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Double-replica theory for evolution of genotype-phenotype interrelationship
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The relationship between genotype and phenotype plays a crucial role in determining the function and
robustness of biological systems. Here the evolution progresses through the change in genotype, whereas the
selection is based on the phenotype, and the genotype-phenotype relation also evolves. The theory for such
phenotypic evolution remains poorly developed, in contrast to evolution under the fitness landscape determined
by genotypes. Here we provide a statistical-physics formulation of this problem by introducing replicas for
genotype and phenotype. We apply it to an evolution model in which phenotypes are given by spin configurations;
genotypes are an interaction matrix for spins to give the Hamiltonian, and the fitness depends only on the
configuration of a subset of spins called the target. We describe the interplay between the genetic variations
and phenotypic variances by noise in this model by our approach that extends the replica theory for spin
glasses to include a spin replica for phenotypes and a coupling replica for genotypes. Within this framework
we obtain a phase diagram of the evolved phenotypes against the noise and selection pressure, where each phase
is distinguished by the fitness and overlaps for genotypes and phenotypes. Among the phases, a robust fitted
phase, relevant to biological evolution, is achieved under the intermediate level of noise (temperature), where
robustnesses to noise and to genetic mutation are correlated, as a result of replica symmetry. We also find a
tradeoff between maintaining a high fitness level of phenotype and acquiring a robust pattern of genes as well as
the dependence of this tradeoff on the ratio between the size of the functional (target) part to that of the remaining
nonfunctional (non-target) one. The selection pressure needed to achieve high fitness increases with the fraction
of target spins.

DOI: 10.1103/PhysRevResearch.5.023049

I. INTRODUCTION

Evolution under given fitness landscape in the space of
genotypes has been studied extensively [1,2]. Here genotypes
are changed (mutated) in the reproduction process, and those
that have higher fitness, i.e., higher offspring-production rate,
are selected to the next generation. The fitness, however, is not
directly determined by the genes, but rather by phenotypes,
that are the characteristics of a biological system and are also
modulated by environmental effects, such as thermal noise
[3]. Examples of phenotypes include the shape of folded pro-
teins, a set of intracellular chemical concentrations, specific
functions of an organism, and so forth. These phenotypes
are shaped as a result of dynamical process, whose rule is
determined by genes. The evolution of phenotypes is thus
shaped by the genetic evolution.

In addition to the variations of phenotypes induced by ge-
netic mutations during the evolution, phenotypes of isogenic
individuals are also generally variable under noise, resulting
in their stochastic dynamics. Cells involve stochastic gene
expression dynamics, whereas protein folding dynamics to
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give the protein shape is under thermal noise [4–7]. Fitted
phenotypic states hence are better preserved under noise, i.e.,
they keep robustness to noise, while robustness to mutation
will also be required. The achievement of robustness of phe-
notypes to noise and to mutation is important to evolution, as
was discussed recently [8–11]. Now, considering stochastic
dynamics of phenotypes, a general formulation of the evo-
lution of such genotype-phenotype mapping and phenotypic
robustness is hence wanted.

Underlying such stochastic dynamics are the interac-
tions among a vast number of elements that constitute a
biological system. A cell consists of a huge variety of inter-
acting molecules, and its constituent polymers (proteins) are
composed of many monomers (residues). Statistical physics
[12,13] provides an appropriate description of the states of
such interacting elements under noise, and hence it can be
adopted to yield a proper formulation of the mapping from
genotype to phenotype as a dynamical process that shapes
the phenotypes. To this kind of study, use of spin models is
relevant, as it has been extensively analyzed [14–16]. Here
phenotypes are regarded as spin configurations that are up-
dated by a Hamiltonian with spin-spin interactions under
thermal noise, whereas genotypes specify such spin-spin in-
teractions. Individuals are subjected to selection pressure,
where fitness, the number of selected offspring, is given by
a function of configuration of a subset of spins, termed tar-
get spins. It is then important to identify possible phases
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for genotype-phenotype mapping by using the set of order
parameters, a concept rooted in statistical physics.

In the present paper, to address these problems in a sys-
tematic way, we formulate double replica methods both for
spins (phenotypes) and couplings (genotypes), as well as both
for target and nontarget parts. Even though we adopted spin-
coupling representation here our formulation can generally be
applied to other problems, in which the interactions among
many degrees of freedom are also dynamical variables with
their own dynamics. For the sake of demonstration, however,
we here explain this approach by using specifically a spin-
glass Hamiltonian model developed in [14–16]. These works
uncovered that, within an intermediate range of phenotypic
noise and under sufficiently strong selection pressure, the
evolved spin-systems could attain high fitness and robustness
to noise and mutation. A systematic way to elucidate the
condition to achieve such robust fitted states with regards
to the noise strength, selection pressure, and relative size of
target spins, and to understand possible relationship between
robustness to mutation and to noise, however, has not been
developed yet.

One might expect an application of mean-field methods
for disordered systems [17] in this model since a spin-glass
Hamiltonian formulation was adopted by replacing random
couplings among spins (phenotypes) by genotypes that are
evolving [14–16]. Gradual change in the couplings might fit
with partial annealing approach based on a finite number
of replicas n. However, such study is restricted to the case
in which the coupling dynamics are affected by a spin-spin
correlation term [18–22], and is not directly applicable for our
purpose, in which the coupling dynamics depend on the fitness
determined by the spin configurations. Another theoretical
method assumes the quench limit (n → 0) for a replicated
spin system [23], in which the couplings are treated effec-
tively as “static” and hence is not suitable to investigate the
evolution of both genotypes (couplings) and phenotypes (spin
configurations).

In this paper we develop a mean-field approach that we
term double replica theory. It describes the evolution of both
genotypes and phenotypes by considering spins and links as
two different replica species. With this formulation, we obtain
fitness and replica overlaps for spins and couplings, which
work as the order parameters. Using these order parameters
we identify five regions in the temperature vs selection pres-
sure phase diagram: two nonfitted paramagnetic phases, fitted
and nonfitted spin glass phases, and a robust fitted phase.
The last phase is the most biologically important, and can
only be achieved under intermediate noise level (temperature)
and sufficient selection pressure, whereas robustness can only
arrive at the cost of lowering the fitness from its maximal
value. Dependence of the robust fitted phase on the ratio of
functional to nonfunctional parts has been analyzed in depth.
As the former ratio is increased, the selection pressure to
achieve this phase is drastically increased, whereas, if the
phase is achieved, it can persist for slightly higher noise.
This suggests the relevance of having sufficient nonfunctional
parts in biological systems. In addition, correlation between
robustnesses to noise and to mutation is formulated as a pro-
portionality between susceptibilities to external field and to
coupling change.

II. DOUBLE REPLICA THEORY

Following [15,16] we study the evolution of the relation-
ship between phenotype and genotype by representing phe-
notypes as spin configurations, and genotypes as interaction
matrix for spins. In a system of N spins, each spin i can take
values si ∈ {−1, 1} and is linked to exactly N − 1 other spins,
thus forming a fully connected network. Here the evolution
progresses through the change in genotype, whereas the selec-
tion is based on the phenotype, resulting in an evolution of the
genotype-phenotype relation. Moreover, fitness is determined
by a subset of target spins denoted by T . Those spins that do
not contribute to the fitness are called nontarget. In general,
the fitness � is some field that acts on Ji j but whose value
depends only on si, i ∈ T . How such dependence is explicitly
described is model specific and will not limit the use of our
approach. See Eq. (A1) in Appendix A for an example of �

given by the target spin configurations at equilibrium [15,16].
Stochastic dynamics of phenotypes are considered as the

evolution of spin configurations at a temperature Ts according
to a Hamiltonian HS = −∑i< j Ji jsis j [24]. Here the cou-
plings Ji j are regarded as fixed over the course of the spin
evolution that follows a Glauber update because they are
assumed to evolve on much slower timescale than that of the
spins. Furthermore, the couplings are symmetric, i.e., Ji j =
Jji, and, initially, are independently and identically distributed
by a Gaussian distribution with zero mean and the variance
J2 := var(Ji j ) = N−1. The coupling matrix J includes inter-
actions between target spins J (tt )

i j for i ∈ T and j ∈ T , those

between nontarget spins J (oo)
i j for i ∈ T and j ∈ T , and those

between target spin and nontarget spin J (to)
i j for i ∈ T and

j ∈ T . Let ST and SO denote the subsystems of target spins
(with their interactions J(tt )) and the subsystem of nontarget
spins (with the couplings J(oo) among them), respectively. The
Hamiltonian of the full system denoted by S can be decom-
posed into

HS = −
∑

i< j∈T
J (tt )

i j sis j

︸ ︷︷ ︸
HT

−
∑

i< j �∈T
J (oo)

i j sis j

︸ ︷︷ ︸
HO

−
∑
i∈T
j �∈T

J (to)
i j sis j

︸ ︷︷ ︸
HT O

, (1)

where HT and HO are the Hamiltonians of the subsystems
ST and SO, respectively, while HT O describes the interactions
between these subsystems.

Now we introduce the effective potential to obtain the
distribution of J [25]. For it, we consider a continuous
Langevin-type dynamics for the couplings,

dJi j

dτ
= − 1

N

∂ V

∂Ji j
+ 1√

N
ξi j (τ ), (2)

where V = V (J) is the potential of all the couplings and ξi j is
the white noise whose intensity equal to the temperature TJ .
The factors 1/N and 1/

√
N in front of the potential and the

noise term, respectively, ensure a correct relationship between
the drift and diffusive parts of the Langevin equation. If the
couplings were independent of each other, the potential would
simply take the form of the potential of a free Brownian
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particle,

V0 = N

2

∑
i< j

J2
i j . (3)

However, in the presence of fitness we need an additional
term. Here we assume that the fitness would be maximized
if a global alignment is established among target spins, so that
we introduce

� = 1

Nt

∣∣∣∣∣∑
i∈T

si

∣∣∣∣∣, (4)

where Nt is the size of T . Under this fitness that favors the
alignment of target spins, the couplings are necessarily sub-
jected to a fitness field K [26]:

K = 1

βJ

∂

∂Ji j
ln

(∑
{si}

exp

{
βJ

Nt

∑
i< j∈T

Ji j

∣∣∣∣∣∑
i∈T

si

∣∣∣∣∣
})

(5)

or equivalently, V needs to be modified from V0 into

V = V0 − 1

βJ
ln

(∑
{si}

exp

{
βJ

Nt

∑
i< j∈T

Ji j

∣∣∣∣∣∑
i∈T

si

∣∣∣∣∣
})

.

Without the evolution of genotypes, the Hamiltonians HT ,
HO, and HT O dictate the spins to adapt to a set of fixed
couplings J in order to minimize each term of Eq. (1) through
the spin dynamics. Such adaptation results in an accordance
between the state of J (tt )

i j and sis j for i, j ∈ T , that between the

state of J (oo)
i j and sis j for i, j �∈ T , and that between the state of

J (to)
i j and sis j for i ∈ T , j �∈ T . As long as this kind of accor-

dance exits, it is insufficient to consider the evolving couplings
with selection force given in Eq. (5) only. A link between
two spins hence necessarily needs to adapt to the joint state
of these spins. Due to the timescale separation between the
phenotype and the genotype dynamics, the direction of change
of genotypes is determined by the equilibrium correlation of
the phenotypes, and since Ji j is symmetric, it needs to be

dJi j/dτ ∝ 〈sis j〉Ts .

This is equivalent to having a potential of the form [27]

Va = V − 1

βs
ln

(∑
{si}

exp

{
βs

∑
i< j

Ji jsis j

})
. (6)

The stochastic process induced by Eq. (2) under this po-
tential admits an equilibriumlike stationary joint distribution
P (J(tt ), J(oo), J(to) ) of Boltzmann form (with associated tem-
perature TJ ), i.e.,

P (J(tt ), J(oo), J(to) ) = e−βJVa/Ztotal,

where Ztotal = ∑
{J} e−βJVa . Instead of calculating this distri-

bution, we introduce our approximate approach, in which J (to)
i j

are assumed to always attain equilibrium well before J (tt )
i j

and J (oo)
i j and hence can be adiabatically eliminated. As a

consequence, only the weights of equilibrium configurations
of J(to) contribute to the stationary distributions:

PT (J(tt ) ) = lim
τ→∞PT (J(tt ), τ ),

PO(J(oo) ) = lim
τ→∞PO(J(oo), τ ),

where PT (J(tt ), τ ) and PO(J(oo) ) are the time-dependent so-
lutions of the corresponding Fokker-Planck equations with
the effective potentials Vtt for J(tt ) and Voo for and J(oo), re-
spectively [28]. To obtain the distribution only of J(tt ) and
J(oo), we first replace J(to) as the given matrix by that obtained
self-consistently from the equilibrium distribution. For it we
need to modify Va in such a way that the influence of J(to) on
J(tt ) (J(oo)) can be taken into account in the effective potential
Vtt (Voo). The joint effect of HT O and HT on the dynamics
of target spins suggests that the dependence of J (tt )

i j and J (to)
ik

on each other arises from any triad formed between (i, j) ∈ T
and k �∈ T , i.e., via J (tt )

i j J (to)
ik J (to)

jk . This influence is represented
by the frustration [17], which implies that an optimal spin
configuration (s∗

i , s∗
j , s∗

k ) can only be established if the relation

J (tt )
i j J (to)

ik J (to)
jk > 0 holds [optimality in this context means that

HT O and HT can be lowered simultaneously by (s∗
i , s∗

j , s∗
k )].

Since for any given pair of (i, j) ∈ T there are N − Nt triads
�k formed between it and a nontarget spin k �∈ T , the total
effect of frustration is given by

F (t-o-t )
i j = (N − Nt )

−1
N−Nt∑
k=1

J (to)
ik J (to)

jk . (7)

Likewise, frustration among all Nt triads �̃k formed between
a given pair of nontarget spins i �∈ T and j �∈ T with k ∈ T
induces a force F(o-t-o) on the state of J (oo)

i j :

F (o−t−o)
i j = N−1

t

Nt∑
k=1

J (to)
ik J (to)

jk . (8)

The proposed scheme just allows us to define the effective
potential Vtt for J(tt ) and Voo for and J(oo) as

Vtt = Va − 1

βJ
ln

(∑
{J (to)

i j }
exp

{
βJ

∑
i< j∈T

J (tt )
i j F (t−o−t )

i j

})
,

Voo = Va − 1

βJ
ln

(∑
{J (to)

i j }
exp

{
βJ

∑
i< j �∈T

J (oo)
i j F (o−t−o)

i j

})
.

The stationary distributions induced by the diffusion process
in Eq. (2) with these effective potentials have a Boltzmann
form, PT (J(tt ) ) = e−βJVtt /ZT and PO(J(oo) ) = e−βJVoo/ZO,
where ZT and ZO are the partition function of the genotypes
J(tt ) and that of the genotypes J(oo), respectively [29]. Here we
replace J(to) by the replica matrix σ k

i := J (to)
ik , to be obtained.

(This stepwise scheme is valid, as we are concerned with the
equilibrium property). Denoting n := Ts/TJ , we can compute
ZT and ZO as
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ZT =
∫ ∏

i< j∈T
dJ (tt )

i j

∑
{

si;sα
i ;σ k

i

}
i∈T

exp

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

βJ

∑
i< j

⎡
⎢⎢⎢⎢⎣−Nt

2

(
J (tt )

i j

)2 + J (tt )
i j

⎛
⎜⎜⎜⎜⎝

1

Nt

∣∣∣∣∣∑
i∈T

si

∣∣∣∣∣+ 1

n

n∑
a=1

sa
i sa

j︸ ︷︷ ︸
s replicas

+ 1

N − Nt

N−Nt∑
k=1

σ k
i σ k

j︸ ︷︷ ︸
σ replicas

⎞
⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

,

ZO =
∫ ∏

i< j �∈T
dJ (oo)

i j

∑
{

sα
i ;σ k

i

}
i �∈T

exp

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

βJ

∑
i< j

⎡
⎢⎢⎢⎢⎣−N − Nt

2

(
J (oo)

i j

)2 + J (oo)
i j

⎛
⎜⎜⎜⎜⎝K̃ + 1

n

n∑
a=1

sa
i sa

j︸ ︷︷ ︸
s replicas

+ 1

Nt

Nt∑
k=1

σ k
i σ k

j︸ ︷︷ ︸
σ replicas

⎞
⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

In writing these equations, we assume that the fitness acts only
on J (tt )

i j [30] and hence in ZO we replace the fitness field K by
a constant K̃ , which eventually will be set to 0 by virtue of
calculations of the observables for nontarget spins. Although
neglecting the fitness’s effect on J (oo)

i j does not follow exactly
the above-mentioned implementation of the model, we expect
that this holds true in the long-time limit because otherwise
both target and nontarget configurations at equilibrium would
determine the fitness. This restriction hence corresponds to a
first-order approximation of the fitness’s effect, while a term
that affects the dynamics of J (oo)

i j and J (to)
i j is considered to be

of higher order.
We here propose to interpret σ k

i as the kth replica of another
variable σi ∈ {−1, 1} that is also located at the site i of the
graph (generally σi �= si). To distinguish these different types
of replicas from each other, we call sa

i spin replicas and σ k
i

coupling replicas. Following this interpretation, apart from n
that appears as the number of spin replicas sa

i , a = {1, . . . , n},
in ZT and ZO [31], we thus have N − Nt coupling replicas,
σ k

i , for i ∈ T and k = {1, . . . , N − Nt }, and Nt coupling-
replicas, σ k

i , for i �∈ T and k = {1, . . . , Nt } respectively. As,
in general, none of these numbers are zero, our double-replica
approach does not correspond to the conventional quenched
limit in spin-glass models [17]. Once setting K = 0 and ne-
glecting the terms corresponding to F (t-o-t ) and F (o-t-o), we
recover the model of Coolen et al. for neural systems with
dynamic synapses [19]. In contrast to the use of a Hamiltonian
for the couplings adopted in [23], here we have introduced the
effective potential for couplings that, by using the timescale
separation between the dynamics of genotypes and that of
phenotypes, allows for the integration of the spin dynamics
specified by the Hamiltonian (1) into the Langevin dynamics
of the couplings through the second term in Eq. (6).

Here we characterize the equilibrium behavior of the model
by the average fitness m, the overlap between different spin
replicas a and b, qab, and the correlation between adjacent
links Q. Additionally, we want to quantify the mean value of
the couplings among the target spins only 
. Let E[·] and
Ẽ[·] denote ensemble averages over PT (J(tt ) ) and PO(J(oo) ),
respectively. These order parameters are given by

ma = E
[
sa

i

]
i∈T , qab = E

[
sa

i sb
i

]
i∈T , (9a)

Qkk′ = E
[
J (to)

ik J (to)
ik′
]

i∈T
k,k′ �∈T

, (9b)


 = E
[
J (tt )

i j

]
i, j∈T . (9c)

Similarly, for the nontarget spins we have

m̃a = Ẽ
[
sa

i

]
i �∈T , q̃ab = Ẽ

[
sa

i sb
i

]
i �∈T , (10a)

Q̃kk′ = Ẽ
[
J (to)

ik J (to)
ik′
]

i �∈T
k,k′∈T

, (10b)


̃ = Ẽ
[
J (oo)

ik

]
i, j �∈T . (10c)

In the thermodynamics limit, N → ∞ and Nt → ∞, while
keeping p = Nt/N fixed, using a replica symmetric ansatz for
the variables ma = m, qab = q and Qkk′ = Q, m̃a = m̃; q̃ab =
q̃ and Q̃kk′ = Q̃, as well as Mak = M and M̃ak = M̃, where
Mak = E[sa

i J (to)
ik ] i∈T

k �∈T
and M̃ak = Ẽ[sa

i J (to)
ik ] i �∈T

k∈T
, we obtain the

following free energy densities:

f RS
T = 1

2

{
q

n
+ Q

N − Nt
+ (n − 1)q2

2n
+ Q2

2
+ M2

}

− 1

βJ
ln

⎡
⎣ Nt∑

z=0

(
Nt

z

) N−Nt∑
k=0

(
N − Nt

k

)
Ikz

⎤
⎦ (11a)

f RS
O = 1

2

{
q̃

n
+ Q̃

Nt
+ (n − 1)q̃2

2n
+ Q̃2

2
+ M̃2

}

− 1

βJ
ln

{
Nt∑

k=0

(
Nt

k

)
Ĩk

}
. (11b)

From the extremum condition of these free energies we
can compute all the model order parameters via a set of
self-consistency equations. These equations as well as the
functions Ikz and Ĩk are given in Appendix B [32]. The use of
the replica symmetry is justified in most of the (Ts, TJ ) param-
eter space from the stability analysis [33]. At low Ts and TJ the
replica symmetry is broken, which we will not explore fully.
Nevertheless we will discuss later how robustness of pheno-
types, postulated for biological systems that reproduce similar
offspring, is lost in that scenario. The replica-symmetric free
energy densities allow us to derive


 = 1

Nt
[� + m2 + r2], (12a)


̃ = m̃2 + r̃2

N − Nt
, (12b)

where r and r̃ are defined and computed in Appendix B.
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(a) (b)

(c) (d)

FIG. 1. Magnetization for target spins m (a). Overlap between
different replicas for target spins q (b). Averaged correlation of a pair
of couplings between a target and a nontarget spin that share a com-
mon nontarget spin Q (c). Averaged frustration among target spins 


(d). Here Nt = 10, N = 100. Note the y axis is on logarithmic scale.

III. PHASE DIAGRAM

In Fig. 1 we depict the order parameters as function of the
temperature Ts and TJ for a particular choice of N = 100 and
Nt = 10. Here for each point (Ts, TJ ) of the phase diagram, we
solve numerically the set of mean-field equations for m, q, Q,
while computing 
 from the knowledge of these quantities.
In terms of only the magnetization m and the overlap between
spin-replicas q for target spins, we observe three distinct
phases that are typical for spin-glass systems, namely, m =
q = 0 (paramagnet phase), m = 0, q > 0 (spin-glass phase),
and m > 0, q > 0 with

√
q > m (target-ferromagnet phase,

“t-ferro” in short). The transitions between the phases are
second order at small Ts/TJ , but become discontinuous (first
order) at large Ts/TJ . At a much lower value of TJ there
is a region where, apart from having a nonzero magnetiza-
tion of target spins, the order parameter Q = 〈J (to)J (to)〉 starts
to become nonzero. As can be anticipated from Eq. (12a),
the mean value of J (tt )

i j also varies from region to region
in accordance with the change of m and that of Q. Note
that in sharp contrast to the transition between paramagnet
and spin glass, which is similar to that of the Sherrington-
Kirkpatrick (SK) model, the phenotype-genotype coupling
results in a repositioning of the boundary between spin glass
and t-ferro. Such difference arises from the nonzero cor-
relation of the genotypes. Expanding the free energy f RS

T
for small m and q, the transition between paramagnet and
t-ferro occurs at T P→F

s = κ , where κ = 2−Nt
∑Nt

z=0

(Nt

z

)|Nt −
2z|/Nt ,while the spin-glass to t-ferro transition occurs at [1 +
(n − 1)q(βSP→F

s )](βSP→F
s κ ) = 1. We also check that both the

magnetization m̃ of the nontarget spins and the average value

̃ of J (oo)

i j are always zero, as the nontarget spin subsys-
tem remains frustrated all the time, while the spin overlap
q̃ can undergo a transition from paramagnet to spin glass,
in the same way as the SK model. The phase diagrams of
these quantities are given in in Appendix D. Combining
the behavior of the order parameters altogether, we obtain

FIG. 2. The model phase diagram. Here SP1 denotes the spin-
glass phase with m = m̃ = Q = Q̃ = 0 and q, q̃ > 0; SP2 denotes
the spin-glass phase with m̃ = Q = 0 and q, m > 0 (within this re-
gion, both q̃ and Q̃ can be either zero or non-zero, see Appendix D);
P1 denotes the paramagnet phase with m = m̃ = q = q̃ = Q = Q̃ =
0; P2 denotes the paramagnet phase with m = m̃ = q = q̃ = Q̃ = 0
but Q > 0; R denotes the robust fitted phase with m̃ = q̃ = Q̃ = 0
but m, q, Q > 0. Here Nt = 10, N = 100. Note the y-axis is on loga-
rithmic scale.

the model phase structure in Fig. 2. It contains five distinct
regions. At low genotypic selection pressure TJ � e−1, only
the first spin-glass SP1 and the paramagnet P1 phases with
zero fitness are observed. However, as the genotypic selection
pressure increases other phases emerge. At sufficiently low TJ ,
a robust fitted phase denoted by R (m, q, Q > 0) emerges in
an intermediate range of Ts (here m̃ = q̃ = Q̃ = 0). Adjacent
to this phase on the side of high phenotypic noise is the
second paramagnet phase P2 where the fitness value is low
(m = q = 0) but there exists some structure in the genotypes
such that Q > 0. On the other hand, for lower Ts, the system
is in the second spin-glass phase SP2 with high fitness but
nonrobust genoptypes (m � q � 1, Q = 0). In particular, the
transition from R to SP2 is marked by a replica symmetry
breaking (RSB) which indicates the loss of stability of the
replica symmetric (RS) solutions [34]. The broad distribution
of gene-gene correlations in the RSB phase implies that the
genotype of offsprings is not preserved, in contrast to the RS
phase. In the biological context, this means that replication
is no longer stable so that genotypes are not conserved over
generations.

Overall, the phase diagram agrees with what was observed
numerically in [15,16]. However, thanks to the explicit ac-
count of the coupling replicas, so that Q can be treated as an
order parameter upon which the free energy density depends,
we discover the existence of the second paramagnet phase P2
that was not reported before. This phase can be interpreted
as a precursor region, in which genotypes are structured in
such a way that supports ferromagnetic ordering among target
spins, and hence have potentiality to acquire a high fitness,
but due to the high fluctuation induced by Ts, this fitness
cannot be maintained. Furthermore, by considering separately
the effective dynamics of the target and nontarget subsys-
tems, ST and SO, our approach can differentiate the phase
SP1 from SP2. The previous approach [23] only stressed
the distinct arrangement of target spins in the SP2 region,
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(a) (b)

(c) (d)

FIG. 3. The phase diagrams obtained by combining the behavior
of m as function of Ts and TJ with that of Q for different values of p,
at sufficiently low TJ . Here N = 100.

where the subsystem of target spins becomes ferromagnetic
whereas that of nontarget ones remains spin glass. Our present
approach shows that this is no longer true for a high value
of TJ . Upon increasing TJ , this ferromagnetic ordering is de-
stroyed by genotypic fluctuations. The same structure of the
phase diagrams is also observed for N = 50, Nt = 5 and N =
200, Nt = 20; see Appendix C for the phase diagram obtained
in these cases, where βJ is rescaled according to N (and Nt ).
Accordingly, it is shown that the selection pressure needed
to achieve robustness increases with the number of spins N
at a fixed fraction Nt/N . In addition, the present analysis
allows one to obtain quantitative dependence of genotypic and
phenotypic robustness on the fraction of targets. The phase
diagram in Fig. 2 includes global information of the system
including weak selection region without achieving nonzero
fitness, m, of target, whereas there is biological interest if
the fitted state is evolved robustly by the selection. To this
end we focus on the low-TJ region of the phase diagram to
explore the dependence of the system behavior on the fraction
p = Nt/N of target spins. While overall the phase structure
is similar for different p in Fig. 3, in particular the robust
fitted (yellow) region seems to change slightly with increasing
p; the relative size and exact location of all the other phases
vary with p. This suggests that a more quantitative analysis
is needed to understand the genotype-phenotype relationship
as a function of p. We carry on this analysis in the next
section.

IV. STRUCTURE OF THE ROBUST FITTED PHASE

The most relevant region in the phase diagram is the robust
fitted phase R, which is characterized by both the high fitness
(m > 0) and robustness (Q > 0). For a sufficiently low given
TJ (i.e., high selection pressure), the phase is bounded by
Ts ∈ [T (1)

c , T (2)
c ]. Below T (1)

c , Q goes to zero, and above T (2)
c ,

(a) (b)

(c) (d)

(e) (f)

FIG. 4. (a) Magnetization of target spins m as function of
Ts at fixed TJ = 0.005 for various numbers of target spins, p =
0.04, 0.1, 0.2, 0.3, 0.4, 0.5. (b) The same for genetic overlap Q.
(c) Frustration defined as 1 − Q as a function of the number of
nontarget spins in the robust fitted phase (i.e., Ts ∈ [T (1)

c , T (2)
c ]) at

fixed TJ = 0.005. (d) The highest value of TJ at which Q remains
nonzero as a function of p. (e) Magnetization of target spins m as a
function of TJ at fixed Ts = 1.3 for various fractions of target spins,
p = 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8. (f) The value of TJ at which the
magnetization of target spins, m, drops to zero at fixed Ts = 1.3 for
different p from (e). Behavior similar to (e) and (f) is observed for
other Ts ∈ [T (1)

c , T (2)
c ]. Here N = 100.

m goes to zero, whereas these transition points depend on TJ .
We first investigate the dependence on p of the R region by
fixing TJ . In Figs. 4(a) and 4(b) we fixed TJ = 0.005. First, for
a wide range of p ∈ [0.04, 0.5], the temperature T (1)

c of the
latter transition in (b) does not depend on p (see Appendix D
for the zoom-in of a small dip of m at this point). On the
other hand, T (2)

c slightly increases with increasing p in (a),
indicating that the fitness of the high p case is relatively more
robust to noise than the low p case.

In Fig. 4(c) 1 − Q is almost constant against Ts in the R
phase. This constant value was found to increase with the
number of nontarget spins. Note that Q ∼ 1 implies that the
offspring of genotypes are preserved. The increase in 1 − Q,
thus means the increase in redundancy of genotypes, as is sup-
ported by a larger number of non-targets. Such a redundancy
has another meaning in the context of spin-glass systems,
where it is indeed equal to the local frustration [in the (t-o-t )
triads with positive J (tt )].

In contrast, apart from the two critical points T (1)
c and

T (2)
c , the fitness m does not depend on p. It follows a unique

curve, independent of p. Even though the increase in genetic
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heterogeneity 1 − Q for more nontargets may perturb the
target spin configuration, the fitness m remains unchanged
even for smaller p.

Then, we estimate the critical value of TJ below which
the R phase can exist. While this critical value denoted by
T (Q)

J can depend on Ts, as seen in Figs. 2 and 3, it can be
approximately identified with the upper part of the P2 phase
from the phase diagram. In Fig. 4(d) T (Q)

J is shown to decrease
with p. This result together with that in Fig. 4(a) mean that
the higher p is, the higher the selection pressure that is needed
to achieve robustness, but once it is achieved, a system with
larger p is more robust with respect to phenotypic noise than
one with smaller p.

Finally, we examine the fitness as function of TJ at fixed
Ts = 1.3 for various p in Fig. 4(e). While fitness decreases
with TJ , its behavior with the increase in p is nonmonotonic.
This behavior is further shown in Fig. 4(f) where the critical
genotypic noise T (m)

J at which the fitness becomes nonzero
is plotted versus p. Similar behavior is observed for other
Ts ∈ [T (1)

c , T (2)
c ]. The result supports p = 0.5 as the maximal

value of T (m)
J , suggesting the existence of an optimal fraction

of target spins to acquire high fitness in this intermediate range
of Ts [35].

V. MUTATIONAL SUSCEPTIBILITY AND PHENOTYPIC
SUSCEPTIBILITY IN THE ROBUST FITTED PHASE

Correlation between variances of phenotypes due to ge-
netic changes and to noise has been discussed in both
experiments and simulations, and relationships to robustness
have been discussed both theoretically [10,14,36–39] and
experimentally [40–43]. In statistical physics, this issue can
be analyzed in terms of susceptibility, as it is proportional
to the variance. Then, we need to study the susceptibil-
ity due to genetic mutation, in addition to the standard
susceptibility.

In the context of this model, mutations are defined as those
change of the genotypes Ji j that might happen spontaneously
and independently of the dynamics specified previously. Let
δ�i(δJjk ) denote the change of the average local magne-
tization of a target spin i [44] upon mutating a genotype
Jjk → Jjk + δJjk . The mutational susceptibility of this tar-
get spin with respect to such a change Mi, jk then can be
defined as

Mi, jk = lim
δJjk→0

δ�i(δJjk )/δJjk = 〈sis jsk〉 − 〈si〉〈s jsk〉.

In general, Jjk ∈ J = J(tt ) ∪ J(oo) ∪ J(to). However, since fit-
ness is determined solely by the configurations of target spins
at equilibrium, we consider only Jjk ∈ J(tt ) and show that
the average of this mutational susceptibility over all triples
(i, j, k) ∈ T is equal to

M := 1(Nt

3

) ∑
(i, j,k)

Mi, jk = 2β2
J mχm − βJ

∂3 f

∂h3

∣∣∣
h=0

(13)

where χm := − limh→0 ∂2 f /∂h2 is the susceptibility of target
spins. The quantities M and χm correspond to the suscep-
tibility to mutation of the genotypes and susceptibility to

perturbation by an external field, h, respectively. We can
expect that in the robust fitted phase there exists a relation
between M and χm [45]. In fact, let X := limh→0 ∂3 fT /∂h3.
For L given in Eq. (B3a) in Appendix B (L/βJ has the meaning
of an effective Hamiltonian that is defined in the combined
space {sa

i , σ
k
i } of s replicas and J replicas), according to the

definitions

X ∝
n∑

a,b,c=1

Tr(sasbsceL )/ Tr(eL ),

m := 〈sa〉 = 1

n

n∑
a=1

Tr(saeL )/ Tr(eL ),

χm := lim
h→0

∂m

∂h
= βs

n

n∑
a,b=1

Tr(sasbeL )/ Tr(eL ),

the symmetry between different replicas in the robust fitted
phase implies that the third moment X RS is proportional to the
product of the first and second moments, mRSχRS

m . Therefore,
approximately, M ∝ χRS

m . This proportionality between the
two susceptibilities, implying a correlation between pheno-
typic changes due to genetic variation and those in response
to environmental perturbations [46], does not exist in the RSB
phase, as the second term in Eq. (13) is no longer proportional
to χm.

VI. DISCUSSION

In the paper we propose an approach towards biological
evolution due to the interrelationship between genotype and
phenotype where fitness is determined solely by the latter
but not by the former. Though the emergence of structured
genotypes from initially random couplings under this rela-
tion has been numerically reported, apart from a study which
imposed a specific condition on the couplings [23], this has
not been studied analytically yet. We here are able to tackle
this problem thanks to what we termed double-replica theory.
Within this framework we obtain the phase diagram, that is
classified not only by the fitness but also by the overlap in
dual replicas. The diagram is not only in good agreement with
previous studies (including paramagnet, t-ferro, and robust fit-
ted phases, all existing at sufficiently low TJ ), but also contains
additional phases. These include the first spin-glass phase SP1
and the second paramagnet phase P2. The former corresponds
to a system with both target and nontarget spins residing in a
spin-glass phase (at low selection pressure), while the latter
corresponds to a paramagnetic phase for all spins but retains
genetic correlations encoding target and nontarget couplings
(at high selection pressure and high Ts). Here, even though the
genotypes favor a high value of fitness, due to large fluctua-
tions induced by Ts, such a value can not be maintained over
generations. The existence of the phase suggests that even
though the average fitness is zero due to large noise, there
exists a genetic precursor to generate individuals with nonzero
fitness. The relevance of this scenario to evolutionary biology
needs to be explored in future, though.

The system can only acquire high fitness at some Ts � T (2)
c ,

where the fitness increases discontinuously. If Ts is too low,
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then RSB will happen, leading to a phase without genetic
overlap, where biologically required robustness of genotypes
is lost. Hence a lower bound of Ts � T (1)

c is necessary to have
RS and robustness, accordingly.

From this approach, the target-fraction dependence of
genotypic and phenotypic robustness can also be understood
quantitatively. Such dependence is quantified via the behav-
ior of the fitness m and genetic redundancy 1 − Q in the
robust region bounded by T (1)

c and T (2)
c . Here we find that

a genetically homogeneous population can only be robustly
reproduced under a sufficiently high selection pressure and
under a sufficient level of phenotypic noise (temperature). As
the fraction of target spins is increased, the robust fitted phase
is slightly expanded to a higher temperature, whereas higher
selection pressure is needed to achieve it. The existence of
an optimal fraction for attaining high fitness under intermedi-
ate phenotypic noise is suggested. This may explain why, in
biological systems, such as in proteins, the fraction of units
that are responsible for function is generally limited, and a
sufficient fraction of nonfunctional units is needed, providing
redundancy. While it is hard to obtain an accurate estimation
of the functional sites in real proteins, rough estimates suggest
they are of the order of 10–20% [47]. It hence will be interest-
ing to discuss this range of functional regions, in relationship
with evolvability and robustness as discussed here.

In the present theory, the proportionality between the stan-
dard thermodynamic susceptibility and mutational suscepti-
bility is derived in the robust fitted phase. As the susceptibility
measures the change of fitness due to varying conditions, a
correlation between responses to environmental perturbations
and that by genetic changes is suggested. Such correlation, or
evolutionary fluctuation-response relationship [10,14,36–39]
has been observed in experimental data from the evolution of
protein dynamics and bacterial protein expressions, whereas
we can derive it here under the replica symmetry assumption.
As argued in [14], such correlation can only be achieved in the
replica symmetric region where the original high-dimensional
dynamics of the phenotypes are reduced to a low-dimensional
manifold due to evolution towards robustness. The variations
of fitness due to noise and that due to mutation then happen
to occur along the same low-dimensional manifold, resulting
in a correlation between them. If RSB occurs, such restriction
of the phenotypic dynamics no longer exits, because in this
case changes of fitness upon varying the environmental con-
ditions will vary arbitrarily from realization to realization of
the Ji j’s dynamics. As a result, the system will have random,
uncorrelated responses to noise and to mutations.

In our formulation by assuming that the entire system
reaches an equilibrium, we approximate the effect of the
slowly evolving J(to) that couple the subsystem ST to SO
on these subsystems’ own dynamics by the equilibrium cor-
relations 〈J (to)J (to)〉. Such correlations are then incorporated
separately into each of the dynamics of the J(tt ) and J(oo)

couplings by modifying the effective potentials of these dy-
namics, thus making the dynamics of these two different
sets of coupling independent of each other. In an equilibrium
statistical physics formulation, this leads to the necessity of
introducing another type of replica, so-called coupling repli-
cas, into the partition functions, besides the first (standard)
spin replicas that take care of the effect of the phenotypes

on the evolution of genotypes. This scheme hence allows
us to treat the model in a standard mean-field manner. On
one hand, being of mean-field nature, our approach can not
provide a formal argument to support the hypothesis of [14]
about the emergent dimensional reduction from phenotype-
genotype coevolution. On the other hand, the correlation
between the mutational and environmental susceptibilities in
the robust fitted phase suggests the existence of a funnel-like
landscape [48,49] that reinforces the dynamics to reside in a
low-dimensional manifold by a global attraction.

Despite of its abstraction, our model may have some other
implications on the proteins that acquire function through evo-
lution. First, the presented correlation between robustness to
noise and to mutation has been discussed previously in RNA
[9] and in proteins [39]. Further quantitative analysis will be
needed to establish the mechanism of such a general phe-
nomenon. Second, the observed consistency between a global
attraction to the robust fitted state in the replica symmetric
phase and the funnel picture in protein folding dynamics sug-
gests the importance of replica analysis in studying the protein
free-energy landscape.

The current choice of fitness for the sake of simplic-
ity, however, limits the possibility of having different global
maxima in the fitness landscape. One can enrich the model
behavior by determining fitness either by a combination of
Nfit different target spin configurations or by a set of gauge-
equivalent configurations.

In the present framework, since the couplings are sym-
metric, we constructed the effective potential of the coupling
dynamics based partly on the existence of an energy land-
scape. For those models in other contexts [50,51] having such
a landscape picture, we expect a straightforward application
of our approach. Furthermore, the present double-replica the-
ory can be extended to those stochastic dynamical systems
that are not governed by Hamiltonian dynamics as well. In
this case, instead of the effective potential and its associated
partition function, one would need to characterize the en-
semble of trajectories in the combined space of phenotypes
and genotypes, using the moment generating function [52,53].
While we so far have solely used Hamiltonian dynamics as
the main example of our approach, such an extension would
allow for the applications to coevolution of gene-expression
patterns and the gene-regulatory networks [10], that of species
abundances and their ecological networks [54], and that of
neuronal activities and network shaped by neural dynamics
(learning) [55,56].
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APPENDIX A: DETAILS OF THE SHK MODEL

In the following we call the model originally introduced
in [15,16] as the SHK model. In this model, phenotypes are
spin configurations, and genotypes are the interaction matrix
for spins. In a system of N spins, each spin i can take val-
ues si ∈ {−1, 1} and is linked to exactly N − 1 other spins,
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(a) (b)

FIG. 5. The phase diagrams obtained by combining the behavior
of m as function of Ts and TJ with that of Q at p = 0.1 for N = 50
(a) and N = 200 (b). The yellow region in both (a) and (b) shows the
robust fitted phase (m > 0 and Q ∼ 1). The red dashed line depicts
the critical line β

(c)
J = 1/(N − Nt ) that is obtained from Landau’s

order-parameter-theory analysis of the free energy of target spins
using the expression in Eq. (B4a).

thus forming a fully-connected network. Moreover, fitness is
determined by a subset of target spins denoted by T . Those
spins that do not contribute to the fitness are called nontarget.
The fitness � at a noise level Ts is determined by the spin
configurations at equilibrium as

�(s) = 1

Nt

〈∣∣∣∣∣∑
i∈T

si

∣∣∣∣∣
〉

Ts

, (A1)

where 〈·〉Ts is the thermal average according to an equilibrium
distribution over spin configurations only. This distribution is
computed from the partition function of a spin-glass Hamil-
tonian HS = −∑i< j Ji jsis j [24] in which the couplings Ji j

are regarded as fixed over the course of the spin dynamics
because they are assumed to evolve on much slower timescale
than that of the spins. Here the couplings are symmetric, i.e.,
Ji j = Jji, and are independently and identically distributed by
a Gaussian distribution with zero mean and the variance J2 :=
var(Ji j ) = N−1. The model Hamiltonian of the full system is
given by

HS = −
∑
i< j

Ji jsis j . (A2)

Once the spins have relaxed to an equilibrium at a temperature
Ts via a Glauber update specified by HS , the couplings are next
updated with probability Pr[J → J̃] = min {1, eβJ ��}, where
�� = �(J̃) − �(J) and βJ ≡ 1/TJ is the genotypic selection
pressure. These two dynamics are implemented consecutively
one after another until the entire system equilibrates. Im-

FIG. 7. The third-largest eigenvalue �3 of the Hessian matrix for
the target coupling replicas as function of the model parameter. Here
we find the region with broken replica symmetry where �3 < 0. The
change in the sign of �3 happens to coincide with the transition
between Q = 0 and Q > 0. Here Nt = 10 and N = 100. Note the
y axis is on logarithmic scale.

plementing this way, the model captures the evolution of
feedback process between the phenotype and genotype, where
the phenotype dynamics are represented by the stochastic
dynamics of spins (s) according to the energy landscape HS

for given genotype (J), whereas the evolution of genotype
is given by the stochastic change of (J) according to the
fitness �(s) determined by the phenotype. In contrast to more
common theories of evolution, this model hence explicitly
considers the co-evolution of these coupled landscapes.

APPENDIX B: REPLICA SYMMETRIC ANSATZ
SOLUTION AND THE EXPRESSION OF Ikz AND Ĩk

The partition functions are given in terms of the target and
the nontarget free energy densities, fT (m, q, r, Q, M) and
fO(m̃, q̃, r̃, Q̃, M̃), respectively, by

ZT =
∫

Dm Dq Dr DQ DM e−βJ N p fT (m,q,r,Q,M), (B1a)

ZO =
∫

Dm̃ Dq̃ Dr̃ DQ̃ DM̃ e−βJ N (1−p) fO (m̃,q̃,r̃,Q̃,M̃),

(B1b)

(a) (b) (c) (d)

FIG. 6. Magnetization for nontarget spins m̃ (a). Overlap between different replicas for nontarget spins q̃ (b). Averaged correlation of a
pair of couplings between a target and a nontarget spin that share a common target spin Q̃ (c). Averaged value of the link J (oo) among nontarget
spins 
̃ (d). Here Nt = 10, N = 100. Note the y axis is on logarithmic scale.
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where

fT = 1

2

{∑
a<b

q2
ab

n2
+
∑
k<k′

Q2
k,k′

(N − t )2
+ 1

n(N − t )

∑
a,k

M2
ak

}
− 1

βJ
ln

∑
{si;sα ;σ k}i∈T

eL, (B2a)

fO = 1

2

{
K̃
∑

a

m̃2
a

n
+ K̃

∑
k

r̃2
k

t
+
∑
a<b

q̃2
ab

n2
+
∑
k<k′

Q̃2
k,k′

t2
+ 1

nt

∑
a,k

M̃2
ak

}
− 1

βJ
ln
∑

{sα ;σ k}
eL̃, (B2b)

L = βJ

4Nt

∣∣∣∣∣∑
i∈T

si

∣∣∣∣∣
2

− βJ

2

∣∣∣∣∣∑
i∈T

si

∣∣∣∣∣
[

n∑
a=1

m2
a

n
+

N−Nt∑
k

r2
k

N − Nt

]

+βJ

⎛
⎝ 1

Nt

∣∣∣∣∣∑
i∈T

si

∣∣∣∣∣
[

n∑
a=1

masa

n
+

N−Nt∑
k

rkσ
k

N − Nt

]
+

n∑
a<b

qabsasb

n2
+

N−Nt∑
k<k′

Qkk′σ kσ k′

(N − Nt )2
+
∑
a,k

Maksaσ k

n(N − Nt )

⎞
⎠, (B3a)

L̃ = βJ

⎛
⎝ K̃

n

n∑
a=1

m̃asa + K̃

Nt

Nt∑
k

r̃kσ
k + 1

n2

n∑
a<b

q̃absasb + 1

N2
t

Nt∑
k<k′

Q̃kk′σ kσ k′ + 1

nNt

∑
a,k

M̃aksaσ k

⎞
⎠. (B3b)

Denoting Dx Dy = e−(x2+y2 )/2

2π
dx dy and Az(m, r) = βJ

4
(Nt −2z)2

N2
t

− βJ

2
|Nt −2z|

Nt
(m2 + r2), we have

Ik,z =
∫

DxDy exp

{
Az + N − Nt − 2k

N − Nt

(
y
√

βJQ + βJr
|1 − 2z|

Nt

)}[
cosh

(
βsm

|Nt − 2z|
Nt

+ x

√
βJq

n
+ βJM

n

N − Nt − 2k

N − Nt

)]n

(B4a)

Ĩk =
∫

DxDy exp

{
Nt − 2k

Nt
(y
√

βJ Q̃ + βJ K̃ r̃)

}[
cosh

(
βsK̃m̃ + x

√
βJ q̃

n
+ βJM̃

n

Nt − 2k

Nt

)]n

. (B4b)

The argument of the cosh(·) function will be denoted by

� = βsm
|Nt − 2z|

Nt
+ x

√
βJq

n
+ βJM

n

N − Nt − 2k

N − Nt
, �̃ = βsK̃m̃ + x

√
βJ q̃

n
+ βJM̃

n

Nt − 2k

Nt
. (B5)

The replica symmetric free energy densities given in the main text yield the extremum condition after setting K̃ = 0:

m =
∑Nt

z=0

(Nt

z

)∑N−Nt
k=0

(N−Nt

k

) ∫
Dx Dy exp

{
Az + N−Nt −2k

N−Nt
(y

√
βJQ + βJrθz )

}
[cosh(�)]ntanh(�)∑Nt

z=0

(Nt

z

)∑N−Nt
k=0

(N−Nt

k

) ∫
Dx Dy exp

{
Az + N−Nt −2k

N−Nt
(y

√
βJQ + βJrθz )

}
[cosh(�(x, q, M ))]n

,

q =
∑Nt

z=0

(Nt

z

)∑N−Nt
k=0

(N−Nt

k

) ∫
Dx Dy exp

{
Az + N−Nt −2k

N−Nt
(y

√
βJQ + βJrθz )

}
[cosh(�)]n[tanh(�)]2∑Nt

z=0

(Nt

z

)∑N−Nt
k=0

(N−Nt

k

) ∫
Dx Dy exp

{
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(a) (b) (c) (d)

FIG. 8. (a) A zoom-in of Fig. 4(a) in the region nearby T (1)
c . (b) The drop of fitness subtracted from the minimal value �mmin as a function

of the fraction of nontarget spins. Here �mmin is defined as the drop of magnetization at the critical number of target spins N (c)
t = 60 at

TJ = 0.005, while �m = 1 − m(T (1)
c ) is the drop of of fitness at T (1)

c . (c) Linear relationship between the frustration 1 − Q and �m − �mmin

at T (1)
c . (d) The drop m∗ of fitness at T (2)

c . Here N = 100.

APPENDIX C: N DEPENDENCE OF THE PHASE DIAGRAM

Using an expansion of the free energy density of the target spins, based on Eq. (B4a), we can estimate the highest value of TJ

above which Q drops from a high value to zero: β
(c)
J = 1/(N − Nt ). Therefore, the robust fitted phase necessarily exists for all

values of N , though, at a given fraction p = Nt/N , a higher selection pressure, i.e., a lower TJ is needed to achieve it for larger
N . We show this kind of N dependence of the phase diagram for N = 50 and N = 200 in Fig. 5. Overall, the structure of the
phase diagram remains the same as that obtained for N = 100 in Fig. 3(a) of the main text. The difference in the exact location
of the highest value of TJ above which Q drops from a high value to zero is well explained by our estimation shown as a dashed
horizontal line.

APPENDIX D: PHASE DIAGRAM OF THE ORDER PARAMETERS OF THE NONTARGET SPINS
AND THAT OF THE EIGENVALUE OF THE HESSIAN

We present the phase diagram for the order parameters of the non-target spins in Fig. 6 and that for the third-largest eigenvalue
of the Hessian �3 in Fig. 7. Without any effect of fitness acting on them, nontarget spins have only zero magnetization [Fig. 6(a)]
and the averaged value 
̃ of the coupling among them J (oo) is equal to zero [Fig. 6(d)]. Nevertheless, due to the effect of random
couplings, J (oo), a spin-glass ordering can appear at low TJ and Ts as seen in Fig. 6(c). As we expect a dependence of the drop
in fitness at T (1)

c , which is denoted by �m = 1 − m, on the fraction of target spins, we first show a zoom-in of the behavior of
m at Ts close to T (1)

c in Fig. 8(a). We then find that at the critical number of target spins N (c)
t , this change has a minimal value

�mmin, so that �m − �mmin can be depicted as function of 1 − p in Fig. 8(b). Once subtracted �m from �mmin, we find a linear
relationship exists between �m − �mmin and 1 − Q. Such relationship is demonstrated Fig. 8(c). We finally measure how much
fitness changes under a transition from robust to paramagnet phase at T (2)

c . We denote this kind of drop by m∗ in Fig. 8(d), where
we find a decrease of m∗ with increasing p, implying that fitness is more robust at higher p.
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r, M, r̃, M̃ are other variables that the free energy densities de-
pend on. Since these observables for target and nontarget spins
have their behavior correlated to that of (m, q, Q) and (m̃, q̃, Q̃),
respectively, they do not provide additional information about
the structure of the model phase diagram.

[33] J. R. L. de Almeida and D. J. Thouless, Stability of the
sherrington-kirkpatrick solution of a spin glass model, J. Phys.
A: Math. Gen. 11, 983 (1978).

[34] The eigenvalue of the Hessian changes its sign on the border
between these phases; see Appendix D. Note that though we
do not calculate the full hierarchy of replica symmetry breaking
(RSB) à la Parisi, but as long as RSB happens this nonrobust-
ness is true for the full RSB solution.

[35] This optimality, however, does not happen in the spinglass
phase SP2 with low temperature Ts, since the selection pressure
needed to achieve nonzero fitness crucially depends on p. In
fact as p is increased, higher pressure (i.e., lower TJ ) is needed
to achieve nonzero m of targets, i.e., to transition from SP1 to
SP2.

[36] K. Sato, Y. Ito, T. Yomo, and K. Kaneko, On the relation
between fluctuation and response in biological systems, Proc.
Natl. Acad. Sci. USA 100, 14086 (2003).

[37] K. Kaneko and C. Furusawa, An evolutionary relationship be-
tween genetic variation and phenotypic fluctuation, J. Theor.
Biol. 240, 78 (2006).

[38] S. Ciliberti, O. C. Martin, and A. Wagner, Robustness can
evolve gradually in complex regulatory gene networks with
varying topology, PLoS Comput. Biol. 3, e15 (2007).

[39] Q.-Y. Tang and K. Kaneko, Dynamics-Evolution Correspon-
dence in Protein Structures, Phys. Rev. Lett. 127, 098103
(2021).

[40] C. R. Landry, B. Lemos, S. A. Rifkin, W. J. Dickinson, and
D. L. Hartl, Genetic properties influencing the evolvability of
gene expression, Science 317, 118 (2007).

[41] M.-A. Félix and M. Barkoulas, Pervasive robustness in biologi-
cal systems, Nat. Rev. Genet. 16, 483 (2015).

[42] R. Silva-Rocha and V. de Lorenzo, Noise and robustness in
prokaryotic regulatory networks, Annu. Rev. Microbiol. 64, 257
(2010).

[43] Y. Uchida, S. Shigenobu, H. Takeda, C. Furusawa, and N.
Irie, Potential contribution of intrinsic developmental stability
toward body plan conservation, BMC Biology 20, 82 (2022).

[44] More precisely, in [14] �i = 〈sign(m)si〉Ts .
[45] From the replica-symmetric free energy density f RS

T we get
χRS

m = βs[1 + (n − 1)q], while M can not be obtained directly
within this ansatz.

[46] B. Lehner, Genes confer similar robustness to environmental,
stochastic, and genetic perturbations in yeast, PLoS ONE 5, 1
(2010).

[47] N. Wu, S. N. Yaliraki, and M. Barahona, Prediction of protein
allosteric signalling pathways and functional residues through
paths of optimised propensity, J. Mol. Biol. 434, 167749
(2022).

023049-12

https://doi.org/10.1103/PhysRevLett.102.148101
https://doi.org/10.1103/PhysRevE.80.051919
https://doi.org/10.1088/0305-4470/26/15/018
https://doi.org/10.1103/PhysRevB.48.16116
https://doi.org/10.1088/0305-4470/27/12/011
https://doi.org/10.1088/0305-4470/27/7/016
https://doi.org/10.1088/1751-8113/43/2/025004
https://doi.org/10.1209/0295-5075/99/68004
https://doi.org/10.1103/PhysRevLett.35.1792
https://doi.org/10.1088/0305-4470/11/5/028
https://doi.org/10.1073/pnas.2334996100
https://doi.org/10.1016/j.jtbi.2005.08.029
https://doi.org/10.1371/journal.pcbi.0030015
https://doi.org/10.1103/PhysRevLett.127.098103
https://doi.org/10.1126/science.1140247
https://doi.org/10.1038/nrg3949
https://doi.org/10.1146/annurev.micro.091208.073229
https://doi.org/10.1186/s12915-022-01276-5
https://doi.org/10.1371/journal.pone.0009035
https://doi.org/10.1016/j.jmb.2022.167749


DOUBLE-REPLICA THEORY FOR EVOLUTION OF … PHYSICAL REVIEW RESEARCH 5, 023049 (2023)

[48] N. Go, Theoretical studies of protein folding, Annu. Rev.
Biophys. Bioeng. 12, 183 (1983).

[49] J. N. Onuchic and P. G. Wolynes, Theory of protein folding,
Curr. Opin. Struct. Biol. 14, 70 (2004).

[50] F. C. Poderoso and J. F. Fontanari, Model ecosystem with vari-
able interspecies interactions, J. Phys. A: Math. Theor. 40, 8723
(2007).

[51] M. T. Pham, I. Kondor, R. Hanel, and S. Thurner, The effect of
social balance on social fragmentation, J. R. Soc. Interface 17,
20200752 (2020).

[52] P. C. Martin, E. D. Siggia, and H. A. Rose, Statistical dynamics
of classical systems, Phys. Rev. A 8, 423 (1973).

[53] C. De Dominicis and L. Peliti, Field-theory renormalization
and critical dynamics above Tc: Helium, antiferromagnets, and
liquid-gas systems, Phys. Rev. B 18, 353 (1978).

[54] M. Barbier, J.-F. Arnoldi, G. Bunin, and M. Loreau, Generic
assembly patterns in complex ecological communities, Proc.
Natl. Acad. Sci. USA 115, 2156 (2018).

[55] J. Kadmon and H. Sompolinsky, Transition to Chaos in
Random Neuronal Networks, Phys. Rev. X 5, 041030
(2015).

[56] J. Schuecker, S. Goedeke, and M. Helias, Optimal Sequence
Memory in Driven Random Networks, Phys. Rev. X 8, 041029
(2018).

023049-13

https://doi.org/10.1146/annurev.bb.12.060183.001151
https://doi.org/10.1016/j.sbi.2004.01.009
https://doi.org/10.1088/1751-8113/40/30/008
https://doi.org/10.1098/rsif.2020.0752
https://doi.org/10.1103/PhysRevA.8.423
https://doi.org/10.1103/PhysRevB.18.353
https://doi.org/10.1073/pnas.1710352115
https://doi.org/10.1103/PhysRevX.5.041030
https://doi.org/10.1103/PhysRevX.8.041029

