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Quantum Monte Carlo-based density functional for one-dimensional Bose-Bose mixtures
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We propose and benchmark a Gross-Pitaevskii-like equation for two-component Bose mixtures with compet-
ing interactions in 1D. Our approach follows the density functional theory with the energy functional based on the
exact quantum Monte Carlo (QMC) simulations. Our model covers, but goes beyond, the popular approach with
the Lee-Huang-Yang corrections. We first benchmark our approach against available QMC data in all interaction
regimes and then study dynamical properties, inaccessible by ab initio many-body simulations. Our analysis
includes a study of monopole modes and reveals the presence of anomalous dark solitons.

DOI: 10.1103/PhysRevResearch.5.023050

I. INTRODUCTION

Recent studies of ultracold gases with competing interac-
tions have led to a major change in the field. They undermined
the validity of the mean-field approximation when attractive
and repulsive interactions in the system almost cancel each
other.

The first predictions indicated that systems with domi-
nating three-body interactions were bound to hold quantum
droplets [1,2]. We shall focus, however, on the stabilising
effect of quantum fluctuations [3]. To account for it, one can
include Lee-Huang-Yang (LHY) corrections [4,5] to the
mean-field equation using a local density approximation. One
then derives a generalized Gross-Pitaevskii (GGP) equation. It
has been widely used to theoretically investigate the ground-
state properties and excitations of Bose-Bose mixtures with
particular attention given to the compressional mode (known
also as the monopole or breathing mode) [6–9]. The GGP the-
ory predicts the existence of self-bound objects—ultradilute
quantum droplets made of ultracold atoms [3]. The emergence
of a liquid phase is marked by the presence of a local mini-
mum in the energy density functional.

Soon after having been proposed theoretically, quantum
droplets were experimentally observed [10–14]. Some the-
oretical predictions indicate even the possibility of finding
quantum droplets [15] in recently obtained heteronuclear
dipolar condensates [16,17]. Despite its remarkable useful-
ness, there are still factors not included in the GGP theory.
For instance, ab initio calculations show a liquid-gas transi-
tion in two-component mixtures [18], whereas the GGP does
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not. Moreover, the same work demonstrates a quantitative
disagreement of the homogeneous state energy. Quite unex-
pectedly, the monopole mode frequencies happen to match the
QMC calculations, though [19]. The nature of the liquid-gas
transition still remains an open question. It is an especially in-
teresting in the light of the Mermin-Wagner theorem [20,21].
Unfortunately, such a question cannot be answered in a purely
numerical model we are about to present.

Several attempts have been made to overcome the existing
imperfections of the GGP equation. One of the ideas that
follows the density functional theory was to build an equation,
which would quantitatively reproduce the spatially uniform
state energy from a chosen ab initio method for any interaction
strength. In this regard the 1D Bose contact gas is a special
system as its ground-state energy has been already derived in
the analytical ab initio calculations by E. Lieb and E. Liniger
[22,23].

Using this exact energy functional one gets the single-
particle equation here referred to as the Lieb-Liniger Gross-
Pitaevskii (LLGP) equation that was used in Refs. [24–31].
The equation proved to correctly describe the ground state
and low-lying excitations in all regimes—from the weakly-
interacting one (which, contrary to the 3D case happens at
high gas densities) up to the Tonks-Girardeau regime (at low
gas densities). The LLGP equation was recently used to study
Bose gas with repulsive short-range and attractive dipolar
interactions [32–36] to show the existence and properties
of the dipolar quantum droplets. Concerning the droplets in
quantum mixtures, a similar approach was employed to con-
struct a quantum Monte Carlo (QMC)-based energy density
functional for bosonic mixtures in 3D [37], but so far the 1D
Bose mixture was not investigated in such framework. For the
latter system it was shown [18] that GGP fails to reproduce the
phase diagram in certain regimes, in particular at low densities
when atoms bind together into interacting dimers.

In this article, we aim to formulate and benchmark the
QMC-based single-orbital density functional theory that is
applicable to two-component Bose mixtures with repulsive
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intra- and attractive intercomponent interactions. We later
refer to it as Lieb-Liniger Gross-Pitaevskii for mixtures
(mLLGP). Our theoretical approach using a single orbital ψ

and a QMC-based energy density functional E results in an
equation of the following form:

ih̄∂tψ (x, t ) = − h̄2

2m
∂2

x ψ (x, t ) + δE
δn

ψ (x, t ), (1)

where n is the particle density. We want it to be applicable
to two-component Bose mixtures with repulsive intra- and
attractive intercomponent interactions. To do this, we analyze
the phase diagram of the system and numerically study the
static properties and monopole mode of quantum droplets.
We use data from Ref. [18] to construct the energy density
functional and Ref. [19] to benchmark our approach.

In lower-dimensional systems, we can name two substan-
tial beyond-LHY approaches. One of them is a pairing theory
for bosons [38]. The other one is based on the inclusion of
higher-order corrections to the GGP equation [39]. Both of
them generally give only a qualitative agreement with QMC
calculations.

Our approach shares similarities with a density functional
theory [40] for Fermi systems at unitarity [41]. The result-
ing density functional has been employed multiple times to
look into strongly interacting fermions [42–46], revealing a
remarkable consistency with the experiments [47,48].

A great advantage of having a Gross-Pitaevskii-like equa-
tion, in comparison to the QMC methods, is the possibility of
studying nonlinear and time-dependent effects like the exis-
tence of dark solitons. This subject is particularly interesting
as we may expect fundamentally different results than the soli-
tons we know from single-species systems [49] or dark-dark
solitons occurring in miscible bosonic mixtures [50,51].

Very recently there have been reports on wide soliton-like
objects, both in mixtures [52] and in dipolar Bose gases [31].
As such, last but not least, we show density and phase profiles
of solitary waves evaluated with our theory.

II. FRAMEWORK

A. System

We consider a one-dimensional Bose gas consisting of two
components σ = {↑,↓} in a box of size L. We assume that
the components have equal atomic masses m↑ = m↓ = m. We
also assume that the short-range interaction coupling con-
stants are the same in the intracomponent case g↑↑ = g↓↓ = g,
whereas the intercomponent interactions can be independently
tuned with a coupling constant g↑↓. Atoms of the same species
repel each other while the intercomponent interactions are
attractive. The binding energy of an atomic pair in vacuum
εb = −(mg2

↑↓/4h̄2) is a relevant energy scale in the system,
while for the length scale we choose the intracomponent
scattering length a = 2h̄2/mg. In experimental setups, such
a system can be realised as a spin-balanced gas of a single
bosonic isotope, where spins σ correspond to two different
hyperfine levels and the interaction strengths can be tuned
with magnetic field via Feshbach interactions.

We assume that we are in the miscible regime. The single-
component densities are locked according to the condition

n↓/n↑ =
√

g↑↑/g↓↓ [3], which holds even in inhomogeneous
cases. In our system this implies that there are equal number
of atoms in each component N↑ = N↓ = N/2 and that the
single-component densities are half of the total density n↑ =
n↓ = n/2. If the system is homogeneous, the overall density
is equal to n = N/L.

B. Generalized Gross-Pitaevskii and quantum
Monte Carlo approaches

In the weakly-interacting limit (corresponding to high den-
sities na � 1), one may expect the generalized GGP approach
to be valid. The GGP energy density functional has the follow-
ing part corresponding to interactions [18]:

EGGP[n; g, g↑↓] = (g − g↑↓)n2

4
− mn3/2

3
√

2π h̄
[(g − g↑↓)3/2

+ (g + g↑↓)3/2]. (2)

The first term in Eq. (2) corresponds to the mean-field contri-
bution to the interaction energy and the other to the correction
for quantum fluctuations, widely known as the LHY term.
If we compare, however, the results from GGP equation and
ab initio calculations from diffusion Monte Carlo in a wide
range of densities and interaction ratios, we observe discrep-
ancies at low ratios. It is due to one of the peculiarities of
one-dimensional systems—the lower the density, the higher
the interaction. Thus, the GGP model is correct in the high-
density limit but cannot be trusted in the opposite case.

First of all, the GGP predicts the existence of stable quan-
tum droplets for any ratio g↑↓/g < 1. In other words, there is
always a local minimum present in the energy density func-
tional EGGP[n; g, g↑↓] as long as g↑↓/g < 1. QMC predicts a
certain critical value of the interaction ratio, below which the
minimum disappears and we have a liquid-gas transition at
(g↑↓/g)cr = 0.47(2) [18].

Although there are other methods, like a general extension
to the LHY theory proposed in Ref. [39] or a pairing theory
for bosons introduced in [38], which are able to predict such
a transition, they do not enable us to quantitatively compute
the homogeneous gas energy with their use. Neither does the
GGP, which results in an inaccurate estimate of a quantum
droplet size and bulk density.

Lastly, the GGP is not applicable to the strongly-interacting
regime. When na � 1, the gas energy quickly approaches half
of the binding energy of a dimer, i.e., −εb/2, indicating that
the system could be understood as a weakly-interacting gas
of dimers [38]. The energy per dimer approaches −εb in the
limit of vanishing density, while according to the GGP theory
it tends to zero.

C. Lieb-Liniger Gross-Pitaevskii equation for two-component
1D bosonic mixtures (mLLGP equation)

We aim to construct a energy density functional to
study bosonic mixtures in 1D, which gives (i) a quanti-
tative agreement with QMC in terms of a homogeneous
gas energy E (n; g, g↑↓) in a wide range of interaction ra-
tios [53], (ii) a proper limit of a uniform gas energy, i.e.,
limna→0 E (n; g, g↑↓) = −Nεb/2, and (iii) a correct value for
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FIG. 1. Energy per particle as a function of density; comparison
of different models. QMC from Ref. [18] (markers), our density
functional dubbed mLLGP (solid line), GGP (dashed line), pairing
theory (dotted line); and interaction ratios g↑↓/g = 0.45 (yellow
[light grey]), 0.75 (magenta [grey]) and 0.9 (black). The QMC error
bars are smaller than the marker sizes.

the critical interaction ratio (g↑↓/g)cr, at which a liquid-gas
transition occurs. It is more accurate than both the GGP and
pairing theory, but, unlike QMC, enables us to study nonlin-
ear and time-dependent effects, e.g., the properties of dark
solitons.

To do that, we fit QMC data from Ref. [18] to get a spline
representation of the energy functional EmLLGP[n; g, g↑↓] and
construct a single-orbital density functional theory for bosonic
mixtures. To do this, we extrapolate the data in the low-
and high-density regimes with two separate functions. This
is necessary because the QMC data is covering only a part
of densities, omitting the low- and high-density regions. Af-
terwards, we interpolate the data with a spline in densities
and linearly in interaction ratios. In this way, we obtain
EmLLGP[n; g, g↑↓] in a form that is convenient for numerical
evaluation. This whole procedure is described in detail in
Appendix A.

We decided to use a numerical representation of
EmLLGP[n; g, g↑↓] after having checked a few simpler repre-
sentations, including polynomials, but these representations
did not fulfill the conditions (i)–(iii) we have listed earlier.

Figure 1 shows us the energy per particle of a homoge-
neous Bose-Bose mixture. For interaction ratios g↑↓/g � 1
all three theories (GGP, pairing theory, and mLLGP) are con-
sistent with QMC calculations. In the case of the GGP and
pairing theory, the smaller the ratio becomes, the higher the
discrepancy is. For ratio g↑↓/g = 0.45, the energy per particle
from the GGP model still possesses a pronounced minimum,
whereas QMC, mLLGPE, and the pairing theory predict a lack
thereof. The latter deviates from the QMC data and matches
it only qualitatively in this region. One can see the energy
functional EmLLGP is constructed to fulfill all the conditions
from the list above.

The analysis of the energy functional in a state can provide
us with important thermodynamic quantities. For instance,

FIG. 2. Phase diagram of a homogeneous two-component mix-
ture. The unstable region is demarcated by spinodal densities,
predicted from GGP (red [light grey] dashed line) and QMC (square
markers). Equilibrium density given by the mLLGP (navy [dark
grey] solid line), GGP (blue [grey] dashed line), and QMC from
Ref. [18] (round markers). The ticks on top correspond to the in-
teraction ratios used in Fig. 6.

μmLLGP[n0; g, g↑↓] = δEmLLGP[n; g, g↑↓]/δn|n=n0 is the chem-
ical potential evaluated at density n0, and the speed of sound
c is given by the following relation c =

√
n
m

dμ

dn . The position
of the energy per particle minimum plays a vital role in the
context of quantum droplet studies: the equilibrium density
neq where d (E/N )/dn = 0 is the value of the density in the
droplet bulk, assuming the droplet is sufficiently large, i.e.,
N � 1 and possesses a flat-top profile. In this limit, we may
approximate the properties of the droplet bulk to be the same
as those of a homogeneous system with density neq.

With that knowledge we are able to explore the phase
diagram and compare it to the one created with the QMC
approach. We show it in Fig. 2. We are able to distinguish
three phases: gaseous, liquid, and unstable. The gaseous one
corresponds to the region where the minimum in the en-
ergy density functional is located at the vanishing density.
It happens when the interaction ratio g↑↓/g < 0.47. Above
that value, the minimum exists and we enter the liquid phase.
Nevertheless, in the region g↑↓/g > 0.47, there is a range
of densities for which the speed of sound is complex. This
signals a phonon instability.

The unstable and stable liquid phases are demarcated by
spinodal densities nins, where d2E/dn2 = 0. At this border,
the compressibility is infinite. The nature of the unstable
liquid phase in a weakly interacting bosonic mixtures was
discussed in Ref. [54]. In Fig. 2 we also plot equilibrium
densities neq (see solid navy line for mLLGP and a dashed
blue one for GGP). The two comparisons QMC vs GGP and
QMC vs mLLGP favor the latter approach. Wherever we have
data from QMC simulations, the mLLGP predicts the same
equilibrium density as ab initio calculations [55]. On the other
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hand, the GGP extends both liquid and unstable regions far
beyond the critical interaction ratio (g↑↓/g)cr.

For low interaction ratios g↑↓/g � 1, the equilibrium den-
sities are located in the low-density region. However, in this
limit of densities, the gas cannot be treated anymore as weakly
interacting. The GGP approach, contrary to QMC, gives us a
rough estimate of neq only.

Having established that the constructed energy functional
reproduces the phase diagram according the QMC theory,
we can now use this to construct an equation of the form
of Eq. (1), which allows for modeling time dependence and
inhomogeneity of the effective single particle orbital. We now
write this equation as

ih̄∂tψ (x, t ) = − h̄2

2m
∂2

x ψ (x, t ) + μmLLGP[|ψ (x, t )|2; g, g↑↓]

× ψ (x, t ). (3)

The square modulus of this orbital is interpreted as the
particle density n(x). Next, in Sec. III A, we will numerically
solve the mLLGP equation (3), with the use of imaginary time
propagation to find broken-symmetry states in Bose-Bose
mixtures. Following this, in Sec. III B we will additional solve
the equation in real time to simulate the breathing modes of a
perturbed droplet. Our toolkit is provided on GitLab [56].

III. QUANTUM DROPLETS

A. Static properties

The ground state (GS) of a two-component mixture in
the liquid regime takes a form of a quantum droplet. Typ-
ical density profiles of one-dimensional droplets are shown
in the inset of Fig. 3. The quantum droplets evaluated with
the mLLGP (see Appendix A for numerical details) exhibit
a flat-top bulk when the number of particles exceeds 20.
For N = 60 and 100, we can observe a prominent plateau
with the same density as the equilibrium value neq given by
QMC calculations. We juxtaposed these density profiles with
analogous ones given by the GGP equation. As we can see,
their bulk densities do not match the QMC prediction. The
discrepancy for g↑↓/g = 0.6 is equal to 14%, but grows up to
48% at the critical ratio (g↑↓/g)cr = 0.47(2) (cf. Fig. 2).

As the number of particles in the droplet N , its bulk density
neq and its width

√
〈x2〉 − 〈x〉2 are connected (in the first ap-

proximation neq ∝ N/
√

〈x2〉 − 〈x〉2 ), the difference between
the estimations of the equilibrium density should be also vis-
ible when we plot the droplet width against the interaction
ratio, but keeping a fixed number of atoms in the system. We
show it in the main panel of Fig. 3.

As we can see, the droplet width is a decreasing function
of g↑↓/g. When g↑↓ becomes larger, the interparticle attraction
gets more pronounced and the droplet contracts. As expected,
the GGP gives a qualitative agreement of the droplet width
with the mLLGP. However, the lower the interaction ratio, the
higher the discrepancy between the models.

In classical physics the total energy of the droplet can be
divided into the volume and surface terms Etot = EV + ES .
In a one-dimensional system, the surface term should be N
independent and the volume term (for N � 1) should be pro-
portional to the number of particles in the droplet as we show

FIG. 3. Droplet width
√

〈x2〉 − 〈x〉2 as a function of the interac-
tion ratio g↑↓/g. Pentagonal cyan markers correspond to the GGP
prediction, diamond black ones to the mLLGP estimation. Number
of particles forming the droplet N = 100.Inset: Density profiles of
quantum droplet evaluated at a ratio g↑↓/g = 0.6 using the mLLGPE
(solid) and GGP (dashed) for different number of particles N = 20
(red [innermost]), 60 (green [middle]), and 100 (blue [outermost]).
Black dotted line corresponds to the equilibrium density given by the
QMC calculations from Ref. [18].

it in the inset of Fig. 4. We are particularly interested in the
value of the surface term. If a droplet gets split, the energy
in the system increases by ES . Low values of the surface
energy may be considered an issue in the experiment. Namely,
thermal excitations might cause a fission of the droplet.

FIG. 4. Surface energies of quantum droplets for different inter-
action ratios g↑↓/g. Pentagonal cyan markers correspond to the GGP
results, diamond black ones to the mLLGP prediction. Inset: Total
energy of a quantum droplet obtained with Eq. (3) for high particle
numbers N � 1 and g↑↓/g = 0.6. The dash-dotted line corresponds
to a linear fit Etot = eN + ES .The main contribution to the uncer-
tainty of the surface energy is due to the linear fit and in most cases,
the error bars are smaller than the marker size.

023050-4



QUANTUM MONTE CARLO-BASED DENSITY FUNCTIONAL … PHYSICAL REVIEW RESEARCH 5, 023050 (2023)

FIG. 5. Monopole mode frequency as a function of the number
of particles in the droplet. Round markers correspond to the linear
response theory prediction based on QMC data from Ref. [19], dia-
monds to the mLLGP, and the dashed lines to the GGP predictions.
Frequencies evaluated at a ratios g↑↓/g = 0.6 (blue [dark grey]) and
0.8 (yellow [light grey]).

Figure 4 depicts the surface energy of the droplet as a
function of the interaction ratio g↑↓/g. In the case of mLLGP,
the diminishing surface energy when approaching (g↑↓/g)cr is
a signature of the liquid-gas transition proximity. The surface
tension slowly decreases until it vanishes below the critical
interaction ratio. The GGP does not predict such a transition,
so the surface tension does not go to zero according to this
theory.

One may ask here on the contribution from gradient cor-
rections to the energy functional and their influence on the
results. As the analysis conducted in Ref. [19] shows a quanti-
tative agreement of the surface energy of the droplet between
the QMC and GGP in the weakly interacting regime, we do
not include them into EmLLGP.

B. Monopole mode excitation

We now look into how the ground state reacts to a small
perturbation. We choose to study the monopole mode. We
evolve in real time a quantum droplet perturbed by a factor
exp(−iεx2/a2), where ε is a small constant. It corresponds
to a situation when the initial velocity field in a droplet has
the form v(x) = −2h̄εx/ma2 (further details are provided in
Appendix A). At the beginning, the droplet is squeezed and
at some point it expands again. This process is periodic and
has its characteristic frequency, which we measure by looking
at the standard deviation of the droplet width

√
〈x2〉 − 〈x〉2 in

time.
We show the results of this numerical analysis in Fig. 5 al-

together with the monopole mode frequencies evaluated with
the GGP [6] and linear response theory predictions based on
QMC data [19], i.e., the data, which were not used in to fit
EmLLGP. All three approaches give consistent results in the
large particle number limit. The monopole mode frequency
scales like ω ∝ N−1 there [6]. Surprisingly, the QMC data
also agree with the GGP-based results, even though the GGP

equation is not expected to be accurate for small N , due to the
breakdown of the local density approximation (LDA), which
requires fulfilling the condition N � 1.

The mLLGP simulations agree in most cases within the
range of 2 uncertainties. The dominating source of uncertainty
is the form of EmLLGP in the low-density regions n � neq.
As we lack Monte Carlo data there, we cannot control the
quality of the fit below the equilibrium density. It is clearly
visible when the number of particles in the droplet is low.
The bulk density is lower than neq there (cf. the inset of
Fig. 3), especially after a slight expansion happening due to
the perturbation we apply.

Thus, an accurate measurement of monopole mode fre-
quencies seems to be the best choice to experimentally verify
the validity of mLLGP-based study. It might be a daunting
task, though. The difference is most striking in the small-
droplet limit, which might be difficult to achieve in an
experimental setup.

IV. DARK SOLITONS

We supplement our study of Bose-Bose mixtures with a
numerical analysis of dark solitons. They are an example of
nonlinear effects, which are beyond the range of QMC.

We look for solitonic solutions of the mLLGP equation (3)
in the thermodynamic limit. By dark soliton we understand a
density depletion traveling at a constant velocity vs without
changing its shape. We may classify these solitons as grey
solitons if vs > 0 and they have a nonzero density minimum,
and as black solitons if they are motionless and their density
minimum is equal to zero [49].

We assume that the density and phase of the orbital ϕ =
arg ψ far from the soliton are constant and equal to n∞ and
ϕ∞. Our numerical methods (see Appendix B for details)
enable us to find both motionless and moving dark solitons.
We use a velocity relative to the speed of sound β = vs/c to
characterize the soliton.

If we take a look at the dark solitonic solutions in the
weakly-interacting single-component Bose gas, we encounter
both moving and motionless solutions.

Figure 6 presents the solitonic density minima min n(x)
and full widths at half depths XFWHD as functions of the
density n∞ for three values of the interaction ratio g↑↓/g. The
motionless solitons in the gaseous phase neq can be classified
as standard ones—their density reaches zero [cf. black solid
line in Fig. 6(a)]. Moreover, the density minima of grey soli-
tons increase with their velocity. Figure 6(b) shows the soliton
width, which diverges as n∞ → 0.

The situation changes when we cross the critical interac-
tion ratio and enter the liquid phase. In the high-density limit
the soliton minimum density is zero, but below neq we enter
a region where the minimum density starts to increase [see
Figs. 6(c) and 6(e)]. One may say the motionless solitons
greyen. These solitons have been first described in Ref. [31]
and arise due to nonlinearities. The presence of a local mini-
mum at a finite value of the density in E/N plays a crucial role
here. Due to their uncanny features, described at length later in
this section, we call them anomalous. We have confirmed that
these solutions maintain their form and phase profile during
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FIG. 6. Minimum densities nmin [(a),(c),(e)] and full widths at half depth XFWHD [(b),(d),(f)] of dark solitons for different relative velocities
of the soliton β and interaction ratios g↑↓/g = 0.4 [(a),(b)], 0.55 [(c),(d)], and 0.9 [(e),(f)]. Green shading corresponds to gaseous phase, blue
to the liquid one and red to the unstable regime (cf. Fig. 2). The vertical blue line marks the equilibrium density value. The black plus-shaped
markers in (c) and (d) correspond to the soliton shown in Figs. 7(a) and 7(c) and the orange triangles to the soliton from Figs. 7(b) and 7(d).

real time propagation in the presence of low-amplitude noise,
confirming their stability.

The solitonic solution [as shown in Figs. 6(d) and 6(f)]
widens in two places. Once when n∞ → neq, both in the
standard (n∞ → n+

eq) and anomalous (n∞ → n−
eq) regimes

and another time, while approaching the instability region.
The most interesting regime to realize experimentally is in
the vicinity of neq. The solitonic solutions there are both wide
and deep, which may be easier to detect with in situ imaging
procedure.

Grey solitons also become shallower with decreasing
density n∞. For β > 0, it is a gradual change though
[cf. Figs. 6(c) and 6(e)]. Another difference is that the grey
soliton width does not diverge when n∞ → neq, it does so
in the vicinity of the unstable regime only [cf. Figs. 6(d)
and 6(f)].

In Figs. 7(a) and 7(c) we show the density and phase
profiles of motionless solitons evaluated at a ratio g↑↓/g = 0.6
and density fulfilling the inequality nins < n∞ < neq. This
soliton has a nonzero density minimum, normally character-
istic to moving (grey) solitons. Moreover, there is no π -phase
jump, as in a standard motionless (black) solitonic solution in
the GPE [49].

On the other hand, when n∞ > neq, no anomalous solutions
are found. In this regime, solitons are similar to standard dark
solitons. We show density and phase profiles of a grey soliton
moving with velocity β = 0.5 in Figs. 7(b) and 7(d).

To gain some insight into the large width of the solitons
when n∞ ≈ neq, we shall consider again a homogeneous gas.
We can define the pressure as P = −dE/dL. Above the value
of neq, the pressure is positive. But below the equilibrium
density, the pressure becomes negative. Thus, if we break
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FIG. 7. Motionless anomalous soliton density (a) and phase (c) profiles. Standard grey soliton density (b) and phase (d). The grey soliton is
moving with relative velocity β = 0.5. Both solitons were evaluated at a ratio g↑↓/g = 0.55 using the mLLGPE.Black plus-shaped and orange
triangle markers show a correspondence between this figure and Figs. 6(c) and 6(d)

the symmetry in the system by rarefying the density in one
point, the pressure will make the gas on the sides of the defect
contract and form a structure with wide density depletion.

V. SUMMARY

To conclude, we have presented a QMC-based single-
orbital density functional theory for a two-component bosonic
mixture in one dimension, which we call the mLLGP model.
From construction, our approach provides a quantitative
agreement in terms of the energy and chemical potential of
a homogeneous state with the ab initio QMC model from
Ref. [19].

We benchmark our equation by comparing the results with
the original QMC data. This comparison shows the mLLGP
can quantitatively predict the bulk density of a quantum
droplet and the monopole mode frequency in the limit of a
large number of particles in the droplet with a characteristic
ω ∝ N−1 dependency. It also predicts a correct phase diagram
of Bose-Bose mixtures, including a transition from liquid to
gas, not predicted by the mean-field model supplemented with
the LHY correction. Since our approach relies on fitting an
energy functional to QMC data, it is limited by the range
of underpinning QMC data, which is only currently available
in the literature for densities close to the equilibrium density
and for specific interaction ratios. Should QMC data become
available over a larger parameter space of density and interac-
tion ratio, the model could be refined with an improved energy
functional.

Our paper is limited to the specific case where the in-
traspecies interactions are equal, g↓↓ = g↑↑, which leads
to the density profile of each component being equal
to each other, n↓(x) = n↑(x). In principle the approach
could be extended to the more general case where g↓↓ �=

g↑↑ and n↓(x) �= n↑(x), however this would require QMC
data over a wider parameter space. Given the computa-
tional intensity of QMC calculations, this is not tractable
at the present time but may become possible in the
future.

Lastly, we provide a brief study of solitonic solutions of the
mLLGP equation, where we find ultrawide solitonic solutions.
Moreover, anomalous motionless solitons were found as well.
These solitons are characterized by the lack of a π jump in the
phase and a nonzero density minimum.

The presence of such wide solitons can be an advantage for
experimenters who would like to perform an in situ imaging
of these objects. As far as we are concerned, the measurement
of the monopole mode frequency for small droplets may be
helpful to verify the validity of the mLLGP equation too. It
would demand creating droplets consisting of very few par-
ticles, though, making such an experiment tougher to design
and conduct. An avenue for further work would be to use the
mLLGP model to study the dynamical properties of dark soli-
tons in 1D Bose-Bose mixtures, particularly the anomalous
solitons, including their collisions, stability and experimental
generation.

The supporting data for this paper are available in the
Supplemental Material [57].
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APPENDIX A: DETAILS OF THE NUMERICAL
PROCEDURES

1. Energy density functional

In order to find the energy density functional
EmLLGP[n; g, g↑↓], we use the QMC data from Ref. [18],
namely the energy per particle E/N ≡ e(n; g, g↑↓)
for the following interaction ratios g↑↓/g = {0.3, 0.4,

0.45, 0.5, 0.6, 0.65, 0.7, 0.75, 0.8, 0.9}. The data are
extrapolated in the low density limit with a function
fL(n) = −1 + c1n3/2 + c2n5/2 + c3n3 and fH (n) = c4n1/2 +
c5n + c6n3/2 [in units of εb/2], where ci for i = {1, 2, . . . , 6}
are constants to be fitted. Then, we perform a spline
interpolation of the augmented QMC data and perform
a linear interpolation between the ratios. The energy
density functional is connected to the energy per
particle function e(n; g, g↑↓) via a simple relation:
EmLLGP[n; g, g↑↓] = ne(n; g, g↑↓).

2. Imaginary and real time evolution details

The mLLGP equation is a complex, nonlinear partial
differential equation. The orbital ψ (x) is discretized on
a spatial mesh with Nx fixed points and lattice spacing
DX = L/Nx, where L is the box size. We assume periodic
boundary conditions, i.e., ψ (−L/2) = ψ (L/2). The real-time
evolution is done with the use of the split-step numeri-
cal method. The evolution with the kinetic term is done
in the momentum domain, whereas the contact interaction
term is calculated in the spatial domain. No external po-
tential is used. The quantum droplet is obtained with the
use of imaginary time evolution, where we use Wick rota-
tion t → −iτ to find the ground state. The program written

in C + + implementing the algorithm above is publicly
available [56].

The program uses the W-DATA format dedicated to store
data in numerical experiments with ultracold Bose and Fermi
gases. The W-DATA project is a part of the W-SLDA
toolkit [58].

When measuring the monopole mode frequency ω, we
perturb the ground state by multiplying it by a factor
exp(−iεx2/a2), where ε is of the order of 10−6 in our sim-
ulations. Afterwards, we fit the droplet width

√
〈x2〉 − 〈x〉2(t )

to a function f (t ) = A + B cos(ωt + C), where A, B, C, and
ω are fitted constants.

In order to estimate the uncertainty due to the quality of
the energy density functional, we repeat the simulations with
alternative spline representations of EmLLGP. Namely we re-
duce the number of points we use to extrapolate the data with
fL(n) and redo the whole procedure with a slightly different
spline.

APPENDIX B: DARK SOLITONS
IN THE MLLGP EQUATION

To find the dark solitonic solutions of the mLLGP equation,
we go to the thermodynamic limit, i.e., L → ∞, N → ∞
and N/L = const . We plug the following Ansatz for a wave
traveling through the system at a constant velocity vs, i.e.,
ψ (x, t ) = ψ̃ (ζ ), where ζ = x − vst is a comoving coordinate,
to Eq. (3) and obtain

μsψ̃ − imvsψ̃
′ = − h̄2

2m
ψ̃ ′′ + μmLLGP[|ψ̃ |2; g, g↑↓]ψ̃. (B1)

If we assume that far away from the soliton, the den-
sity and phase are constant limζ→∞ |ψ̃ (ζ )|2 = n∞ and
limζ→∞ arg ψ̃ (ζ ) = ϕ∞, we can find the value of the chem-
ical potential μs = μmLLGP[n∞; g, g↑↓]. Then, we rewrite the
equation above in a discretized form, assuming that we start
from two points far away from the soliton ψ̃0 = (1 − ε1)

√
n∞

and ψ̃1 = (1 − ε2)
√

n∞ with ε1,2 � 1 (typically ∼10−4) and
ε1 > ε2.

We have also checked that solitonic solutions are dynami-
cally stable.
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[34] J. Kopyciński, M. Łebek, M. Marciniak, R. Ołdziejewski, W.
Górecki, and K. Pawłowski, Beyond Gross-Pitaevskii equation
for 1D gas: Quasiparticles and solitons, SciPost Phys. 12, 023
(2022).

[35] S. De Palo, E. Orignac, and R. Citro, Formation and fragmen-
tation of quantum droplets in a quasi-one-dimensional dipolar
Bose gas, Phys. Rev. B 106, 014503 (2022).
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