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Chiral orbital order of interacting bosons without higher bands
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Ultracold atoms loaded into higher Bloch bands provide an elegant setting for realizing many-body quantum
states that spontaneously break time-reversal symmetry through the formation of chiral orbital order. The
applicability of this strategy remains nonetheless limited due to the finite lifetime of atoms in high-energy bands.
Here we introduce an alternative framework, suitable for bosonic gases, which builds on assembling square
plaquettes pierced by a π flux (half a magnetic-flux quantum). This setting is shown to be formally equivalent
to an interacting bosonic gas loaded into p orbitals, and we explore the consequences of the resulting chiral
orbital order, both for weak and strong on-site interactions. We demonstrate the emergence of a chiral superfluid
vortex lattice, exhibiting a long-lived gapped collective mode that is characterized by local chiral currents. This
chiral superfluid phase is shown to undergo a phase transition to a chiral Mott insulator for sufficiently strong
interactions. Our work establishes coupled π -flux plaquettes as a practical route for the emergence of orbital
order and chiral phases of matter.
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I. INTRODUCTION

Breaking time-reversal symmetry is known to drastically
alter the phases and dynamical properties of quantum matter,
as has been evidenced by vortex lattices in rotating ultracold
gases [1–3] and the quantum Hall effects in two-dimensional
materials immersed in strong magnetic fields [4]. In the
context of cold atoms in optical lattices, this fundamental
symmetry can be broken by privileging a certain orientation
of motion, e.g., by rotating the system [3,5] or by applying
a circular shaking to the lattice [6,7]. However, these meth-
ods lead to instabilities or heating, hence complicating the
formation of strongly correlated phases [3,8]. This motivates
the development of alternative schemes to break time-reversal
symmetry in ultracold gases.

A first possible route builds on addressing different in-
ternal states of an atom with lasers, in view of engineering
synthetic lattice structures with effective magnetic fluxes
[9–15]. Such schemes have been experimentally implemented
and lead to the observation of chiral states and dynamics
[16–20]. A second route exploits the orbital structure of higher
Bloch bands [21,22] in the absence of external driving. In
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these systems, interactions couple the different orbitals and
can favor ground states with finite angular momentum, thus
spontaneously breaking time-reversal symmetry [23]. The re-
alization of higher-band lattice models offers the opportunity
to observe intriguing correlated quantum phases with chiral
properties [24–31] as well as topological chiral excitations
[32,33]. Quantum gases have been experimentally loaded into
p bands [34,35], as well as higher bands [36], hence leading to
the observation of short-lived condensates with spontaneously
broken time-reversal symmetry [35,37,38]. However, atoms in
higher bands have a relatively short lifetime due to atom-atom
collisions, thus making it challenging to reach the strongly
interacting regime.

In this work, we introduce an alternative route to p-band
orbital physics, which does not rely on populating higher
bands. Our approach is based on an analogy between px,y

orbitals and the twofold degenerate low-energy orbitals d1,2

provided by a square plaquette pierced by a π flux [Figs. 1(a)
and 1(b)]. Considering bosons with Hubbard interactions, we
show that this setting favors chiral orbital order and breaks
time-reversal symmetry. Our construction consists of coupling
these π -flux plaquettes with weak links, so as to preserve the
orbital order over extended lattices [Fig. 1(c)]. We explore
this approach both in the weakly interacting and the strongly
interacting regimes and, for concreteness, we focus our anal-
ysis on a square geometry giving rise to a bosonic version
of the Benalcazar-Bernevig-Hughes (BBH) model [39]. In
particular, we demonstrate the emergence of a chiral super-
fluid vortex phase, exhibiting a long-lived gapped collective
mode and local chiral currents. Furthermore, we show that the
superfluid undergoes a transition to a chiral Mott insulator for
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FIG. 1. The π -flux plaquette building block for chiral bosonic
phases. (a) Schematic representation of a single plaquette with flux
� = π . (b) Single-particle spectrum displaying twofold degeneracy
separated by an energy gap. (c) Sketch of an extended lattice of con-
nected building blocks, with J ′ � J , resulting in a chiral superfluid
phase: each supersite hosts a quantized vortex associated with the
condensate phase winding, ϕi = arg〈b̂i〉.

sufficiently strong interactions and half filling. Our results es-
tablish coupled π -flux plaquettes as powerful building blocks
for orbital-like physics and chiral phases of matter.

The paper is organized as follows. In Sec. II, we discuss the
single-plaquette degrees of freedom, derive the low-energy Z2

theory, and highlight the formal analogy with p-band models.
We then discuss the resulting chiral ground state and chiral
excitations, in the classical limit, and we explore practical de-
tection schemes. In Sec. III, we discuss a general construction
for extended lattices obtained by coupling π -flux plaquettes
with weak links. We focus our analysis on a square geome-
try (the bosonic BBH model [39]) and investigate quantum
phases in both the weakly interacting and the strongly inter-
acting regimes. This study demonstrates a transition from a
superfluid vortex lattice to a chiral Mott insulator. We draw
our conclusions in Sec. IV.

II. SINGLE-PLAQUETTE WITH π- FLUX

A. Effective theory

The interplay of magnetic flux and interactions can have
remarkable effects, even at the level of a single plaquette
[15,40,41]. Here, we start by considering a single square
plaquette pierced by a π flux [see sketch in Fig. 1(a)], as
described by

Ĥ0 = −J (eiπ b̂†
1b̂2 + b̂†

2b̂4 + b̂†
4b̂3 + b̂†

3b̂1 + H.c.), (1)

with on-site Hubbard interactions among the bosons,

Ĥint = U

2

∑
i

n̂i(n̂i − 1), (2)

and we set U > 0 (repulsive). The full Hamiltonian reads Ĥ =
Ĥ0 + Ĥint. The Hamiltonian Ĥ0 admits four eigenstates that

are pairwise degenerate in energy, ε1,2 = −√
2J and ε3,4 =√

2J [see Fig. 1(b)]. We indicate the operators correspond-
ing to the modes with eigenvalues εi as d̂i and d̂†

i , defined
through the unitary transformation b̂i = ∑

i j Ui j d̂ j [42]. Since

the single-particle theory displays an energy gap �ε = 2
√

2J ,
it is meaningful to consider the projected Hamiltonian Ĥeff ≡
P̂Ĥ P̂, where P̂ is the projection operator onto the low-energy
subspace spanned by the modes with i = 1 and 2 [43,44]:

Ĥeff = 3U

16
n̂2 − U

16
L̂2

z −
(√

2J + U

8

)
n̂, (3)

where n̂ = d̂†
1 d̂1 + d̂†

2 d̂2 and L̂z = i(d̂†
1 d̂2 − d̂†

2 d̂1). This ex-
pression shows that the low-energy physics of weakly
interacting bosons in a π -flux plaquette shares similarities
with p-band bosons [22]: In direct analogy with px,y orbitals,
the two modes d1 and d2 experience density-density repul-
sive interactions but also an orbital-like coupling −L̂2

z with
a negative sign. The operator L̂z has the same structure as
the angular momentum operator built from px,y orbitals, and
the negative sign privileges a ground state with the highest
angular momentum possible (for U > 0), i.e., a macroscopic
occupation of a complex orbital |d1〉 ± i|d2〉 [22]. Besides
the global U(1) symmetry associated with the conservation
of the total number of particles and time-reversal symmetry,
the low-energy Hamiltonian displays an emergent discrete Z2

symmetry represented by d̂1 → d̂2 and d̂2 → d̂1, which trans-
forms the angular momentum as L̂z → −L̂z.

The Hamiltonian in Eq. (3) can be solved exactly
by noting that [L̂z, Ĥeff] = 0. Indicating the single-particle
eigenstates of L̂z as |±〉 ≡ d̂†

±|0〉, with L̂z|±〉 = ±|±〉 and
d̂†

± = (d̂†
1 ± id̂†

2 )/
√

2, a generic many-body eigenstate with
energy Eeff can, therefore, be written as

|n+, n−〉 = 1√
n+! n−!

(d̂†
+)n+ (d̂†

−)n−|0〉,

Eeff (n+, n−) = 3UN2

16
− U

16
(n+ − n−)2 −

(√
2J + U

8

)
N,

(4)

with N =n+ + n−. The twofold degenerate ground state
thus corresponds to n+ =N or n− =N , i.e., |ψGS〉 ∼ (d̂†

1 ±
id̂†

2 )N |0〉, with energy per particle EGS/N = g/8 − √
2J −

g/8N . Such a ground state, which breaks the aforementioned
time-reversal and Z2 symmetries [45], is a chiral conden-
sate with angular momentum 〈L̂z〉 = ±N . Let us consider the
ground state with positive chirality, n+ =N . The lowest one-
particle excitation, which is given by n+ = N − 1 and n− = 1,
corresponds to removing a particle from the condensate and
transferring it to a state with opposite angular momentum.
The energy corresponding to this elementary excitation is
�Eexc = g/4 − U/4.

B. The collective mode on a single plaquette

To gain more insight on this excitation, we now discuss the
weakly interacting regime within a hydrodynamic approach
relevant to systems of ultracold atoms and nonlinear pho-
tonics. We therefore consider a finite g ≡ UN � J , and take
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the limit N → ∞. Under these assumptions, the problem is
treated using a discrete Gross-Pitaevskii description with N
condensed particles: we replace the operators in Eq. (3) by
the ansatz

d̂1 → 〈d̂1〉 = √
N1, d̂2 → 〈d̂2〉 = eiθ

√
N2, (5)

with N =N1+N2, and construct the energy functional

EMF[d1, d2] = E (N ) − U

4
N1(N − N1) sin2 θ, (6)

where E (N ) = 3UN2/16 − (
√

2J + U/8)N . Note that the
last term in Eq. (6), which corresponds to −L̂2

z , is minimized
for N1,2 =N/2 and θ =±π/2, thus breaking time-reversal
symmetry. This yields the ground-state energy per particle
EMF

GS /N =−√
2J+g/8, which is in agreement with EGS/N for

N → ∞.
The eigenmodes of the condensate can be obtained by

studying the fluctuations with respect to the stationary solu-
tion. We introduce the Lagrangian density

L = i(d∗
1 ∂t d1 + d∗

2 ∂t d2) − EMF[d1, d2], (7)

and we define small fluctuations within a hydrodynamic pic-
ture as N1,2 → N/2 ± δρ and θ → π/2 + δθ . At the lowest
order, we obtain EMF[d1, d2] = E (0)

MF + δE (2)
MF, where

δE (2)
MF = UN2

16
δθ2 + U

4
δρ2. (8)

The dynamical variables are the relative density and the rel-
ative phase, satisfying the equations of motion ∂tδθ = U

2 δρ

and ∂tδρ = −UN2

8 δθ , which have the solutions

δθ = A cos ω0t, δρ = −AN

2
sin ω0t, (9)

with ω0 =g/4 and A being an arbitrary constant set by the
initial conditions. As a distinctive signature of the mode, the
oscillation of the two conjugate variables occurs with a phase
difference π/2. The nature of this mode shares similarities
with a recent measurement in p bands [46,47].

C. Detecting the collective mode

We now show how to detect the collective mode via
spectroscopy or quench protocols. We first consider a time-
periodic modulation of the on-site energy at two opposite
corners of the plaquette,

δV̂ = V (t )(b̂†
2b̂2 − b̂†

3b̂3)

≈ V (t )

2
(d̂†

2 d̂2 − d̂†
1 d̂1) → −V (t )δρ, (10)

with V (t ) = V0 sin ωt . As shown by Eq. (10), this spectro-
scopic probe couples to the relative density δρ within the
projected theory. When reaching resonance, ω = ω0 = g/4,
the system is expected to absorb energy while populating the
collective mode characterized by Eq. (9). This is confirmed
in Fig. 2(a), which shows a numerical integration of the full
nonlinear equations of motion, obtained from the Lagrangian
(7) with the addition of the drive δV̂ (t ). One recognizes the
characteristic π/2 phase difference between the relative den-
sity δρ and the relative phase δθ [Eq. (9)]. In Fig. 2(b), the

(a) (b)

FIG. 2. Exciting the collective mode by driving. (a) Phase and
density dynamics at resonance ω = ω0 = g/4 and corresponding
energy absorption for V0 = 10−4g. (b) Resonance peak obtained by
measuring the absorption energy rate over t = 10T , where T =
2π/ω. The vertical dashed line is drawn at the expected resonance
condition ω = g/4.

energy absorption per unit period of driving shows a peak at
ω = ω0, confirming our analysis.

The exact solution in Eq. (4) already revealed that the
excited mode corresponds to a single-particle excitation car-
rying angular momentum. This translates into a real-space
current that can be detected by the following quench protocol.
Inspired by the dynamics of density defects in topological
systems [48–50], we introduce a small on-site “impurity”
potential �Ĥ = −� b̂†

1b̂1, with � > 0 and � � g � J . This
creates an initial state with a small excess density on
one site. The energy functional EMF(θ )/ρ = (g/32) cos 2θ +
(�/4) cos θ shows that this state corresponds to occupying a
small fraction of the excited mode (of the unperturbed system)
with θ = arccos(−2�/g) = ±π/2. At t =0, we then quench
� → 0 and let the system evolve in time. The real-space
dynamics is obtained by directly solving the four-site Gross-
Pitaevskii (GP) equation i∂t bi = −∑

j Ji jb j + U |bi|2bi; it
displays a clear chiral motion of the impurity, as shown in
Fig. 3(a). These results were benchmarked by computing

(a) (b)

FIG. 3. Chiral impurity dynamics. (a) Snapshots of the density
distribution at different times showing the chiral motion of the
impurity for � = 0.001J and g = 0.1J obtained from the full GP
dynamics. (b) Oscillation frequency for g = 0.1J obtained by ED
for different particle numbers N and scaling for N → ∞. The solid
square indicates the projected mean-field (PMF) theory result g/4
and the solid circle indicates the GP oscillation frequency. The inset
shows single-site density dynamics obtained within the GP descrip-
tion compared with ED for N = 32 and U = g/N .
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the dynamics of the full many-body system, using exact-
diagonalization (ED) [51]. For the ED results, we selected
one of the two ground states by adding a small pinning field
�Ĥε = ε L̂z, with |ε| � J, g in order to explicitly break the
degeneracy. Figure 3(b) shows a scaling analysis of the ex-
tracted oscillation frequency in the N → ∞ limit, confirming
the GP results at short times. We attribute the small mismatch
with the projected theory result (ω = g/4) to the perturbative
contribution of the high-energy orbitals.

III. CHIRAL PHASES IN EXTENDED LATTICES

A. Building dimerized lattices with orbital order

Having established the chiral properties emerging from
bosonic π -flux plaquettes, we now demonstrate how assem-
bling these building blocks can lead to chiral phases of matter,
in both the weakly interacting and the strongly interacting
regimes. Our construction consists of connecting π -flux pla-
quettes with weak couplings J ′ � J , such that each plaquette
can be viewed as a supersite hosting two orbitals (in direct
analogy with p-band models [52,53]), see Fig. 1(c). We define
the projected orbital operators acting on each plaquette as
d̂1,r and d̂2,r, where r indicates the plaquette’s position. The
local terms describing the dynamics within each plaquette are
represented by the Hamiltonian (3), which for an extended
lattice reads

Ĥ (plaq)
eff =

∑
r

(
3U

16
n̂2

r − U

16
L̂2

z,r

)
, (11)

where we dropped an overall energy shift. Upon projection
(P̂), generic interplaquette terms (of strength J ′) take the form

Ĥ (inter)
eff =

∑
〈r,r′〉,σ,σ ′

(
Jσ,σ ′

r,r′ d̂†
σ,rd̂σ ′,r′ + H.c.

)
, (12)

where the hopping coefficients Jσ,σ ′
r,r′ ∼ J ′ describe the most

general orbital couplings between nearest-neighbor plaquettes
and their value depends on the specific lattice geometry. The
Hamiltonian for the extended lattice thus reads

Ĥeff = Ĥ (plaq)
eff + Ĥ (inter)

eff . (13)

We now take a specific example and geometry, namely,
we consider a square geometry [see Fig. 4(a)]. This naturally
leads us to an interacting bosonic version of the BBH model
with uniform π flux [39], initially introduced in the context of
higher-order topological insulators. Upon projection (P̂), the
interplaquette terms (J ′) are described by

Ĥ (inter)
eff = − J ′

2
√

2

∑
r,σ,ν

(d̂†
σ,rd̂σ,r+eν

+ H.c.), (14)

where ex = (a, 0), ey = (0, a), and a is the lattice constant.
Notice that this single-particle orbital coupling also corre-
sponds to the dominant coupling in p-band square lattices
[22]. In the following, we discuss the weakly and strongly
interacting regimes of this model.

B. Bosonic BBH model: Weakly interacting regime

In the weakly interacting limit, the ground state of Ĥeff is
a uniform condensate (� point) forming a superfluid vortex

(a) (b)

(c) (d)

FIG. 4. Interacting BBH model. (a) Tight-binding representation
of the BBH model with uniform π flux and staggered hopping am-
plitudes J and J ′. The color of each site represents the ground-state
phase pattern for the weakly interacting superfluid vortex lattice
(units are as in Fig. 1). (b) Bogoliubov spectrum within the projected
theory for J ′ = 0.1J and g = 0.1J , showing the appearance of a gap-
less and a gapped mode at small momenta. Dashed lines indicate the
decay channel with rate � for the vortex excitation discussed in the
main text. (c) Fidelity susceptibility χF for a ladder with Ly = 2 sites
and up to Lx = 48 sites, extracted with DMRG for J ′ = 0.1J . The
peak indicates a phase transition, from a superfluid to an insulating
phase, as further evidenced by the finite charge gap �Ec obtained
by finite-size scaling. (d) Averaged loop-current L̄ ≡ ∑

r |〈L̂r〉|/Np

over the ladder plaquettes for Lx = 32, showing that time-reversal
symmetry remains broken across the transition. The inset shows two
profiles of loop-current patterns across the transition.

lattice [54], with the condensate phase pattern shown in
Fig. 4(a); this simply repeats the single plaquette result in-
dicated in Fig. 1.

To study the fate of the chiral mode identified in a
single plaquette, we perform a Bogoliubov analysis. Un-
der the mean-field substitutions d̂1,r → √

ρ/2 + δd̂1,r and
d̂2,r → i

√
ρ/2 + δd̂2,r, the effective BBH interacting model

can be decomposed into Ĥeff = Ĥ (0) + Ĥ (2) + Ĥ (3), where
each term Ĥ (i) is defined by having the corresponding
powers of operators δd̂ (†)

σ,r. We introduce the fluctuation
field operator δ�̂k ≡ (δd̂1,k, δd̂2,k, δd̂†

1,−k, δd̂†
2,−k )T in order

to write the quadratic part of the Hamiltonian as Ĥ (2) =
1
2

∑
k δ�̂

†
k H (k) δ�̂k, where

H (k) =
(

�k �

�† �k

)
, with � = g

8

(
1 i
i −1

)
, (15)

and �k = (εk − μ + g/2)I2×2, εk = −√
2J − J ′(cos kxa +

cos kya)/
√

2, and μ = −√
2(J + J ′) + g/4. We thus obtain

the Bogoliubov Hamiltonian Ĥ (2) = ∑
k =0,α ωα,k β̂

†
α,kβ̂α,k,

with α = 1 and 2. Here β̂
†
α,k creates a Bogoliubov quasipar-

ticle and the spectrum reads ω1,k = √
ξk(ξk + g) and ω2,k =

g/4 + ξk, with ξk ≡ −J ′(cos kxa + cos kya − 2)/
√

2. The two
branches of the spectrum are shown in Fig. 4(b). The massless
(Goldstone) mode at small momenta becomes ω1,k ≈ cs|k|
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with the sound velocity cs =
√

J ′g/4
√

2, while the massive
mode has a gap g/4, which corresponds to the single-plaquette
gapped mode of energy ω0.

In the limit of disconnected plaquettes, J ′ � g, the ex-
cited mode is long-lived as there is no lower energy mode
to decay to. As the coupling strength approaches J ′ ∼
g, the massive mode becomes energetically resonant with
the gapless phonon branch, thus opening a direct chan-
nel for its decay. Within the effective projected theory,
we computed the couplings Ĥ (3) between the massive and
massless modes up to cubic powers of δd̂ (†)

α,k. Assuming
g � J ′, the decay rate of the massive mode can be esti-
mated as � = π

∑
q δ(ω0 − 2ε1,q) |〈β1,qβ1,−q|Ĥ (3)|β2,0〉|2 =

0.73π2gU/(512J ′), thus suggesting that the mode is well-
defined (� � ω0 = g/4) under the condition U � 17.85J ′.

C. Bosonic BBH model: Strongly interacting regime
and chiral Mott insulator

From the effective (projected) model Ĥeff, and for appro-
priate filling factors, we expect a phase transition from the
chiral superfluid discussed in the previous section to a chiral
Mott insulator, governed by a competition between U and
J ′. However, whether this transition does take place in the
bosonic BBH model is not obvious, as strong interactions
can potentially lead to a breakdown of the effective theory.
We now rigorously demonstrate the existence of this exotic
phase transition by performing density-matrix renormaliza-
tion group (DMRG) calculations [55] on a ladder version of
the bosonic BBH model.

In Fig. 4(c), we consider a ladder with Ly = 2 sites and up
to Lx = 48 sites (Np = Lx/2 plaquettes) with filling ν = 1/2,
namely, two bosons per plaquette. The transition is identified
by computing the fidelity susceptibility [56–58]

χF = −(2/Lx ) lim
δU→0

∂2F/∂δU 2

where F (δU ) = |〈�(U )|�(U + δU )〉|. Our results show the
appearance of a clear peak in χF , located around U ∼ J for
J ′ = 0.1J , which grows with the system size. For compari-
son, we solved the effective p-band-type model described by
Eqs. (3) and (14) with DMRG as well, and we found that
the expected transition [29] indeed occurs in the same range
as for the full BBH model [Fig. 4(c)], thus indicating that
the projected theory provides a valid description across the
transition. In addition to the fidelity peak, we also observed
the opening of a charge gap �Ec = E (N + 1) + E (N − 1) −
2E (N ), indicating that the system enters an incompressible
phase known as the chiral Mott insulator [29,46], which is
characterized by a finite angular momentum in each plaquette.
This is confirmed by our calculation of the loop current oper-
ator L̂r = i(b̂†

1,r b̂3,r + b̂†
3,r b̂4,r + b̂†

4,r b̂2,r − b̂†
2,r b̂1,r − H.c.) ≈√

2L̂z,r , which remains approximately constant across the
transition [Fig. 4(d))]. In contrast with p bands, where angular
momentum displays an antiferromagnetic ordering [29], the
chiral Mott insulator exhibited by the bosonic BBH model
exhibits a ferromagnetic ordering.

IV. CONCLUDING REMARKS

Our construction offers the opportunity to observe chi-
ral bosonic phases deep in the strongly correlated regime,
which have remained elusive in higher bands [29] or in driven
systems realizing synthetic flux [59,60]. Besides, an interest-
ing perspective concerns the possible interplay between the
interacting bosonic phases presented in this work and the
unusual topological properties of the underlying BBH band
structure [39,42] (see also Refs. [61–64] on interaction effects
in higher-order topological insulators). Our construction can
also be applied to other lattice geometries, and extended to
higher dimensions, where π -flux models can exhibit fourfold
ground-state degeneracy [39] (see also Refs. [65–70] on vari-
ous π -flux models with frustration).

The chiral dynamics studied in our work can also be rel-
evant to nonlinear photonic systems [71–76], e.g., arrays of
coupled optical waveguides [77], upon injection of light with
the appropriate relative phase pattern among the sites of an
elementary plaquette [78]. This would provide an alternative
framework to explore orbital physics [79–81] in the nonlinear
regime.
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APPENDIX A: EFFECTIVE THEORY

The single-particle Hamiltonian describing the π -flux pla-
quette,

Ĥ0 = −J (eiπ b̂†
1b̂2 + b̂†

2b̂4 + b̂†
4b̂3 + b̂†

3b̂1 + H.c.), (A1)

admits the eigenstates |di〉 = ∑
j U−1

i j |b j〉, with i = 1, . . . , 4
and

U =

⎛
⎜⎜⎜⎜⎜⎝

1
2 − 1

2 − 1
2

1
2

0 1√
2

0 1√
2

1√
2

0 1√
2

0
1
2

1
2 − 1

2 − 1
2

⎞
⎟⎟⎟⎟⎟⎠. (A2)

The corresponding eigenvalues are ε1,2 = −√
2J and ε3,4 =√

2J . The single-particle gap �ε = 2
√

2J , together with the
weak-coupling condition g/J � 1 considered in this work,
allows us to project the full interacting Hamiltonian onto
the lowest-energy single-particle states and to neglect vir-
tual processes involving the high-energy modes. Specifically,
this projection is achieved by decomposing the operators as
b̂i = ∑

i j Ui j d̂ j and by dropping the contributions from d̂3,4.
We note that these terms would be relevant to construct an
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effective theory in second-order perturbation theory (here, we
limit ourselves to the lowest-order contribution). The Hubbard
interaction

Ĥint = U

2

∑
i

n̂i(n̂i − 1), (A3)

thus, becomes

Ĥ eff
int ≡ P̂ĤintP̂ = 3U

16
(d̂†

1 d̂†
1 d̂1d̂1 + d̂†

2 d̂†
2 d̂2d̂2)

+ U

4
d̂†

1 d̂†
2 d̂1d̂2 + U

16
(d̂†

1 d̂†
1 d̂2d̂2 + d̂†

2 d̂†
2 d̂1d̂1), (A4)

where P̂ is the projection operator. Note the orbital-changing
terms in the second line of Eq. (A4). Let us define the density
operator n̂ = d̂†

1 d̂1 + d̂†
2 d̂2 and the angular momentum opera-

tor L̂z = i(d̂†
1 d̂2 − d̂†

2 d̂1). The interaction Hamiltonian finally
reads

Ĥ eff
int = 3U

16
n̂2 − U

16
L̂2

z − U

8
n̂. (A5)

As [n̂, L̂z] = 0, the eigenstates of Ĥ eff
int can be written in terms

of the eigenstates of L̂z, which we indicate as |±〉 ≡ d̂†
±|0〉,

where d̂†
± = (d̂†

1 ± id̂†
2 )/

√
2, and satisfying L̂z|±〉 = ±|±〉. A

generic many-body eigenstate can, therefore, be written as

|n+, n−〉 = 1√
n+! n−!

(d̂†
+)n+ (d̂†

−)n−|0〉, (A6)

with N = n+ + n−. The corresponding eigenvalues read

E (n+, n−) = 3U

16
N2 − U

16
(n+ − n−)2 − U

8
N. (A7)

As only one between n− and n+ is independent, there are in
total N + 1 states. Inspection of this expression shows that
there are two degenerate ground states corresponding to n+ =
N or n− = N with the interaction energy EGS = Ng/8 − g/8.
These results correspond to the mean-field results, detailed in
the main text, for N → ∞ as shown in Fig. 5(a). As here we
are solving for the exact eigenstates, we also have found a
beyond-mean-field correction to the energy that does not scale
with the number of particles N . Let us consider the ground
state with n+ = N and n− = 0. In the particle-conserving
framework, the lowest-energy excitation corresponds to a
single-particle excitation of the form n′

+ = n+ − 1 = N − 1
and n′

− = n− + 1 = 1, namely, a particle transferred to a state
with opposite chirality. This corresponds to a change in the
angular momentum, and the energy for this excitation is

�E = g

4
− U

4
> 0. (A8)

This is exactly the result that we obtained within the Bogoli-
ubov theory for the gapped mode, and the comparison with
the numerically obtained spectrum is shown in Fig. 5(b). We
therefore have identified that the gapped mode describes a
single-particle excitation corresponding to flipping the angu-
lar momentum of a particle in the condensate. The mean-field
equations of motion can be derived from the Lagrangian (7)

0.00 0.05 0.10

1/N

0.010

0.012

0.014

0.016

0.018

E
/N

J
+
√ 2

EGS

0 5 10 15 20
Eigenvalue

EGS

ΔE

(a) (b)

FIG. 5. Spectrum of the effective model. (a) Energy spectrum
of the four-site plaquette obtained with exact diagonalization for
g = UN = 0.1J as a function of number of particles N . The dashed
line is the analytical ground-state energy EGS (see text), whereas the
star is the mean-field result for N → ∞. (b) Spectrum for N = 24
bosons. The dashed and dotted lines indicate the analytical values of
the ground-state energy EGS = Ng/8 − g/8 and of the lowest-energy
excitation �E = g/4 − U/4.

and read as follows:

i∂t d1 = 3U

8
(n1 + n2)d1 − i

U

8
Lzd2 − V (t )

2
d1,

i∂t d2 = 3U

8
(n1 + n2)d2 + i

U

8
Lzd1 + V (t )

2
d2, (A9)

where we included also the drive V (t ). These equations were
numerically solved in the presence of the drive to excite the
collective mode via a time-periodic modulation.

APPENDIX B: BOGOLIUBOV THEORY

Here we show how Bogoliubov theory can be used to
describe the four-site GP dynamics for the excited mode. After
replacing d̂1 = 〈d̂1〉 + δd̂1 and d̂2 = 〈d̂2〉 + δd̂2 in Ĥeff and
analogous relations for the Hermitian conjugates, we obtain
the single-plaquette Bogoliubov Hamiltonian ĤBog = ω0 β̂†β̂,
where β̂† = (i δd̂†

1 + δd̂†
2 )/

√
2. In terms of the sites’ fluctu-

0 100 200 300
Jt

0.245

0.250

0.255

〈b̂† 1b̂
1〉/

N

ED

GP

Bog

FIG. 6. Comparison of the impurity dynamics obtained from
exact diagonalization, Gross-Pitaevskii, and Bogoliubov theories.
Parameters are as given in the main text.
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ation operators δb̂(†)
i , the Bogoliubov Hamiltonian governing

the dynamics of the excitations reads

ĤBog =
∑
i, j

(J̃i jδb̂†
i δ̂b j + H.c.), (B1)

where the nearest-neighbor couplings are J̃21 = −(ω0/4)eiπ/4

and J̃13 = J̃34 = J̃42 = −J̃21 and the next-nearest-neighbor

ones are J̃14 = J̃32 = (ω0/4)eiπ/2. Notice the appearance of
couplings between nearest- and next-nearest-neighbor sites
that are proportional to ω0. We now evolve the mean-field
initial impurity state, obtained by adding an on-site potential
−�b̂†

1b̂1 as in the main text to find the ground state and then
quenching � → 0, with such a free Hamiltonian. The results
of the dynamics under ĤBog are shown in Fig. 6 and agree with
the GP and ED results.

APPENDIX C: DECAY RATE OF THE GAPPED MODE

Under the mean-field substitutions d̂1,r → √
ρ/2 + δd̂1,r and d̂2,r → i

√
ρ/2 + δd̂2,r, the effective BBH interacting model can

be decomposed into Ĥeff = Ĥ (0) + Ĥ (2) + Ĥ (3), where each term Ĥ (i) is defined by having the corresponding powers of operators
δd̂ (†)

σ,r. The linear term vanishes by choosing the chemical potential accordingly. The quadratic (Bogoliubov approximation) term
Ĥ (2) reads

Ĥ (2) = − J ′

2
√

2

∑
r,ν

(δd̂†
1,rδd̂1,r+eν

+ H.c.) − J ′

2
√

2

∑
r,ν

(δd̂†
2,rδd̂2,r+eν

+ H.c.)

−
√

2 J
∑

r

(δd̂†
1,rδd̂1,r + δd̂†

2,rδd̂2,r ) − μ
∑

r

(δd̂†
1,rδd̂1,r + δd̂†

2,rδd̂2,r )

+ g

2

∑
r

(δd̂†
1,rδd̂1,r + δd̂†

2,rδd̂2,r ) + g

16

∑
r

(δd̂†
1,rδd̂†

1,r + δd̂1,rδd̂1,r )

− g

16

∑
r

(δd̂†
2,rδd̂†

2,r + δd̂2,rδd̂2,r ) + i
g

8

∑
r

(δd̂†
1,rδd̂†

2,r − δd̂1,rδd̂2,r ), (C1)

which can be recast in momentum space after introducing the fluctuation field operator δ�̂k ≡ (δd̂1,k, δd̂2,k, δd̂†
1,−k, δd̂†

2,−k )T in

order to obtain the Bogoliubov Hamiltonian Ĥ (2) = 1
2

∑
k δ�̂

†
k H (k) δ�̂k, where

H (k) =
(

�k �

�† �k

)
, with � = g

8

(
1 i
i −1

)
, (C2)

and �k = (εk − μ + g/2) I2×2, εk = −√
2J − J ′(cos kxa + cos kya)/

√
2, and μ = −√

2(J + J ′) + g/4. Diagonalization yields
Ĥ (2) = ∑

k =0,α ωα,k β̂
†
α,kβ̂α,k, with α = 1 and 2, where β̂

†
α,k creates a Bogoliubov quasiparticle and the spectra read ω1,k =√

ξk(ξk + g) and ω2,k = g/4 + ξk, with ξk ≡ −J ′(cos kxa + cos kya − 2)/
√

2.
For the decay of the gapped mode, we are interested in the cubic term Ĥ (3), which couples Bogoliubov quasiparticles of

different branches, thus determining the leading channel for the decay of the excited mode. The cubic order reads

16

U

√
2

ρ
Ĥ (3) = +3δd̂†

1,rδd̂1,rδd̂1,r − 3i δd̂†
1,rδd̂1,rδd̂2,r − i δd̂†

1,rδd̂2,rδd̂1,r + δd̂†
1,rδd̂2,rδd̂2,r

−i δd̂†
2,rδd̂1,rδd̂1,r − δd̂†

2,rδd̂1,rδd̂2,r + 3 δd̂†
2,rδd̂2,rδd̂1,r − 3i δd̂†

2,rδd̂2,rδd̂2,r

+ 3δd̂1,rδd̂†
1,rδd̂1,r + i δd̂1,rδd̂†

1,rδd̂2,r − i δd̂1,rδd̂†
2,rδd̂1,r + 3δd̂1,rδd̂†

2,rδd̂2,r

− 3i δd̂2,rδd̂†
1,rδd̂1,r + δd̂2,rδd̂†

1,rδd̂2,r − δd̂2,rδd̂†
2,rδd̂1,r − 3i δd̂2,rδd̂†

2,rδd̂2,r + H.c.

=
∑
i jk

Ai jk δd̂†
i,rδd̂ j,rδd̂k,r + Bi jk δd̂i,rδd̂†

j,rδd̂k,r + Ci jk δd̂†
i,rδd̂†

j,rδd̂k,r + Di jk δd̂†
i,rδd̂ j,rδd̂†

k,r,

where Ci jk = A∗
k ji and Di jk = B∗

k ji.

Let us denote the Bogoliubov transformation δd̂i,k =
ui j,kβ̂ j,k + v∗

i j,kβ̂
†
j,−k; we therefore find

16

U

√
2

ρ
Ĥ (3) = 1

N1/2
s

∑
q

β̂2,0β̂
†
1,qβ̂

†
1,−q Fq + · · · , (C3)

where Ns is the number of sites. We retain only the terms
determining the decay |β2,0〉 → |β1,qβ1,−q〉 and we define
Fq = Ai jkPi jk,q + Bi jkQi jk,q + Ci jkRi jk,q + Di jkSi jk,q, where

Pi jk,q = u∗
i1,qu j2,0v

∗
k1,q + u∗

i1,qv
∗
j1,−quk2,0,

Qi jk,q = ui2,0u∗
j1,qv

∗
k1,q + v∗

i1,qu∗
j1,quk2,0,
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Ri jk,q = u∗
i1,qu∗

j1,−quk2,0,

Si jk,q = u∗
i1,qu j2,0u∗

k1,−q. (C4)

For g � J ′, when the gap is much smaller than the bandwidth,
we are in the small-wavelength limit and the Bogoliubov
Hamiltonian has the form

H (2)
q̃ =

⎛
⎜⎜⎝

q̃2 + ω0 0 ω0/2 iω0/2
0 q̃2 + ω0 iω0/2 −ω0/2

ω0/2 −iω0/2 q̃2 + ω0 0
−iω0/2 −ω0/2 0 q̃2 + ω0

⎞
⎟⎟⎠, (C5)

where we define q̃2 = q2(J ′/2
√

2) and q2 = q2
x + q2

y . The

spectrum of �zH
(2)
q̃ reads ε1,q̃ =

√
q̃2(q̃2 + 2ω0) and ε2,q̃ =

ω0 + q̃2, whereas the Bogoliubov modes are

ui j,q̃ =
(−iuq̃

i√
2

uq̃
1√
2

)
, vi j,q̃ =

(
ivq̃ 0
vq̃ 0

)
, (C6)

with u2
q̃ = ξ 2

q̃

2(ξ 2
q̃ −1)

and v2
q̃ = 1

2(ξ 2
q̃ −1)

, and we define ξq̃ =
(ε1,q̃ + ε2,q̃ )/ω0. By direct calculation, we find that the only
nonvanishing contribution to Fq is Fq = ∑

i jk Ci jkRi jk,q =
−i

√
2u2

q.
The decay rate of the gapped mode can now be calculated

by [82]

� = π
∑

q

δ(ω0 − 2ε1,q) |〈β1,qβ1,−q|Ĥ (3)|β2,0〉|2, (C7)

and the resonance condition is satisfied when q̃2 =
(
√

2 − 1)ω0, yielding ξq̃ = 1 + √
2. After transforming

N−1/2
s

∑
q → 2π

∫
dqq, we obtain

� =
√

2π2gU

128J ′

∫
dq̃ q̃ |Fq̃|2δ(ω − 2ε1,q̃) ≈ 0.73π2gU

512J ′ .

(C8)

APPENDIX D: DETAILS ON DMRG SIMULATIONS

We have used the ITensor library to perform the DMRG
calculations. All the simulations have been obtained by setting
the truncation error threshold to 10−10. The bond dimension
threshold has been taken up to χ = 2000 for some simulations
that required a more accurate convergence and we have used
up to 60 sweeps for the ground-state search. In order to select a
specific time-reversal broken ground state from the degenerate
manifold, we have added a small uniform flux via a complex
tunneling phase.

The fidelity susceptibility

χF = −(2/Lx ) lim
δU→0

∂2F/∂δU 2,

shown in Fig. 4(c) of the main text, has been computed with
a parabolic fit in δU of the fidelity F (δU ) ≡ |〈�(U )|�(U +
δU )〉| for ten values of δU < 10−3J .

The charge gap shown in Fig. 4(d), �Ec = E (N + 1) +
E (N − 1) − 2E (N ), where N is the number of bosons, has
been extrapolated from a linear fit in 1/Lx, for Lx = 32, 36,
40, 44, and 48.

Furthermore, we have checked that across the Mott tran-
sition the spectrum remains doubly degenerate by computing
the energy of a few low-lying states.
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