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Spin conductivity spectrum and spin superfluidity in a binary Bose mixture
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We investigate the spectrum of spin conductivity for a miscible two-component Bose-Einstein condensate
(BEC) that exhibits spin superfluidity. By using the Bogoliubov theory, the regular part being the spin con-
ductivity at finite ac frequency and the spin Drude weight characterizing the δ-function peak at zero frequency
are analytically computed. We demonstrate that the spectrum exhibits a power-law behavior at low frequency,
reflecting gapless density and spin modes specific to the binary BEC. At the phase transition points into
immiscible and quantum-droplet states, the change in quasiparticle dispersion relations modifies the power law.
In addition, the spin Drude weight becomes finite, indicating zero spin resistivity due to spin superfluidity. Our
results also suggest that the Andreev-Bashkin drag density is accessible by measuring the spin conductivity
spectrum.
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I. INTRODUCTION

Transport of spin has been extensively studied in var-
ious subfields of physics. In solids, the spin Hall effect
[1] plays a central role in the context of spintronics [2].
Generation of spin currents by the spin-vorticity coupling
has been observed in liquid mercury [3]. A similar phe-
nomenon has also been reported for heavy ion collisions
in nuclear physics [4]. In atomic physics, the advent of
ultracold atoms has opened up a precious opportunity to in-
vestigate physics of spin transport because one can widely
tune various parameters of the systems, control spatial con-
figuration of spin, and observe dynamics of spin-resolved
densities [5–7].

Recently, the present authors have suggested that ac spin
conductivity called optical spin conductivity is accessible with
existing methods of cold-atom experiments [8], while its mea-
surement in condensed-matter materials is demanding. This
quantity would be a valuable probe for various quantum states
of matter because it is the spin counterpart of optical conduc-
tivity, which plays a crucial role to experimentally investigate
exotic electron systems such as high-Tc superconductors [9]
and graphene [10]. In addition, understanding of ac spin trans-
port with cold atoms may provide guidelines for application of
ac spin currents in spintronics.

Compared to the optical mass conductivity [11–13], the
optical spin conductivity has advantages to examine ultracold
atomic gases in which disorder effects are usually negligible
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[8,14]. (Note that, in the case of charge neutral atoms,
transport of mass or particle number corresponds to charge
transport in electron systems.) In the cases of harmonically
trapped or homogeneous systems, the dependence of the
optical mass conductivity on ac frequency is completely de-
termined at the algebraic level by the generalized Kohn’s
theorem [12,15–17]. As a result, the conductivity spectrum
is independent of details of many-body states including in-
teratomic interactions and is useless as a probe. Therefore the
presence of an optical lattice or impurity potentials is essential
to probe cold-atom systems by the mass conductivity [13].
On the other hand, a spin current is generally affected by
interactions between particles of different spin components
even in the absence of lattices or disorder [14,18]. Therefore
the optical spin conductivity is sensitive to details of quantum
many-body states and works as a probe for both continuum
and lattice systems.

So far, several theoretical studies show that the optical spin
conductivity provides information on a wide range of physical
quantities: a spin drag coefficient, Tan’s contact, superfluid
gap, and quasiparticle excitations in a Fermi gas [8,14], spin
excitations and quantum corrections in a spinor Bose-Einstein
condensate (BEC) [8], a Tomonaga-Luttinger liquid param-
eter of spin in one-dimensional systems [8], and topological
phase transition [19].

Here, we consider a binary mixture of BECs, where two
components are regarded as spin-up and spin-down, and
theoretically investigate the spectrum of its optical spin con-
ductivity. Unlike in the previous cases, this Bose mixture
is known to exhibit unique spin dynamics due to sponta-
neous symmetry breaking associated with spin degree of
freedom [20–22]. We focus on a Z2 symmetric mixture, which
is invariant under the exchange of spin-up and spin-down
atoms. Such a mixture is realized with 23Na atoms [23] and
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considered as a spin superfluid [24], whose evidences have
been reported by recent experiments [25,26].

In addition, we wish to shed light on the Andreev-Bashkin
effect [27] in the Bose mixture, where a superflow of one
component drives the mass current of the other without dis-
sipation. The Andreev-Bashkin effect is a beyond-mean-field
phenomenon and therefore has stirred up many theoretical
studies [28–38]. It is also known that this nondissipative
phenomenon affects various spin dynamics such as a spin
sound wave and spin dipole oscillation [28,35]. The Andreev-
Bashkin effect has also been discussed in the contexts of
liquid 3He [39], superconductors [40], and the mixture of
superconducting protons and superfluid neutrons in neutron
stars [41].

In this paper, we clarify how the spectrum of the spin
conductivity reflects excitation properties, in particular, two
gapless modes arising from spontaneous symmetry breaking.
We then investigate the impact of quantum phase transitions
to immiscible [21] and quantum-droplet phases [42,43] on the
spectrum. Furthermore, we compute the spin Drude weight,
which characterizes the δ-function peak at zero frequency in
the optical spin conductivity. The spin Drude weight is found
to take a finite value, indicating that the mixture has a zero
spin resistivity intrinsic to a spin superfluid. We also connect
the optical spin conductivity with the Andreev-Bashkin effect.

This paper is organized as follows. In Sec. II, we provide
the model of the binary mixture of BECs and the analysis of
the optical spin conductivity within the Bogoliubov theory.
Sections III is devoted to investigations of the regular part of
the spin conductivity at finite frequency. In Sec. IV, we discuss
the spin Drude weight and its connection with the Andreev-
Bashkin effect. We conclude in Sec. V. In this paper, we set
kB = h̄ = 1.

II. MODEL

We consider a homogeneous miscible two-component
BEC in which interatomic interactions are solely character-
ized with s-wave scattering lengths [21]. The two components
are referred to as spin-up (τ = ↑) and spin-down (τ = ↓)
states. We focus on a Z2 symmetric mixture, where both
components have the same particle number N↑ = N↓ = N/2,
mass m↑ = m↓ = m, and intracomponent scattering length
a↑↑ = a↓↓ = a > 0. In the miscible phase, the intercompo-
nent scattering length a↑↓ satisfies |a↑↓| < a, while a↑↓ =
a and a↑↓ = −a correspond to the quantum phase transi-
tion points to an immiscible mixture and a quantum droplet,
respectively.

The Hamiltonian of the binary mixture is given by [21]

H =
∑

τ=↑,↓

∑
k

εka†
k,τ

ak,τ

+ g

2V

∑
τ=↑,↓

∑
k1k2 p

a†
k1+p,τ a†

k2−p,τ ak2,τ ak1,τ

+ g↑↓
V

∑
k1k2 p

a†
k1+p,↑a†

k2−p,↓ak2,↓ak1,↑, (1)

where εk = k2/(2m) is the kinetic energy, ak,τ is the anni-
hilation operator of bosons with momentum k and spin τ ,

g = 4πa/m, and g↑↓ = 4πa↑↓/m are intra- and intercompo-
nent coupling constants, respectively, and V is the volume.
To investigate this system, we employ the Bogoliubov theory
applicable to a weakly interacting mixture at low temperature
T . Within the Bogoliubov theory, a0,τ is replaced with

√
N/2,

and operators with nonzero momenta in Eq. (1) are retained
up to the quadratic terms. The resulting H can be diagonalized
by using combination of unitary and conventional Bogoliubov
transformations given by

(
ak,↑
ak,↓

)
= 1√

2

(
1 1
1 −1

)(
uk,d bk,d − vk,d b†

−k,d

uk,sbk,s − vk,sb
†
−k,s

)
, (2)

where bk,d and bk,s are annihilation operators of quasiparticles
associated with density and spin fluctuations, respectively.
For convenience, a new label α = d, s describing density and
spin modes and new couplings gd = g+g↑↓

2 and gs = g−g↑↓
2

are defined. The coefficients in Eq. (2) are given by uk,α =√
1
2 ( εk+gαn

Ek,α
+ 1) and vk,α =

√
1
2 ( εk+gαn

Ek,α
− 1), where n = N/V

is the number density and

Ek,α = Eα (εk ) =
√

εk (εk + 2gαn) (3)

is the excitation energy of a quasiparticle in the α mode with
momentum k. The diagonalized H has the form of

H =
∑

α=d,s

∑
k �=0

Ek,αb†
k,α

bk,α, (4)

where the ground state energy irrelevant to spin trans-
port was ignored. In the presence of the intercomponent
interaction (g↑↓ �= 0), the two modes are not degenerate
(Ek,d �= Ek,s).

For the sake of simplicity, we throughout focus on the
situation where the depletion of the condensate is negligibly
small. As shown in Appendix A, this condition is satisfied
when the gas parameters

√
na3

α � 1 are sufficiently small
and temperature T is very low compared to max{gd n, gsn}
and T 0

BEC, where T 0
BEC = 2π (n/[2ζ (3/2)])2/3/m is the BEC

transition temperature for a binary mixture of noninteracting
bosons and ζ (z) is the zeta function. Therefore the condensate
density n0 can be approximated as n0 ≈ n.

A. Optical spin conductivity

In this section, we evaluate the optical spin conductivity of
a binary mixture of BECs. Following our previous paper [8],
we consider the mixture in the presence of a weak spin-driving
force f s(t ) to induce an ac spin current. In ultracold atomic
gases, such an external force can be generated by a magnetic-
field gradient [44,45] or optical Stern-Gerlach effect [46]. In
frequency space, the induced global spin current J̃s(ω) at
frequency ω is given by J̃s(ω) = V σs(ω) f̃ s(ω), where σs(ω)
is the optical spin conductivity and f̃ s(ω) is the Fourier trans-
form of f s(t ). The Kubo formula provides the expression of
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σs(ω) as [8]1

σs(ω) = i

ω+
( n

m
+ χss(ω)

)
, (5)

where ω+ = ω + i0+,

χss(ω) = −i

V

∫ ∞

0
dt eiω+t 〈[Ĵs,x (t ), Ĵs,x (0)]〉 (6)

is the spin-current response function with the spin current
operator Ĵs = ∑

k
k
m (a†

k,↑ak,↑ − a†
k,↓ak,↓), and 〈· · · 〉 denotes

the thermal average at temperature T . In experiments, σs(ω)
can be extracted by monitoring the spin-resolved center of
mass motion (see Ref. [8] for details).

In this paper, we focus on the real part of σs(ω) related
to dissipation. Note that Im σs(ω) can be reconstructed from
Re σs(ω) by using the Kramers-Kronig relation. From Eq. (5),
the real part has the general form of

Re σs(ω) = DD
s δ(ω) + σ reg

s (ω), (7)

where the spin Drude weight DD
s and the regular part σ

reg
s (ω)

at finite frequencies are given by

DD
s = D0 + πRe χss(0), (8)

σ reg
s (ω) = −Im

χss(ω)

ω
, (9)

respectively. The total spectral weight D0 characterizes the
following f -sum rule, which is an exact relation for the in-
tegral of Re σs(ω) over ω [8,49]:∫ ∞

−∞
dω Re σs(ω) = D0 ≡ πn

m
. (10)

To evaluate Re σs(ω), we compute χss(ω) in Eq. (6) within
the Bogoliubov theory. Using Eqs. (2) and (4), we can express
Ĵs(t ) = eiHt Ĵse−iHt in terms of bk,α . The operator has two
contributions Ĵs(t ) = Ĵ+(t ) + Ĵ−(t ) given by

Ĵ+(t ) =
∑

k

k
m

A+
k (eiE+(εk )t b†

k,d b†
−k,s + H.c.), (11a)

Ĵ−(t ) =
∑

k

k
m

A−
k (eiE−(εk )t b†

k,d bk,s + H.c.), (11b)

where A+
k = vk,d uk,s − uk,dvk,s, A−

k = uk,d uk,s − vk,dvk,s, and

E±(εk ) = Ed (εk ) ± Es(εk ) (12)

determines the time evolution of Ĵ±(t ). While Ĵ+(t ) involves
creation or annihilation of a pair of quasiparticles in density
and spin modes, Ĵ−(t ) involves transition from the spin (den-
sity) to density (spin) modes.

1In Ref. [8], a perturbation given by spin-dependent scalar poten-
tials δV↑/↓(r, t ) = ∓ f s(t ) · r is considered. While there is no problem
for trapped systems, formalism with this perturbation sometimes
leads to incorrect results in the case of Bose systems with peri-
odic boundary conditions. Indeed, the contribution of condensates
with zero momentum to n/m in Eq. (5) is lost. This problem can
be avoided by expressing f s(t ) in terms of spin-dependent vector
potentials in a similar way as for that of an electric field in the case
of charge transport [47,48].

Here, we point out behaviors of E±(ε) as functions of ε.
We can easily see that E+(ε) and |E−(ε)| are monotonically
increasing functions of ε. While E+(ε) takes values from 0 to
∞, E−(ε) does from 0 to g↑↓n with increasing ε > 0 and its
sign depends on whether the intercomponent interaction g↑↓
is repulsive or attractive.

Substituting Eqs. (11) into Eq. (6), we can evaluate the
current response function. The cross terms 〈[Ĵ±,x(t ), Ĵ∓,x (0)]〉
vanish and thus χss(ω) is found to be

χss(ω) = 1

V

∑
ν=±

∑
k

k2

3m2
Bν (εk )Fν (εk )

×
(

1

ω+ − Eν (εk )
− 1

ω+ + Eν (εk )

)
. (13)

Here B±(εk ) = (A±
k )2 = [E∓(εk )]2

4Ed (εk )Es (εk ) , F+(εk ) = 1 +
fB(Ek,d ) + fB(Ek,s), F−(εk ) = fB(Ek,s) − fB(Ek,d ), where
fB(E ) = 1/(eE/T − 1) is the Bose distribution function. Note
that because of rotational invariance of the thermal state
we replaced k2

x → k2/3 in Eq. (13). From the distribution
functions in F±(ε), we see that the ν = − terms in Eq. (13)
arise from thermally excited quasiparticles and vanish at zero
temperature, while the ν = + ones survive even at T = 0. By
substituting Eq. (13) into Eq. (5), one can confirm that σs(ω)
obtained in the Bogoliubov theory satisfies the f -sum rule in
Eq. (10).

III. REGULAR PART

This section is devoted to analyzing the regular part of
the optical spin conductivity. Within the Bogoliubov theory,
σ

reg
s (ω) can be analytically computed. Since σ

reg
s (ω) is an

even function of ω by definition, we can focus on the case
of ω > 0 without loss of generality. For g↑↓ > 0, substituting
Eq. (13) into Eq. (9) yields

σ reg
s (ω) =

√
2m

3π

∑
ν=±

∫ ∞

0
dε

ε3/2Bν (ε)Fν (ε)

Eν (ε)

× δ(ω − Eν (ε)). (14)

The δ function shows that σ
reg
s (ω) is sensitive to the sum and

difference of the quasiparticle energies. As mentioned above,
Eν (ε) are monotonic functions of ε. The equation E+(ε) = ω

has a single solution ε = ε+
ω for any ω > 0, while the equa-

tion E−(ε) = ω does ε = ε−
ω only if 0 < ω < g↑↓n. These

solutions are given by

ε±
ω = ω2

2(gn ±
√

4gd gsn2 + ω2)
. (15)

By using Eq. (15), the analytic form of σ
reg
s (ω) can be ob-

tained. The regular part for g↑↓ < 0 is also calculated in a
similar way. Finally, σ

reg
s (ω) is found to be

σ reg
s (ω) = σ+

s (ω) + σ−
s (ω)θ (|g↑↓|n − ω), (16)

where

σ ν
s (ω) =

√
2m (εν

ω )3

3πω

Bν (εν
ω )|Fν (εν

ω )|
Gν (εν

ω )
(17)
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FIG. 1. Spectrum of the regular part of the optical spin con-
ductivity σ reg

s (ω) = σ+
s (ω) at T = 0. The low-frequency power law

at the transition point (a↑↓ = a) is different from those inside the
miscible phase (0 < a↑↓ < a) [see Eqs. (19)], while the power law at
high frequency is identical [Eq.(21)].

is the contribution from the ν = ± process with G±(ε) =
| ε+gd n

Ed (ε) ± ε+gsn
Es (ε) |. The Heaviside step function θ (|g↑↓|n − ω)

in Eq. (16) arises from the upper limit of |E−(ε)|, so that
σ−

s (ω) contributes to the spin conductivity in a low frequency
regime. The result of Eq. (16) is independent of the sign of the
intercomponent coupling g↑↓ ∝ a↑↓. Such insensitivity to the
sign is also pointed out in the context of the Andreev-Bashkin
effect within the Bogoliubov theory [28]. For this reason, we
consider only the case of 0 < a↑↓ � a in Figs. 1–4 below
without loss of generality.

A. Zero-temperature case

First, we focus on σ
reg
s (ω) at zero temperature. In this case,

σ−
s (ω) in Eq. (16) vanishes because it results from thermally

excited quasiparticles, leading to

σ reg
s (ω) =

√
2m (ε+

ω )3

3πω

B+(ε+
ω )

G+(ε+
ω )

. (18)

Figure 1 shows the spectra of σ
reg
s (ω) for various interaction

strengths, where vα = √
gαn/m is the sound velocity of the α

mode. The spectrum for a↑↓/a = 1 corresponds to the result
at the transition point, while those at a↑↓/a = 0.3, 0.6 are
for the Bose mixtures inside the miscible phase. As the ratio
a↑↓/a increases, σ

reg
s (ω) is enhanced in the whole frequency

regime. This is caused by the fact that σ
reg
s (ω) reflects scat-

terings between different spin components. With a↑↓/a > 0
increasing the effect of the scatterings becomes stronger, so
that σ

reg
s (ω) is enhanced. One can also see that σ

reg
s (ω) at

T = 0 has a peak around ω ∼ gd n, where transition of quasi-
particle excitations between phononlike to free-particle-like
regimes occurs.

Slopes in the low frequency regime in Fig. 1 imply that
σ

reg
s (ω → +0) for |a↑↓| < a and a↑↓ = ±a obeys different

power laws. Indeed, expanding Eq. (18) in small ω yields

σ reg
s (ω → +0) =

⎧⎨
⎩

C1(γ )
m2v5

d
ω3 (|a↑↓| < a),

ω2

12πmṽ3 (a↑↓ = ±a),
(19)

where γ = gs/gd = (a − a↑↓)/(a + a↑↓), ṽ = √
gn/m, and

C1(γ ) = 1

24π

(1 − √
γ )2

√
γ (1 + √

γ )5
. (20)

This change of the power law at a↑↓ = ±a is related to excita-
tion properties of quasiparticles specific to the phase transition
points. As mentioned previously, σ

reg
s (ω) is sensitive to the

quasiparticle spectra. In the case of the mixture inside the
miscible phase (|a↑↓| < a), both density and spin modes show
linear dispersions. On the other hand, at a↑↓ = ±a, one of the
modes exhibits a quadratic dispersion Eα (εk ) = εk , while the
other still shows the linear behavior. Equation (19) implies
that the precursors of the phase transitions are captured by the
change of the low-frequency behavior of σ

reg
s (ω).2

At high frequency, the dispersion relations of quasiparticles
contributing to σ

reg
s (ω → ∞) become quadratic in momenta

[Eα (εk ) � εk], which lead to a power-law tail of the optical
spin conductivity. By expanding Eq. (18) in large ω, we obtain

σ reg
s (ω → ∞) =

√
m(g↑↓n)2

12πω3/2
. (21)

This frequency dependence ∼ω−3/2 is the same as those
of three-dimensional Fermi gases in both normal and su-
perfluid phases [8,14,50], a spinor BEC in the polar phase
[8], and a one-dimensional Fermi superfluid with p-wave
attraction [19].

B. Finite-temperature case

We next discuss the regular part at a finite but sufficiently
low temperature. In this case, σ−

s (ω) in Eq. (16) contributes to
the spin conductivity in a low-frequency regime. First, we start
with analysis of asymptotic behaviors at low frequencies. At
T > 0, the appearance of the temperature scale modifies the
power law at small ω in a similar way as for the momentum
distribution at small momentum [21]. Expanding Eq. (16), we
obtain

σ reg
s (ω → +0) =

{
C2(γ )T

m2v5
d

ω2 (|a↑↓| < a),
T

3π ṽ
(a↑↓ = ±a),

(22)

where

C2(γ ) = 1

24π

(1 + √
γ )5 + |1 − √

γ |5
γ |1 − γ |3 . (23)

Compared with Eq. (19) at T = 0, σ
reg
s (ω → +0) decays

more slowly for the mixture inside the miscible phase (|a↑↓| <

a), while the spectra at the transition points (a↑↓ = ±a) ex-
hibit plateaus in the low-frequency regime. Furthermore, the
asymptotic forms in Eq. (22) indicate that the magnitude of
σ

reg
s (ω) is enhanced as temperature increases. This results

from the increasing numbers of thermally excited quasipar-
ticles relevant to the ν = − process. On the other hand, the
asymptotic form at high frequency is identical with Eq. (21)
in the zero-temperature case and not sensitive to T . This is

2More specifically, the different power laws result from the fact that
two limits ω → +0 and g↑↓ → ±g for B+(ε+

ω ) do not commute.
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FIG. 2. Regular part of the optical spin conductivity σ reg
s (ω) at

various T with a↑↓/a = 0.3 fixed. (a) Temperature dependence of
σ reg

s (ω). At finite temperature, an additional peak appears around
ω ∼ T . (b) Contributions of σ±

s (ω) to σ reg
s (ω) at T/(gd n) = 0.1 and

a↑↓/a = 0.3.

because at high frequency σ−
s (ω) never contributes and the

thermal effect on σ+
s (ω) vanishes [F+(ε) � 1].

Figure 2 illustrates the impact of temperature on σ
reg
s (ω)

inside the miscible phase with a↑↓/a = 0.3 fixed. In Fig. 2(a),
σ

reg
s (ω) at T > 0 has two peaks around ω ∼ T and ω ∼ gd n.

The peak in the lower frequency side arises from σ−
s (ω) as-

sociated with thermally excited quasiparticles [see Fig. 2(b)].
As implied by Eq. (22), this peak is enhanced as temperature
increases. In particular, the peak at T/(gd n) = 0.1 becomes
higher than the other. On the other hand, the peak in the
higher frequency side arises from σ+

s (ω) [see Fig. 2(b)] and
is not sensitive to T because distribution functions in F+(ε+

ω )
are vanishingly small for ω ∼ gd n � T . Figure 3 shows the
temperature dependence of σ

reg
s (ω) at the phase transition

point a↑↓ = a. As presented by Eq. (22), σ
reg
s (ω) at T > 0

exhibits the plateau at low frequency, which becomes higher
with increasing T .

In the above analysis based on the Bogoliubov theory, we
focused on the low-temperature regime of a weakly interact-
ing Bose mixture, where depletion of the condensate density
is negligible. In this case, the thermal effect on σ

reg
s (ω) arises

only through distribution functions in F±(ε±
ω ). For a higher

temperature, on the other hand, the thermal depletion becomes

FIG. 3. Spectrum of the regular part σ reg
s (ω) at the phase transi-

tion point a↑↓ = a.

significant and the peak of σ
reg
s (ω) around ω ∼ gd n would be

affected by the thermal effects.

IV. SPIN DRUDE WEIGHT

In this section, we discuss the spin Drude weight DD
s and

its connection with the Andreev-Bashkin effect. As mentioned
previously, the Z2 symmetric mixture is considered as a spin
superfluid [24–26]. To clarify the importance of DD

s in a spin
superfluid, we start with a brief review of work by Scalapino,
White, and Zhang, who provided the criteria to determine
whether an electron system is superconducting, metallic, or
insulating [51,52]. This previous work has suggested that
a superconductor, metal, and insulator are distinguished by
the two properties in electric transport. The first one is the
Drude weight DD, which characterizes the δ-function peak of
optical conductivity σ (ω) at ω = 0 as the spin Drude weight
DD

s in Eq. (7). A finite DD corresponds to ballistic charge
transport with diverging dc conductivity, i.e., zero resistivity.
The latter one is the superfluid weight DSF proportional to the
superfluid density relevant to the Meissner effect for a charged
system.

At T = 0, a superconductor has finite DD and DSF, a
metal without impurities has finite DD and DSF = 0, and an
insulator has DD = DSF = 0. Even at finite temperature, a
superconductor still has DD > 0 and DSF > 0 and exhibits
dissipationless transport as long as the corresponding order
exists. On the other hand, a metal at finite temperature or in the
presence of impurities is generally expected to have DD = 0
and become resistive with a finite dc conductivity σ (ω →
0) > 0.3 In this way, DD and DSF distinguish a superconduc-
tor from a metal and insulator in terms of electric transport
properties. Table I summarizes classification of ground states
by the Drude and superfluid weights.

Similarly, the spin Drude weight DD
s and spin superfluid

weight DSF
s are essential to identify a quantum many-body

state as a spin superfluid. In analogy with charge transport,

3Integrable systems are considered to be exceptional cases with
finite Drude weights at T > 0 [53].
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TABLE I. Summary of Drude and superfluid weights in charge
(upper) and spin (lower) transport at T = 0.

Charge transport

Superconductor Metal Insulator

DD > 0, DSF > 0 DD > 0, DSF = 0 DD = DSF = 0

Spin transport

Spin superfluid Spin metal Spin insulator

DD
s > 0, DSF

s > 0 DD
s > 0, DSF

s = 0 DD
s = DSF

s = 0

the spin superfluidity is characterized by both DD
s > 0 and

DSF
s > 0, while a ground state with DD

s > 0 and DSF
s = 0 and

that with DD
s = DSF

s = 0 may be referred to as spin metal and
spin insulator, respectively, which are not discussed mainly
in this paper. In the next section, we evaluate DD

s within the
Bogoliubov theory. On the other hand, the discussion on DSF

s
for the binary mixture is presented in Appendix B.

A. Computation within the Bogoliubov theory

We first rewrite Eq. (8) by using the Kramers-Kronig rela-
tion for χss(ω) and σ

reg
s (ω) = σ

reg
s (−ω):

DD
s = D0 − Dreg

s , (24)

Dreg
s = 2

∫ ∞

0
dω σ reg

s (ω). (25)

These equations mean that DD
s is reduced from the total spec-

tral weight D0 due to the weight Dreg
s originating from the

regular part. To compute Dreg
s , we substitute Eq. (14) into

Eq. (25), leading to

Dreg
s

D0
= 2

√
2m3

3π2n

∑
ν=±

∫ ∞

0
dε

ε3/2Bν (ε)Fν (ε)

Eν (ε)
, (26)

which holds in the whole range of 0 < |a↑↓| � a. For con-
venience, we define aα by gα = 4πaα

m and a scaled weight

D̃reg
s = Dreg

s /(D0

√
na3

d ), which is a dimensionless function of
a↑↓/a and T/gd n.

Figure 4 shows the scaled weight D̃reg
s of the regular part

for 0 < a↑↓ � a at low temperature. Figure 4(a) indicates how
D̃reg

s depends on the dimensionless strength of the intercom-
ponent interaction a↑↓/a with T fixed. At T = 0, we can
analytically perform the integration in Eq. (26) and find the
following expression:

D̃reg
s = D̃reg

s,0 (γ ) ≡ 64

45
√

π

(1 − √
γ )2(γ + 3

√
γ + 1)√

γ + 1
(27)

with γ = (a − a↑↓)/(a + a↑↓). As a↑↓/a increases, D̃reg
s

grows and becomes maximum at the transition point a↑↓/

a = 1, which is consistent with enhancement of the spectra in
Fig. 1. With increasing a↑↓/a the effect of scatterings between
different spin components becomes stronger, leading to the
growth of D̃reg

s . At a↑↓/a = 0, where the intercomponent in-
teraction vanishes, D̃reg

s becomes zero. This is because in this
case the global spin current Ĵs(t ) is a conserved quantity, lead-
ing to a trivial form of the conductivity Re σs(ω) = D0δ(ω).

FIG. 4. Scaled weight D̃reg
s = Dreg

s /(D0

√
na3

d ) of the regular part.
(a) Dependence on a↑↓/a with T fixed. D̃reg

s takes its maximum value
at the transition point a↑↓/a = 1. (b) Dependence on T for a↑↓/a = 1
(blue solid line), a↑↓/a = 0.8 (yellow dashed line), and a↑↓/a = 0.6
(green dotted line).

Figure 4(b) shows the temperature dependence of D̃reg
s with

a↑↓/a fixed. The weight of the regular part increases with
increasing temperature as expected from the enhancement of
the spectrum in Fig. 2(a). Inside the miscible phase 0 < a↑↓ <

a, the temperature dependence of D̃reg
s is very weak at low

temperature as shown by yellow dashed and green dotted lines
in Fig. 4(b). In fact, by expanding Eq. (26) with respect to T ,
we obtain

D̃reg
s � D̃reg

s,0 (γ ) + C3(γ )

(
T

gd n

)4

, (28)

with

C3(γ ) = 4π7/2(γ 3 + γ 5/2 + 4γ 2 + 4γ 3/2 + 4γ + √
γ + 1)

45(
√

γ + 1)γ 5/2
.

(29)

On the other hand, at a↑↓ = a [the blue solid line in Fig. 4(b)],
D̃reg

s is more sensitive to T as

D̃reg
s � D̃reg

s,0 (0) + 4
√

2ζ
(

3
2

)
3

(
T

gd n

)3/2

. (30)
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We now discuss the value of the spin Drude weight DD
s .

The above evaluations show D̃reg
s ∼ 1 at sufficiently low tem-

perature (T � gd n), leading to Dreg
s ∼ D0

√
na3 � D0 for the

weakly interacting mixture. Therefore DD
s in Eq. (24) is found

to be finite DD
s > 0, indicating that the binary mixture of

BECs exhibits a zero spin resistivity resulting from spin su-
perfluidity. It is worth emphasizing the difference of DD

s from
the Drude weight DD

n in optical mass conductivity. Because
of the Kohn’s theorem [15], the optical mass conductivity
gives DD

n = D0 for any scattering lengths and temperature.
In contrast, Eq. (24) indicates that DD

s is reduced from D0

because the spectral weight is transferred to the regular part
σ

reg
s (ω) at finite frequency due to the interactions. As |a↑↓|

or T increase with
√

na3 � 1 fixed, the excitations at finite
momenta contributing to Dreg

s are enhanced and thus DD
s de-

creases. As in the case of superconductor with finite DD [52],
DD

s is however expected to survive at higher temperature as
long as the mixture is in the miscible phase of BECs. On the
other hand, DD

s is expected to vanish with finite spin resistivity
above the transition temperature. In this way, one can see that
the optical spin conductivity including DD

s are useful probes
for spin superfluid properties of homogeneous mixtures.

B. Connection with the Andreev-Bashkin effect

Here, we discuss the relation of the spin Drude weight
to the spin superfluid weight DSF

s and the Andreev-Bashkin
effect. We start by considering difference of definitions be-
tween DD

s and DSF
s . As shown in Appendix B, both weights

are written as limiting behaviors of Ds(qT, qL, ω) = D0 +
πRe χss(q, ω), where χss(q, ω) is a momentum-resolved cur-
rent response function in Eq. (B2) and qT and qL are the
components of momentum q perpendicular and parallel to the
current, respectively. By taking limits qT → 0, qL → 0, and
ω → 0 in different order, we obtain DD

s = Ds(0, 0, ω → 0)
and DSF

s = Ds(qT → 0, 0, 0).
The spin superfluid weight DSF

s is related to the Andreev-
Bashkin drag density ρ↑↓ characterizing how sensitive the
mass current of one component is to the superfluid velocity
of the other. As shown in Appendix B, one can express DSF

s in
terms of ρ↑↓ and the normal fluid density ρNF as

DSF
s = D0 − π

m2
(4ρ↑↓ + ρNF). (31)

At T = 0 with ρNF = 0, DSF
s is reduced from D0 due to the

drag differently from its mass counterpart DSF
n = D0. At finite

temperature, the appearance of the normal fluid also decreases
the spin superfluid weight. The drag and normal fluid densities
have been computed in Refs. [28,35,37].

Applying the Bogoliubov theory to χss(q, ω), we find
DD

s = DSF
s at T � 0. The detailed analyses are presented in

Appendix C. We emphasize that this equivalence between
Drude and superfluid weights is not self-evident. In general,
it is not guaranteed that the two limits qT → 0 and ω → 0
are commutable. Indeed, there are several examples of gap-
less systems where the Drude and superfluid weights for
mass take different values. A homogeneous ideal Fermi gas
has DD

n = D0 and DSF
n = 0, exhibiting metallic features. For

the two-component BEC focused on in this paper, Kohn’s
theorem provides DD

n = D0 for any T , while DSF
n < D0 is

sensitive to the normal-fluid density at finite temperature (see
Appendices B and C for details). On the other hand, there
is a rigorous proof that the Drude and superfluid weights are
identical with each other for a gapped systems at T = 0 [52].

Finally, we discuss the connection of the optical spin
conductivity to the Andreev-Bashkin effect. At T = 0 with
ρNF = 0, DD

s = DSF
s combined with Eqs. (24) and (31)

provides

Dreg
s = 4π

m2
ρ↑↓. (32)

This result states that the spectral weight of Re σs(ω) at finite
ω corresponds to the drag density ρ↑↓. Therefore the optical
spin conductivity could be a probe to observe the Andreev-
Bashkin effect, which has yet to be confirmed in experiments.

The relation DD
s = DSF

s proposes that measurement of the
optical spin conductivity is useful to detect the Andreev-
Bashkin effect even at finite temperature. At T > 0, the drag
density is rewritten as

ρ↑↓ = m2

4π
Dreg

s − 1

4
ρNF. (33)

When temperature is sufficiently low (T � gn), ρ↑↓ is still
estimated by measuring Dreg

s because ρNF = O(T 4) is small
as in the single-component case [21]. At higher temperature,
the normal fluid fraction is not negligible and ρ↑↓ deviates
from m2

4π
Dreg

s . Indeed, ρ↑↓ is a decreasing functions of T [37],
while Fig. 4(b) indicates Dreg

s as an increasing function of T .
Over the temperature regime where the Bogoliubov theory
is applicable yet ρNF is not negligible in Eq. (33), ρ↑↓ is
experimentally accessible by measuring both Dreg

s and ρNF.
We expect that ρNF of the binary BEC can be experimentally
determined in a similar way as for single-component bosons
[54] and fermions [55,56]. It would be an interesting future
work whether Eq. (33) or DD

s = DSF
s is valid beyond the

Bogoliubov theory.

V. CONCLUSION

In this paper, we investigated the optical spin conductivity
for a binary mixture of BECs in the miscible phase. The
regular part of the spin conductivity was analytically evaluated
with the Bogoliubov theory in Sec. III. Reflecting the two
gapless modes specific to the Bose mixture, two processes
ν = ± are relevant to the spin conductivity spectrum. At zero
temperature, the regular part σ

reg
s (ω) obeys power laws for

both high- and low-frequency regimes [Eqs. (19) and (21)]
and exhibits a peak in the intermediate frequency regime (see
Fig. 1). In particular, the power law at low frequency changes
at the transition points (a↑↓ = ±a), which results from the
fact that one of the gapless modes exhibits the parabolic
dispersion. At finite temperature, the ν = − process associ-
ated with thermal excitations of quasiparticles contributes to
the regular part, leading to the change of the low-frequency
behavior [Eq. (22)] and appearance of the additional peak
around ω ∼ T (see Fig. 2). In Sec. IV, we investigated the
spin Drude weight DD

s at low temperature by computing the
spectral weight arising from the regular part [Eqs. (26)–(30)]
and we found DD

s > 0. This indicates that the two-component
BEC exhibits spin-superfluid characteristics with a zero spin
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resistivity as a superconductor has a zero electrical resistivity.
Furthermore, we showed that within the Bogoliubov theory
the spin Drude weight equals the spin superfluid weight at
T � 0. This suggests that at T = 0 the spectral weight of
the regular part becomes proportional to the Andreev-Bashkin
drag density [Eq. (32)]. Therefore the optical spin conductiv-
ity can be regarded as a probe for the Andreev-Bashkin effect.

Regarding future works on the optical spin conductivity
of Bose mixtures, there are several directions. The first one
is extension of our study to a mixture in a harmonic trap
potential. In such a situation, the peak in the spin conductivity
spectrum would be shifted at a finite frequency [13]. Com-
parison of the extended results with spin dipole oscillation in
recent experiments [23,25] could deepen our understanding
of spin superfluidity. Second, how the regular part and spin
Drude weight change at higher temperature would be of in-
terest. In this case, the thermal depletion of the condensate
density n0 cannot be neglected and damping of quasiparticles
may be important [57–59]. In the context of connection to
the Andreev-Bashkin effect, it would be important to clarify
whether the equivalence between the Drude and superfluid
weights of spin survives or not beyond the Bogoliubov theory.
It would be also interesting to investigate optical spin con-
ductivity in the presence of optical lattices [60–62] and in the
quantum droplet phase [63,64].

ACKNOWLEDGMENTS

We thank Ippei Danshita, Kazuya Fujimoto, Satoshi Fuji-
moto, Tomoya Hayata, Yoshimasa Hidaka, Norio Kawakami,
and Takeshi Mizushima for stimulating discussions. Y.S.
also thank Gordon Baym for enlightening comments, Do-
nato Romito for information on longitudinal current responses
within the Bogoliubov theory, and Grigory Efimovich Volovik
for communication on the Andree-Bashkin effect in liq-
uid 3He. We acknowledge JSPS KAKENHI for Grants
(No. JP18H05406, No. 19J01006, No. JP21K03436, No.
JP22K13981). Y.S. is supported by Pioneering Program of
RIKEN for Evolution of Matter in the Universe (r-EMU).
S.U. is supported by MEXT Leading Initiative for Excellent
Young Researchers (Grant No. JPMXS0320200002) and Mat-
suo Foundation.

APPENDIX A: DEPLETION OF THE CONDENSATE

Here, we show that the difference of the condensate density
n0 from the total density n is negligibly small for a weakly
interacting mixture at low temperature, leading to n0 ≈ n. To
this end, we compute

ηdep = n − n0

n
= 1

N

∑
k �=0

nk, (A1)

where nk = ∑
τ=↑,↓〈a†

k,τ
ak,τ 〉 is the momentum distribution.

Using the transformation of ak,τ in Eq. (2), we obtain

ηdep =
∑

α=d,s

(
η

Q
dep,α + ηT

dep,α

)
, (A2)

where the first term independent of T provides quantum
depletion

η
Q
dep,α = 1

n

∫
dk

(2π )3
v2

k,α = 8

3
√

π

√
na3

α, (A3)

and the latter term denotes thermal depletion

ηT
dep,α = 1

n

∫
dk

(2π )3

(
u2

k,α + v2
k,α

)
fB(Ek,α ). (A4)

At low temperature, ηT
dep,α is expanded as

ηT
dep,α = 2

√
π3

3

√
na3

α

(
T

gαn

)2

(A5)

for T � gαn or

ηT
dep,α = 2

(
T

T 0
BEC

)3/2

(A6)

for gαn � T � T 0
BEC. From Eqs. (A1)–(A6), we can find

ηdep � 1 for a weakly interacting mixture (
√

na3
α � 1)

at sufficiently low temperature (T � max{gd n, gsn}, T 0
BEC),

leading to n0 ≈ n.

APPENDIX B: SUPERFLUID WEIGHTS

Here, we discuss the superfluid weights and relate DSF
s to

the Andreev-Bashkin drag density. It is worth clarifying the
difference of the superfluid weights between mass (or particle-
number) and spin transport as well as the difference from the
Drude weights. In order to define these weights in a unified
manner, we introduce

Dλ(qT, qL, ω) = D0 + πRe χλλ(q, ω), (B1)

where λ labels particle-number (λ = n) and spin (λ = s) de-
grees of freedom and qT = (0, qy, qz ) and qL = (qx, 0, 0). The
momentum-resolved current response function is

χλλ(q, ω) = −i

V

∫ ∞

0
dt eiω+t 〈[ j̃λ,x(q, t ), j̃†

λ,x (q, 0)]〉, (B2)

where j̃n/s(q) = ∑
k

2k+q
2m (a†

k,↑ak+q,↑ ± a†
k,↓ak+q,↓) is a cur-

rent density operator in momentum space.4 The Drude weight
DD

λ and superfluid weight DSF
λ are given by taking the zero-

momentum and zero-frequency limits of Dλ(qT, qL, ω) in
different order:

DD
λ = lim

ω→0
Dλ(0, 0, ω), (B3)

DSF
λ = lim

qT→0
Dλ(qT, 0, 0), (B4)

while the other order of taking limits exactly provides

lim
qL→0

Dλ(0, qL, 0) = 0, (B5)

which reflects the sum rules of density and spin structure
factors [21,35]. Equation (B3) is consistent with Eq. (8). For
a homogeneous mixture of BECs, the Drude weight for mass

4The spin current response function contributing to σs(ω) in Eq. (5)
is expressed as χss(ω) = χss(0, ω).
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is identical with the total spectral weight for any temperature
and interaction strengths:

DD
n = D0. (B6)

This result is called Kohn’s theorem and comes from the fact
that j̃n(0, t ) = P/m with the total momentum P is conserved
due to the translational invariance.

In the case of a binary mixture of BECs, the superfluid
weights DSF

n and DSF
s are related to mass densities in the

three-fluid hydrodynamics. To confirm this, we follow the
formalism in Ref. [35]. In the hydrodynamic limit, the mass
current densities m jτ with τ =↑,↓ are given by

m j↑ = ρNF
↑ vNF + ρ↑↑vSF

↑ + ρ↑↓vSF
↓ , (B7a)

m j↓ = ρNF
↓ vNF + ρ↓↑vSF

↑ + ρ↓↓vSF
↓ , (B7b)

where vNF and vSF
τ are normal-fluid and superfluid veloci-

ties, respectively, and ρNF
τ and ρττ ′ are mass densities of the

normal fluid and superfluids, respectively. The off-diagonal
terms ρ↑↓ = ρ↓↑ of the superfluid density matrix denote the
Andreev-Bashkin drag density, which determines the contri-
bution of the superfluid velocity of one component to the mass
current of the other. In the homogeneous case, the invariance
of Eqs. (B7) under the Galilean transformation leads to the
mass relation mnτ = ρNF

τ + ρττ + ρ↑↓.
By using the linear response theory, the densities ρNF

τ and
ρττ ′ are related to current response functions as follows [35]:

ρ↑↓ = m2χT
↑↓, (B8a)

ρττ = mnτ + m2χT
ττ , (B8b)

ρNF
τ = −m2

∑
τ ′= ↑,↓

χT
ττ ′, (B8c)

where nτ is the number density of the τ =↑,↓
component, χT

ττ ′ ≡ limqT→0 χττ ′ (qT, 0), and χττ ′ (q, ω) =
−i
V

∫ ∞
0 dt eiω+t 〈[ j̃τ,x(q, t ), j̃†

τ ′,x(q, 0)]〉 with j̃τ (q) =∑
k

2k+q
2m a†

k,τ
ak+q,τ . By using χnn/ss = χ↑↑ + χ↓↓ ± 2χ↑↓

and Eqs. (B1) and (B8), the superfluid weights in Eq. (B4)
are found to be

DSF
n = π

m2
(mn − ρNF), (B9a)

DSF
s = π

m2
(mn − ρNF − 4ρ↑↓), (B9b)

where n = n↑ + n↓ and ρNF = ρNF
↑ + ρNF

↓ . Equations (B9)
show that DSF

n is independent of the drag density, while DSF
s is

affected by ρ↑↓. Equation (B9b) is Eq. (31).
Next, we confirm the meaning of DSF

m and DSF
s in the hy-

drodynamic picture. The hydrodynamic relations in Eqs. (B7)
can be rewritten in λ = n, s basis as

m jn = ρNFvNF + ρnnv
SF
n + ρnsv

SF
s , (B10a)

m js = ρNF
s vNF + ρsnv

SF
n + ρssv

SF
s , (B10b)

where jn/s = j↑ ± j↓, ρNF
s = ρNF

↑ − ρNF
↓ , and vSF

n/s = (vSF
↑ ±

vSF
↓ )/2. The superfluid weights correspond to the diagonal

components of superfluid densities,

ρnn = m2DSF
n

π
= mn − ρNF, (B11a)

ρss = m2DSF
s

π
= mn − ρNF − 4ρ↑↓, (B11b)

while the off-diagonal ones are ρns = ρsn = ρ↑↑ − ρ↓↓. In
the spin balanced case with ρNF

s = ρns = 0, jn and js are
decoupled [26]: m jn = ρNFvNF + ρnnv

SF
n and m js = ρssv

SF
s .

APPENDIX C: CURRENT RESPONSE FUNCTIONS
WITHIN THE BOGOLIUBOV THEORY

Here, we calculate χλλ(q, ω) in Eq. (B2) for the Z2 sym-
metric mixture within the Bogoliubov theory. As in the case of
χss(ω) = χss(q = 0, ω) in Sec. II A, we can straightforwardly
perform the computation. By using ak=0,τ = √

N/2 and the
Bogoliubov transformations for finite momentum [Eq. (2)],
j̃n/s(q) = ∑

k
k+k′
2m (a†

k,↑ak′,↑ ± a†
k,↓ak′,↓) with k′ = k + q can

be expressed in terms of quasiparticle operators bk,α . Substi-
tuting the obtained expressions into Eq. (B2), we find

χλλ(q, ω) = χ
(0)
λλ (q, ω) + χ

(−)
λλ (q, ω) + χ

(+)
λλ (q, ω), (C1)

where

χ
(0)
λλ (q, ω) = n

2m

(qx )2

q2

(
Eq,β

ω+ − Eq,β

− Eq,β

ω+ + Eq,β

)
, (C2)

χ
(−)
λλ (q, ω) = 1

V

∑
k �=0,−q

∑
α=d,s

(
kx + k′

x

2m

)2[ (uk,αuk′,α′ )2 − uk,αuk′,α′vk,αvk′,α′

ω+ − (Ek′,α′ − Ek,α )
− (vk,αvk′,α′ )2 − uk,αuk′,α′vk,αvk′,α′

ω+ + (Ek′,α′ − Ek,α )

]

×[ fB(Ek,α ) − fB(Ek′,α′ )], (C3)

χ
(+)
λλ (q, ω) = 1

V

∑
k �=0,−q

∑
α=d,s

(
kx + k′

x

2m

)2[ (vk,αuk′,α′ )2 − uk,αuk′,α′vk,αvk′,α′

ω+ − (Ek′,α′ + Ek,α )
− (uk,αvk′,α′ )2 − uk,αuk′,α′vk,αvk′,α′

ω+ + (Ek′,α′ + Ek,α )

]

×[1 + fB(Ek,α ) + fB(Ek′,α′ )]. (C4)

Here, the label β takes β = d for λ = n (β = s for λ = s). In the case of χnn(q, ω), α′ is identical with α (α′ = α). On the
other hand, for the spin current response χss(q, ω), α′ denotes the mode opposite to α. Taking q = 0 in Eqs. (C1)–(C4), we can
reproduce Eq. (13).
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Equations (C1)–(C4) for χss(q, ω) show that the transverse limit and zero-frequency limit are commutable:

Re χss(qT → 0, 0) = Re χss(0, ω → +0) = − 4

3mV

∑
k �=0

(g↑↓n)2(εk )3

Ed (εk )Es(εk )

∑
ν=±

Fν (εk )

[Eν (εk )]3
, (C5)

where we used Ek,d �= Ek,s in the presence of the intercompo-
nent interaction (g↑↓ �= 0). By combining this with Eqs. (B1),
(B3), and (B4), our results with the Bogoliubov theory suggest
that the Drude and superfluid weights for spin are identical:

DD
s = DSF

s . (C6)

In contrast to the spin current response, χnn(q, ω) is sensi-
tive to the order of taking qT → 0 and ω → +0:

Re χnn(qT → 0, 0) = 1

V

∑
k �=0

∑
α

k2

3m2

∂ fB(Ek,α )

∂Ek,α

, (C7)

Re χnn(0, ω → +0) = 0. (C8)

This results from the fact that Ek′,α′ in Eqs. (C3) and (C4)
approaches Ek,α in the limit of q → 0 for the mass current
response with α′ = α. This sensitivity to the order of taking
limits is physically reasonable because Eq. (C7) together with
Eq. (B8c) leads to the normal fluid density [28]

ρNF = −2m

3V

∑
k �=0

∑
α

εk
∂ fB(Ek,α )

∂Ek,α

, (C9)

which is finite at T > 0, while Eq. (C8) is consistent with the
statement of the Kohn’s theorem [Eq. (B6)].

We next rederive the drag density ρ↑↓ for a Z2 symmetric
mixture. In terms of spin and mass current responses, the

drag density in Eq. (B8a) is given by ρ↑↓ = m2

4 [Re χnn(qT →
0, 0) − Re χss(qT → 0, 0)]. Substituting Eqs. (C5) and (C7)
into this yields [28]

ρ↑↓ = m

3V

∑
k �=0

(g↑↓n)2(εk )3

Ed (εk )Es(εk )

∑
ν=±

Fν (εk )

[Eν (εk )]3

+ m

6V

∑
k �=0

∑
α

εk
∂ fB(Ek,α )

∂Ek,α

. (C10)

In particular, the drag density at T = 0 is

ρ↑↓ = mn

2
√

2

√
na3z2F (z), (C11a)

F (z) = 256

45
√

2π

2 + 3
√

1 − z2

[
√

2(1 − z) + √
2(1 + z)]3

(C11b)

with z = a↑↓/a.
We finally note the longitudinal current responses within

the Bogoliubov theory. As pointed out in Ref. [35], it
has the shortcoming such that the exact sum rules are
explicitly broken. Such a shortcoming should be cured
by considering vertex corrections in a similar manner to
superconductors [48].
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