, this is expected since SPFs are
imperfections in the qubit space, and therefore they do not
necessarily increase the protocol’s vulnerability to an USD
attack.

V. CONCLUSIONS

The best known and most widely implemented quantum
key distribution (QKD) scheme is the Bennett-Brassard 1984
(BB84) protocol [4]. Since its introduction, several rigorous
security proofs have been proposed [18,60,75–77], but the
security of the BB84 protocol with imperfect sources has not
yet been fully established. In this paper, we have considered
a modified BB84 protocol that does not discard the basis
mismatched events, and we have used the reference technique
(RT) to prove its security in the presence of most source
imperfections.

Although we do not consider quantum pulse correlations,
we believe that this imperfection is very unlikely to be relevant
in practice, given the fragile nature of entanglement. Indeed, it
is highly improbable that a source spontaneously emits states
that are entangled between rounds. Moreover, even if during
a THA Eve’s injected light is entangled between rounds, one
expects this entanglement to almost completely vanish from
the output light, especially if the source employs optical iso-
lators. Having said that, however, these quantum correlations
are interesting from a theoretical perspective and we plan to
address them in future works.

In this paper, we have also compared the performance
offered by the modified BB84 protocol with that offered by the
three-state loss-tolerant protocol when using the RT. We have
shown that, in the presence of source imperfections, the addi-
tion of a fourth state allows us to obtain a tighter estimation
of the phase-error rate, and consequently, higher secret-key
rates. This indicates that the modified BB84 protocol offers a
clear advantage in guaranteeing the practical security of QKD
sources.

For completeness, we note that besides modifying the RT
in [31] to deal with four states, which resulted in a sig-
nificant improvement in its performance; in this paper, we
have also made the RT more flexible and more experimen-
tally friendly than before. In particular, here we incorporate
setting-independent pulse correlations together with all the
other imperfections previously considered. Moreover, we use
the most general model to describe setting-dependent pulse
correlations, rather than the simplified model considered in
Eq. (10) of [31]. Finally, we relax the assumption on the qubit
part of the emitted states made in [31], by allowing them to
fluctuate in time.

In short, this paper proves the security of the modified
BB84 protocol with practical sources and shows its robust-

ness to source imperfections, taking us a step closer towards
ensuring the implementation security of QKD at a level that is
suitable for practical applications.

ACKNOWLEDGMENTS

This work was supported by Cisco Systems Inc., the Gali-
cian Regional Government (consolidation of Research Units:
AtlantTIC), the Spanish Ministry of Economy and Com-
petitiveness (MINECO), the Fondo Europeo de Desarrollo
Regional (FEDER) through Grant No. PID2020-118178RB-
C21 and MICIN with funding from the European Union
NextGenerationEU (PRTR-C17.I1) and the Galician Regional
Government with own funding through the “Planes Com-
plementarios de I+D+I con las Comunidades Autónomas”
in Quantum Communication. M.P. and G.C.-L. acknowledge
support from JSPS Postdoctoral Fellowships for Research
in Japan. A.M. acknowledges support from JST, ACT-X
Grant No. JPMJAX210O. G.K. acknowledges support from
JSPS Kakenhi (C) No. 20K03779 and No. 21K03388. K.T.
acknowledges support from JSPS KAKENHI Grant No.
JP18H05237 and JST-CREST JPMJCR 1671.

APPENDIX A: DESCRIPTION OF THE MODIFIED
BB84 QKD PROTOCOL

(1) State preparation. For each round k ∈ {1, . . . , N}, Al-
ice selects the setting j ∈ {0Z , 1Z , 0X , 1X } with probability p j ,
generates an encoded pulse and sends it to Bob through the
quantum channel.

(2) Detection. Bob measures each incoming pulse in the
basis β ∈ {Z, X } with probabilities pZB and pXB , respectively.

(3) Sifting. Bob announces which rounds were detected,
and Alice and Bob reveal their basis choices in these rounds.
Let K be the set of detected rounds in which both users
employed the Z basis and T be the set of detected rounds
in which Bob employed the X basis. Then, Alice and Bob
define their own sifted keys as the bit values associated with
her emissions and his measurement results on rounds K, re-
spectively. As for rounds T , Alice and Bob announce their
respective bit values.

(4) Parameter estimation. Alice quantifies the number of
events Nj,γX on rounds T for j ∈ {0Z , 1Z , 0X , 1X } and γ ∈
{0, 1}, where γ denotes Bob’s measurement outcome. Then,
using these quantities she obtains an upper bound NU

ph on Nph,
the number of phase errors in her sifted key, using Eq. (24).

(5) Data postprocessing. For error correction, Alice sends
Bob encrypted syndrome information [78] about her sifted
key through an authenticated public channel, which Bob uses
to correct his sifted key. For error verification, Alice and
Bob compute a hash of their corrected keys using a random
two-universal hash function and check if they are identical.
If not, they abort the protocol; otherwise, Alice and Bob per-
form privacy amplification on their corrected keys. For this,
they use a random two-universal hash function to extract an
identical secret key pair.

In the presence of setting-dependent pulse correlations, the
protocol described above requires slight modifications. First,
before step (1), Alice and Bob need to assign tags to each
round:
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(0) Tag assignment. For each round k ∈ {1, . . . , N}, Alice
and Bob assign a tag w ∈ {0, . . . , lc} according to the value
w = k mod (lc + 1), where lc is the correlation length.

Then, Alice and Bob perform the steps (1)–(3), with Kw

(Tw) defined as the set of detected rounds with tag w in
which both users employed the Z basis (Bob employed the
X basis). Hence, the wth sifted key is defined as the subset of
the total sifted key originating from the rounds in Kw. After
that, the users perform parameter estimation and employ data
postprocessing to obtain a final secure key:

(1) Parameter estimation. Alice quantifies the number of
events Nj,γX ,w on rounds Tw for j ∈ {0Z , 1Z , 0X , 1X } and γ ∈
{0, 1}. Then, using these quantities she obtains an upper bound
NU

ph,w on Nph,w, the number of phase errors in her wth sifted
key, using Eq. (30).

(2) Data postprocessing. For error correction, Alice sends
Bob encrypted syndrome information about her wth sifted
key through an authenticated public channel, which Bob uses
to correct his wth sifted key. For error verification, Alice
and Bob compute a hash of their wth corrected keys using
a random two-universal hash function and check if they are
identical. If not, they discard their wth corrected keys; other-
wise, Alice and Bob perform privacy amplification. For this,
they use a random two-universal hash function to extract the
wth secret key pair.

(3) Key concatenation. After repeating the steps (3)–(5)
for all tags w, Alice and Bob define their final secret key pair
as the concatenation of all the wth secret keys.

APPENDIX B: TREATMENT OF THE
SETTING-INDEPENDENT FACTORS

IN THE SECURITY PROOF

Let G = G1, . . . ,GN denote the random variables that rep-
resent the setting-independent factors affecting the form of
Alice’s emitted states, and let g = g1, . . . , gN denote a partic-
ular value of these random variables. To prove the security of
the actual protocol, we consider an equivalent entanglement-
based scenario in which Alice prepares a entangled state with
ancillary systems A := A1, . . . , AN that she can measure to
learn her setting choices. Since in the actual protocol Alice’s
emitted states depend on g, this entangled state can be ex-
pressed as ∫

g∈dom( fG )
fG (g)|�g〉〈�g|A,B,Edg, (B1)

where fG (g) is the probability density function of G, dom( fG )
is the domain of fG (g), and B, E := B1, E1, . . . , BN , EN .
In the setting-independent scenario, the state |�g〉A,B,E in
Eq. (B1) takes the form

|�g〉A,B,E =
N⊗

k=1

∑
jk

√
p jk | jk〉Ak

∣∣ψ jk ,g
〉
Bk ,Ek

, (B2)

where |ψ jk ,g〉Bk ,Ek is defined in Eq. (1). Note that, for ease of
discussion, in this Appendix we explicitly write the setting
choice on the kth round as jk , rather than j. Alternatively, in
the setting-dependent scenario, the state |�g〉A,B,E in Eq. (B1)

takes the form

|�g〉A,B,E =
N⊗

k=1

∑
jk

√
p jk | jk〉Ak

∣∣ψ jk ,g| jk−1,..., jk−lc

〉
Bk ,Ek

, (B3)

where |ψ jk ,g| jk−1,..., jk−lc
〉Bk ,Ek is defined in Eq. (2).

However, note that Eve cannot distinguish the scenario in
which Alice prepares the mixed state in Eq. (B1) from the
scenario in which she prepares its purification,∫

g∈dom( fG )

√
fG (g)|g〉G|�g〉A,B,Edg, (B4)

and then measures system G in the very beginning of the pro-
tocol, obtaining some outcome g and post-measurement state
|�g〉A,B,E. For simplicity of presentation, in our security proof,
we consider this equivalent scenario, in which the value of g
has effectively become fixed before Alice emits any pulses to
Bob. Then, in Sec. III A, we derive a bound NU

ph on the number
of phase errors Nph that is in fact conditional on this value of
g, such that

Pr[Nph > NU
ph|G = g] � ε, (B5)

where ε is the failure probability. Importantly, however, this
bound is valid for all possible values g, as neither NU

ph nor ε

depend on g. This implies that the bound in Eq. (B5) is also
valid for the scenario in which Alice prepares the mixed state
in Eq. (B1), since

Pr
[
Nph > NU

ph

] = ∫
g∈dom( fG )

fG (g) Pr
[
Nph > NU

ph|G = g
]

�
∫

g∈dom( fG )
fG (g) ε = ε. (B6)

By a similar argument, we conclude that the phase-error rate
bounds derived in Sec. III B also apply to the scenario in
which Alice prepares the mixed state in Eq. (B1).

APPENDIX C: TROJAN-HORSE ATTACKS

Here, we explicitly show how to incorporate THAs in our
security analysis. In particular, we assume that Eve’s injected
light does not alter Alice’s prepared signals, other than adding
extra modes of light that contain information about Alice’s
setting choices. That is, in the presence of a THA, the to-
tal emitted state consists of a tensor product between the
state that Alice would have emitted in Eve’s absence and the
back-reflected light from the THA. Moreover, we assume that
the back-reflected light on round k only contains information
about the kth setting choice, and is in tensor product form with
the back-reflected light from all the other rounds. In this con-
text, we consider two cases for the THA: (1) the back-reflected
light is a pure state, and (2) the back-reflected light is a mixed
state. For simplicity of discussion, in what follows we assume
that THAs are the only side channel present. However, one
can easily combine these results with the other side channels
considered in this paper, as shown below.

1. Pure output light

In this case, the state emitted on round k can be written as
|ψ j,g〉Bk ,Ek = |ω j,g〉Bk ⊗ |Ej,g〉Ek , where |ω j,g〉Bk is a qubit state
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and

|Ej,g〉Ek =
√

1 − ε (k)|v〉Ek
+

√
ε (k)|e j,g〉Ek , (C1)

is the back-reflected light from the THA. Here, ε (k) ∈ [0, 1]
quantifies the deviation of |Ej,g〉Ek from the vacuum state
|v〉Ek , and |e j,g〉Ek is a setting-dependent state orthogonal to
|v〉Ek , i.e., it belongs to the Fock subspace {|1〉, |2〉, . . .}. Note
that |Ej,g〉Ek could also represent other side channels, such as
electromagnetic radiation. Using Eq. (C1), it is straightfor-
ward to write the kth emitted state in the form of Eq. (1),

|ψ j,g〉Bk ,Ek =
√

1 − ε (k)|φ j,g〉Bk ,Ek +
√

ε (k)|φ⊥
j,g〉Bk ,Ek , (C2)

where the qubit state |φ j,g〉Bk ,Ek := |ω j,g〉Bk |v〉Ek and the side-
channel state |φ⊥

j,g〉Bk ,Ek := |ω j,g〉Bk |e j,g〉Ek ; and consequently,
apply our security analysis, given that an upper bound on ε (k)

is known.
We remark that the inclusion of side channels other than

THAs can be readily accommodated as follows. Suppose that,
in the absence of a THA, the state of Alice’s prepared signal
on round k is the following:

|� j,g〉Bk =
√

1 − ε̃
(k)
j,g |ω j,g〉Bk +

√
ε̃

(k)
j,g |ω⊥

j,g〉Bk , (C3)

where |ω⊥
j,g〉Bk is a side-channel state that lives in any Hilbert

space orthogonal to |ω j,g〉Bk . Note that the state in Eq. (C3)
includes any kind of mode dependencies with |ω j,g〉Bk indicat-
ing the desired mode. Then, in the presence of a THA, the kth
emitted state would simply become |ψ j,g〉Bk ,Ek = |� j,g〉Bk ⊗
|Ej,g〉Ek , which can be written in the form of Eq. (1),

|ψ j,g〉Bk ,Ek =
√

1 − ε̃
(k)
j,g

√
1 − ε (k)|φ j,g〉Bk ,Ek

+
√

1 − (1 − ε̃
(k)
j,g

)
(1 − ε (k) )|φ⊥

j,g〉Bk ,Ek , (C4)

where |φ j,g〉Bk ,Ek := |ω j,g〉Bk |v〉Ek and

|φ⊥
j,g〉Bk ,Ek := [√1−ε̃

(k)
j,g

√
ε (k)|ω j,g〉Bk |e j,g〉Ek

+
√

ε̃
(k)
j,g |ω⊥

j,g〉Bk |Ej,g〉Ek

]/√
1−(1−ε̃

(k)
j,g

)
(1−ε (k) ).

(C5)

In a similar way, if in the absence of a THA, Alice’s
prepared signal on round k is the following:

|� j,g| jk−1,..., jk−lc
〉Bk =
√

1 − ε̃
(k)
j,g| jk−1,..., jk−lc

|ω j,g〉Bk

+
√

ε̃
(k)
j,g| jk−1,..., jk−lc

∣∣ω⊥
j,g| jk−1,..., jk−lc

〉
Bk

,

(C6)

due to setting-dependent pulse correlations and mode depen-
dencies; then, in the presence of a THA, the kth emitted state
would become |ψ j,g| jk−1,..., jk−lc

〉Bk ,Ek = |� j,g| jk−1,..., jk−lc
〉Bk ⊗

|Ej,g〉Ek , which can be written in the form of Eq. (2).
Experimental method to upper bound ε (k). Here, we show

how one could upper bound ε (k) by using only information
about the output light intensity (average number of photons).
To obtain this information, one needs to first determine the
maximum light intensity that Eve could inject into Alice’s
source without being detected. Then, by characterizing the
value of the attenuation in Alice’s setup [23], one can bound

the maximum intensity of the output light νmax. Mathemati-
cally, this bound can be expressed as 〈Ej,g|N̂ |Ej,g〉Ek � νmax

where N̂ =∑n n|n〉〈n| is the photon-number operator. Then,
using Eq. (C1), we have that

νmax � 〈Ej,g|N̂ |Ej,g〉Ek = ε (k)〈e j,g|N̂ |e j,g〉Ek � ε (k), (C7)

with equality if and only if |e j,g〉Ek is a single-photon state. We
note that one could obtain slightly tighter bounds if one had
more information on the back-reflected light, such as it being
a coherent state [35].

2. Mixed output light

In this case, we assume that the back-reflected light system
Ẽk is purified by an ancillary system E ′

k that is in Eve’s hands
[79]. We can then express the joint state of the back-reflected
light and this ancillary system as

|Ej,g〉Ek =
∑

c

√
pc|c〉E ′

k

(√
1 − ε

(k)
c |v〉Ẽk

+
√

ε
(k)
c |e j,g,c〉Ẽk

)
,

(C8)

where Ek := E ′
k, Ẽk and {|c〉} forms an orthonormal basis.

If ε (k)
c = ε (k) for all c, it is straightforward to write the

emitted state on round k in the form of Eq. (C2), with
|φ j,g〉Bk ,Ek = |ω j,g〉Bk |λ〉Ek , where |λ〉Ek :=∑c

√
pc|c〉E ′

k
|v〉Ẽk

,
and |φ⊥

j,g〉Bk ,Ek := |ω j,g〉Bk

∑
c
√

pc|c〉E ′
k
|e j,g,c〉Ẽk

. If ε (k)
c � ε (k)

for all c, then the worst case scenario is such that the bound is
saturated for all c, and one can assume that ε (k)

c = ε (k). In both
of these cases, one can directly use the experimental bound
νmax � ε (k) in Eq. (C7) and apply our security analysis.

However, even if the conditions above do not hold, our
security analysis can still be applied as long as we have an
upper bound on

∑
c pcε

(k)
c , which, as we will show below, can

be related to νmax. To use the RT in this case, one can select
the reference states as follows:

|φ j,g〉Bk ,Ek = |ω j,g〉Bk |λ〉Ek

:= |ω j,g〉Bk

∑
c
√

pc|c〉E ′
k

√
1 − ε

(k)
c |v〉Ẽk√∑

c pc
(
1 − ε

(k)
c
) , (C9)

for j ∈ {0Z , 1Z , 0X , 1X }. Then, the required inner products
|〈ψ j,g|φ j,g〉Bk ,Ek | can be calculated as

|〈ψ j,g|φ j,g〉Bk ,Ek | =
√

1 −
∑

c

pcε
(k)
c , (C10)

where we have used the fact that 〈φ⊥
j,g|φ j,g〉Bk ,Ek = 0 for any j.

Experimental method to upper bound
∑

c pcε
(k)
c . Similarly

to the pure state case, we can obtain a bound on
∑

c pcε
(k)
c

using only information about the output light intensity. In
particular, from Eq. (C8), we have that

νmax � 〈Ej,g|1̂E ′
k
⊗ N̂Ẽk

|Ej,g〉Ek

=
∑

c

pcε
(k)
c 〈e j,g,c|N̂Ẽk

|e j,g,c〉Ẽk
�
∑

c

pcε
(k)
c , (C11)

with equality if |e j,g,c〉Ẽk
is a single-photon state.
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FIG. 3. Diagram of the entanglement-based scenario and Eve’s
most general coherent attack when the QKD protocol is run sequen-
tially. Eve must perform her attack on the kth pulse before she learns
information about systems Bk+1, Ek+1, and therefore Û (k) cannot take
systems Bk+1, Ek+1 as an input. Conversely, Eve’s attack on the kth
pulse can depend on information that she has learned about the
systems Bk−1, Ek−1. This is why Û (k) takes Eve’s updated ancilla Ẽk

as an input.

APPENDIX D: PROOF OF Eq. (6)

Here, we prove Eq. (6) and show that when the QKD proto-
col is run sequentially [see Assumption (A4) in Sec. II A], the
operator M̂ (k)

γX
satisfies 0 � M̂ (k)

γX
� 1̂. To do so, we consider

an entanglement-based scenario that is equivalent to the actual
protocol. For a fixed g (see Appendix B), the transmission of
N pulses can then be described by Alice first preparing the
following entangled state:

|�g〉A,B,E =
N⊗

k=1

∑
jk

√
p jk | jk〉Ak |ψ jk ,g〉Bk ,Ek

=:
N⊗

k=1

|� ′
g〉Ak ,Bk ,Ek , (D1)

then keeping system A in her laboratory and sending systems
B, E through the quantum channel. Here, A := A1, . . . , AN

and B, E :=B1, E1, . . . , BN , EN refers to the composite sys-
tems of Alice’s ancillae and to the pulses sent to Bob,
respectively, where Ak and Bk for k ∈ {1, . . . , N} denote Al-
ice’s and Bob’s kth systems and Ek denotes any other systems
that are emitted by Alice on round k, such as the back-
reflected light from a THA (see Appendix C for more details).
Also, in Eq. (D1), {| jk〉Ak } jk∈{0Z ,1Z ,0X ,1X } is a set of orthonormal
states and |ψ jk ,g〉Bk ,Ek is defined in Eq. (1). Note that, for ease
of discussion, in this Appendix we explicitly write the setting
choice on the kth round as jk , rather than j.

As already discussed, in our analysis we assume that
the QKD protocol is run sequentially such that Alice only
generates the kth pulse once Bob has obtained his k − 1th
measurement result. Under this restriction, Eve’s most gen-
eral coherent attack can be described as the application of a
sequence of N unitary operators Û (N )

BN ,EN ,ẼN
. . . Û (1)

B1,E1,Ẽ1
, where

Û (k)
Bk ,Ek ,Ẽk

acts on the kth photonic system Bk, Ek and on Eve’s
updated ancilla Ẽk , resulting in systems B′

k and Ẽk , respec-
tively, as shown in Fig. 3.

After Eve’s attack on each round, Alice and Bob mea-
sure their local systems. First, Alice measures system Ak to
know if jk ∈ {0Z , 1Z} or if jk ∈ {0X , 1X }, whose respective
outcomes are denoted by a = Z and a = X , and Bob se-
lects the measurement basis β ∈ {Z, X } with probability pβB .
In the modified BB84 protocol, the secret key is generated
from the rounds in which (a, β ) = (Z, Z ). As explained in
Sec. III A, to prove the security of these rounds, one needs to
consider the number of phase errors that Alice and Bob would
have observed if they had performed their local measure-
ments in the phase basis instead, i.e., {|τ (vir)

X 〉Ak = (|0Z〉Ak +
(−1)τ |1Z〉Ak )/

√
2}τ∈{0,1} and {m̂0X , m̂1X , m̂ f }, respectively. We

can then define a virtual protocol in which, in the key genera-
tion rounds, Alice and Bob perform these measurements, and
in all the other rounds they perform measurements in their
selected basis (a, β).

In this virtual protocol, let us denote all possible outcomes
for round k as ok ∈ {(a, β, τ, γ ), ( f )}, where τ, γ ∈ {0, 1} are
Alice’s and Bob’s observed bit values, respectively, and f is
associated with an inconclusive outcome. Now, let us define
the POVM element associated with obtaining the outcome
ok by F̂ ok

Ak ,B′
k
. Then, we can summarize the possible POVM

elements as

F̂ (Z,Z,τ,γ )
Ak ,B′

k
= ∣∣τ (vir)

X

〉〈
τ

(vir)
X

∣∣
Ak

⊗ pZB m̂γX ,

F̂ (Z,X,τ,γ )
Ak ,B′

k
= |τZ〉〈τZ |Ak ⊗ pXB m̂γX ,

F̂ (X,β,τ,γ )
Ak ,B′

k
= |τX 〉〈τX |Ak ⊗ pβB m̂γβ

,

F̂ ( f )
Ak ,B′

k
= 1̂Ak ⊗ m̂ f . (D2)

Note that F̂ (Z,Z,τ,γ )
Ak ,B′

k
is the POVM element associated with

the estimation of the number of phase errors. A phase error
on the kth round can then be defined as obtaining the outcome
ok = (Z, Z, 0, 1) or ok = (Z, Z, 1, 0). Therefore, the probabil-
ity of a phase error on the kth round conditional on all the
previous outcomes o−−→

k−1
can be expressed as

P(k)
g (ph|Act) = P(ok = (Z, Z, 0, 1) or (Z, Z, 1, 0)|o−−→

k−1
)

=
P((ok = (Z, Z, 0, 1) or (Z, Z, 1, 0)),o−−→

k−1
)

P(o−−→
k−1

)
,

(D3)

where P(o−−→
k−1

) is the probability of obtaining Alice’s and
Bob’s previous k − 1 outcomes. Note that this conditional
probability on all the previous outcomes is required to take
into account any correlations between the measurement out-
comes of different rounds of the protocol, which could arise
due to Eve’s coherent attack. Because of this dependence,
Azuma’s or Kato’s inequality can be employed in order to
estimate the total number of phase errors in the protocol.

Now, using the form of the full emitted state in Eq. (D1),
the description of Eve’s coherent attack when the QKD
protocol is run sequentially, and the POVM elements in
Eq. (D2), we can mathematically express the time evolution
illustrated in Fig. 3 and calculate the numerator of Eq. (D3) as
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follows:

P((ok = (Z, Z, 0, 1) or (Z, Z, 1, 0)),o−−→
k−1

)

=
∑

τ,γ∈{0,1}
τ �=γ

Tr

⎡
⎣F̂ (Z,Z,τ,γ )

Ak ,B′
k

P̂

⎛
⎝Û (k)

Bk ,Ek ,Ẽk

k−1∏
n=1

√
F̂ ok−n

Ak−n,B′
k−n

Û (k−n)
Bk−n,Ek−n,Ẽk−n

|0〉Ẽ1

k−1⊗
n=1

|� ′
g〉An,Bn,En |� ′

g〉Ak ,Bk ,Ek

N⊗
n=k+1

|� ′
g〉An,Bn,En

⎞
⎠
⎤
⎦

=
∑

τ,γ∈{0,1}
τ �=γ

Tr

[
F̂ (Z,Z,τ,γ )

Ak ,B′
k

P̂

(
Û (k)

Bk ,Ek ,Ẽk

k−1∏
n=1

√
F̂ ok−n

Ak−n,B′
k−n

Û (k−n)
Bk−n,Ek−n,Ẽk−n

|0〉Ẽ1

k−1⊗
n=1

|� ′
g〉An,Bn,En |� ′

g〉Ak ,Bk ,Ek

)]

=
∑

τ,γ∈{0,1}
τ �=γ

Tr
[

A�k−1,B′�k−1,E�k−1,Ẽk

〈
�

−−→
k−1
g

∣∣Û (k)†
Bk ,Ek ,Ẽk

F̂ (Z,Z,τ,γ )
Ak ,B′

k
Û (k)

Bk ,Ek ,Ẽk

∣∣�−−→
k−1
g

〉
A�k−1,B′�k−1,E�k−1,Ẽk

|� ′
g〉〈� ′

g|Ak ,Bk ,Ek

]

=
∑

τ,γ∈{0,1}
τ �=γ

Tr
[

A�k−1,B′�k−1,E�k−1,Ẽk

〈
�

−−→
k−1
g

∣∣Û (k)†
Bk ,Ek ,Ẽk

m̂γX Û (k)
Bk ,Ek ,Ẽk

∣∣�−−→
k−1
g

〉
A�k−1,B′�k−1,E�k−1,Ẽk

p̃(k,vir)
τX ,g pZB

∣∣ψ (vir)
τX ,g

〉〈
ψ (vir)

τX ,g

∣∣
Bk ,Ek

]
, (D4)

where

∣∣�−−→
k−1
g

〉
A�k−1,B′�k−1,E�k−1,Ẽk

:=
k−1∏
n=1

√
F̂ ok−n

Ak−n,B′
k−n

Û (k−n)
Bk−n,Ek−n,Ẽk−n

|0〉Ẽ1

k−1⊗
n=1

|� ′
g〉An,Bn,En ,

(D5)

with A�k−1 := A1, . . . , Ak−1 and B′�k−1, E�k−1 :=
B′

1, E1, . . . , B′
k−1, Ek−1, and where |ψ (vir)

τX ,g 〉Bk ,Ek and p̃(k,vir)
τX ,g

are defined in Eqs. (4) and (5), respectively. In the second
equality of Eq. (D4), we took the partial trace over systems
A�k+1, B�k+1, E�k+1. In the third equality of Eq. (D4), we

defined the state |�−−→
k−1
g 〉A�k−1,B′�k−1,E�k−1,Ẽk

using Eq. (D5) and
used the cyclic property of the trace operation. Finally, in the
last equality of Eq. (D4), we used Eq. (3) and the definition
of F̂ (Z,Z,τ,γ )

Ak ,B′
k

in Eq. (D2) for τ, γ ∈ {0, 1} such that τ �= γ .
By substituting Eq. (D4) in Eq. (D3), we can now express

P(k)
g (ph|Act) as

P(k)
g (ph|Act) =

∑
τ,γ∈{0,1}

τ �=γ

p̃(k,vir)
τX ,g pZB Tr

[
σ̃ (k,vir)

τX ,g M̂ (k)
γX

]
, (D6)

with σ̃ (k,vir)
τX ,g := |ψ (vir)

τX ,g 〉〈ψ (vir)
τX ,g |Bk ,Ek and

M̂ (k)
γX

:=
〈
�

−−→
k−1
g

∣∣Û (k)†
Bk ,Ek ,Ẽk

m̂γX Û (k)
Bk ,Ek ,Ẽk

∣∣�−−→
k−1
g

〉
P(o−−→

k−1
)

, (D7)

where we have omitted the mode subscripts in the quantum
states for simplicity of notation. This concludes the derivation
of Eq. (6).

Next, we prove that in this case, the operator M̂ (k)
γX

in Eq. (D7) satisfies 0 � M̂ (k)
γX

� 1̂. For this, first note
that M̂ (k)

γX
� 0 holds because for any state |ϕ〉 we have

that 〈ϕ|M̂ (k)
γX

|ϕ〉 = ||√m̂γX Û (k)
Bk ,Ek ,Ẽk

|�−−→
k−1
g 〉|ϕ〉P(o−−→

k−1
)−1/2||2 �

0. Then, since m̂γX is a POVM element, we have that m̂γX � 1̂,

and thus we can upper bound M̂ (k)
γX

as

M̂ (k)
γX

�
〈
�

−−→
k−1
g

∣∣Û (k)†
Bk ,Ek ,Ẽk

1̂Û (k)
Bk ,Ek ,Ẽk

∣∣�−−→
k−1
g

〉
P(o−−→

k−1
)

=
∥∥∣∣�−−→

k−1
g

〉∥∥21̂Bk ,Ek

P(o−−→
k−1

)
=

P(o−−→
k−1

)1̂Bk ,Ek

P(o−−→
k−1

)
= 1̂Bk ,Ek . (D8)

Therefore, by combining these two arguments, we have that,
when the QKD protocol is run sequentially, 0 � M̂ (k)

γX
� 1̂, as

required.

APPENDIX E: RESULTS USED IN Sec. III B

1. Derivation of |ψ̃ jk,g| jk−1,..., jk−lc
〉Bk,E′

k
and Eq. (26)

Here, we show how to derive |ψ̃ jk ,g| jk−1,..., jk−lc
〉Bk ,E ′

k
and

Eq. (26), which are required to prove the security of the
modified BB84 protocol in the presence of setting-dependent
pulse correlations. To do so, we consider an entanglement-
based picture of the protocol. In this case, for a fixed g (see
Appendix B), the transmission of N pulses is described by
Alice first preparing N ancilla systems and N pulses in the
state

|�g〉A,B,E =
∑

j1

√
p j1 | j1〉A1

∣∣ψ j1,g
〉
B1,E1

⊗
∑

j2

√
p j2 | j2〉A2

∣∣ψ j2,g| j1

〉
B2,E2

⊗ . . .

⊗
∑

jN

√
p jN | jN 〉AN

∣∣ψ jN ,g| jN−1,..., jN−lc

〉
BN ,EN

,

(E1)

and then sending systems B, E through the quantum chan-
nel. Here, A :=A1, . . . , AN and B, E :=B1, E1, . . . , BN , EN

refers to the composite systems of Alice’s ancillae and to the
pulses sent to Bob, respectively, where Ak and Bk for k ∈
{1, 2, . . . , N} denote Alice’s and Bob’s kth systems, and Ek

denotes any other systems sent by Alice through the quantum
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channel. In Eq. (E1), {| jk〉Ak } jk∈{0Z ,1Z ,0X ,1X } is a set of orthonor-
mal states and |ψ jk ,g| jk−1,..., jk−lc

〉Bk ,Ek is defined in Eq. (2). Note
that, for ease of discussion, in this Appendix we explicitly
write the setting choice on the kth round as jk , rather than j.

We are interested in the post-measurement state after Al-
ice has measured her ancillae A�k−1 := A1, . . . , Ak−1. Once
we trace out the systems A�k−1, B�k−1, E�k−1, this post-
measurement state can be expressed as

∣∣�g| jk−1,..., jk−lc

〉
Ak ,Bk ,E′

k

:=
∑

jk

√
p jk | jk〉Ak

∣∣ψ jk ,g| jk−1,..., jk−lc

〉
Bk ,Ek

lc⊗
n=1

∑
jk+n

√
p jk+n | jk+n〉Ak+n

∣∣ψ jk+n,g| jk+n−1,..., jk+n−lc

〉
Bk+n,Ek+n

⊗
∑

jk+lc+1

√
p jk+lc+1

∣∣ jk+lc+1
〉
Ak+lc+1

∣∣ψ jk+lc+1,g| jk+lc ,..., jk+1

〉
Bk+lc+1,Ek+lc+1

. . .
∑

jN

√
p jN | jN 〉AN

∣∣ψ jN ,g| jN−1,..., jN−lc

〉
BN ,EN

, (E2)

where jk−1, . . . , jk−lc denotes Alice’s measurement outcomes on systems Ak−1, . . . , Ak−lc , and E′
k := A�k+1, B�k+1, E�k with

A�k+1 and B�k+1, E�k defined as Ak+1, . . . , AN and Ek, Bk+1, Ek+1, . . . , BN , EN , respectively. Note that, to derive Eq. (E2), we
need to assume that the outcomes jk−1, . . . , jk−lc ∈ {0Z , 1Z , 0X , 1X }, i.e., that Alice has measured her ancillae Ak−1, . . . , Ak−lc in
the basis {|0Z〉, |1Z〉, |0X 〉, |1X 〉}. This has important consequences when using the complementary approach to prove the security
of the protocol; see discussion after Eq. (26) in the main text.

In Eq. (E2), one can explicitly see that some information about the kth setting choice is leaked to the subsequent lc pulses.
However, the pulses k + lc + 1 to N are independent of jk . To simplify the description in Eq. (E2), we now introduce two
definitions. First, we define a state that is independent of jk as∣∣ψ jk+1,..., jk+lc ,g

〉
A�k+1,B�k+lc+1,E�k+lc+1

:= | jk+1〉Ak+1
. . . | jk+lc〉Ak+lc

∑
jk+lc+1

√
p jk+lc+1 | jk+lc+1〉Ak+lc+1

∣∣ψ jk+lc+1,g| jk+lc ,..., jk+1

〉
Bk+lc+1,Ek+lc+1

. . .
∑

jN

√
p jN | jN 〉AN

∣∣ψ jN ,g| jN−1,..., jN−lc

〉
BN ,EN

, (E3)

which forms a set of orthogonal states as {|ψ jk+1,..., jk+lc ,g〉A�k+1,B�k+lc+1,E�k+lc+1} jk+1,..., jk+lc ∈{0Z ,1Z ,0X ,1X }. Next, using Eq. (E3), we
define the following state:

∣∣λ jk ,..., jk+1−lc ,g
〉
A�k+1,B�k+1,E�k+1

:=
∑
jk+1

√
p jk+1 . . .

∑
jk+lc

√
p jk+lc

∣∣ψ jk+1,..., jk+lc ,g
〉
A�k+1,B�k+lc+1,E�k+lc+1

lc⊗
n=1

∣∣ψ jk+n,g| jk+n−1,..., jk+n−lc

〉
Bk+n,Ek+n

.

(E4)

Note that |λ jk ,..., jk+1−lc ,g〉A�k+1,B�k+1,E�k+1 depends on jk even though it does not include system Bk . This means that it is effectively
a side channel to the kth pulse. Finally, using Eq. (E4), we can rewrite Eq. (E2) as∣∣�g| jk−1,..., jk−lc

〉
Ak ,Bk ,E′

k
=
∑

jk

√
p jk | jk〉Ak

∣∣ψ jk ,g| jk−1,..., jk−lc

〉
Bk ,Ek

∣∣λ jk ,..., jk+1−lc ,g
〉
A�k+1,B�k+1,E�k+1.

(E5)

Now, it is useful to decompose |ψ jk ,g| jk−1,..., jk−lc
〉Bk ,Ek |λ jk ,..., jk+1−lc ,g〉A�k+1,B�k+1,E�k+1 in Eq. (E5). For this, we first combine

Eqs. (E5) and (E4), and then use Eq. (2) such that

∣∣ψ jk ,g| jk−1,..., jk−lc

〉
Bk ,Ek

∑
jk+1

√
p jk+1 . . .

∑
jk+lc

√
p jk+lc

∣∣ψ jk+1,..., jk+lc ,g
〉
A�k+1,B�k+lc+1,E�k+lc+1

lc⊗
n=1

∣∣ψ jk+n,g| jk+n−1,..., jk+n−lc

〉
Bk+n,Ek+n

= (√1 − ε
(k)
jk ,g| jk−1,..., jk−lc

∣∣φ jk ,g
〉
Bk ,Ek

+
√

ε
(k)
jk ,g| jk−1,..., jk−lc

∣∣φ⊥
jk ,g| jk−1,..., jk−lc

〉
Bk ,Ek

)
⊗
∑
jk+1

√
p jk+1 . . .

∑
jk+lc

√
p jk+lc

∣∣ψ jk+1,..., jk+lc ,g
〉
A�k+1,B�k+lc+1,E�k+lc+1

⊗
lc⊗

n=1

(√
1 − ε

(k)
jk+n,g| jk+n−1,..., jk+n−lc

∣∣φ jk+n,g
〉
Bk+n,Ek+n

+
√

ε
(k)
jk+n,g| jk+n−1,..., jk+n−lc

∣∣φ⊥
jk+n,g| jk+n−1,..., jk+n−lc

〉
Bk+n,Ek+n

)

=:
√

1 − ε̃
(k)
jk ,g| jk−1,..., jk−lc

∣∣φ̃ jk ,g| jk−1,..., jk+1−lc

〉
Bk ,E′

k
+
√

ε̃
(k)
jk ,g| jk−1,..., jk−lc

∣∣φ̃⊥
jk ,g| jk−1,..., jk−lc

〉
BkE′

k

=:
∣∣ψ̃ jk ,g| jk−1,..., jk−lc

〉
BkE′

k
. (E6)
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In this equation, we have defined

ε̃
(k)
jk ,g| jk−1,..., jk−lc

:= 1 − (1 − ε
(k)
jk ,g| jk−1,..., jk−lc

) lc∏
n=1

∑
jk+n

p jk+n

(
1 − ε

(k)
jk+n,g| jk+n−1,..., jk+n−lc

)
, (E7)

and have used the fact that 〈 jk| j′k〉Ak = δ jk , j′k . Moreover, the normalized state |φ̃ jk ,g| jk−1,..., jk+1−lc
〉Bk ,E′

k
is expressed as∣∣φ jk ,g

〉
Bk ,Ek

∑
jk+1

√
p jk+1 . . .

∑
jk+lc

√
p jk+lc

∣∣ψ jk+1,..., jk+lc ,g
〉
A�k+1,B�k+lc+1,E�k+lc+1

⊗lc
n=1

√
1 − ε

(k)
jk+n,g| jk+n−1,..., jk+n−lc

∣∣φ jk+n,g
〉
Bk+n,Ek+n∏lc

n=1

√∑
jk+n

p jk+n

(
1 − ε

(k)
jk+n,g| jk+n−1,..., jk+n−lc

)
=:
∣∣φ jk ,g
〉
Bk ,Ek

∣∣� jk ,..., jk+1−lc ,g
〉
A�k+1,B�k+1,E�k+1

=:
∣∣φ̃ jk ,g| jk−1,..., jk+1−lc

〉
Bk ,E′

k
, (E8)

and |φ̃⊥
jk ,g| jk−1,..., jk−lc

〉Bk ,E′
k

is a state orthogonal to

|φ̃ jk ,g| jk−1,..., jk+1−lc
〉Bk ,E′

k
, living in a Hilbert space of any

dimension, and whose explicit form is omitted here for
simplicity. Importantly, substituting Eq. (E6) into Eq. (E5) we
obtain ∣∣�g| jk−1,..., jk−lc

〉
Ak ,Bk ,E′

k

=
∑

jk

√
p jk | jk〉Ak

∣∣ψ̃ jk ,g| jk−1,..., jk−lc

〉
Bk ,E′

k
, (E9)

which implies that we can regard the emitted states on round
k to be |ψ̃ jk ,g| jk−1,..., jk−lc

〉Bk ,E′
k
.

Now, suppose that Alice performs a measurement on sys-
tem Ak such that she learns if jk ∈ {0Z , 1Z} or if jk ∈ {0X , 1X },
i.e., her choice of basis for the kth round. If she obtains the
former outcome, her post-measurement state can be expressed
as ∣∣�Z

g| jk−1,..., jk−lc

〉
Ak ,Bk ,E′

k

= 1√
2

∑
τ∈{0,1}

|τZ〉Ak

∣∣ψ̃τZ ,g| jk−1,..., jk−lc

〉
Bk ,E′

k
, (E10)

where we have used p0Z = p1Z [see Assumption (A1) in
Sec. II A]. This concludes the derivation of Eq. (26).

2. Proof of Eq. (27)

Here, we prove Eq. (27) and show that when the QKD
protocol is run sequentially [see Assumption (A4) Sec. II A],
the operator D̂(k)

γX
satisfies 0 � D̂(k)

γX
� 1̂. To do so, we consider

again an entanglement-based scenario that is equivalent to the
actual protocol. For a fixed g, the transmission of N pulses can
then be described by Alice first preparing the entangled state
|�g〉A,B,E in Eq. (E1), keeping system A in her laboratory and
sending systems B, E through the quantum channel. In our
analysis we assume that the QKD protocol is run sequentially.
As explained in Appendix D, under this restriction, Eve’s most
general attack is described by Û (N )

BN ,EN ,ẼN
. . . Û (1)

B1,E1,Ẽ1
, where

Û (k)
Bk ,Ek ,Ẽk

acts on the kth photonic system Bk, Ek and on Eve’s

updated ancilla Ẽk , resulting in systems B′
k and Ẽk (see Fig. 3

for more details). After Eve’s attack on each round, Alice and
Bob measure their local systems to obtain the experimental
data. The secret key is generated from the rounds in which

both have selected the Z basis, i.e., (a, β ) = (Z, Z ), where a
(β) denotes Alice’s (Bob’s) basis selection.

As before, to prove the security of these rounds, one
needs to consider a virtual protocol to estimate the number of
phase errors that Alice and Bob would have obtained if they
had performed their local measurements in the phase basis
instead, i.e., {|τ (vir)

X 〉Ak = (|0Z〉Ak + (−1)τ |1Z〉Ak )/
√

2}τ∈{0,1}
and {m̂0X , m̂1X , m̂ f }, respectively. Unlike in Appendix D, how-
ever, each emitted pulse k now depends on the previous lc
setting choices { jk−1, . . . , jk−lc}. As explained in Sec. III B,
this dependence does not allow us to naively consider a virtual
protocol in which Alice and Bob perform phase basis mea-
surements on all key generation rounds. Instead, we consider
that Alice and Bob assign a tag w ∈ {0, . . . , lc} to each round
k according to the value w = k mod (lc + 1) and construct
(lc + 1) virtual protocols whose respective wth sifted keys
are subsets of the total sifted key originating from the rounds
with a tag w. In each wth virtual protocol, Alice’s and Bob’s
measurements on the w-tagged rounds are described by the
POVM {F̂ ok

Ak ,B′
k
}ok , whose elements are defined in Eq. (D2),

and on the other rounds, Alice’s and Bob’s measurements
are described by the POVM {Ĵok

Ak ,B′
k
}ok , whose elements are

defined as Ĵ (a,β,τ,γ )
Ak ,B′

k
= |τa〉〈τa|Ak ⊗ pβB m̂γβ

and Ĵ ( f )
Ak ,B′

k
= 1̂Ak ⊗

m̂ f , where τ, γ ∈ {0, 1} are Alice’s and Bob’s observed bit
value respectively, and f is associated with an inconclusive
outcome. Note that each of the these virtual protocols is indis-
tinguishable from the actual protocol.

The probability that, in the wth virtual protocol, a phase
error is obtained on some round k with a tag w, con-
ditioned on all the previous outcomes of the wth virtual
protocol, can then be expressed as Eq. (D3), rewritten here for
convenience:

P(k)
g (ph|Act) =

P((ok = (Z, Z, 0, 1) or (Z, Z, 1, 0)), o−−→
k−1

)

P(o−−→
k−1

)
,

(E11)

where P(o−−→
k−1

) is the probability of obtaining Alice’s and
Bob’s previous outcomes. Let us now introduce the POVM
{L̂ok

Ak ,B′
k
}ok , which is defined as {F̂ ok

Ak ,B′
k
}ok when a pulse k has

the tag w and defined as {Ĵok

Ak ,B′
k
}ok when it has another tag.

Therefore, by using this POVM, the form of the emitted state
in Eq. (E1) as well as the description of Eve’s coherent attack
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when the QKD protocol is run sequentially, we have that

P((ok = (Z, Z, 0, 1) or (Z, Z, 1, 0)), o−−→
k−1

)

=
∑

τ,γ∈{0,1}
τ �=γ

Tr

[
F̂ (Z,Z,τ,γ )

Ak ,B′
k

P̂

(
Û (k)

Bk ,Ek ,Ẽk

k−1∏
n=1

√
L̂ok−n

Ak−n,B′
k−n

Û (k−n)
Bk−n,Ek−n,Ẽk−n

|0〉Ẽ1

∣∣�g
〉
A,B,E

)]

=
∑

τ,γ∈{0,1}
τ �=γ

Tr

[
F̂ (Z,Z,τ,γ )

Ak ,B′
k

P̂

(
Û (k)

Bk ,Ek ,Ẽk

[
k−1∏
n=1

√
L̂

oB
k−n

B′
k−n

Û (k−n)
Bk−n,Ek−n,Ẽk−n

]
|0〉Ẽ1

[
k−1∏
n=1

√
L̂

oA
k−n

Ak−n

∣∣�g
〉
A,B,E

])]

=
∑

τ,γ∈{0,1}
τ �=γ

Tr

[
F̂ (Z,Z,τ,γ )

Ak ,B′
k

P̂

(
Û (k)

Bk ,Ek ,Ẽk

[
k−1∏
n=1

√
L̂

oB
k−n

B′
k−n

Û (k−n)
Bk−n,Ek−n,Ẽk−n

]
|0〉Ẽ1

⊗
[

k−1⊗
n=1

√
p jn | jn〉An

∣∣ψ jn,g| jn−1,..., jn−lc

〉
Bn

]∣∣�g| jk−1,..., jk−lc

〉
Ak ,Bk ,E′

k

)]

=
∑

τ,γ∈{0,1}
τ �=γ

Tr
[

A�k−1,B′
�k−1,E�k−1,Ẽk

〈
�

−−→
k−1
g

∣∣Û (k)†
Bk ,Ek ,Ẽk

F̂ (Z,Z,τ,γ )
Ak ,B′

k
Û (k)

Bk ,Ek ,Ẽk

∣∣�−−→
k−1
g

〉
A�k−1,B′

�k−1,E�k−1,Ẽk

∣∣�g| jk−1,..., jk−lc

〉〈
�g| jk−1,..., jk−lc

∣∣
Ak ,Bk ,E′

k

]

=
∑

τ,γ∈{0,1}
τ �=γ

Tr
[

A�k−1,B′
�k−1,E�k−1,Ẽk

〈
�

−−→
k−1
g

∣∣Û (k)†
Bk ,Ek ,Ẽk

m̂γX Û (k)
Bk ,Ek ,Ẽk

∣∣�−−→
k−1
g

〉
A�k−1,B′

�k−1,E�k−1,Ẽk

⊗ p̃(k,vir)
τX ,g| jk−1,..., jk−lc

pZB

∣∣ψ (vir)
τX ,g| jk−1,..., jk−lc

〉〈
ψ

(vir)
τX ,g| jk−1,..., jk−lc

∣∣
Bk ,E ′

k

]
, (E12)

where

∣∣�−−→
k−1
g

〉
A�k−1,B′

�k−1,E�k−1,Ẽk
:=
[

k−1∏
n=1

√
L̂

oB
k−n

B′
k−n

Û (k−n)
Bk−n,Ek−n,Ẽk−n

]
|0〉Ẽ1

[
k−1⊗
n=1

√
p jn | jn〉An

∣∣ψ jn,g| jn−1,..., jn−lc

〉
Bk

]
, (E13)

with A�k−1 := A1, . . . , Ak−1 and B′
�k−1, E�k−1 := B′

1, E1, . . . , B′
k−1, Ek−1, and where |ψ (vir)

τX ,g| jk−1,..., jk−lc
〉Bk ,E ′

k
and p̃(k,vir)

τX ,g| jk−1,..., jk−lc

are defined in Eqs. (29) and (28), respectively. In the second equality of Eq. (E12), we have used the fact that Alice’s measure-
ments on her ancillae A�k−1 commute with any measurements or operations on systems B1, E1, Ẽ1, . . . , Bk−1, Ek−1, Ẽk−1, and

the fact that L̂ok

Ak ,B′
k

can be decomposed as L̂
oA

k
Ak

⊗ L̂
oB

k

B′
k
, where Alice’s outcome oA

k and Bob’s outcome oB
k on round k are defined

as (a, τ ) and (β, γ ), respectively. In the third equality of Eq. (E12), we have used the definition of the post-measurement state

|�g| jk−1,..., jk−lc
〉Ak ,Bk ,E′

k
in Eq. (E2), and in the fourth equality of Eq. (E12), we have defined the state |�−−→

k−1
g 〉A�k−1,B′

�k−1,E�k−1,Ẽk
using

Eq. (E13) and we have taken advantage of the cyclic property of the trace operation. Finally, in the last equality of Eq. (E12), we
have used Eq. (E9), Eq. (26) and the definition of F̂ (Z,Z,τ,γ )

Ak ,B′
k

in Eq. (D2) for τ, γ ∈ {0, 1} such that τ �= γ .

By substituting Eq. (E12) in Eq. (E11), we can now express P(k)
g (ph|Act) as

P(k)
g (ph|Act) :=

∑
τ,γ∈{0,1}

τ �=γ

p̃(k,vir)
τX ,g| jk−1,..., jk−lc

pZB Tr
[
σ̃

(k,vir)
τX ,g| jk−1,..., jk−lc

D̂(k)
γX

]
, (E14)

with σ̃
(k,vir)
τX ,g| jk−1,..., jk−lc

:= P̂(|ψ (vir)
τX ,g| jk−1,..., jk−lc

〉Bk ,E′
k
) and

D̂(k)
γX

:=
〈
�

−−→
k−1
g

∣∣Û (k)†
Bk ,Ek ,Ẽk

m̂γX Û (k)
Bk ,Ek ,Ẽk

∣∣�−−→
k−1
g

〉
P(o−−→

k−1
)

, (E15)

where P(o−−→
k−1

) = |||�−−→
k−1
g 〉||2, and where we have omitted the mode subscripts in the quantum states for simplicity of notation.

This concludes the derivation of Eq. (27).
Finally, note that the operator D̂(k)

γX
in Eq. (E15) has a very similar form to the operator M̂ (k)

γX
in Eq. (D7). Therefore, we can

use an analogous argument to that in Appendix D to show that when the QKD protocol is run sequentially, the operator D̂(k)
γX

satisfies 0 � D̂(k)
γX

� 1̂.
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3. Upper bounds on |〈ψ̃ jk,g| jk−1,..., jk−lc
|φ jk,g〉Bk,E′

k
| and |〈�g| jk−1,..., jk−lc

|�g〉Ak,Bk,E′
k
|

When employing the RT to prove the security of the protocol, we define the reference states

∣∣φ jk ,g
〉
Bk ,E′

k
= ∣∣φ jk ,g

〉
Bk ,Ek

∑
jk+1

√
p jk+1 . . .

∑
jk+lc

√
p jk+lc

∣∣ψ jk+1,..., jk+lc ,g
〉
A�k+1,B�k+lc+1,E�k+lc+1

lc⊗
n=1

∣∣φ jk+n,g
〉
Bk+n,Ek+n

=:
∣∣φ jk ,g
〉
Bk ,Ek

|�g〉A�k+1,B�k+1,E�k+1 , (E16)

and

∣∣Z
g

〉
Ak ,Bk ,E′

k
= 1√

2

∑
τ∈{0,1}

|τZ〉Ak

∣∣φτZ ,g
〉
Bk ,E′

k
, (E17)

which are analogous to |ψ̃ jk ,g| jk−1,..., jk−lc
〉Bk ,E′

k
and |�Z

g| jk−1,..., jk−lc
〉Ak ,Bk ,E′

k
, respectively. Note that, unlike |φ̃ jk ,g| jk−1,..., jk+1−lc

〉Bk ,E′
k

in
Eq. (E8), |φ jk ,g〉Bk ,E′

k
in Eq. (E16) is a qubit state, i.e., {|φ jk ,g〉Bk ,E′

k
} jk=0Z ,1Z ,0X ,1X spans a qubit space, because |�g〉A�k+1,B�k+1,E�k+1

is a state independent of jk .
Using Eqs. (E6) and (E16), we can then calculate an upper bound on the inner product |〈ψ̃ jk ,g| jk−1,..., jk−lc

|φ jk ,g〉Bk ,E′
k
| such that

∣∣〈ψ̃ jk ,g| jk−1,..., jk−lc

∣∣φ jk ,g
〉
BkE′

k

∣∣
= ∣∣√1 − ε̃

(k)
jk ,g| jk−1,..., jk−lc

〈
φ̃ jk ,g| jk−1,..., jk+1−lc

∣∣φ jk ,g
〉
BkE′

k
+
√

ε̃
(k)
jk ,g| jk−1,..., jk−lc

〈
φ̃⊥

jk ,g| jk−1,..., jk−lc

∣∣φ jk ,g
〉
BkE′

k

∣∣
= ∣∣√1 − ε̃

(k)
jk ,g| jk−1,..., jk−lc

〈
φ jk ,g

∣∣φ jk ,g
〉
BkEk

〈
� jk ,..., jk+1−lc ,g

∣∣�g
〉
A�k+1,B�k+1,E�k+1

∣∣
=
√

1 − ε̃
(k)
jk ,g| jk−1,..., jk−lc

∏lc
n=1

∑
jk+n

p jk+n

√
1 − ε

(k)
jk+n,g| jk+n−1,..., jk+n−lc∏lc

n=1

√∑
jk+n

p jk+n

(
1 − ε

(k)
jk+n,g| jk+n−1,..., jk+n−lc

)

=
√

1 − ε
(k)
jk ,g| jk−1,..., jk−lc

lc∏
n=1

√∑
jk+n

p jk+n

(
1 − ε

(k)
jk+n,g| jk+n−1,..., jk+n−lc

) ∏lc
n=1

∑
jk+n

p jk+n

√
1 − ε

(k)
jk+n,g| jk+n−1,..., jk+n−lc∏lc

n=1

√∑
jk+n

p jk+n

(
1 − ε

(k)
jk+n,g| jk+n−1,..., jk+n−lc

)

=
√

1 − ε
(k)
jk ,g| jk−1,..., jk−lc

lc∏
n=1

∑
jk+n

p jk+n

√
1 − ε

(k)
jk+n,g| jk+n−1,..., jk+n−lc

�
lc+1∏
n=1

√
1 − ε′U = (

√
1 − ε′U)lc+1 =:

√
1 − εU, (E18)

where εU := 1 − (1 − ε′U)lc+1. In the second equality of Eq. (E18), we have used the fact that 〈φ̃⊥
jk ,g| jk−1,..., jk−lc

|φ jk ,g〉Bk ,E′
k
= 0

for any jk , in the third equality we have used the definition in Eq. (E8), and in the forth equality, we have used the definition in
Eq. (E7). Finally, in the inequality of Eq. (E18), we have used that

∑
jk

p jk = 1 for any round k and that ε
(k)
jk ,g| jk−1,..., jk−lc

� ε′U for
all k, jk, g, and jk−1, . . . , jk−lc [see assumption (A2.b) in Sec. II A].

Similarly, using Eqs. (E10) and (E17), we can calculate an upper bound on the inner product |〈�Z
g| jk−1,..., jk−lc

|Z
g 〉Ak ,Bk ,E′

k
| such

that ∣∣〈�Z
g| jk−1,..., jk−lc

∣∣Z
g

〉
Ak ,Bk ,E′

k

∣∣ = 1
2

∣∣〈ψ̃0Z ,g| jk−1,..., jk−1

∣∣φ0Z ,g
〉
Bk ,E′

k
+ 〈ψ̃1Z ,g| jk−1,..., jk−1

∣∣φ1Z ,g
〉
Bk ,E′

k

∣∣
� 1

2 (
√

1 − ε + √
1 − ε) = √

1 − ε, (E19)

where we have used the fact that 〈 jk| j′k〉Ak = δ jk , j′k . Also, in the inequality of Eq. (E19) we have used the upper bound
in Eq. (E18). This concludes the calculation of the upper bounds on the inner products |〈ψ̃ jk ,g| jk−1,..., jk−lc

|φ jk ,g〉Bk ,E′
k
| and

|〈�g| jk−1,..., jk−lc
|g〉Ak ,Bk ,E′

k
|.

APPENDIX F: PROOF OF Eq. (32)

Here, we provide a proof of the second inequality in Eq. (32). From Eq. (25), we can express eU
ph as

eU
ph = NU

ph

N (Z )
det

= N

N (Z )
det

f
( x

N

)
, (F1)
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where x is a tuple whose elements are Nj,γX for all j, γ , and f is a multivariate function that is concave with respect to all of its
arguments due to the concavity of G+(y, z) and −G−(y, z) with respect to y. Similarly, from Eq. (31), we can express eU

ph,w as

eU
ph,w = NU

ph,w

N (Z )
det,w

= Nw

N (Z )
det,w

f

(
xw

Nw

)
, (F2)

where xw is a tuple whose components are Nj,γX ,w for all j, γ , and f is the same function as in Eq. (F1). We have that

lc∑
w=0

qweU
ph,w =

lc∑
w=0

N (Z )
det,w

N (Z )
det

Nw

N (Z )
det,w

f

(
xw

Nw

)

=
lc∑

w=0

Nw

N (Z )
det

f

(
xw

Nw

)

= N

N (Z )
det

lc∑
w=0

Nw

N
f

(
xw

Nw

)

� N

N (Z )
det

f

⎛
⎝ lc∑

w=0

Nw

N

xw

Nw

⎞
⎠

= N

N (Z )
det

f
( x

N

)
= eU

ph, (F3)

where the inequality is due to the concavity of f , and the second to last equality is due to
∑

w xw = x, since
∑

w Nj,γX ,w = Nj,γX .

APPENDIX G: PARAMETERS c(k)
τ, j,g, cU

τ, j , AND p(vir)U
τX

FOR THE MODIFIED BB84 PROTOCOL

In this Appendix, we provide the full expressions of the coefficients c(k)
τ, j,g, with τ ∈ {0, 1} and j ∈ {0Z , 1Z , 0X , 1X }, associated

with the modified BB84 protocol, for the particular phase-encoding scheme considered in Sec. IV A. Direct calculations show
that these coefficients are given by

c(k)
1,0Z ,g =

sin
(

θ
(k)
0Z ,g

2 − θ
(k)
1X ,g

2

)
− sin
(

θ
(k)
1Z ,g

2 − θ
(k)
1X ,g

2

)
sin
(

θ
(k)
1Z ,g

2 − θ
(k)
0Z ,g + θ

(k)
1X ,g

2

)
+ 2 sin

(
θ

(k)
0Z ,g

2 − θ
(k)
1X ,g

2

)
− sin
(

θ
(k)
1Z ,g

2 − θ
(k)
1X ,g

2

) ,

c(k)
1,1Z ,g =

− sin
(

θ
(k)
0Z ,g

2 − θ
(k)
1X ,g

2

)
+ sin
(

θ
(k)
1Z ,g

2 − θ
(k)
1X ,g

2

)
sin
(

θ
(k)
0Z ,g

2 − θ
(k)
1Z ,g + θ

(k)
1X ,g

2

)
− sin
(

θ
(k)
0Z ,g

2 − θ
(k)
1X ,g

2

)
+ 2 sin

(
θ

(k)
1Z ,g

2 − θ
(k)
1X ,g

2

) ,

c(k)
1,1X ,g = cos

(
θ

(k)
0Z ,g − θ

(k)
1Z ,g

)− 1⎡
⎣cos
(
θ

(k)
0Z ,g − θ

(k)
1Z ,g

)− cos
(
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2

)
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⎤
⎦

,

c(k)
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(

θ
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0Z ,g

2 − θ
(k)
0X ,g

2

)
+ sin
(

θ
(k)
1Z ,g

2 − θ
(k)
0X ,g

2

)
2 sin
(

θ
(k)
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2 − θ
(k)
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2

)
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(

θ
(k)
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2 − θ
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(k)
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2

)
+ sin
(

θ
(k)
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2 − θ
(k)
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2

) ,
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(

θ
(k)
0Z ,g

2 − θ
(k)
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2

)
+ sin
(

θ
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2

)
sin
(

θ
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2
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. (G1)
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These coefficients are constrained by the fact that θ
(k)
j,g ∈

[θL
j , θU

j ] for some known θL
j and θU

j . While one can in
principle find numerical upper bounds on these coefficients
regardless of the value of θL

j and θU
j , here we obtain analyt-

ical bounds under the following assumption: −π/6 � θL
0Z

�
θU

0Z
� π/6, 5π/6 � θL

1Z
� θU

1Z
� 7π/6, π/3 � θL

0X
� θU

0X
�

2π/3, and 4π/3 � θL
1X

� θU
1X

� 5π/3. Note that this assump-
tion is reasonable because a deviation of ±π/6 from the
ideal phase value is much larger than the modulation errors
characterized in recent experiments [16].

To derive the analytical upper bounds, we consider the
partial differential equations of c(k)

τ, j,g with respect to each

θ
(k)
j,g and then select the values of θ

(k)
j,g ∈ [θL

j , θU
j ] that max-

imise them. For example, since ∂θ0Z ,gc
(k)
1,0Z ,g > 0 when θ

(k)
0Z ,g ∈

[−π/6, π/6], θ (k)
1Z ,g ∈ [5π/6, 7π/6], and θ

(k)
0X ,g ∈ [π/3, 2π/3],

c(k)
1,0Z ,g is maximized when θ

(k)
0Z ,g = θU

0Z
. Alternatively, if the

function is not always increasing or decreasing with respect
to a particular argument, but given the ranges stated above it
is convex with respect to that argument, e.g. ∂2

θ0Z ,g
c(k)

1,1X ,g > 0,

then we conclude that c1,1X ,g is maximized either when θ
(k)
0Z ,g =

θL
0Z

or when θ
(k)
0Z ,g = θU

0Z
, and we select the appropriate value by

inspection. The overall solution is the following:

cU
1,0Z

→ c(k)
1,0Z ,g

(
θU

0Z
, θU

1Z
, θL

1X

)
,

cU
1,1Z

→ c(k)
1,1Z ,g

(
θL

0Z
, θL

1Z
, θU

1X

)
,

cU
1,1X

→ max
x1,y1,z1∈{L,U}

c(k)
1,1X ,g

(
θ

x1
0Z

, θ
y1
1Z

, θ
z1
1X

)
,

cU
0,0Z

→ c(k)
0,0Z ,g

(
θL

0Z
, θL

1Z
, θU

1X

)
,

cU
0,1Z

→ c(k)
0,1Z ,g

(
θU

0Z
, θU

1Z
, θL

1X

)
,

cU
0,0X

→ max
x0,y0,z0∈{L,U}

c(k)
0,0X ,g

(
θ

x0
0Z

, θ
y0
1Z

, θ
z0
1X

)
. (G2)

Similarly, we can obtain upper bounds on the probabilities
p(k,vir)

τX ,g . For this, first recall that

p(k,vir)
τX ,g = 1

2 pZA

[
1 + (−1)τ	(〈φ0Z ,g

∣∣φ1Z ,g
〉
Bk ,Ek

)]
. (G3)

Then, by using the definition of |φ j,g〉Bk ,Ek and Eq. (33), and
by considering the partial differential equations of p(k,vir)

τX ,g with

respect to each phase θ
(k)
j,g we have that

p(vir)U
1X

→ 1

2
pZA

[
1 − cos

(
θL

0Z
− θU

1Z

2

)]
,

p(vir)U
0X

→ 1

2
pZA

[
1 + cos

(
θU

0Z
− θL

1Z

2

)]
. (G4)

APPENDIX H: PARAMETERS c(k)
τ, j,g, cU

τ, j , AND p(vir)U
τX

FOR THE THREE-STATE PROTOCOL

Here, we provide the full expressions of the coefficients
c(k)

1, j,g with j ∈ {0Z , 1Z , 0X } associated with the three-state pro-
tocol for the particular phase-encoding scheme considered in
Sec. IV A, as well as their upper bounds. Direct calculations
show that c(k)

1, j,g are given by

c(k)
1,0Z ,g =

sin
(

θ
(k)
0Z ,g

2 − θ
(k)
0X ,g

2

)
− sin
(

θ
(k)
1Z ,g

2 − θ
(k)
0X ,g

2

)
sin
(

θ
(k)
1Z ,g

2 − θ
(k)
0Z ,g + θ

(k)
0X ,g

2
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(
θ

(k)
0Z ,g

2 − θ
(k)
0X ,g

2

)
− sin
(

θ
(k)
1Z ,g

2 − θ
(k)
0X ,g

2

) ,

c(k)
1,1Z ,g =

− sin
(

θ
(k)
0Z ,g

2 − θ
(k)
0X ,g

2

)
+ sin
(

θ
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2 − θ
(k)
0X ,g

2

)
sin
(

θ
(k)
0Z ,g
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(k)
0X ,g

2
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− sin
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+ 2 sin
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) ,
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1,0X ,g =

cos
(
θ

(k)
0Z ,g − θ

(k)
1Z ,g

)
− 1⎡

⎣cos
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(k)
0Z ,g − θ
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)− cos
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)− cos
(
θ

(k)
1Z ,g − θ

(k)
0X ,g

)
+ 2 cos

( θ (k)
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(k)
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( θ (k)
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(k)
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⎤
⎦

. (H1)

Their upper bounds can be derived by following a similar approach as in Appendix G and are summarized below [29]:

cU
1,0Z

→ c(k)
1,0Z ,g

(
θU

0Z
, θL

1Z
, θL

0X

)
,

cU
1,1Z

→ c(k)
1,1Z ,g

(
θU

0Z
, θL

1Z
, θU

0X

)
,

cU
1,0X

→

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

c(k)
1,0X ,g

(
θL

0Z
, θU

1Z
, θU

0X

)
if θU

0X
<

θL
0Z

+θU
1Z

2 ,

c(k)
1,0X ,g

(
θL

0Z
, θU

1Z
,

θL
0Z

+θU
1Z

2

)
if

θL
0Z

+θU
1Z

2 ∈ [θL
0X

, θU
0X

]
,

c(k)
1,0X ,g

(
θL

0Z
, θU

1Z
, θL

0X

)
if

θL
0Z

+θU
1Z

2 < θL
0X

.

(H2)

The full expressions for the coefficients c(k)
0, j,g with j ∈ {0Z , 1Z , 0X } as well as their upper bounds, and the probabilities p(vir)U

τX
are

the same as in Appendix G.
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