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Nonphononic vibrations originating from disordered structures have garnered significant attention as a funda-
mental feature of glasses that distinguishes them from crystals. Recently, we discovered that one-dimensional
(1D) stringlike vibrations without volume change are responsible for the boson peak in the reduced density
of states of two-dimensional (2D) glasses [Y.-C. Hu and H. Tanaka, Nat. Phys. 18, 669 (2022)]. Here we
investigate the vibrational properties of three-dimensional (3D) model glasses with isotropic repulsive and
attractive interactions and find that the boson peak arises from stringlike quasilocalized transverse vibrations
in these 3D systems. These results suggest that stringlike vibrations are the universal origin of the boson peak
in both 2D and 3D model glasses, as long as the interaction is isotropic. Furthermore, we confirm that the
characteristic frequency of the quasilocalized transverse vibrations, i.e., the boson peak frequency, coincides
with the Ioffe-Regel limit of transverse phonons. These results imply the boson peak originates from the
frequency-resonant scattering of transverse phonons by quasilocalized vibrations rather than phonon scattering
due to elastic inhomogeneity. Our findings provide insights into the origin of low-temperature glass anomalies
and inspire further research.

DOI: 10.1103/PhysRevResearch.5.023055

I. INTRODUCTION

Because of their disordered structures, glasses have vibra-
tional properties distinct from crystals in which only coherent
phonons are excited [1–3]. Despite the detailed structures of
glasses being different among various systems, they com-
monly exhibit an excess vibrational density of states (VDOS)
over the Debye prediction. The peak in the reduced VDOS,
D(ω)/ωd−1 (d: dimensionality) is widely known as the boson
peak [3–8]. These peculiar low-frequency vibrational prop-
erties have been thought of as the origin of the universal
low-temperature anomalies of the heat capacity and thermal
conductivity in a similar energy scale [3,9,10]. Various theo-
retical models [11–25] have been proposed in the past several
decades to explain the physical mechanism of the boson
peak, but with controversies. The importance of quasilocal-
ized modes (QLMs) has been pointed out by many researchers
(e.g., [10,26–30]). One of the significant difficulties comes
from the hybridization of QLMs with phonons, making iso-
lating the relevant vibration modes challenging [10,31,32].
For example, the participation ratio (PR) has often been
adopted to single out specific vibrational modes with a purely
quasilocalized nature [33,34]. However, this strategy is effec-
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tive only at a very low frequency below the first sound mode
frequency in the system. At higher frequencies, especially
around the boson peak frequency (ωBP), QLMs significantly
couple with phonons [9,10,26–30,35,36].

Another critical question is the roles of the transverse and
longitudinal vibrational excitations in building up the boson
peak. A clue has been provided by establishing a correlation
between ωBP and the Ioffe-Regel limit of transverse phonons
ωT

IR convincingly [37]. However, this situation may depend
on the type of interatomic interactions [38–41]. Beyond the
universality, the relationship of the boson peak’s nature with
the materials’ properties, such as the fragility and Poisson’s
ratio, has also been a matter of interest [42,43]. Decomposing
the vibrational modes at a specific frequency in real space is
essential to answer these questions.

We recently discovered that the boson peak originates from
purely transverse stringlike vibrations for two-dimensional
(2D) model glasses with isotropic potentials [36]. These
stringlike vibrations, which may be a consequence of the
hybridization of transverse phonons with QLMs [44–49],
involve no volume change. We directly detected them in
transverse dynamic structure factors ST(q, ω) (q: wave num-
ber) as a distinct q-independent peak around ωBP, in the q
range above the transverse Ioffe-Regel limit wave number
qT

IR. Therefore, we concluded that the stringlike quasilocalized
vibrations (QLVs) responsible for the boson peak are char-
acterized by the unique energy (frequency) rather than the
unique length [36,37]. Here we use the term QLV, which is
hybridized with phonons, to distinguish it from QLM.

A significant question arises about the dimensionality’s
effect on the origin of the boson peak. How the glass
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properties depend on dimensionality is one of the critical
issues in glass research. For example, the Mermin-Wagner
effects, long-wavelength fluctuations in 2D, strongly influence
the slow motion of particles [50–52]. For crystals, the Debye
theory has d dependence. The spatial dimensionality is also
critical theoretically since the fluctuation effects beyond the
mean-field theory depend on the distance from the critical
dimension [53–55]. More interestingly, the basic structure of
multipolar (quadrupolar in 2D) QLMs critically depends on
the dimension. They have different angular symmetry and
the decay exponent of long-range stress (r−d ) between two
and three dimensions [56–60]. The d dependence of the low-
frequency scaling laws of these QLMs is also a matter of
debate [33,34,61]. Moreover, three-dimensional (3D) glasses
are more relevant for understanding real-world glasses. These
indicate the critical importance of revealing the origin of the
boson peak in 3D glasses and its d dependence.

II. METHODS

A. Computer simulations

We study two different binary glass models in three di-
mensions by molecular dynamics simulations. In all our
simulations, periodic boundary conditions are imposed, and
NV T ensemble is employed. The reduced Lennard-Jones
units are used throughout the simulation and analysis. Fifty
independent simulations were performed for the ensemble
average.

One glass model interacts via the inverse power-law poten-
tial model (3DIPL):

Uαβ (r) = ε
(σαβ

r

)10
, (1)

where we set σAA = 1.0, σBB = 1.40, and σAB = 1.18 (α, β ∈
{A, B}) [62]. The composition is 50:50. All mass m and the
cohesive energy ε are set to 1.0. The potential and force are
truncated and shifted to zero at 1.48σαβ . We mainly study a
cubic system with N = 6750 atoms with a number density
of ρ = 0.82. The box length is Lx = Ly = Lz = 20.19. The
glass transition temperature has been measured to be Tg =
0.50 [62]. To obtain low-temperature glass states, we first melt
and equilibrate the sample at high temperatures T = 3.0 and
T = 1.0 for both t = 4000. Then the liquid is quenched to
T = 0.1 at a cooling rate of 10−3. The corresponding inherent
structures are achieved by the conjugate gradient algorithm,
after relaxing the glassy solids for a period of t = 2000.

In addition to the above cubic system, we also study two
other samples similarly (see the Appendix). One is cubic with
N = 1000 atoms to consider the finite-size effect. The other
is noncubic with N = 6750 and Lx = 67.30 while Ly = Lz =
10.77, so we can access lower frequency and lower wave
number information.

The other glass model is the Kob-Andersen model
(3DKA), in which the particles interact via

Uαβ (r) = 4εαβ

[(σαβ

r

)12
−

(σαβ

r

)6
]
, (2)

where α, β ∈ {A, B}, σAA = 1.0, σBB = 0.88, σAB = 0.8,
εAA = 1.0, εBB = 0.5, and εAB = 1.5 [63]. The potential and
force are truncated and shifted at r = 2.50σαβ . The composi-

tion is 80:20. We study a cubic system with N = 6750 atoms
with the number density of ρ = 1.20. The low-temperature
glass solids at T = 0.1 and their corresponding inherent struc-
tures are obtained by a procedure similar to the above. Unlike
the purely repulsive 3DIPL model, 3DKA includes long-range
attractive interactions.

B. Vibration analysis

We characterize the vibrational properties of the glasses
by directly diagonalizing the Hessian matrix of the inherent
structure [64–66]. No negative eigenvalue was found in any
of our samples. The dynamical matrix is generally given by

Di j = ∂2U

∂Ri∂Rj
, (3)

in which Ri is the coordinate (x, y, or z) of particle i. The
density of states is thus defined as

D(ω) = 1

3N − 3

∑
λ

δ(ω − ωλ). (4)

The participation ratio (PR) [9] of a vibrational mode is mea-
sured by

PR =
( ∑N

i |�ui|2
)2

N
∑N

i (�ui · �ui )2
. (5)

C. Dynamical structure factors

The transverse and longitudinal dynamical structure factors
ST(q, ω) and SL(q, ω) are calculated from the above normal
mode analysis [37]:

ST(q, ω) = kBT

M

q2

ω2

∑
λ

Eλ,T(q)δ(ω − ωλ) (6)

and

SL(q, ω) = kBT

M

q2

ω2

∑
λ

Eλ,L(q)δ(ω − ωλ), (7)

where for each mode λ

Eλ,T(q) =
∣∣∣∣∣
∑

j

[q̂ × �u j] exp(iq · Rj )

∣∣∣∣∣
2

(8)

and

Eλ,L(q) =
∣∣∣∣∣
∑

j

[q̂ · �u j] exp(iq · Rj )

∣∣∣∣∣
2

. (9)

Here, q̂ is the unit wave vector, and M is the particle effective
mass. For cubic samples, the dynamical structure factors are
averaged over different wave vectors with the same wave
number. For the noncubic samples, only the wave vectors
along the x axis are considered.

D. Vibrational mode decomposition

Each vibrational mode has been decomposed to the trans-
verse and longitudinal components using a volume matrix
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method [36,67]. A matrix A is firstly built as

Ai, jα = 1

Vi

∂Vi

∂Rjα
, (10)

where Vi is the local volume of particle i. Then an eigenvector
�u is projected to the transverse and longitudinal directions
as �uL = AT (AAT )−1A�u and �uT = �u − �uL. The local volume is
conserved for the transverse mode.

The vibrational density of states of transverse and longitu-
dinal components are thus calculated by

DT(ω) = 1

3N − 3

∑
λ

‖�uλ,T‖2δ(ω − ωλ) (11)

and

DL(ω) = 1

3N − 3

∑
λ

‖�uλ,L‖2δ(ω − ωλ). (12)

We also calculate the atomic transverse VDOS defined as

DT
i (ω) = 1

3N − 3

∑
λ

‖�uλ,T(i)‖2δ(ω − ωλ). (13)

The sum of DT
i (ω) over all particles gives the transverse D(ω).

Then, we calculate the intensity of the reduced VDOS for
particle i at ωx, DT

i (ωx )/ωx, as

DT
i (ωx )/ωx = 1

2ωx�ω

∫ ωx+�ω

ωx−�ω

DT
i (ω′)dω′. (14)

We choose �ω = 0.2 in this study, and other choices give
qualitatively the same results.

III. RESULTS AND DISCUSSION

We study the origin of the boson peak in 3D model glasses
by molecular dynamics simulations. We focus on two different
prototypical glass models with isotropic interactions; the 3D
versions of the 2D models used in our previous study [36]
(see Methods). The one model is an equimolar binary mixture
of the atoms interacting via the inverse power-law potential
(∼r−10; r: interparticle distance) (3DIPL) [62]. The other
is the classical Kob-Andersen binary system with attractive
long-range interactions (3DKA) [63]. Comparing these mod-
els helps us understand the role of interparticle attraction in
glass vibrations. We analyze the vibrational properties of the
low-temperature glass solids in their inherent states. We study
samples of cuboid and cubic shapes but mainly show results
from cubic samples, unless otherwise stated. We consider
3DIPL results in the main text and similar ones of 3DKA in
the Appendix.

A. The boson peak and dispersion relations

We first show the reduced VDOS of 3DIPL and 3DKA
in Figs. 1(a) and 1(c), respectively. From its log-normal de-
scription [68], we can clearly see the boson peak and estimate
ωBP. The skewed asymmetric shape of the boson peak may
be induced by the change in the spatial organization of the
QLVs with frequency (see [36] and below). We also calculate
the polarization-dependent dynamic structure factors Sα (q, ω)
(α = T or L) [36,37,69]. They are analyzed by fitting the
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FIG. 1. The boson peak and disper-
sion relations of the two systems. (a) The
reduced VDOS of 3DIPL from Hessian
(Full) and its transverse (HT) and longitu-
dinal components (HL). The low-frequency
spectrum of Full is fitted by a log-normal
function (red-dashed curve) while exclud-
ing the phononic peak contributions. The
peak frequency gives ωBP. (b) The disper-
sion relations of 3DIPL. The red-dashed
lines mark the Ioffe-Regel wave number
qT

IR and frequency ωT
IR of the transverse

phonons. The blue-dot-dashed lines give
qL

IR and ωL
IR of the longitudinal phonons.

The solid lines are fits to �α ∼ cαq and
π�α ∼ γαq2 (α ∈ {T, L}). (c) and (d) show
the same quantities as in (a) and (b), respec-
tively, for 3DKA.

023055-3



YUAN-CHAO HU AND HAJIME TANAKA PHYSICAL REVIEW RESEARCH 5, 023055 (2023)

TABLE I. Characteristic parameters of the two glass systems studied.

Model ωBP ωT
IR qT

IR ωL
IR qL

IR cT cL γT γL K G ω
phonon
min,T ω

phonon
min,L

3DIPL 2.46 2.55 0.63 11.93 1.05 4.23 11.36 6.66 10.65 88.46 14.08 1.18 3.50
3DKA 2.41 2.41 0.65 6.04 0.70 3.94 9.11 6.01 12.36 65.31 17.85 1.23 2.87

damped harmonic oscillator (DHO) model,

Sα (q, ω) ∝ �2
α�α(

ω2 − �2
α

)2 + ω2�2
α

, (15)

in which �α is the excitation frequency and �α gives the
sound attenuation rate. In Figs. 1(b) and 1(d), we show the
dispersion relations for 3DIPL and 3DKA, respectively. In
this low-q range, �α is linear with q, and its slope gives the
sound velocity cα . The estimated sound velocities are com-
pared with cT = √

G/ρ and cL = √
(K + 4G/3)/ρ, which are

independently estimated from the macroscopic shear modulus
G and bulk modulus K (ρ: number density). The minimal
frequencies of transverse phonons (ωphonon

min,T ) and longitudinal

phonons (ωphonon
min,L ) due to the finite box size are also measured

accordingly. Note that the box length determines the minimum
frequency of phonons propagating in a simulation box. On
the other hand, π�α obeys the quadratic law as γαq2, where
γα is the damping coefficient. We note that our system size
is too small to access the low-frequency Rayleigh damping
regime [29,70]. The condition

�α (q) = π�α (q) (16)

gives the corresponding Ioffe-Regel limit frequency ωα
IR and

wave number qα
IR for transverse (α = T) and longitudinal

(α = L) modes [71]. The values of these quantities are sum-
marized in Table I.

The dispersion relations vividly show a remarkable dif-
ference between the two systems. In 3DIPL, ωT

IR and qT
IR

are quite different from ωL
IR and qL

IR, respectively. On the
contrary, their differences are much smaller in 3DKA. This
difference should result mainly from the much larger damp-
ing coefficient ratio γL/γT for 3DKA than for 3DIPL. Their
sound velocities and elastic properties are also different, but
with less amount. For 3DKA with long-range attractions, the
sample is more shear resistant and less compression tolerant.
Therefore, we can conclude that these two systems have very
different mechanical properties, indicating that the attractive
interactions significantly affect the macroscopic mechanical
properties of glasses. Nevertheless, their ωBP is very close
to each other. More importantly, we can easily confirm that
ωBP � ωT

IR < ωL
IR [37]. This indicates that the boson peak is

closely related to the transverse modes, not the longitudinal
ones. Above ωBP, transverse phonons are strongly scattered
and can no longer propagate, while longitudinal phonons can
propagate normally.

B. Longitudinal-transverse mode decomposition

To reveal the transverse and longitudinal modes in real
space and characterize the atomic-scale features, we employ
a volume matrix method developed by Beltukov et al. [67]
(see Methods for the details). By definition, transverse modes

do not involve volume change, whereas longitudinal modes
do. Based on this feature, we decompose each eigenmode �u
into the transverse (T) component �uT and longitudinal (L)
component �uL: �u = �uT + �uL and ‖�u‖2 = ‖�uT‖2 + ‖�uL‖2 =
1.0. A typical example of independent low-frequency multi-
polar QLM (ω < ω

phonon
min,T ) and its T-L mode decompositions

are shown in the Appendix (Fig. 6). Its key feature is the core
with remarkable longitudinal components, i.e., volumetric vi-
brations (note that their ω � ω

phonon
min,L ).

With this method, we decompose each eigenmode in
the full frequency spectrum into transverse and longitudi-
nal ones and calculate the reduced VDOS for the transverse
modes [DT(ω)/ω2] and the longitudinal modes [DL(ω)/ω2].
We show the results of 3DIPL and 3DKA in Figs. 1(a)
and 1(c), respectively. Remarkably, the VDOS of each system
is dominated by the transverse component. The longitudinal
component has a much weaker intensity than the transverse
one and the almost ω-independent intensity, i.e., Debye be-
havior. Thus, we may conclude that the boson peak has a
purely transverse nature, consistent with the above finding of
ωBP � ωT

IR.
Furthermore, we calculate the participation ratio PR and

its transverse and longitudinal components for each vibration
mode. We illustrate the frequency dependence of these PR’s
in the entire frequency range in Fig. 2. Figure 2(a) displays
the full modes, showing general glassy solids’ general charac-
teristics. We can see that ωBP is higher than the phononic peak
frequencies and lower than ωL

IR, but coincides with ωT
IR. More

importantly, the transverse modes in Fig. 2(b) show features
quite similar to the full modes, especially in the low-frequency
range. In contrast, the longitudinal modes in Fig. 2(c) display
features distinct from the full modes in the low-frequency
range. The common features among the three modes are the
PR plateau at intermediate frequencies and the “Anderson
localization” at very high frequencies. All these features are
pretty similar to the 2D glasses [36].

The first two obvious phononic peaks from the full modes
[Fig. 2(a)] are the contribution of the transverse components.
Significantly, the first phononic peak frequency in transverse
modes [Fig. 2(b)] coincides with ω

phonon
min,T that is indepen-

dently determined from the dispersion relations. The first
phononic peak in longitudinal modes [Fig. 2(c)] also coin-
cides with ω

phonon
min,L . These results confirm the validity of our

real-space mode decomposition, consistent with the usual
reciprocal-space one. The relationship among these charac-
teristic frequencies can be summarized as follows:

ω
phonon
min,T < ωBP � ωT

IR < ω
phonon
min,L < ωL

IR. (17)

Here we emphasize that ω
phonon
min,L > ωBP, and thus the boson

peak is free from longitudinal phonons. The longitudinal com-
ponent of D(ω)/ω2 [see Figs. 1(a) and 1(c)] comes from
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FIG. 2. Participation ratios and characteristic frequencies of 3DIPL. (a) All full eigenmodes. (b) The corresponding transverse modes.
(c) The corresponding longitudinal modes. Here the transverse-longitudinal decomposition is made in real space [67] (see Appendix).

quasilocalized longitudinal vibrations, whose degree of delo-
calization (i.e., PR) increases with ω (see Fig. 2).

An additional interesting point is the coincidence of the
lowest frequency peak of the longitudinal component in
Fig. 2(c) with ω

phonon
min,T . This indicates the strong hybridization

of the transverse phonons with a multipolar QLM, giving rise
to the longitudinal component through their core’s longitudi-
nal vibrations. We can confirm that multipolar QLMs have
longitudinal vibrations in their cores (see, e.g., Fig. 3). Thus,
the absence of the boson peak in the longitudinal component
of D(ω)/ω2 in Figs. 1(a) and 1(c) indicates the negligible
contribution of the longitudinal core vibrations of multipolar
QLMs to the boson peak. We note that this finding can be
made only through the T-L mode decomposition of the vibra-
tional modes of glasses.

C. q-dependent dynamical structure factors

Now, we focus on the nature of the vibrations responsible
for the boson peak. To this end, we measure the dynamic
structure factors in a much broader q range, even above the
pseudo-Brillouin zone boundary. We show typical results of
these transverse and longitudinal dynamic structure factors in
Fig. 4 for cuboid samples of 3DIPL (see also Fig. 7 in the
Appendix). Only in this sample geometry can we access lower
q. Similar results of the cubic samples for both systems are

shown in the Appendix. We confirm the negligible effects of
the sample shape and system size on the boson peak, elastic-
ity, and dispersion relations (see the Appendix). Figures 4(a)
and 4(b) show 1D and 2D plots of ST(q, ω), in which a sub-
peak around ωBP increases its intensity at a constant frequency
with increasing q. This suggests that the “localized” transverse
vibrations giving rise to this peak, which is characterized by
the frequency and not by the wave number, is the origin of the
boson peak. Similar to the 2D glasses [36], the full spectrum is
well described by combining the DHO model for the phononic
part and a log-normal function [68] for the nondispersive
QLVs:

ST(q, ω) ∝ �2
T�T(

ω2 − �2
T

)2 + ω2�2
T

+ e−(ln ω−μ)2/2σ 2

ωσ
√

2π
, (18)

where the variables other than ω are fitting parameters. The
individual contribution of these two functions to ST(q, ω) is
demonstrated in Fig. 4(a). In contrast, such subpeak behavior
is absent from SL(q, ω), as shown in Fig. 4(c). Instead, the
full spectrum is well described by the sum of the Lorentzian
function for the quasielastic component and the DHO model
for longitudinal phonons

SL(q, ω) ∝ 1

π

γ

ω2 + γ 2
+ �2

L�L(
ω2 − �2

L

)2 + ω2�2
L

, (19)

FIG. 3. Visualization of a low-frequency mode at ω
phonon
min,T of 3DIPL. (a) Full eigenmode field �u with PR = 0.019. (b) The transverse

component �uT of (a) (‖�uT‖2 = 0.899). (c) The longitudinal component �uL of (a) (‖�uL‖2 = 0.101). For comparison, the vectors of the atoms
belonging to the longitudinal core are shown in yellow in (a)–(c).
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FIG. 4. Dynamic structure factors of the non-cubic-shape 3DIPL glasses. (a) and (b) are 1D and 2D plots of ST(q, ω). The red and orange
solid vertical lines in (a) and (b) indicate ωBP. The solid gray curves are fits to Eq. (18). The blue dotted and the purple dashed curves are the
log-normal and phononic parts at q = 2.427 (a). (c) and (d) are 1D and 2D plots of SL(q, ω). (c) shares the same legend as (a). The solid gray
curves are fits to Eq. (19).

where the variables other than ω are fitting parameters. The
steep decay from the quasi-elastic-component intensity at very
low frequencies is due to the longitudinal phonons being ab-
sent. Examples of Sα (q, ω) at lower q range are shown in the
Appendix (Fig. 7). These results suggest the emergence of the
boson peak from the transverse QLVs in our systems.

D. Spatial patterns of QLVs

Benefiting from the T-L mode decomposition, we calculate
the atomic-scale transverse reduced VDOS DT

i (ωx )/ω2
x at dif-

ferent frequencies ωx (see Methods). This strategy allows us
to identify the spatial distribution of the atoms that have sub-
stantial contributions to DT

i (ωx )/ω2
x , especially around ωBP.

Here we consider the top 5% at each ωx to compare the core
features of these QLMs. We note that the results shown below
are insensitive to how to select the most active particles. We
find that the structure of the QLVs strongly depends on the
frequency, as it should. At very low frequencies below the first
sound mode, the QLVs exhibit multipolar structures with large
cores [Figs. 5(a) and 3], reminiscent of multipolar QLMs. On
the other hand, around ωBP, the QLVs show 1D stringlike
structures [Fig. 5(b)] [47–49,72]. They become shorter strings

and then almost single atoms with increasing the frequencies
[Fig. 5(c)]. The gradual dying away of strings with ω is prob-
ably responsible for the log-normal asymmetric shape of the
boson peak in Figs. 1(a) and 1(c). We note that the fact that
the selection of the top 5% of particles yields multipolar and
stringlike QLVs in an ω-dependent manner is not just a coinci-
dence but the inevitable consequence of (quasi-)localizations
of the key vibrational modes. Furthermore, the string-length
distribution shows the exponential decay [49], as found in 2D
systems [36], another d-independent universal feature.

E. Generality of our findings in 3D glass-forming systems
with isotropic interactions

In the Appendix, we show the results for the 3DKA sys-
tem to see the generality of our findings to a system with
long-range attraction. As shown below, all the essential fea-
tures are shared between the 3DIPL and 3DKA systems,
suggesting the generality of our findings to glass-forming
systems irrespective of the dimensionality (at least 2D and
3D) as long as the interaction potential is isotropic.
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FIG. 5. Microscopic structural
features of the QLMs of 3DIPL. For
(a)–(c), the shown atoms are the top 5% of
DT

i (ωx )/ω2
x averaged over the frequency

range of ωx ± 0.2, where ωx is 1.1, 2.5
(∼ωBP), and 4.0, respectively. The atoms
are colored by cluster analysis. (d) The
probability distribution of the string
lengths around ωBP. The cluster analysis
and bond generation are based on the pair
distances at the first minima of the partial
pair correlation functions.

IV. SUMMARY AND OUTLOOK

In summary, we unveil that the boson peak originates from
stringlike transverse vibrations by simulating two popular
glass models with isotropic interactions in three dimensions.
These QLVs give rise to an additional peak at the boson peak
frequency besides a phonon peak in the transverse dynamic
structure factor at high q. The boson peak appears at the
crossover frequency of transverse phonons from propagat-
ing to overdamped, i.e., at the transverse Ioffe-Regel limit.
This is because when the frequency of the transverse phonon
resonates with the frequency of the stringlike vibrations, its
scattering cross section also resonantly increases. The atomic
vibrations responsible for the boson peak show 1D stringlike
structures in 3D space. These features we found in 3D glasses
are the same as in 2D glasses, indicating the universal 1D
nature of QLVs, independent of the spatial dimensionality d .

We also show that our findings are general to glass-forming
systems with repulsive and attractive interactions irrespective
of the dimensionality as long as the interaction is isotropic
(see Ref. [36] for 2D systems and the Appendix for the 3DKA
with attractive interaction). It suggests that amorphous “de-
fects” responsible for high-frequency local vibrations come
from the same structural feature for both repulsive and at-
tractive systems. A similar conclusion has recently been
derived for the slow structural relaxation of glass-forming
systems [73,74]. These facts imply that the dynamics of glass-
forming liquids and their glass state from the slowest to fastest
may be described based on the common structural feature (or,
order parameter [75]). This point needs further studies.

Our study also indicates the two types of quasilocalized
vibrations in glasses: Multipolar QLMs and stringlike QLVs.
The former has been considered the origin of the boson peak
for a long time, e.g., in the soft potential model. However,
our results have indicated, at least apparently, that the latter is
responsible for the boson peak. Multipolar QLMs have lon-
gitudinal vibrations in their cores at least at low frequencies
[see Fig. 3(c)] and accompany space-spanning power-law-
decaying strain fields whose angular symmetry and power-law
exponent depend on d (see, e.g., [10] for review). On the
other hand, stringlike QLVs, coherent vibrations of a chain
of particles weakly bound to the surroundings, have a purely
transverse and 1D nature independent of d . These unique
features of stringlike QLVs not only indicate the d-
independent universal origin of the boson peak (at least for
d = 2 and 3 with practical importance) but also explain the
purely transverse nature of the boson peak in glasses with
isotropic interactions. We speculate that because of the lo-
cality and transverse (volume-inactive) nature, such chainlike
vibrations can be most efficiently and abundantly excited in
dense disordered systems. The origin of stringlike QLVs,
including the relationship with multipolar QLMs, remains a
challenging problem due to their hybridization with phonons
and thus needs further study.

Here, we also mention the phonon scattering mechanism.
The coincidence of the boson peak and the Ioffe-Regel limit of
transverse phonons and the wave-number-independent peak
frequency of the localized peak in the transverse dynamic
structure factor [Fig. 4(b)] seems to suggest the frequency-
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FIG. 6. Visualization of a low-
frequency multipolar QLM of 3DIPL.
(a) Full eigenmode field �u at the fre-
quency ω = 0.947 and the participation
ratio PR = 0.012. (b) The transverse
component �uT of (a) (‖�uT‖2 = 0.887).
(c) The longitudinal component �uL

of (a) (‖�uL‖2 = 0.113). Other modes,
including those from 3DKA, show
similar features.
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FIG. 7. Dynamical structure factors of
noncubic shape 3DIPL. These figures sup-
plement Fig. 4 in the main text to show
the results in a lower q range. (a) Trans-
verse S(q, ω). The solid gray lines are fits
to Eq. (18) in the main text. The blue dotted
and the purple dashed curves are the log-
normal and phononic parts, respectively, at
q = 1.400. (b) Longitudinal S(q, ω). The
solid gray lines are fits to Eq. (19) in the
main text.

resonant scattering of transverse phonons by quasilocalized
transverse modes rather than the scattering due to spatial
elastic heterogeneity. These points need further study to be
clarified.

In this study, we focus on 3D systems with isotropic inter-
actions in which the transverse modes are not directly coupled
with the longitudinal ones. Thus, we find the dominant contri-
bution of the boson peak from transverse modes. However,
this situation may depend on the structural characteristics
of glassy materials controlled by the underlying interatomic
potentials. The question of how the transverse-longitudinal
coupling affects the boson peak of tetrahedral glasses, such
as silica [69], silicon, and water, remains an interesting ques-
tion for future study. Experimental access to longitudinal and
transverse dynamic structure factors over a broad q-ω range is
highly desirable.
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APPENDIX

In this Appendix, we show additional results of 3DIPL
(Figs. 6–11). We calculated the transverse and longitudinal
dynamical structure factors at the ultrawide frequency and
wave-number ranges for different system sizes (N = 6750
vs N = 1000) and different simulation box shapes (cubic vs

noncubic). They all show consistent behaviors, which demon-
strates the robustness of our analysis.

Furthermore, we present the results of 3DKA with
long-range Lennard-Jones interaction. We performed com-
prehensive analyses similar to 3DKA (Figs. 12–15). These
results verify that the origin of the boson peak in glasses is the
same between 3D glass-forming systems with repulsive and
attractive interactions as long as the interactions are isotropic.

FIG. 8. Relationship between the longitudinal component ‖�uL‖2

and the participation ratio PR for vibration modes at ω
phonon
min,T of

3DIPL. We pick up the vibration mode with the largest ‖�uL‖2 for
each sample. In general, they are negatively correlated. The larger
PR of the mode indicates the higher similarity to a pure transverse
phonon. Thus, the coupling strength shall be weaker for smaller
‖�uL‖2.
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FIG. 9. The static structure factors of 3DIPL (a) and
3DKA (b), respectively.
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FIG. 10. Dynamical structure factors of 3DIPL with N =
1000 and cubic shape. (a) Transverse modes. The solid red line
represents ωBP. The solid gray lines in (a) are fits to Eq. (18) in
the main text. The blue dotted and purple dashed lines are the
log-normal and phononic parts for q = 1.845. (b) Longitudinal
modes at the same q as in (a).
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FIG. 11. Dynamical structure factors of 3DIPL with N =
6750 and cubic shape. (a) and (b) are for transverse modes.
The solid red line represents ωBP. The solid gray lines in (a) are
fits to Eq. (18) in the main text. The blue dotted line and the
purple dashed line are the log-normal and the phononic parts
for q = 1.078. (c) and (d) are for longitudinal modes. (c) and
(d) share the legend with (a) and (b), respectively. The solid
gray lines in (c) are fits to Eq. (19) in the main text.

(a) (b) (c)

FIG. 12. Visualization of a low-frequency multi-
polar QLM of 3DKA. (a) Full eigenmode field �u
at the frequency ω = 0.908 and the participation ra-
tio PR = 0.002. (b) The transverse component �uT of
(a) (‖�uT‖2 = 0.841). (c) The longitudinal component
�uL of (a) (‖�uL‖2 = 0.159).
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FIG. 13. Participation ratios and
characteristic frequencies of 3DKA. (a)
All full eigenmodes. (b) The corres-
ponding transverse modes. (c) The
corresponding longitudinal modes.
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FIG. 14. Dynamical structure factors of 3DKA.
(a) and (b) are for transverse modes. The solid red line
represents ωBP. The solid gray lines in (a) are fits to
Eq. (18) in the main text. The blue dotted and purple
dashed lines are the log-normal and phononic parts
for q = 1.117. (c) and (d) are for longitudinal modes.
(c) and (d) share the legend with (a) and (b), respec-
tively. The solid gray lines in (c) are fits to Eq. (19) in
the main text.

023055-10



UNIVERSALITY OF STRINGLET EXCITATIONS AS THE … PHYSICAL REVIEW RESEARCH 5, 023055 (2023)

5 10 15 20 25
string size

10 3

10 2

10 1

pr
ob

ab
ili

ty

(a) (b)

(c) (d)

FIG. 15. Atomic-scale features of the quasilocalized modes of 3DKA. For (a), (b), and (c), the shown atoms are the top 5% of Di
T(ωx )/ω2

x ,
where ωx is 1.1, 2.4 (∼ωBP), and 4.0, respectively. (d) The probability distribution of the string lengths around ωBP. The bonds are generated
based on the first minima of the partial pair correlation functions.
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