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Many-body quantum non-Markovianity
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We port the concept of non-Markovian quantum dynamics to the many-particle realm, by a suitable decompo-
sition of the many-particle Hilbert space. We show how the specific structure of many-particle states determines
the observability of non-Markovianity by single- or many-particle observables, and discuss a realization in a
readily implementable few-particle setup.
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I. INTRODUCTION

Non-Markovian behavior [1] is the partial restoration of an
open quantum system’s memory of its past. In general, we
expect that an open quantum system – widely (though not ex-
clusively) understood as living on a small number of degrees
of freedom, as opposed to the many degrees of freedom of
an environment or bath it is coupled to – tends to irreversibly
lose its memory since any information leaking to the environ-
ment will quickly disperse and not relocalize on the system
degrees of freedom [2–4]. However, this intuition is reliable
only if the number of degrees of freedom associated with
system and environment, as well as the associated spectral
structures, are distinct, and when system and environment do
not easily correlate. Consequently, non-Markovian behavior
is naturally expected, e.g., in large molecular structures [5–9],
where different degrees of freedom are strongly coupled and
typically nonseparable, with the consequence that Markovian
master equationlike descriptions (successfully employed for
many quantum optical applications [2]) become unreliable.
Given the ever-improving experimental resolution of the dy-
namics of diverse multicomponent quantum systems [10–15],
there is a strong incentive to improve our understanding of
non-Markovianity and to identify observables which allow for
an unambiguous identification of non-Markovian effects.

While the prerequisites for Markovian behavior have been
long known [2,3], the concept of non-Markovianity needed
to be formalized, and many of its subtleties have been clari-
fied [1,16–22] in recent years. Yet, the specific impact of the
generic structural features of many-particle systems upon the
manifestations of non-Markovianity hitherto have remained
unexplored. Our present contribution specifically addresses
non-Markovianity in the many-particle context.
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II. NON-MARKOVIANITY ON A MANY-PARTICLE
HILBERT SPACE

We rely on the definition and quantification of non-
Markovian behavior in terms of information backflow from
the environment into the system, through the time dependence
of the trace distance [1,17],

D(ρ, σ ) = 1
2 tr|ρ − σ |, (1)

of initially distinct system states ρ and σ , with |M| =
√

MM†

the positive square root of a positive semidefinite operator. D
is a metric on the space of density matrices, with D(ρ, σ ) = 0
if and only if ρ = σ , and D(ρ, σ ) = 1 if and only if ρ and σ

have orthogonal support [1]. As an exhaustive measure for the
distinguishability of two quantum states – by any type of mea-
surement – it quantifies their distinctive information content.
Consequently, any increase of the trace distance D(ρ, σ ) over
time, tantamount to restoring the information on the system
states’ initial distinguishability, indicates non-Markovianity.
However, when state tomography turns unaffordable, e.g., due
to the underlying Hilbert space dimension [23], it is a priori
often unclear which observable can expose such distinctive
information most efficiently, and particularly so when dealing
with many-particle states.

A. The structure of many-particle state space

As we show in the following, such observables can be
found through examination of the intriguing, nontrivial struc-
ture of the many-particle state space. To this end, we first
consider the general problem of open many-particle quantum
systems, before treating explicit examples: Let us assume that
we are given a potential landscape which omits a natural
decomposition of the total single-particle Hilbert space H into
two distinct subspaces, associated with the principal system
(S) and environment (E), via a direct sum, H = HS ⊕ HE,
with HS and HE the state spaces of the system and the
environment, respectively. Any pure state of the system and
environment can then be written as |ψ〉 = �S |ψ〉 + �E |ψ〉,
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with �S(E) the projector onto HS(E), and P1 = 〈ψ |�S|ψ〉 the
probability to find the particle in the system. The many-
particle dynamics of N � 1 identical bosons (fermions) in
that potential landscape play in the Fock space �b(f)(H) [24],
which can be constructed from the single-particle Hilbert
space H = HS ⊕ HE and factorized [25,26] as

�b(f)(HS ⊕ HE) ∼= �b(f)(HS) ⊗ �b(f)(HE). (2)

This tensor product structure enables the interpretation as an
open quantum system, despite the direct sum structure of H
(rather reminiscent of an atomic ionization problem [27]).

For a pure N-particle state with initial support on the
system degrees of freedom alone (i.e., all N particles in the
system and none in the environment), unitary dynamics and
a well-defined particle number on the combined system and
environment degrees of freedom restrict the time evolution to
the effective N-particle space

HN
eff =

N⊕

k=0

(
H⊗k

S ⊗ H⊗(N−k)
E

)
s(a) � �b(f)(H), (3)

with the (anti)symmetrization Xs(a) of a Hilbert space X . As
a consequence, every pure state of system and environment
can be written as |ψ〉 = ∑N

k=0 ck |ψk〉 ∈ HN
eff , with real, non-

negative amplitudes ck , and |ψk〉 a state with k out of N
particles confined to the system [28].

B. Many-particle non-Markovianity quantifiers and bounds

To assess the non-Markovian character of the system dy-
namics, we need to trace |ψ〉〈ψ | over the environment, to
produce the reduced system state

ρS = trE|ψ〉〈ψ | =
N∑

k=0

c2
k ρk, (4)

with ρk = trE|ψk〉〈ψk|. The partial trace trE is natural for the
tensor product in Eq. (2), and well-defined for |ψ〉〈ψ | by re-
striction to HN

eff . Intuitively, it can be thought of as tracing over
the N − k particles in the environment for each summand in
Eq. (3). The reduced state ρS exhibits a block-diagonal struc-
ture since the total particle number N is conserved and states
of the environment corresponding to different particle num-
bers are orthogonal. The trace distance D(ρS, σS) between two
reduced states ρS = ∑

k c2
kρk and σS = ∑

k d2
k σk of the system

can now be evaluated for arbitrary particle number, particle
type (bosons or fermions), degree of (in)distinguishability,
and interaction strength and type, as

D(ρS, σS) =
N∑

k=0

D
(
c2

kρk, d2
k σk

)
. (5)

Whenever D(ρS, σS) increases as a function of time, it sig-
nals non-Markovian behavior. Although the block-diagonal
structure of ρS and σS significantly reduces the computa-
tional complexity of the trace distance D(ρS, σS), it remains
nontrivial to evaluate, especially for the dynamics of many
interacting particles. However, as we show in the following,
this burden can often be alleviated by relating the trace dis-
tance D(ρS, σS) to computationally and experimentally more
readily accessible quantities.

From Eq. (4), we obtain the probabilities Pk (ρS) = c2
k to

find exactly k out of N particles in the system, which consti-
tute simple many-particle observables (given the availability
of number-resolving detectors) and are useful to distinguish
Markovian from non-Markovian many-body dynamics. As we
show in the Appendix, these probabilities allow us to bound
the trace distance by

P�
est � D(ρS, σS) � Pu

est, (6)

with the lower and upper bounds given by

P�
est =

N∑

k=0

∣∣c2
k − d2

k

∣∣
2

(7)

and

Pu
est = 1 − c2

0 + d2
0

2
+

∣∣c2
0 − d2

0

∣∣
2

, (8)

respectively. Intuitively, P�
est is the sum of minimal trace dis-

tances within the blocks in (4), each given by the associated
population differences. Analogously, Pu

est is the sum of the
exact trace distance in the one-dimensional block k = 0, and
of the maximal trace distances within all blocks k � 1, again
given by population differences.

Similarly, we can bound the trace distance D(ρS, σS) in
terms of single-particle observables. To this end, we consider
the reduced single-particle density matrix (RSPDM),

ρ
1p
S = tr2,...,NρS = c2

0 ρ0 + c2
1 ρ1 +

N∑

k=2

c2
k tr2,...,kρk, (9)

obtained from the system’s state (4) by tracing out all but one
particle [29,30]. It describes a potentially mixed state with
up to one particle in the system and offers a natural way to
compare states on a single-particle level since the expectation
value (with respect to ρS) of any single-particle observable
(such as, e.g., the projection |1〉〈1| onto the single-particle
ground state) can be inferred from it [30]. Using the contrac-
tivity of D under trace-preserving quantum operations [31,32],
we find

D
(
ρ

1p
S , σ

1p
S

)
� D(ρS, σS), (10)

again bounding the trace distance from below.
While an exact quantification of non-Markovianity in-

volves a maximization of the increase in trace distance
over different pairs of initial states [1], our bounds (6)–(10)
on D(ρS, σS) allow for the direct certification of non-
Markovianity in the system dynamics (providing a lower
bound rather than a quantifier) by monitoring simple features
of the counting statistics or of single-particle observables such
as the ground state population of the system as a function of
time. Explicitly, any two points in time t0 < t1 for which ei-
ther Pu

est (t0) < P�
est (t1) or Pu

est (t0) < D[ρ1p
S (t1), σ 1p

S (t1)] imply a
temporally increasing trace distance D(ρS, σS) and therefore –
by definition – non-Markovian behavior. This ultimately con-
nects the information flow between system and environment
in many-particle quantum systems to the structure of many-
body state space, through the populations Pk of different
k-particle blocks and the population distribution over reduced
single-particle states as given by the RSPDM.
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FIG. 1. Tunneling in a one-dimensional asymmetric double-well
potential. (a) Sketch: A particle prepared [continuous blue line,
|ψ (t = 0)|2] in the left well (system) tunnels into the right well (en-
vironment), is reflected at the right boundary, and possibly reenters
the system [dashed blue line, |ψ (t > 0)|2]. (b) Semilogarithmic plot
of the particle’s probability P1 to be found in the system, if initially
prepared in the isolated system’s ground state |1〉, for l = 50L,
b = 2L, r = 4000L, and V0 = 0.1L−2.

III. AN EXEMPLARY TEST CASE: MANY-PARTICLE
DYNAMICS IN AN ASYMMETRIC DOUBLE-WELL

Intuitively, information flow is associated with the ex-
change of excitations in different degrees of freedom. In
the following, we build on this intuition by considering the
specific – and experimentally feasible [33] – example of
few fermions or bosons loaded into the asymmetric, one-
dimensional double-well potential depicted in Fig. 1(a): Left
and right potential wells of width l and r each define local
mode structures which we associate with the system’s and
environmental degrees of freedom, respectively. They are sep-
arated by a finite rectangular barrier of width b and height V0,
which is part of the environment. As shown earlier [34–36],
this model allows an exact spectral treatment of the decay
dynamics of an open many-body system with a continuously
tunable, discrete to quasicontinuous spectral structure of the
environment. System-environment coupling is determined by
b and V0, and weak coupling and a quasicontinuous spectrum
of the environment, in the limit of large r, justify the intuition
of the system being opened to couple to the environment’s
degree of freedom.

A. Detecting non-Markovianity of single-particle dynamics

Single-particle dynamics are obtained from exact numer-
ical diagonalization [37] of the single-particle Hamiltonian
Hsp(x) = −∂2/∂x2 + V (x), after discretization in a suitable
finite-element basis [38,39]. While we will elaborate else-
where [37] on how to control the arising non-Markovian
tunneling dynamics by tuning, through variable r, the transi-
tion to a quasicontinuum, we here focus on a fixed, finite width
r, which generates the typical behavior. In all subsequent
simulations, we choose the parameters l = 50L, b = 2L,
r = 4000L, and V0 = 0.1L−2, given in natural units, with
h̄ ≡ 1 and mass m ≡ 1/2, and in terms of the characteristic

experimental length scale L [35]. These values, in particu-
lar, establish the quasicontinuous limit for the environment’s
spectrum, notwithstanding the hard-wall boundary condition
of the right well’s outer confinement, which clearly in-
duces non-Markovian behavior on sufficiently long timescales
[35,36].

While all stated conceptual observations and analytical
results apply, in particular, also for interacting particles,
we restrict our subsequent numerical examples to the non-
interacting case, such that many-particle eigenstates are
(anti)symmetrized product states of single-particle eigenstates
(interacting particles will be considered elsewhere [37]). To
consider distinguishable, indistinguishable, and partially dis-
tinguishable particles [40], we further equip the particles with
an internal degree of freedom, e.g., Hint = span{|+〉 , |−〉},
unobservable by any available measurement and not coupled
to their external degree of freedom [i.e., Hsp(x) is independent
of the particle’s internal state]. The tightness of the bounds
(6)–(10) is inspected for different instructive examples of ini-
tial single- and many-particle states ρ and σ , with the results
shown in Figs. 2 and 3, respectively. In all examples, there
are initially no particles located in the environment, such that
the initial states are separable, ρ(0) = ρS(0) ⊗ |0E〉〈0E| and
σ (0) = σS(0) ⊗ |0E〉〈0E|, with ρS(0) and σS(0) many-body
eigenstates of the left well, and |0E〉 the vacuum state of the
environment.

Starting with single-particle dynamics, Fig. 1(b) shows the
time evolution of the probability P1 = 〈ψ |�S|ψ〉 = c2

1 for the
particle to be detected in the left well after being initialized
in the ground state |1〉 of the isolated system. We observe
an exponential decay, followed by low-amplitude (note the
semilogarithmic scale) partial (fractional) [41] revivals, and,
subsequently, a pronounced full revival. Fractional and full re-
vivals are due to the coherent superposition of single-particle
amplitudes reflected at the barrier and at the right boundary
of the environment, with an admixture of nonvanishing ex-
cited state amplitudes of the system degree of freedom. The
latter define the fractional revival times in Fig. 1(b) and are
individually enhanced when launching the dynamics in an
excited system state, as, e.g., |2〉 in Fig. 2(a). Since such
revivals express excitation and, thus, information backflow
into the system degree of freedom, they are indicative of
non-Markovianity.

Figures 2(a) and 2(b) compare the evolution of the auto-
and cross correlation functions of two pure single-particle
states, launched in the system’s ground and first excited states,
respectively, upon trace over the environment according to
(4), to the time evolution of the trace distance (5). We see
that the revival dynamics of the system state populations
in Fig. 2(a) is faithfully reflected by the trace distance in
Fig. 2(b), and almost everywhere reproduced by the lower
bound P�

est, thus comforting our intuition that information
backflow is synonymous to excitation backflow. However, we
also see from the mismatch between P�

est and D(ρS, σS) at
t ≈ 74 000L2, where both autocorrelation functions revive
simultaneously, that P�

est, which only monitors the population
difference in the system, without resolving individual system
state populations, is then too coarse grained a quantifier to
distinguish both states. Likewise, the reviving trace distance
of two pure single-particle states both launched in the system’s
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FIG. 2. Non-Markovian single-particle tunneling in an asym-
metric double-well potential (see Fig. 1). (a) The autocorrelation
functions |〈1|ρS|1〉| and |〈2|σS|2〉| of a single particle initially pre-
pared in the ground state |1〉 or in the first excited state |2〉,
respectively, of the isolated left potential well and reduced to the
system, i.e., to the left well’s degrees of freedom, show clear revivals
after their initial exponential decay, with a shorter revival time for
the first excited state |2〉 in comparison to the ground state |1〉. The
cross correlation functions |〈2|ρS|2〉| and |〈1|σS|1〉| exhibit no such
revivals. (b) The revivals in (a) are faithfully reflected by the trace
distance D(ρS, σS), given by Eq. (5), as well as, almost everywhere,
by its estimators (7), (8), and (10) [Pu

est ≈ D(ρS, σS), with deviations
smaller than 10−2]. Only at t ≈ 74 000L2 is the lower bound P�

est ,
given by Eq. (7), not tight, since it does not resolve single state
population differences, but only those of the total particle number
probabilities in the left well. For the same reason, P�

est is unable
to discriminate single-particle states launched in the ground state
|1〉, but labeled with mutually orthogonal states |±〉 in an additional
degree of freedom: (d) Only the estimators (8) and (10) and the trace
distance D(ρ̃S, σ̃S) sense the revivals featured by (c) the autocorrela-
tion functions |〈1,−|ρ̃S|1, −〉| and |〈1, +|σ̃S|1, +〉|.

ground state, but labeled by mutually orthogonal states of an
additional degree of freedom, is faithfully reproduced by Pu

est

and D(ρ1p
S , σ

1p
S ), while P�

est is blind for this distinction, by
its very construction. The latter is in contrast to the estimate
Pu

est, which is tight in Fig. 2(d), as the particles are prepared
in and return to orthogonal single-particle modes of the sys-
tem, thus realizing the maximal trace distance assumed in the
derivation of (8). Similarly, in Fig. 2(b), the particles return
into essentially orthogonal states and approximately realize
the aforementioned maximum.

B. Detecting non-Markovianity of many-particle dynamics

On the many-particle level, a nonvanishing trace dis-
tance can have different physical causes, including – in our
present case of noninteracting particles – different constituting
single-particle states, particle numbers, and symmetry prop-
erties. Let us inspect how to sense such differences using
the bounds derived above. Figure 3(a) monitors the trace
distance D(ρS, |0S〉〈0S|) of the reduced system state of three

FIG. 3. Non-Markovian many-particle tunneling: (a) Three in-
distinguishable fermions launched in the (fermionic) ground state
of the isolated left well (see Fig. 1), with no particles initially in
the right well, exhibit clear revivals of the reduced single-particle
autocorrelation functions |〈 j|ρ1p

S | j〉|, j = 1, 2, 3, of the left well’s
ground, first, and second excited single-particle states. This gives
rise to non-Markovian behavior as clearly manifest in the state’s
trace distance D(ρS, σS) from the left well’s (time-invariant) many-
particle vacuum state σS = |0S〉〈0S|. The trace distance estimators
D(ρ1p

S , σ
1p
S ), P�

est , Pu
est , (7), (8), and (10), are tight, since dk = δ0k for

the many-particle vacuum state. (b) and (c) monitor the trace distance
and its estimators (7), (8), and (10) for two pairs of bosonic many-
particle states, again with all particles launched in a many-particle
eigenstate of the isolated left well: The trace distance D(ρ̃1p

S , σ̃
1p
S )

of the reduced single-particle states of the four- and five-particle
states launched in the bosonic ground states (b) of the isolated
left well, ρ̃(0) = ρ̃S(0) = |1〉〈1|⊗4 and σ̃ (0) = σ̃S(0) = |1〉〈1|⊗5, re-
spectively, only barely detects the many-body revival in the system
ground state. To detect non-Markovianity by comparison of (c) the
many-particle dynamics of six particles prepared in ρ̂(0) = ρ̂S(0) =
S(|1〉〈1|⊗3 ⊗ |2〉〈2|⊗3) and σ̂ (0) = σ̂S(0) = |1〉〈1|⊗3 ⊗ |2〉〈2|⊗3, re-
spectively, which differ only by their (un)symmetrized character (S
is the bosonic symmetrization operator), bona fide many-particle
observables need to be interrogated. The latter is verified in (d), the
magnification of the prominent revival of the trace distance indicated
by the black rectangle in (c), through the trace distance estimators
D(ρ̂kp

S , σ̂
kp
S ) for 1 � k � 3 [not shown are D(ρ̂kp

S , σ̂
kp
S ) ≈ D(ρ̂S, σ̂ )

for k � 4], which faithfully indicate the trace distance revival for
k � 2.

noninteracting, indistinguishable fermions, launched in the
system ground state, from the (time-invariant) many-particle
system vacuum |0S〉, as well as the trace distance estimates
(7), (8), and (10), which here all coincide with the full
trace distance [37]. The three fermions initially populate
the system’s single-particle eigenstates |1〉, |2〉, and |3〉, and
undergo – up to the antisymmetrization – their individual
single-particle dynamics, as depicted in Fig. 2 for |1〉 and |2〉.
The resulting recombinations of the individual particles into
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the ground, first, and second excited system state, as clearly
reflected by the revivals of the reduced state single-particle au-
tocorrelation functions |〈 j|ρ1p

S | j〉|, induce non-Markovianity
of the three-particle state’s dynamics, as unambiguously indi-
cated by synchronous revivals of the above distance measures.

Figure 3(b) shows the time evolution of the trace distance
of bosonic four- and five-particle states launched in the system
ground states, ρ̃(0) = ρ̃S(0) = |1〉〈1|⊗4 and σ̃ (0) = σ̃S(0) =
|1〉〈1|⊗5, respectively. Here, non-Markovianity stems from
a many-particle repopulation of the system single-particle
ground state, which, due to dispersion within the environ-
ment, stretches over a longer time interval, thus leading to an
only mild revival of the states’ trace distance. The reduced
single-particle states are barely discriminated by the single-
particle trace distance, on the rising and on the falling edge
of the repopulation of the system ground state, and cannot
be distinguished at the maximum of the many-particle revival
(by construction). Figures 2(b) and 3(b) therefore demon-
strate that the lower bounds (6) and (10) are complementary:
non-Markovianity arising from different particle numbers is
best detected by P�

est, whereas D(ρ1p
S , σ

1p
S ) is sensitive to the

population of different single-particle states.
While the bosonic many-particle states in Fig. 3(b) are

distinguished by their particle numbers, Fig. 3(c) considers
two (N = 6)-particle states of identical bosons [40], with
identical and pairwise orthogonal internal states, respectively.
Recall that the internal states are unobservable by any avail-
able measurement and are therefore traced over, resulting in
many-body states of indistinguishable and effectively distin-
guishable bosons, respectively. However, these differences in
the states’ symmetry properties are irrelevant if all particles
located in the left well populate the same single-particle state.
Consequently, the resulting many-body states ρ̂S and σ̂S of the
reduced system only differ if at least two particles in different
single-particle states populate the system at the same time. We
therefore specifically consider ρ̂(0) = ρ̂S(0) = S (|1〉〈1|⊗3 ⊗
|2〉〈2|⊗3) and σ̂ (0) = σ̂S(0) = |1〉〈1|⊗3 ⊗ |2〉〈2|⊗3, with ini-
tially three particles in each, the ground and the first excited
system state, respectively, and S the bosonic symmetrization
operator. Both initial states can be told apart only from their
symmetry properties, by (reduced) k-particle trace distances
D(ρ̂kp

S , σ̂
kp
S ) with N � k > 1 [42] and neither from single-

particle nor number state populations, underlining the inherent
complexity of such many-body states. Consequently, none of
the estimates (7), (8), or (10) provides a tight approximation
of the time-evolved states’ actual trace distance D(ρ̂S, σ̂S),
which exhibits a weak revival at t ≈ 74 000L2 due to the par-
tially overlapping return of particles into the system’s ground
and first excited state [see also Fig. 2(a)]. Only true many-
body measurements can detect such a symmetry-induced trace
distance revival, as demonstrated by the reduced k-particle
trace distances D(ρ̂kp

S , σ̂
kp
S ) in Fig. 3(d). Finally, the results

in Figs. 3(b) and 3(c) emphasize that Pu
est – by construction –

only guarantees a tight upper bound for D(ρS, σS) if either ρS

or σS is sufficiently close to the many-particle vacuum.

IV. CONCLUSION

We thus have seen that the non-Markovianity of N-body
open system quantum evolution may be certifiable through

experimentally readily accessible single-particle observables
such as state populations or occupation numbers – which can
be inferred from the compared many-body states’ reduced
single-particle density matrices. Though, depending on the
choice of reference states, such certification may also re-
quire to assess information inscribed into the latter’s reduced
(k > 1)-particle system states for a discrimination on the
level of many-body correlations and/or of quantum statistical
features. This hierarchical nesting of distinctive properties is
resolved by the many-body version of the reference states’
trace distance derived here – given as a sum over trace
distances of k-particle states since the particle number is
generally not conserved in an open many-body system. The
decomposition into k-particle contributions, with 0 � k � N ,
crucially relies on our identification of the relevant tensor
structure of the many-body Fock space erected upon the
single-particle Hilbert space (itself given as a direct sum),
since it is this tensor structure which reveals a many-body
state’s open system dynamics.
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APPENDIX: DERIVATION OF THE BOUNDS IN (6)

First, note that the normalization of the states ρS and σS

implies

N∑

k=0

c2
k =

N∑

k=0

d2
k = 1. (A1)

Next, from the triangle inequality [32], it follows that

D
(
c2

kρk, d2
k σk

)
� D

(
c2

kρk, 0
) + D

(
0, d2

k σk
) = c2

k + d2
k

2
,

(A2)

with the zero operator 0 (the additive neutral element in the
Banach space of trace class operators [43]), and from the
reverse triangle inequality, we get

D
(
c2

kρk, d2
k σk

)
�

∣∣D
(
c2

kρk, 0
) − D

(
0, d2

k σk
)∣∣ =

∣∣c2
k − d2

k

∣∣
2

.

(A3)

Note that this also holds for non-normalized operators c2
kρk

and d2
k σk since the trace norm ‖A‖1 = tr|A| is a norm on the

space of trace class operators [43], and its induced metric is
– up to the prefactor 1/2 – the trace distance. Finally, for the
one-dimensional subspace with k = 0 particles in the system,
we have ρ0 = σ0 = |0S〉〈0S| and, thus,

D
(
c2

0ρ0, d2
0 σ0

) =
∣∣c2

0 − d2
0

∣∣
2

. (A4)
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The upper bound in (6) then follows from (5), (A4), (A2), and
(A1),

D(ρS, σS) =
N∑

k=0

D
(
c2

kρk, d2
k σk

)
�

∣∣c2
0 − d2

0

∣∣
2

+
N∑

k=1

c2
k + d2

k

2

= 1 +
∣∣c2

0 − d2
0

∣∣
2

− c2
0 + d2

0

2
,

while the lower bound directly follows from (5) and (A3),

D(ρS, σS) �
N∑

k=0

∣∣c2
k − d2

k

∣∣
2

.
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