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Average correlation as an indicator for nonclassicality
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Bell inequalities are an essential part of quantum information theory. Based on these fundamental inequalities,
we propose a different indicator for nonclassicality in the Bell sense: average correlation. We derive a general
expression for average correlation and calculate its value for pure states and Werner states. From there we show
how two inequalities emerge which serve as necessary and sufficient conditions for nonclassicality. They are
simple to evaluate and can even be used to classify all bipartite qubit states.
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I. INTRODUCTION

The study of nonclassical quantum states has had an
enormous twofold impact. First, it has completely changed
our concept of physical reality [1–3], and second, nowadays
possibly even more important, it has led to a new era of
quantum technology [4]. Both revolutions have their roots
in two fundamental features of quantum states: superposition
and entanglement. Already for a single system, e.g., a quan-
tized mode of the electromagnetic field, a suited superposition
state will show nonclassical effects like squeezing [5]. One
step further, one finds nonlocality, which results from the
nonclassical correlations between at least two entangled sys-
tems. Both effects have paved the way to new technological
applications [4].

Consequently, an important question has always been
whether we can measure nonclassicality in the underlying
quantum states. In the literature, one can find various mea-
sures of nonclassicality, which are discussed more in detail in
Refs. [6,7]. These measures are mostly related to the structure
of quantum states in Hilbert space. However, nonclassicality
rather means that we have no classical model to describe
experimental data observed for physical systems described by
a specific quantum state. Hence, to quantify nonclassicality
one has to take into account certain properties of a physical
observable and its statistics for a given state. Regarding entan-
gled systems, the well-known Bell inequalities are probably
the best example for this combination. John Bell introduced
[8] the Bell inequality as a way to tell how quantum physics
provides certain predictions on such systems that cannot be
explained by a locally causal model. Moreover, these predic-
tions can be tested experimentally [2].
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The inequality is based on correlation functions of di-
chotomic observables measured by two distant observers A
and B. The correlation function

E (a, b) ≡ tr(ρ̂ a · σ̂A ⊗ b · σ̂B) (1)

represents the quantum counterpart for a system in a state
ρ̂. Unit vectors a and b determine the measurement axis of
each observer with Pauli spin vectors σ̂A = (σ̂1 A, σ̂2 A, σ̂3 A)
and σ̂B = (σ̂1 B, σ̂2 B, σ̂3 B).

There are several ways of constructing a Bell inequality,
but a well established form uses the sum [2,9]

S(a, a′; b, b′) ≡ |E (a, b) + E (a′, b)

+ E (a, b′) − E (a′, b′)| (2)

which is based on four correlation functions, Eq. (1), and four
measurement directions: (a, a′) for observer A and (b, b′) for
observer B.

Originally, Bell sums had the aim to verify [10–16] that
quantum nature is indeed nonlocal since the sum, Eq. (2),
reaches values

2 < S � 2
√

2

depending on the measurement directions and the underlying
quantum state. This regime cannot be explained by a locally
causal theory.

However, in the sense just mentioned, Bell sums can also
be used to quantify nonclassicality [17–20], since they build
upon experimentally accessible correlations. The maximum of
a Bell sum often serves as a nonclassicality measure, meaning
the higher the maximum, the more nonclassical a state ρ̂ is
expected to be [20].

Operationally, it is no simple task to detect this maximum.
Even for a nonclassical state, many of the aforementioned
measurement directions in Eq. (2) will not lead to a Bell sum
S > 2. The aim of our work is to introduce and analyze an op-
erationally simpler correlation function, which still indicates
nonclassicality in the Bell sense.

The paper is organized as follows: In Sec. II we define
average correlation and give a general expression and its fun-
damental boundaries. Then in Sec. III we compute average
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correlation for pure states and Werner states and describe how
average correlation can be used to indicate nonclassicality.
Finally, in Sec. IV we discuss how generic mixed states fit into
the picture and in Sec. V we conclude and give a brief outlook.
In Appendix A, we derive general expressions for average
correlation. In Appendix B we show the monotony of average
correlation in different parameters. Moreover, we prove the
fundamental boundaries for average correlation. Eventually,
in Appendix C we specify average correlation for different
classes of states used throughout the main body of our article.

II. AVERAGE CORRELATION AND ITS
FUNDAMENTAL BOUNDARIES

The value of a Bell sum, Eq. (2), is our central criterion to
classify nonclassicality of a state ρ̂. We define a state to be
nonclassical if it leads to a sum S > 2 in any configuration.
However, we no longer evaluate a Bell sum, Eq. (2), but use
average correlation

� ≡ 1

(4π )2

∫
d�a

∫
d�b|E (a, b)|, (3)

which is based on the modulus of the bipartite correlation
function, Eq. (1), averaged over all measurement directions
a and b.

We will show that average correlation indicates nonclas-
sicality. As opposed to evaluating Bell inequalities, � has
the operational advantage that averaging correlations does not
require good control of measurement directions. When Bell
sums are measured, one needs to fix two measurement direc-
tions for each subsystem. On top of that, the detection of a Bell
sum requires precise measurements, since any value of the
Bell sum in the range S > 2 indicates nonclassicality. Average
correlation � on the other hand can be determined by simply
measuring several correlations at random and averaging their
absolute values. Therefore, average correlation is a quantity
independent of any shared reference frame. We emphasize
here that this concept of randomized measurements has been
applied earlier to detect nonclassical features of quantum sys-
tems in other quantities [17–19,21–26].

The aforementioned simplicity is also in contrast to other
nonclassicality measures, as they typically involve a mini-
mization or maximization over all measurements, such as for
quantum discord [27] or symmetric discord [28]. While this
can be simple to calculate for certain classes of states, it
can prove to be harder in general and experimentally not as
straightforward. Other measures that are simpler to calculate
often suffer from a lack of generality, such as measurement-
induced disturbance [29].

In order to study the predictions that one can make with
certain values of �, Eq. (3), we rewrite the correlation func-
tion, Eq. (1), in the form

E (a, b) = aT Kb (4)

using the correlation matrix K with elements

Ki j = tr(ρ̂ σ̂i A ⊗ σ̂ j B), (5)

which contains all the information necessary for our purpose
about the state ρ̂. Furthermore, for any correlation matrix K
exists [30] a decomposition with nonnegative singular values

FIG. 1. Bell parameter s as a function of average correlation
� for two fundamental boundaries: The upper boundary (dashed
line) represents the function s = s(�min ) and the lower boundary
(dotted line) depicts the curve s = s(�max). All bipartite qubit states
are located between these two boundaries. It can be seen that both
boundaries are strictly monotonically increasing in � and reach
the nonclassical regime s > 2 for two critical values � = 1/4 and
� = 1/2

√
2.

α � β � γ � 0; see Appendix A. We also recall [30] that for
any state the maximum of the Bell sum, Eq. (2), is given by

s ≡ 2
√

α2 + β2 (6)

and hence it is useful to introduce the so-defined Bell param-
eter s, Eq. (6), in order to quantify the possibility of reaching
the nonclassical regime s > 2. Based on the state-dependent
parameters α, s, and γ , we show in Appendix A that average
correlation, Eq. (3), has the general form

� = �(α, s, γ )

= α

8π

∫ 2π

0
dφ

∫ π

0
dθ sin θ

√
f (φ) sin2 θ + cos2 θ (7)

with a function

f (φ) ≡ s2 − 4α2

4α2
sin2 φ + γ 2

α2
cos2 φ. (8)

This general expression turns out to be particularly impor-
tant since we can apply it to prove fundamental boundaries of
� as a function of the Bell parameter s. Indeed, maximizing
and minimizing �(α, s, γ ) over α and γ give us a minimal
value �min(s) and a maximal value �max(s), respectively; see
Appendix B. All two-qubit states with a certain Bell parameter
s must lie in between these boundaries.

Figure 1 depicts these boundaries and clearly shows their
monotony. Note that we consider average correlation as our
operational quantity, which allows us to infer nonclassicality
via the Bell parameter s. Hence, we plot these boundaries as
functions s = s(�min) and s = s(�max). It can be seen that the
upper and lower boundaries eventually reach the nonclassi-
cal regime s > 2 for corresponding values of � = 1/4 and
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� = 1/2
√

2, respectively. Hence, based on these fundamen-
tal boundaries we can conjecture that � > 1/4 represents a
necessary condition for the nonclassicality of an unknown
two-qubit state, whereas � > 1/2

√
2 is a sufficient condition.

However, so far, our discussion has solely focused on the
mathematical structure of �, Eq. (7). In the following section,
we will put average correlation to the test by applying the
general expression, Eq. (7), to explicitly determine average
correlation for two well-known classes of states: pure states
and Werner states. Based on these states, we will answer
the question whether the two theoretical boundaries shown in
Fig. 1 can actually be reached by physical states and whether
the inequalities � > 1/4 and � > 1/2

√
2 translate into phys-

ical criteria.

III. INDICATING NONCLASSICALITY

Pure states as well as Werner states are well known to play
a significant role in the discussion of nonclassical Bell sums
[2]. Hence, it is to be expected that they behave similarly in a
discussion of their respective average correlation.

A. Pure states

We start our analysis with bipartite pure states |�〉 since
any degree of entanglement [31] can lead to a Bell sum S > 2.

We express pure states in Schmidt decomposition,

|�〉 = c|0〉A|1〉B −
√

1 − c2|1〉A|0〉B (9)

with a superposition parameter c ∈ [0, 1/
√

2] and the compu-
tational basis states |0〉A, |1〉A for system A and |0〉B, |1〉B for
system B. For this particular set of states the Bell parameter,
Eq. (6), reads

s = 2
√

1 + 4c2(1 − c2) (10)

and we arrive at the average correlation, Eq. (7),

�p(s) = 1

4

⎡
⎣1 + s2 − 4

2
√

8 − s2
Arsinh

⎛
⎝

√
8 − s2

s2 − 4

⎞
⎠

⎤
⎦. (11)

Both results are derived in Appendix C. We emphasize that av-
erage correlation for pure states, Eq. (11), is a monotonically
increasing function in the Bell parameter s. Product states,
i.e., c = 0 or s = 2, lead to the lowest value � = 1/4. For
values � > 1/4 we need entanglement, i.e., c ∈ (0, 1/

√
2] up

to � = 1/2 for maximally entangled states, i.e., c = 1/
√

2 or
s = 2

√
2. Hence, we conclude that at least for pure states the

value of average correlation allows us to infer nonclassicality.
This becomes even clearer when we use Eq. (11) to plot the
Bell parameter s as a function of average correlation �p;
see Fig. 2. As expected, we obtain a curve in between the
boundaries derived in the previous section.

B. Werner states

Next, we discuss Werner states [32]

ρ̂W ≡ λ|� (−)〉〈� (−)| + 1 − λ

4
1̂, (12)

FIG. 2. Bell parameter s as a function of average correlation �

for pure states |�〉 (solid blue line) and Werner states ρ̂W (solid red
line) together with the upper (dashed line) and lower boundaries
(dotted line) already shown in Fig. 1. The curves of both classes
of states are given analytically by Eqs. (11) and (15). Werner states
lead exactly to the linear behavior of the lower boundary, and the
corresponding average correlation � as well as the Bell parameter
s span the full interval of possible values. Moreover, Werner states
need a considerable amount of average correlation � > 1/2

√
2 be-

fore they become nonclassical, i.e., s > 2. As expected, pure states
are quite different. Obviously, they mark the true upper boundary in
the nonclassical region s > 2. Their average correlation never falls
below � = 1/4, which holds for product states. Pure states, which
are entangled, will be clearly nonclassical with an average correlation
� > 1/4. Hence, the critical values � = 1/4 and � = 1/2

√
2 now

obtain a physical meaning since they can be reached by physical
states: They separate the purely classical regime, i.e., � � 1/4, from
the purely nonclassical counterpart, i.e., � > 1/2

√
2.

which combine the completely mixed state 1̂/4 with a maxi-
mally entangled Bell state

|� (−)〉 = 1√
2

(|0〉A|1〉B − |1〉A|0〉B), (13)

weighted by the visibility λ ∈ [0, 1].
Werner states are particularly interesting from the point of

view of nonclassicality. They result in a classical Bell sum
S � 2 for visibilities λ ∈ [0, 1/

√
2] even though the corre-

sponding density operator, Eq. (12), is not separable [32] for
visibilities λ ∈ (1/3, 1]. Thus, in the interval λ ∈ (1/3, 1/

√
2]

Werner states are not separable but behave classically under
Bell measurements. A nonclassical Bell sum S > 2 can only
be found in the range λ ∈ (1/

√
2, 1]. In fact, for Werner states

the Bell parameter, Eq. (6), reads

s = 2
√

2λ (14)

and average correlation is given by

�W(s) = s

4
√

2
, (15)

as again shown in Appendix C. As opposed to pure states,
average correlation of Werner states can take on all values in
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the interval � ∈ [0, 1/2]. We again show the Bell parameter s
as a function of �W; see Fig. 2. Remarkably, Werner states
are found precisely at the lower boundary discussed in the
previous section.

The fact that the critical points � = 1/4 and � = 1/2
√

2 at
s = 2 are reached by pure states and Werner states now gives
them a clear physical significance. In accordance with our pre-
vious conjecture, we can now clearly assert the following: For
� � 1/4 we find only classical states, for � > 1/2

√
2 only

nonclassical states, and for 1/4 < � � 1/2
√

2 both classical
and nonclassical states exist. In this way, average correlation
� can be used as an indicator for nonclassicality as we have
both a necessary, � > 1/4, and a sufficient condition, � >

1/2
√

2, for nonclassicality.
As Werner states become nonclassical for the largest pos-

sible value of � = 1/2
√

2, while pure states immediately
become nonclassical for the lowest possible value of � = 1/4,
one may consider them two extreme cases. In other words,
in the nonclassical regime, i.e., for s > 2, we expect that all
states will be found in between pure states and Werner states.
In the next section, we will study the behavior of arbitrary
mixed states in order to elaborate on this point and to complete
the picture.

IV. A MAP OF ALL STATES

The results so far, shown in Fig. 2, have given us essen-
tial insight into novel criteria regarding nonclassicality. As a
last step, we would like to gain a deeper understanding of a
complete �-s mapping for all two-qubit states. In particular,
we have not yet understood whether the upper boundary in the
classical regime, i.e., � � 1/4 will be reached by a physical
state. Hence, we add a discussion for arbitrary mixed states to
see how they complement our findings so far.

In order to do so, we have numerically computed average
correlation, Eq. (7), for a random ensemble of mixed states
[33]. This evaluation is depicted in Fig. 3, in which we again
represent the Bell parameter s as a function of average cor-
relation �. Moreover, the analytical curves for Werner states
and pure states are also shown as in Fig. 2.

From the numerics and the previous discussion, we now
recognize, that two-qubit states completely fill the �-s map
shown in Fig. 3. In the purely classical regime, i.e., � � 1/4,

the upper boundary will be reached by physical states. In fact
this class of states is given by separable mixed states of the
form [34]

ρ̂ξ = 1 + ξ

2
|1〉〈1|A ⊗ |0〉〈0|B + 1 − ξ

2
|0〉〈0|A ⊗ |0〉〈0|B

(16)

for 0 � ξ � 1. This class of states is also discussed in
Ref. [35], where it also marks a boundary in a mapping of
two-qubit states. The corresponding average correlation reads

�ξ = ξ

4
= s

8
, (17)

which is also shown in Appendix C.
Therefore, Fig. 3 can be considered a complete map of

all states and their location in the three previously discussed
domains. For � � 1/4 we only find classical states, colored

FIG. 3. Bell parameter s as a function of average correlation �

for all bipartite qubit states. The analytic results for the upper (dashed
line) and lower boundaries (dotted line) as well as for pure states
|�〉 (solid line) have been transferred from Fig. 2. Werner states ρ̂W

and ξ states ρ̂ξ are located at the lower boundary and the upper
boundary between s = 0 and s = 2, respectively. In between, we
find the colored points for arbitrary mixed states, which have been
generated numerically. Average correlations � > 1/2

√
2 necessar-

ily indicate nonclassical states. Moreover, these states are wedged
between Werner states, which are the least nonclassical, and pure
states. Average correlations in the interval 1/4 < � � 1/2

√
2 are

still embedded in this wedge, but the corresponding states can be
classical or nonclassical. Finally, we reach the classical wedge for
values � � 1/4. Its lower boundary is still given by Werner states,
but the upper boundary (dashed line) is a different class of mixed
states that, just like Werner states, leads to a linear behavior.

in yellow, while for � > 1/2
√

2 we only find nonclassical
states, colored in blue. For 1/4 < � � 1/2

√
2, however, we

find states that can be both classical and nonclassical, colored
in green.

Finally, we recognize that pure states are the true upper
boundary in the nonclassical regime in the �-s map.

V. CONCLUSIONS AND OUTLOOK

In summary, we have shown that average correlation �

leads to two inequalities of nonclassicality with � � 1/4
corresponding to only classical states and � > 1/2

√
2 cor-

responding to only nonclassical states. Moreover, � is easy
to calculate via the presented general expression and, due to
its operational definition, it is a measurable quantity. For all
of these reasons, � can be considered a good indicator for
nonclassicality. We emphasize that we have defined nonclas-
sicality in the Bell sense. However, there are numerous ways
of defining nonclassicality [36].

There are still open problems that remain to be solved. For
one, it is an interesting question what physical constraints lead
to the upper boundary given by pure entangled states. Sec-
ond, other indicators and measures for nonclassicality have
been proposed. Like average correlation discussed here, they
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are based on random measurements [17–19,25]. Comparing
average correlation to such measures could yield further in-
teresting insights. Lastly, we have taken note of the work
of Morelli et al. [35]. In their work, the authors map two-
qubit states based on a norm of the correlation matrix and
the lengths of the two local Bloch vectors of both systems.
The boundaries discussed in our work are also boundaries in
their mapping. Finding out what is the deeper physical reason
behind this similarity is a fascinating problem and could give
us an even better understanding of our mapping of average
correlation.

ACKNOWLEDGMENTS

We would like to thank Simon Morelli (Basque Center
for Applied Mathematics) for fruitful discussions about the
correlation matrix. Furthermore, we are grateful to Andreas
Ketterer (Fraunhofer Institute for Applied Solid State Physics)
and Satoya Imai (University of Siegen) for discussions re-
garding other measures based on randomized measurements.
These discussions have helped us put our work into a broader
context of the existing literature.

APPENDIX A: GENERAL EXPRESSION
FOR AVERAGE CORRELATION

In this appendix, we derive a general expression for aver-
age correlation �, Eq. (3), as a function of singular values
which define the correlation matrix, Eq. (5).

We recall that the correlation function, Eq. (1), can be
rewritten in the form

E (a, b) = aT Kb =
∑
i, j

aiKi jb j, (A1)

where we defined [30] the correlation matrix K with elements

Ki j = tr(ρ̂ σ̂i A ⊗ σ̂ j B) (A2)

for an arbitrary state ρ̂. For this correlation matrix K , there
exists a singular value decomposition [30]

K = UκV T (A3)

with two orthogonal matrices U and V and the diagonal matrix

κ = diag(α, β, γ ), (A4)

which can be chosen in a way such that the singular values
α � β � γ � 0 are nonnegative. Since U and V are orthog-
onal, they simply rotate the vectors a and b but leave their
norms invariant. Thus, the vectors

ã = U T a, b̃ = V T b (A5)

are unit vectors, too. Hence, we can rewrite average correla-
tion, Eq. (3), as

� = 1

16π2

∫
d�a

∫
d�b|(ã)T b̃κ |, (A6)

where the integrand is given by the modulus of a scalar prod-
uct between the unit vector ã and the vector

b̃κ = κb̃. (A7)

Furthermore, the scalar product can be expressed by the length
of the vectors and the angle θAB between them, leading to

� = 1

16π2

∫
d�a

∫
d�b|b̃κ || cos θAB|. (A8)

We are now in the position to integrate over all mea-
surement settings of the vector ã. In order to simplify this
integration, we choose spherical coordinates and set the z-axis
of the coordinate system to align with the vector b̃κ . As a
consequence, the angle θAB corresponds to the polar angle,
while the integrand is independent of the azimuthal angle. The
integration over d�a is then straightforward, and we obtain

� = 1

8π

∫
d�b|b̃κ |. (A9)

We solve the remaining integral by choosing spherical coor-
dinates so that we can write

b̃κ = (γ cos φ sin θ, β sin φ sin θ, α cos θ )T , (A10)

giving us

� = α

8π

∫ 2π

0
dφ

∫ π

0
dθ sin θ

√
f (φ) sin2 θ + cos2 θ,

(A11)

where we have defined the function

f (φ) ≡
(

β

α

)2

sin2 φ +
(γ

α

)2
cos2 φ. (A12)

By substituting u = cos θ and rearranging terms, we find
the integral

� = α

8π

∫ 2π

0
dφ

√
f (φ)

∫ 1

−1
du

√
1 + 1 − f (φ)

f (φ)
u2, (A13)

which can be further reduced to the general expression

� = α

4

⎡
⎣1 + 1

2π

∫ 2π

0
dφ

f (φ)√
1 − f (φ)

Arsinh

⎛
⎝

√
1 − f (φ)

f (φ)

⎞
⎠
⎤
⎦,

(A14)

which now involves only one integration. Furthermore, with
the help of Refs. [37,38] we recognize that average correla-
tion is proportional to the surface area of an ellipsoid with
semiaxes

√
(αβ )/γ ,

√
(αγ )/β, and

√
(βγ )/α, which enables

us to write

� = γ

4

(
β

α
+

√
α2 − γ 2

γ
E (ϕ, k) + γ√

α2 − γ 2
F (ϕ, k)

)
,

(A15)

with arguments

ϕ ≡ arcsin

(√
α2 − γ 2

α

)
, k ≡

√
α2 − β2

α2 − γ 2
. (A16)

in terms of the incomplete elliptic integrals F and E of the
first and second kind, respectively. We will apply this repre-
sentation in Appendix B to prove fundamental boundaries of
average correlation.
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APPENDIX B: BOUNDARIES
FOR AVERAGE CORRELATION

In this appendix, we derive the lower and upper boundary,
as discussed in Fig. 1. In order to do so, we first show that
�(α, s, γ ), Eq. (A14), increases monotonically in the small-
est singular value γ of the correlation matrix, if the largest
singular value α and the Bell parameter s are fixed.

1. Monotony of average correlation

In order to prove monotony in γ , we remark that γ only
enters in � via the function f , which is part of the integrand;
see Eq. (A14). Therefore, we first show that the integrand is
monotonically increasing in f . For this purpose, we consider
the function

g(x) ≡ x√
1 − x

Arsinh

(√
1 − x

x

)
(B1)

and argue that it is a monotonically increasing function on the
interval x ∈ (0, 1). Hence, the derivative

dg

dx
= 2 − x

2
√

1 − x
3 Arsinh

(√
1 − x

x

)
− 1

2(1 − x)
(B2)

has to be positive for all values of x ∈ (0, 1), that is

Arsinh

(√
1 − x

x

)
>

√
1 − x

2 − x
. (B3)

For the left-hand side of Eq. (B3) we can write

Arsinh

(√
1 − x

x

)
� Arsinh(

√
1 − x) �

√
1 − x

6
(5 + x),

(B4)

where we have used the Taylor expansion of the inverse hy-
perbolic sine in the second step. The obvious inequality

1

6
(5 + x) >

1

2 − x
(B5)

is satisfied on the interval x ∈ (0, 1) which finally proves
Eq. (B3). Thus, the function g, Eq. (B1), is monotonically
increasing.

Next, we note that for every value of the azimuthal angle
φ, the function

f (φ) ≡ s2 − 4α2

4α2
sin2 φ + γ 2

α2
cos2 φ (B6)

is also monotonically increasing in the singular value γ , for
fixed parameters s and α. Consequently, the composite func-
tion g( f (φ)) and with it average correlation � are, too.

2. Maximum of average correlation

We are now in a position to derive the maximum of aver-
age correlation � = �(α, s, γ ), Eq. (7), with respect to the
singular values γ and α resulting in �max = �max(s) which is
strictly monotonically increasing in the Bell parameter s.

As we have shown above, average correlation �(α, s, γ )
is monotonically increasing in γ and thus becomes maximal

for a maximal value of γ = γmax = β =
√

s2/4 − α2, which
reduces f (φ), Eq. (A12), to

f (φ) = s2 − 4α2

4α2
(B7)

and allows us to write

α = s

2

1√
1 + f

. (B8)

Using Eq. (A14) we can then express average correlation

�(α, s, γ = γmax)

= s

8

1√
1 + f

⎡
⎣1 + f√

1 − f
Arsinh

⎛
⎝

√
1 − f

f

⎞
⎠

⎤
⎦ (B9)

as a function of s and f . As a next step, we will show that
� is monotonically increasing in f . For that we consider the
function

h(x) = 1√
1 + x

[
1 + x√

1 − x
Arsinh

(√
1 − x

x

)]
(B10)

with its derivative

d

dx
h(x) = 1

√
1 − x23 Arsinh

(√
1 − x

x

)

− 1

2
√

1 + x
3 − 1

2
√

(1 − x2)(1 − x)
, (B11)

which has to be positive for all x ∈ (0, 1), that is

Arsinh

(√
1 − x

x

)
− √

1 − x � 0. (B12)

We note that the left-hand side of Eq. (B12) goes to plus infin-
ity for x → 0 and has a zero for x = 1. Further, the expression
is monotonic since its derivative

d

dx

[
Arsinh

(√
1 − x

x

)
− √

1 − x

]
= −

√
1 − x

2x
(B13)

is always negative on the considered interval, which proves
Eq. (B12). Consequently, the function h(x), Eq. (B10), is
monotonically increasing in x. Hence, average correlation,
Eq. (B9), is monotonically increasing in f and becomes max-
imal for the maximal value f = 1.

Using Eq. (B9) and the limit

lim
f →1

1√
1 + f

⎡
⎣1 + f√

1 − f
Arsinh

⎛
⎝

√
1 − f

f

⎞
⎠

⎤
⎦ =

√
2

(B14)
the maximum of average correlation then evaluates to

�max(s) = s

4
√

2
, (B15)

which is strictly monotonically increasing in the Bell
parameter s.
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3. Minimum of average correlation

Next, we derive the minimum of average correlation, that
is we minimize � = �(α, s, γ ), Eq. (7), with respect to
the singular values γ and α. This results in �min = �min(s)
which is also strictly monotonically increasing in the Bell
parameter s.

We first remark that, as shown in Appendix B 1, for fixed
values of α and s, � = �(α, s, γ ), Eq. (7), is monotonically
increasing in γ and thus becomes minimal for γ = 0.

Using Eqs. (A15) and (A16) average correlation then reads

�(α, s, γ = 0) = α

4
E

(
ϕ = π

2
, k =

√
2 − s2

4α2

)
. (B16)

When we recall the definition [38] of the elliptic integral E =
E (ϕ, k) we get

�(α, s, γ = 0) = α

4

∫ π
2

0
dx

√
1 −

(
2 − s2

4α2

)
sin2 x.

(B17)

Next we show that this expression is monotonically decreas-
ing in α for a fixed value of s. For that we must have

d

dα
�(α, s, γ = 0) =

∫ π
2

0
dx

1 − 2 sin2 x

4
√

1 − k2 sin2 x
� 0. (B18)

This condition can be rewritten in the form∫ π/4

0
dx

(
1 − 2 sin2 x

4
√

1 − k2 sin2 x
+ 1 − 2 cos2 x

4
√

1 − k2 cos2 x

)
� 0,

(B19)

which means for the integrand

1 − 2 sin2 x√
1 − k2 sin2 x

� 2 cos2 x − 1√
1 − k2 cos2 x

(B20)

or

1 − k2 sin2 x � 1 − k2 cos2 x. (B21)

This inequality is satisfied for all x ∈ [0, π/4]. Thus, for γ =
0 and any fixed value of s, average correlation is monotoni-
cally decreasing in α and therefore becomes minimal for the
maximal value α = 1 [39].

Furthermore, due to the definition of the Bell parameter

s = 2
√

α2 + β2, (B22)

α is maximally s/2, too, so in total we have

min
(

1,
s

2

)
� α. (B23)

Hence, in the regime s � 2 we have α = s/2, β =
γ = 0 and in the regime s > 2 we have α = 1, β =√

(s/2)2 − 1, γ = 0.
With the help of Eqs. (B16) and (B17) we arrive at

�min(s) =
{ s

8 , s � 2,

1
4 E

(
ϕ = π

2 , k =
√

2 − s2

4α2

)
, s > 2,

(B24)

which is strictly monotonically increasing in s due to the prop-
erties of the elliptic integral [38]. In particular, we emphasize

the value

�min(s = 2) = 1
4 , (B25)

which is essential in understanding Fig. 1.

APPENDIX C: AVERAGE CORRELATION
FOR DIFFERENT CLASSES OF STATES

In this appendix we specify average correlation �, Eq. (7),
for pure states, Werner states, and ξ states and discuss the
corresponding monotony in the Bell parameter s.

1. Pure states

For pure states in Schmidt decomposition,

|�〉 = c|0〉A|1〉B −
√

1 − c2|1〉A|0〉B, (C1)

with a superposition parameter c ∈ [0, 1/
√

2], we find a cor-
relation matrix, Eq. (A2),

K = −diag(2c
√

1 − c2, 2c
√

1 − c2, 1), (C2)

which is diagonal [30] and can be brought into the form

K =
⎛
⎝ 0 0 −1

0 −1 0
−1 0 0

⎞
⎠

⎛
⎝α 0 0

0 β 0
0 0 γ

⎞
⎠

⎛
⎝0 0 1

0 1 0
1 0 0

⎞
⎠

= UκV T , (C3)

with singular values α = 1 and β = γ = 2c
√

1 − c2. Hence,
we obtain a Bell parameter, Eq. (6),

s ≡ 2
√

1 + 4c2(1 − c2), (C4)

and we specify the function, Eq. (A12),

f (φ) = β2 = s2

4
− 1. (C5)

By performing the final integration in Eq. (A14) we arrive at
average correlation,

�p(s) = 1

4

⎡
⎣1 + s2 − 4

2
√

8 − s2
Arsinh

⎛
⎝

√
8 − s2

s2 − 4

⎞
⎠

⎤
⎦ (C6)

for pure states. We note that this correlation reaches its mini-
mal value �p = 1/4 for s = 2, while for s = 2

√
2 we obtain

�p = 1/2 as its maximal value.

2. Werner states

For Werner states, Eq. (12), the correlation matrix [30]
reads K = −λ1̂ and leads to three equal singular values α =
β = γ = λ and f = 1; see Eq. (A12). With the Bell parameter
s = 2

√
2λ we find for Werner states

�W(s) = s

4
√

2
(C7)

the same linear average correlation as for the maximum of
average correlation; see Appendix B.
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3. ξ states

For ξ states, Eq. (16), we get K = diag(0, 0,−ξ ) with
singular values α = ξ and β = γ = 0 and thus f (φ) = 0,
which are equal to those of the states that make up the upper
boundary for s � 2 (see Appendix B) and thus lead to the

average correlation

�ξ (s) = s

8
(C8)

for ξ states.
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