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Vibronic excitations in resonant inelastic x-ray scattering spectra of K2RuCl6
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We present the fingerprints of the dynamic Jahn-Teller effect in resonant inelastic x-ray scattering (RIXS)
spectra of K2RuCl6. We determined the dynamic Jahn-Teller model Hamiltonian of an embedded Ru4+ ion using
post-Hartree-Fock methods, and derived the vibronic states by numerically diagonalizing the Hamiltonian. With
the obtained vibronic states, we reproduced the RIXS spectra. The shape and the temperature dependence of the
RIXS spectrum agree well with the experimental data. We found that some peaks emerge due to the dynamic
Jahn-Teller effect rather than the crystal-field splitting. Our paper indicates the significance of the Jahn-Teller
coupling to adequately interpret RIXS spectra.
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I. INTRODUCTION

Spin-orbit Mott insulators with heavy transition-metal ions
exhibit diverse quantum phenomena [1–4]. A counterintuitive
excitonic magnetic phase could emerge in compounds with
nonmagnetic t4

2g ions [5]. A heavy t4
2g ion embedded in an

octahedral environment has a nonmagnetic J = 0 ground state
induced by strong spin-orbit (SO) coupling, whereas suffi-
ciently strong exchange interaction between neighboring ions
mixes the J = 0 and excited magnetic J = 1 multiplet states,
and the admixed magnetic quantum states may condensate.
The excitonic magnetism was attributed to the origin of the an-
tiferromagnetism in Ca2RuO4 with a corner-shared structure.
In the excitonic magnetic phase close to the quantum criti-
cal point, amplitude fluctuation of magnetic moments (Higgs
mode) develops, which was indeed observed in the spin-wave
excitation of the compound [6,7]. This theory predicts that
different types of magnetism emerge in other lattices with
edge-shared octahedra; zigzag one-dimensional magnetic or-
der and the bosonic Kitaev spin liquid phase in the honeycomb
lattice [5,8].

Experimental exploration of the excitonic magnetism in
materials with edge-shared octahedra is underway. Early at-
tempts towards the realization of the excitonic magnetism in
Ir5+ double perovskites were prevented by too strong spin-
orbit coupling compared with the intersite exchange interac-
tion [9–11]. This situation leads researchers to investigate 4d4

compounds with weaker spin-orbit coupling than 5d4 com-
pounds: the investigated compounds contain a honeycomb-
layered ruthenate Ag3LiRu2O6 [12], and a cubic antifluorite
K2RuCl6 [Fig. 1(a)] [13]. In the former compound, three
nonmagnetic phases arise under ambient and high-pressure
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conditions, whereas the excitonic magnetism does not de-
velop [12]. The latter is a Van Vleck-type diamagnetic
material [14,15], whereas the exchange interaction between
Ru sites is tiny in ambient pressure according to the dis-
persionless Ru L3 resonant inelastic x-ray scattering (RIXS)
spectra [Fig. 1(d)] [13].

An important factor controlling the magnetism in the
4d4 systems is the electron-phonon (vibronic) coupling. In
Ca2RuO4, the vibronic coupling between the J = 0 and
the excited states causes the development of the pseudo-
Jahn-Teller (JT) deformation [16,17], which triggers the
development of the spin-nematic phase above the magnetic
transition [18]. In Ag3LiRu2O6, the pseudo-JT effect sta-
bilizes a singlet dimer phase, preventing the emergence of
excitonic magnetism [12].

The vibronic coupling can give a significant influence
on the energy spectrum of Ru ion in K2RuCl6 [13]. In the
compound, the spin-orbit coupling (λ = 103 meV) extracted
from the RIXS spectra is largely reduced compared with
λ = 167 meV from the magnetic susceptibility data [15] and
λ = 150 meV in α-RuCl3 [19]. Takahashi et al. attributed the
large reduction of the spin-orbit coupling to the dynamic JT
stabilization of the J = 1 states [13], whereas the magnitude
of the vibronic coupling and the impact of the dynamic JT
effect on RIXS spectra remain unclear.

In this paper, we prove the existence of the dynamic JT
effect on the Ru sites in K2RuCl6 and elucidate its fingerprints
in the RIXS spectra based on ab initio calculations. We derive
a microscopic vibronic model of a Ru site with post-Hartree-
Fock calculations, and numerically diagonalize the vibronic
Hamiltonian. With the obtained vibronic states, we simulate
the RIXS spectra of K2RuCl6.

II. THEORY

A. Model Hamiltonian for t2g orbitals

Let us set up our model for the RIXS in K2RuCl6.
This compound is a face-centered cubic crystal consisting
of RuCl2−

6 octahedra [Fig. 1(a)]. In each octahedron, ligand
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FIG. 1. Crystal structure of K2RuCl6 and the experimental RIXS
spectra. (a) Conventional cell of K2RuCl6. The blue, red, and green
spheres are Ru, Cl, and K, respectively. The JT active (b) Egu
(3z2 − r2) and (c) Egv (x2 − y2) modes. (d) Experimental RIXS
spectra at 25 K (red circles) and 300 K (green open triangles) taken
from Ref. [13]. We took the data with the momentum transfer of the
light being (hkl ) = (0.19, 0.19, 0.19).

field splits the 4d orbitals into a doublet (eg) and a triplet
(t2g), and the four 4d electrons populate the t2g orbitals [20].
On each site, the electrons feel Coulomb, spin-orbit, and
electron-phonon (vibronic) couplings, and the interplay of
these interactions determines the local quantum states. The
low-lying RIXS spectra display no variation with respect to
the crystal momentum, suggesting that the intersite interac-
tions between the neighboring octahedra are negligible [13].

The model Hamiltonian for the embedded t4
2g ion consists

of Coulomb ĤC, spin-orbit ĤSO (Secs. 2.3.2 and 7.1.2 in
Ref. [20]), vibronic ĤJT (Sec. 3.3 in Ref. [21], Sec. 3.3.2 in
Ref. [16]) interactions, and harmonic-oscillator Hamiltonian
for the JT active modes Ĥvib,

Ĥ =ĤC + ĤSO + ĤJT + Ĥvib, (1)

ĤC =
∑

γ

Un̂γ↑n̂γ↓ +
∑
γ<γ ′

∑
σσ ′

(U − 2JH )n̂γ σ n̂γ ′σ ′

+
∑
γ �=γ ′

JH d̂†
γ↑d̂†

γ↓d̂γ ′↓d̂γ ′↑

+
∑
γ<γ ′

∑
σσ ′

JH d̂†
γ σ d̂†

γ ′σ ′ d̂γ σ ′ d̂γ ′σ , (2)

ĤSO =
∑
γ σ

∑
γ ′σ ′

λ〈γ σ |l̂ · ŝ|γ ′σ ′〉d̂†
γ σ d̂γ ′σ ′ , (3)

ĤJT =
∑

σ

V

[
n̂yz,σ

(
−1

2
Q̂u +

√
3

2
Q̂v

)

+ n̂zx,σ

(
−1

2
Q̂u −

√
3

2
Q̂v

)
+ n̂xy,σ Q̂u

]
, (4)

Ĥvib =
∑

γ=u,v

1

2

(
P̂2

γ + ω2Q̂2
γ

)
. (5)

Here d̂†
γ σ and d̂γ σ are, respectively, electron creation and

annihilation operators in orbital γ (γ = yz, zx, xy) with spin
projection σ , n̂γ σ = d̂†

γ σ d̂γ σ the electron number operator, l̂
the t2g orbital angular momenta ( 7.1.1 in Ref. [20]), ŝ the spin
angular momenta, Q̂γ the mass-weighted normal coordinates
(Sec. 10.1 in Ref. [22]), P̂γ the conjugate momenta, and U ,
JH , λ, V , and ω are, respectively, the Coulomb, Hund’s rule,
spin-orbit, vibronic coupling parameters, and frequency. To
obtain Eq. (2), we used the Slater-Condon integrals (Sec. 2.3.6
in Ref. [20]). For the JT active modes, see Figs. 1(b) and 1(c).

Since the t2g orbitals are more than half-filled, we intro-
duce hole operators. The hole creation d̃† and annihilation d̃
operators are, respectively,

d̂†
γ σ = (−1)s+σ d̃γ ,−σ , d̂γ σ = (−1)s+σ d̃†

γ ,−σ . (6)

The vacuum state corresponds to the t6
2g electron configura-

tion. The Coulomb interaction for the holes remains the same
as Eq. (2) except for a constant term. We obtain it by replacing
the d̂ (d̂†) with d̃ (d̃†) and using the constraint on the number
of the holes per site,

∑
γ σ d̃†

γ σ d̃γ σ = ∑
γ σ ñγ σ = 2. Similarly,

by using Eq. (6), ĤSO and ĤJT remain the same form with an
opposite sign (the Appendix).

We also introduce dimensionless coordinates q̂ and mo-
menta p̂,

Q̂γ =
√

h̄

2ω
q̂γ , P̂γ =

√
h̄ω

2
p̂γ . (7)

With q̂ and p̂ and the hole operators (6), the vibronic coupling
and harmonic-oscillator Hamiltonian become, respectively,

H̃JT =
∑

σ

−h̄ωg

[
ñyz,σ

(
−1

2
q̂u +

√
3

2
q̂v

)

+ ñzx,σ

(
−1

2
q̂u −

√
3

2
q̂v

)
+ ñxy,σ q̂u

]
, (8)

Ĥvib =
∑

γ=u,v

h̄ω

2

(
p̂2

γ + q̂2
γ

)
. (9)

Here g stands for the dimensionless vibronic coupling param-
eter defined by

g = V√
h̄ω3

. (10)

Now we diagonalize the interactions in the descend-
ing order of the energy scale. The Coulomb interaction
splits the t2

2g hole configurations into four terms, 3T1 ⊕ 1E ⊕
1T2 ⊕ 1A1 (The term energies are, respectively, U − 3JH , U −
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JH , U − JH , and U + 2JH . See Sec. 2.3.2 in Ref. [20]). Since
each representation appears once, we can uniquely determine
the term states as

| [S]
� γ MS〉 = 1√

2!

∑
γ1σ1

∑
γ2σ2

d̃†
γ1σ1

d̃†
γ2σ2

|0〉

× (t2γ1, t2γ2|�γ )(sσ1, sσ2|SMS ), (11)

where (t2γ1, t2γ2|�γ ) and (sσ1, sσ2|SMS ) are the
Clebsch-Gordan coefficients [23,24], and [S] = 2S + 1.
Using the term states (11) as the basis, the Coulomb
Hamiltonian is

ĤC = 2JH (P̂1E + P̂1T2
) + 5JH P̂1A1

, (12)

with P̂[S]� = ∑
γ MS

| [S]� γ MS〉〈 [S]� γ MS|. In Eq. (12), we set
the 3T1 term energy to zero.

The spin-orbit coupling splits the [S]� terms into multiplet
states. ĤSO linearly couple to the 3T1 term states, and the latter
become J = 0 (A1), J = 1 (T1), and J = 2 (E ⊕ T2) multiplet
states,

|JMJ〉 =
∑
γ MS

|3T1γ MS〉(t1γ , t1MS|JMJ ). (13)

Using the |JMJ〉 and the spin singlet 1� terms (� = E , T2, A1)
as the basis for ĤSO, we obtain

ĤSO =λ

[
− P̂J=0 − 1

2
P̂J=1 + 1

2
P̂J=2

− i
√

2
(|J = 0〉〈1A1| − |1A1〉〈J = 0|)

+
∑

�=E ,T2

∑
γ

i√
2

(|�γ 〉〈 1
� γ | − | 1

� γ 〉〈�γ |)
]
.

(14)

Here P̂J = ∑J
MJ=−J |JMJ〉〈JMJ |. The second and third lines in

Eq. (14) are the interactions between the J = 0 (A1) multiplet
and the 1A1 term and between the J = 2 (E ⊕ T2) multiplet
and the 1E ⊕ 1T2 terms.

The spin-orbit multiplet energy levels [the energy eigen-
states of ĤC + ĤSO] are as follows:

EA1 = 1
2

(
5JH − λ −

√
25J2

H + 10JHλ + 9λ2
)
,

ET1 = − 1
2λ,

EE/T2 = 1
4

(
4JH + λ −

√
16J2

H − 8JHλ + 9λ2
)
,

E 1E / 1T2
= 1

4

(
4JH + λ +

√
16J2

H − 8JHλ + 9λ2
)
,

E 1A1
= 1

2

(
5JH − λ +

√
25J2

H + 10JHλ + 9λ2
)

(15)

The 1E , 1T2, and 1A1 states are no longer pure term states (11),
whereas we continue using the same symbols.

The JT interaction is active in orbitally degenerate terms.
In the 3T1 term, the orbital part of the vibronic interaction is

−h̄ωg

[(
−1

2
q̂u +

√
3

2
q̂v

)
| 3T1x〉〈 3T1x| +

(
−1

2
q̂u −

√
3

2
q̂v

)
| 3T1y〉〈 3T1y| + q̂u| 3T1z〉〈 3T1z|

]
. (16)

Transforming the 3T1 term into the spin-orbit multiplet states (13), Eq. (16) reduces to

−h̄ωg

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 − 1√
2
q̂v − 1√

2
q̂u 0 0 0

0 − 1
4 q̂u +

√
3

4 q̂v 0 0 0 0 − 3
4 q̂u −

√
3

4 q̂v 0 0

0 0 − 1
4 q̂u −

√
3

4 q̂v 0 0 0 0 3
4 q̂u −

√
3

4 q̂v 0

0 0 0 1
2 q̂u 0 0 0 0

√
3

2 q̂v

− 1√
2
q̂v 0 0 0 1

2 q̂u
1
2 q̂v 0 0 0

− 1√
2
q̂u 0 0 0 1

2 q̂v − 1
2 q̂u 0 0 0

0 − 3
4 q̂u −

√
3

4 q̂v 0 0 0 0 − 1
4 q̂u +

√
3

4 q̂v 0 0

0 0 3
4 q̂u −

√
3

4 q̂v 0 0 0 0 − 1
4 q̂u −

√
3

4 q̂v 0

0 0 0
√

3
2 q̂v 0 0 0 0 1

2 q̂u

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(17)

in the increasing order of J [J = 0, J = 1 (x, y, z), E (u, v), and T2 (yz, zx, xy) from J = 2]. Equation (17) consists of the
(A ⊕ E ) ⊗ E and the (T1 ⊕ T2) ⊗ E JT interaction blocks. The diagonal blocks of Eq. (17) indicate that the spin-orbit coupling
quenches the vibronic coupling by half in comparison with Eq. (8).
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The vibronic coupling is active within the 1E ⊕ 1T2 terms too. The JT Hamiltonian matrix for the terms is

−h̄ωg

⎛
⎜⎜⎜⎜⎜⎝

q̂u −q̂v 0 0 0
−q̂v −q̂u 0 0 0

0 0 1
2 q̂u −

√
3

2 q̂v 0 0

0 0 0 1
2 q̂u +

√
3

2 q̂v 0
0 0 0 0 −q̂u

⎞
⎟⎟⎟⎟⎟⎠, (18)

in the order of 1E (u, v) and 1T2 (yz, zx, xy). Equation (18)
is the direct sum of E ⊗ E -type and T2 ⊗ E -type JT inter-
actions. The vibronic coupling in the 1E ⊕ 1T2 term states is
unquenched.

We ignore the vibronic coupling (4) between different [S]�
terms. We show the validity of the assumption for K2RuCl6 in
Sec. IV B.

The vibronic coupling of the JT type can drive the forma-
tion of the quantum entanglement of the spin-orbit multiplet
and the vibrational states (dynamic JT effect). The energy
eigenstates (vibronic states) of Eq. (1) generally have the
form of

|ν〉 =
∑
�γ

|�γ 〉 ⊗ |χ�γ ,ν〉, (19)

where |�γ 〉 indicate the spin-orbit multiplets, and |χ〉 are the
vibrational states of the JT modes. We determine |χ〉 by a
numerical method (Sec. III C). With the vibronic states (19)
as the basis, the Hamiltonian is

Ĥ =
∑

ν

Eν |ν〉〈ν|, (20)

where Eν are the energy eigenvalues.

B. RIXS

Here we describe the cross section for the Ru-L3 RIXS
taking account of the dynamic JT effect. The process consists
of two steps: Excitation of an electron from the 2p3/2 orbitals
to the empty 4d (t2g) orbitals absorbing a photon followed by
a transition of a 4d, t2g electron into the empty 2p3/2 emitting
a photon. We can derive the cross section for the dynamic JT
system by combining the vibronic states and the second-order
time-dependent perturbation theory (Kramers-Heisenberg for-
mula. See Sec. 2.5 in Ref. [25]).

The free Hamiltonian consists of the valence and core
electron Hamiltonians and the radiation field Hamiltonian. We
have described the valence Hamiltonian (20) in Sec. II A. The
core-level Hamiltonian is

Ĥc =
j∑

mj=− j

ε j ĉ
†
jm j

ĉ jmj , (21)

where j = 3
2 , and ĉ†

jm j
and ĉ jm j are the electron creation and

annihilation operators in 2p3/2 orbital with projection mj ,

| jm j〉 =
∑
γpσ

|2pγp, sσ 〉(�4γp, �6σ |�8mj ). (22)

Here γp = x, y, z are the components of the 2p orbitals. Single
electron spin states and j = 3

2 states belong to the �6 and �8

representations in the octahedron, respectively [23].
The radiation field Hamiltonian is

Ĥrad =
∑
kλ

h̄ωk

(
â†

kλ
âkλ + 1

2

)
. (23)

Here k are the momenta, λ the polarization, ωk = ck is the
frequency of light, k = |k|, and c is the speed of light. â†

kλ
and

âkλ are the creation and annihilation operators of the photon
with kλ, respectively. With â†

kλ
and âkλ, the vector potential Â

at the Ru site (r = 0) is

Â =
∑
kλ

√
h̄

2V ε0ωk
(ekλâkλ + e∗

−kλâ†
−kλ

). (24)

Here ekλ are the polarization vectors, V is the volume, and ε0

is the permittivity of the vacuum. We take Coulomb gauge,
and, hence, k · ekλ = 0.

We assume that the bilinear interaction of the 4d electron’s
momentum and the vector field be dominant and the field
around the Ru site be uniform (dipole approximation),

Ĥ ′ = e

m
Â · p̂. (25)

Here e (> 0) is the elementary charge, m is the mass of
an electron, and p̂ is the momentum operator. The electron
momentum operator between the core and valence orbitals is

p̂ =
∑
γ σ

∑
mj

(〈t2gγ , sσ | p̂| jm j〉d̂†
γ σ ĉ jm j

+ 〈 jm j | p̂|t2gγ , sσ 〉ĉ†
jm j

d̂γ σ ). (26)

The matrix elements of p̂ are, by using Eq. (22) and
Wigner-Eckart theorem [20,22–24],

〈t2gγ , sσ | p̂α| jm j〉 = (t2g‖p̂‖2p)√
dt2

∑
γp

(�4γp, �6σ |�8mj )

× (�5γ |�4γp, �4α). (27)

Here α = x, y, z, dt2 = 3 is the dimension of the t2 (�5) repre-
sentation, and (t2g‖p̂‖2p) is the reduced matrix element.

Applying the second-order time-dependent perturbation
theory to our model under resonant condition, we obtain the
cross section of the RIXS processes. The initial and final states
are the products of the vibronic states (19) and one-photon
states, |kλ〉 = â†

kλ
|0〉, and the intermediate states are those

with one 2p3/2 core hole. When the initial and intermediate
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energies are close to each other, the cross section is

d2σ

d� dk′ = V 2ω2
k′

(2π )2h̄c3
|〈ν ′; k′λ′|Ĥ ′Ĝ(zνk )Ĥ ′|ν; kλ〉|2

× δ(Eν + h̄ωk − Eν ′ − h̄ωk′ ). (28)

Here Ĝ is the propagator for the intermediate states, Ĝ(z) =∑
n

|n〉〈n|
z−En

, and zνk = Eν + h̄ωk + i�. Substituting Ĥ ′ (25) into
Eq. (28), we obtain an explicit form for the vibronic RIXS
spectrum,

d2σ

d� dk′ = h̄ca2
0

m2

ωk′

ωk

∣∣∣∣∣
∑
αα′

e∗
k′λ′,α′ekλ,α〈ν ′| p̂α′Ĝ(zνk ) p̂α|ν〉

∣∣∣∣∣
2

× δ(Eν + h̄ωk − Eν ′ − h̄ωk′ ). (29)

The vibronic cross section indicates that the dynamic JT effect
modulates the RIXS spectrum in two ways: (1) the vibronic
reduction of the electronic operator p̂α′Ĝ(zνk ) p̂α and (2) the
emergence of new peaks.

We continue simplifying the cross section for our numer-
ical calculations by applying the fast collision approxima-
tion [26,27]. This approximation ignores the detailed energy
structures and dynamics of the intermediate states by replac-
ing En and Ĝ by a typical value Ē and Ḡ(z) = (z − Ē )−1,
respectively. With the approximation, Eq. (29) reduces to

d2σ

d� dk′ = h̄ca2
0

m2

ωk′

ωk
|Ḡ(zνk )|2

×
∣∣∣∣∣
∑
αα′

e∗
k′λ′,α′ekλ,α〈ν ′|F̂α′α|ν〉

∣∣∣∣∣
2

× δ(Eν + h̄ωk − Eν ′ − h̄ωk′ ), (30)

where F̂α′α = p̂αP̂ch p̂α′ and P̂ch is the projection operator into
the intermediate core-hole states. Using Eq. (26) in F̂ ,

F̂α′α = (t2g‖p̂‖2p)2

dt2

∑
γ ′σ ′

∑
γ σ

(−1)σ−σ ′

×
[ ∑

γ ′
pγp

∑
mj

(t1γ
′
p, �6σ

′|�8mj )
∗(t1γ

′
p, t1α

′|t2γ ′)

× (t1γp, �6σ |�8mj )(t1γp, t1α|t2γ )

]
d̃†

γ ′−σ ′ d̃γ ,−σ .

(31)

Finally, we include the thermal effect. The cross section at
finite temperature is

d2σ

d� dk′ = h̄ca2
0

m2

ωk′

ωk
|Ḡ(zνk )|2

×
∑

ν

ρν

∣∣∣∣∣
∑
αα′

e∗
k′λ′,α′ekλ,α〈ν ′|F̂α′α|ν〉

∣∣∣∣∣
2

× δ(Eν + h̄ωk − Eν ′ − h̄ωk′ ), (32)

with the canonical distribution of the dynamic JT system,
ρν = exp(−Eνβ )/Z . Here β is the inverse temperature and
Z = ∑

ν exp(−Eνβ ).

III. METHODS

A. Ab initio method

We quantitatively determined the electronic structure of a
single Ru site by cluster calculations with post-Hartree-Fock
methods. We constructed the Ru cluster from the x-ray struc-
ture at 300 K [15]. The cluster consists of three parts. The
first part contains one Ru atom, the nearest six Cl, and the
nearest-eight K atoms. We treated the electrons in this part
fully quantum mechanically with the atomic-natural-orbital
relativistic-correlation consistent-valence triple-ζ polarization
basis functions. The second part consists of surrounding
atoms (12 Zr atoms at the Ru sites, 48 K, and 72 Cl). We
treated them within the ab initio embedding model potential
method [28]. The last part consists of 1554 point charges
surrounding the first and the second parts. The total charge
of the cluster is neutral.

We calculated the electronic states of the cluster employ-
ing a series of post-Hartree-Fock methods. First, we derived
the [S]� term states using the complete active space self-
consistent field (CASSCF) method [29]. In the CASSCF
calculations, we treated the five 4d orbitals as the active space
and calculated all the term states with S = 0–2. We expressed
the atomic bielectronic integrals using Cholesky decomposi-
tion with a threshold of 5 × 10−7 Eh and set the ionization
potential electron affinity shift to zero and the imaginary
shift to 0.1. After the CASSCF calculations, we included the
dynamic electron correction effect on the [S]� term energies
with the extended multistate complete active space second-
order perturbation theory (XMS-CASPT2) [30,31]. Then, we
included the spin-orbit coupling using the spin-orbit restricted
active space state interaction (SO-RASSI) method. For all the
calculations, we used OPENMOLCAS [32,33].

B. Vibronic coupling parameters

We derived the vibronic coupling parameters by fitting the
3T1 energy levels for JT deformed structures to the JT model
as in Refs. [34,35]. We constructed the JT deformed structures
of the Ru cluster by varying the normal coordinate Qu from 0
to 10 by 2 (in atomic units),

RA = R(0)
A + Qu√

MA
(eu)A. (33)

Here A indicates the nearest-neighbor Cl atoms, RA the
Cartesian coordinates of atom A, R(0)

A the coordinates at the
perfect octahedral structure, MA the mass of atom A, eu the
eigenvector of the dynamical matrix, and (eu)A are the com-
ponents for atom A in eu. We chose the phase of eu to give
the deformation in Fig. 1(b) with positive Qu. At each JT de-
formed structure, we performed the CASSCF/XMS-CASPT2
calculations.

We obtained ω and the vibronic coupling parameter
g by fitting the ab initio term energies to the potential-energy
surface of the JT model. The model potential contains the
harmonic potential and the vibronic coupling (16),

U (Qu) =ω2

2
Q2

u − V

(
−1

2
Qu| 3T1x〉〈 3T1x|

− 1

2
Qu| 3T1y〉〈 3T1y| + Qu| 3T1z〉〈 3T1z|

)
. (34)
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TABLE I. Ab initio [S]� term and spin-orbit multiplet energies of
the cubic Ru cluster (eV).

[S]� term Spin-orbit multiplet

3T1 0 J = 0 (A1) −0.1604
J = 1 (T1) −0.0756
J = 2 (T2) 0.0455
J = 2 (E ) 0.0461

1T2 0.9585 0.9581
1E 0.9629 0.9619
1A1 2.1275 2.1350

C. Vibronic states

We calculated the vibronic states by numerically diago-
nalizing the dynamic JT Hamiltonian (1). We expand the
nuclear part |χ〉 of the vibronic states (19) with the energy
eigenstates of Ĥvib, |nu, nv〉 (nu, nv = 0–2, . . .), and expansion
coefficients, χ�γ nunv ,ν ,

|χ�γ ,ν〉 =
∑
nu,nv

|nu, nv〉χ�γ nunv ,ν . (35)

Thus, the vibronic basis for the dynamic JT Hamiltonian is a
set of the direct products of |�γ 〉 ⊗ |nu, nv〉.

To numerically diagonalize the vibronic Hamiltonian, we
introduced the following approximations. We treated the vi-
bronic states related to the 3T1 terms and the 1E ⊕ 1T2 terms
separately. This is valid when the pseudo-JT couplings be-
tween the terms are negligible. We truncated the vibronic
basis by introducing the maximum number of the vibrational
quanta, 0 � nu + nv � 20. This basis is sufficiently large (see
Ref. [35]).

With the vibronic basis, we constructed the vibronic
Hamiltonian matrix, and numerically diagonalized it. For the
diagonalization of the Hamiltonian matrix, we used DSYEVD

in the LAPACK library [36].

IV. RESULTS

A. Electronic states

We performed the ab initio electronic state calculations
of the cubic Ru cluster. Table I shows the calculated elec-
tronic energy levels: the values of the left and right columns
correspond to the [S]� term and spin-orbit multiplet ener-
gies, respectively. The splittings of the J = 2 and the excited
E ⊗ T2 multiplet energy levels amount to only a few meV.

We determined the electronic interaction parameters by
fitting the ab initio data to the model Hamiltonians. We ob-
tained JH = 443.7 meV from the fitting of the gaps of the
CASSCF/XMS-CASPT2 levels to Eq. (12). Since the energy
splitting of the 1T2 and 1E is only 4 meV and much smaller
than the other energy gaps, we ignored the splitting in the
fitting. The present Hund’s rule coupling is close to the ex-
perimental JH = 420 meV extracted from the RIXS spectra of
K2RuCl6 [13].

Similarly, we derived the spin-orbit coupling parameter
from the SO-RASSI levels and Eq. (15). The energy levels
of the first (J = 1) and the second (J = 2) excited states with
respect to the ground (J = 0) level are, respectively, �EJ=1 =

FIG. 2. The spin-orbit energy levels with respect to λ/JH for the
Oh cluster. The spin-orbit multiplet energies originate from (a) the
t4
2 states and (b) the 3T1 term. At the vertical line (λ/JH = 0.357),

the ratio of the excited energy levels with respect to the ground one
coincides with the ab initio data.

84.8 and �EJ=2 = 206.1 meV ignoring the small splitting of
the latter. We determined λ/JH to be 0.357 by reproducing
the ratio of �EJ=2/�EJ=1 = 2.4 with Eq. (15) [Fig. 2]. Our
spin-orbit coupling λ is 158 meV.

The ab initio λ deviates from the experimental esti-
mate in Ref. [13]. The ratio of the excitation energies,
�EJ=2/�EJ=1 = 2.4, is smaller than the ratio of 2.7 extracted
from the RIXS data. The present λ is close to λ = 167 meV
derived from the magnetic susceptibility data of K2RuCl6 [15]
and λ = 150 meV for α-RuCl3 [19], whereas by about 50%
larger than λ = 103 meV derived from the RIXS spectra [13].
Takahashi et al. ascribed this reduction to the dynamic JT
effect. We examine this idea below.

B. Vibronic coupling parameters

We derived the vibronic coupling parameters from the
gradients of the 3T1 term energies with respect to the JT
deformation. Figure 3(a) indicates the ab initio 3T1 term en-
ergies for several JT-deformed structures (the red points). By
fitting the data to Eq. (34), we derived h̄ω = 42.1 meV and
the vibronic coupling parameter g = 1.07. The solid curves in
Fig. 3(a) are the best fit.

Our ab initio calculations show that the pseudo-JT cou-
plings between the 3T1 term and the other terms are weak. We
transformed the 3T1 term states into the spin-orbit multiplet
states (13), and drew the adiabatic potential energy surfaces in
Fig. 3(b). The figure indicates a good agreement between the
ab initio (the red points) and the model (the blue solid lines),
meaning that the pseudo-JT coupling between the different
multiplets is negligible.

The 3T1 term states could vibronically couple to the T2g

modes, whereas it is negligible. We calculated the term ener-
gies for the geometries with the T2g deformations, and found
that the JT coupling is only a few percentages of the V for the
Eg mode. Therefore, we ignored the vibronic coupling to the
T2g mode in this paper.

C. Vibronic states

With the derived parameters, we calculated the vi-
bronic states. Figure 3(c) shows that the vibronic coupling
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FIG. 3. The adiabatic potential energies and the vibronic levels.
(a) The 3T1 term energies with respect to the JT deformation (Qu)
in atomic units. The red points are the ab initio energies, and the
solid lines are the eigenvalues of U (34). (b) The spin-orbit multiplet
energies (meV) with respect to the JT deformation (Qu). (c) The
spin-orbit and vibrational energy levels and vibronic energy levels
(in meV). In the left column, the black and gray lines are the spin-
orbit energies without and with vibrational excitations. In the right
column, the solid and dashed lines are the energy eigenstates of the
(A ⊕ E ) ⊗ E and the (T1 ⊕ T2) ⊗ e dynamic JT models, respectively.

modulates the distribution of energy levels (the right column)
with respect to the decoupled ones (the left column). In the
right column, the solid lines are the vibronic states from the
(A ⊕ E ) ⊗ E JT part and the others from the (T1 ⊕ T2) ⊗ e JT
part.

Now we closely look at the vibronic states, which turn out
to be important in the RIXS spectrum of K2RuCl6. The arrows
identify the pairs of the spin-orbit and vibronic states that are
close to each other. The vibronic states have large contribu-
tions of |�γ 〉 ⊗ |nu = nv = 0〉 type: the weights (χ2

�γ nunv ,ν
)

are 0.98 (J = 0), 0.83 (J = 1), 0.82 (E ), and 0.78 (T2). Al-
though the ground J = 0 spin-orbit multiplet state does not
linearly couple to the JT active vibrations, the pseudo-JT
coupling between the J = 0 and the Eg levels (17) stabilizes
the J = 0 vibronic state by 4 meV. The dynamic JT effect
stabilizes the J = 1 multiplet state by 11 meV, whereas it
does not stabilize much the J = 2 states due to the pseudo-JT
coupling between the J = 1 and the T2 part of the J = 2
multiplet states.

D. Effective magnetic moment

Before moving to the simulations of the RIXS spectra,
let us discuss the effective magnetic moments. The magnetic

FIG. 4. Temperature dependence of the effective magnetic mo-
ment Meff . The black solid line indicates Kotani’s model [37,38] with
λ from Ref. [15], and the red points are the present theoretical data.

moment operators μ̂α (α = x, y, z) within the t2g orbitals are

μ̂α =
∑
γ σ

∑
γ ′σ ′

−μB(kl̂α + geŝα )γ σ,γ ′σ ′ d̂†
γ σ d̂γ ′σ ′ , (36)

where μB is the Bohr magneton, ge is the g factor of the
electron, and k is the reduction factor of the orbital angular
momentum due to the covalency between the Ru 4d and Cl
3p orbitals. By fitting the ab initio magnetic moments at the
CASSCF level to Eq. (36), we determined the reduction factor
k to be 0.920. Then, we projected the magnetic moments (36)
into the vibronic states (19).

With the magnetic moments, we simulated the temperature
dependence of the effective magnetic moment. Our model
consists of the vibronic Hamiltonian (20) and the Zeeman
Hamiltonian, ĤZee = −μ̂ · H , where H is the external mag-
netic field along the c axis. We calculated Meff as

Meff =
√

3(kBT )2
∂2ln Z (H )

∂H2
|H→+0, (37)

with Z (H ) being the partition function for the model.
Finally, we compared the calculated Meff with the ex-

perimental one from Ref. [15] [Fig. 4]. The theoretical and
the experimental Meff ’s are overall in good agreement with
each other. The deviation between them is only 5 to 6% of
Meff at 300 K. The deviation might come from the under-
estimations of the metal-ligand covalency (1 − k) within the
post-Hartree-Fock method and Van Vleck’s contribution due
to the lack of the high-energy states, such as t3

2ge1
g, within

our calculations. The present result suggests that our model is
accurate enough to adequately describe the dynamic JT effect
in K2RuCl6.

E. RIXS spectra

Using the numerical vibronic states in Sec. IV C, we
simulated the RIXS spectra. We derived the RIXS spec-
tra by substituting the calculated vibronic states (19) into
Eq. (32), and then convoluting the latter with Lorentzian
function, L(x) = 1

π

�/2
x2+(�/2)2 , where � is the linewidth. For all

the simulations below, � = 0.075 eV. The polarizations and
the directions (θ = π/4 in the literature) of the incident and
scattered lights are the same as the experimental ones [13].
To clarify the vibronic effect, we also calculated the RIXS
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FIG. 5. RIXS spectra. (a) Comparison between the electronic
(the blue dotted line) and vibronic (the red solid line) RIXS spectra at
25 K. (b) and (c) The vibronic RIXS spectra at 25 K (the red dotted
line) and 300 K (the green solid line). � = 0.075 eV in all cases.
(d) and (e) The electronic and vibronic transitions.

spectrum with the electronic model at the same level of ap-
proximations.

Let us compare the electronic and vibronic RIXS spectra
at 25 K [Fig. 5(a)]. The strongest peak in the vibronic RIXS
spectrum is lower than that in the electronic one due to the
vibronic reduction of F̂ . The peaks in the vibronic RIXS spec-
trum tend to be broader than those in the electronic spectrum.
In particular, the broadening is significant at ≈1.1 eV. We will
discuss the origin below.

The ratio of the first and second excitation energies be-
comes close to the experimental one due to the vibronic effect.
The peak positions of the low-energy region are at 0.078 and
0.212 eV, and the ratio is about 2.7, which agrees well with
the experimental value [13]. The ratio becomes larger than our
electronic one in Sec. IV A because of the dynamic JT effect.

The broadening of the RIXS spectrum occurs due to the
transitions from the ground state to various excited vibronic
states. Since the ground vibronic state ≈ |J = 0〉 ⊗ |nu =
nv = 0〉 in K2RuCl6, the main features of the peaks in the elec-
tronic RIXS spectrum persist in the vibronic RIXS spectrum,
whereas more vibronic transitions exist in the latter and they
make the spectra at ≈0.2 and at ≈1 eV broad. [Figs. 5(d)
and 5(e)]. In particular, the peaks in the high-energy region
emerge due to the presence of the dynamic JT effect rather
than crystal-field splitting of the E and T2 multiplet levels.

As temperature rises to 300 K, the vibronic RIXS spectrum
again becomes broader [Figs. 5(b) and 5(c)]. With the increase
in temperature, the height of the peak in the low-energy region
(0.078 eV) becomes lower than the one at 25 K, and the peak
has a new shoulder at ≈−0.08 eV [Fig. 5(b)]. The peak in the
high-energy region (about 1.1 eV) also becomes broader and
has a new shoulder at about 1 eV [Fig. 5(c)]. The patterns of
the broadening agree well with the changes in the experimen-
tal data [Fig. 1(d)]. The new shoulder peaks appear due to the
transitions from the third excited vibronic states to the J = 0
ground state (the green dotted line) and E vibronic state (the
green dashed line), respectively [Figs. 5(d) and 5(e)].

The vibronic RIXS spectrum has all the important features
of the experimental spectrum, whereas quantitative discrep-
ancy exists. The theoretical peak positions (and λ) are about
20% larger than the experimental data. The deviation comes
from the underestimated covalency, and, consequently, over-
estimated λ, within the post-Hartree-Fock method. Since all
the parameters are somewhat enlarged, the qualitative features
would not be affected much by the quantitative difference.

V. CONCLUSION

We developed the ab initio based theory of RIXS spectra
of a t4

2g dynamic JT ion in cubic spin-orbit Mott insulators.
We derived the electronic and vibronic parameters of an
embedded Ru center by using the post-Hartree-Fock calcu-
lations, and derived the low-lying vibronic states. Using the
ab initio data and Kramers-Heisenberg formula, we simulated
the Ru-L3 RIXS spectra. The shape and the temperature de-
pendence of the vibronic RIXS spectrum agree well with the
experimental data, confirming the presence of the dynamic
Jahn-Teller effect in K2RuCl6. Our simulation indicates that
several peaks emerge due to vibronic levels rather than ligand-
field split spin-orbit multiplet levels. We also demonstrated
that the dynamic JT effect enlarges the linewidth of the RIXS
spectrum by increasing temperature. The present results call
for the reconsideration of the assignments of the RIXS spectra
of cubic spin-orbit Mott insulators fully taking account of the
vibronic effects.
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APPENDIX: HOLE OPERATORS

In the hole picture, the one-electron operators Ô acting on the t2g electrons are transformed as follows:

Ô =
∑
γd σ

∑
γ ′

d σ ′
〈γdσ |Ô|γ ′

dσ
′〉d̂†

γd σ d̂γ ′
d σ ′ →

∑
γd σ

∑
γ ′

d σ ′
[〈γ ′

d , σ
′|�][�Ô|γd , σ 〉](−1)s+σ (−1)s+σ ′

d̃γd −σ d̃†
γ ′

d −σ ′

= −σTR(Ô)
∑
γd σ

∑
γ ′

d σ ′
〈γ ′

dσ
′|Ô|γdσ 〉d̃†

γ ′
d σ ′ d̃γd σ . (A1)

The time-inversion � of operators and spin states are [20,39]

�|γdσ 〉 =(−1)s−σ |γd ,−σ 〉, (A2)

�Ô =σTR(Ô)Ô�, (A3)

respectively. Here s = 1/2, and σTR(Ô) is the sign. We assumed that Ô is traceless.
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