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The synchronization of oscillator ensembles is pervasive throughout nonlinear science, from classical or
quantum mechanics to biology, to human assemblies. Traditionally, the main focus has been the identification
of threshold parameter values for the transition to synchronization as well as the nature of such transition. Here,
we show that considering an oscillator lattice as a discrete growing interface provides unique insights into the
dynamical process whereby the lattice reaches synchronization for long times. Working on a generalization of the
celebrated Kuramoto model that allows for odd or non-odd couplings, we elucidate synchronization of oscillator
lattices as an instance of generic scale invariance, whereby the system displays space-time criticality, largely
irrespective of parameter values. The critical properties of the system (like scaling exponent values and the
dynamic scaling Ansatz which is satisfied) happen to fall into universality classes of kinetically rough interfaces
with columnar disorder, namely, those of the Edwards-Wilkinson (equivalently, the Larkin model of an elastic
interface in a random medium) or the Kardar-Parisi-Zhang (KPZ) equations, for Kuramoto (odd) coupling and
generic (non-odd) couplings, respectively. From the point of view of kinetic roughening, the critical properties
we find turn out to be quite innovative, especially concerning the statistics of the fluctuations as characterized
by their probability distribution function (PDF) and covariance. While the latter happens to be that of the Larkin
model irrespective of the symmetry of the coupling, in the generic non-odd coupling case the PDF turns out to be
the Tracy-Widom distribution associated with the KPZ nonlinearity. This brings the synchronization of oscillator
lattices into a remarkably large class of strongly-correlated, low-dimensional (classical and quantum) systems
with strong universal fluctuations.
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I. INTRODUCTION

From chirping crickets to Josephson junctions and quan-
tum oscillators, passing through cells in the heart and in the
brain, a huge variety of systems across all of science exhibit
synchronous dynamics [1,2]. While the scientific study of
synchronization can be traced back in time to the work of
Christiaan Huygens in the 17th century, it is in the last few
decades that it has become a central concept in nonlinear and
complex dynamical systems, as a pervasive form of emerging
collective dynamics. It is frequently studied using models of
phase oscillators (i.e., idealized limit-cycle oscillators), as in
the well-known Kuramoto model [3,4], although in fact it has
been studied in low-dimensional chaotic systems as well [5],
even in complex networks of such systems [6].

Another seemingly unrelated subject that has focused a
great deal of attention in the last few decades is the study of
surface kinetic roughening [7,8], which also unifies a great
diversity of nonequilibrium phenomena, from the production
of thin solid films to the growth of bacterial colonies, or the
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formation of coffee rings [9]. The fine details of many exper-
imental systems and theoretical models in this context have
been found to become irrelevant at sufficiently large space and
time scales, where they show traits of universality akin to that
of equilibrium critical dynamics [10,11]. Crucially, however,
now space-time criticality does not require adjusting control
parameters to precise critical values but appears, rather, over
a region of parameter space with nonzero measure. Thus,
surface kinetic roughening constitutes an important instance
of generic scale invariance (GSI) [12–14], a concept which
is in turn closely related to that of self-organized criticality
[15,16].

A key player in the GSI realm is the Kardar-Parisi-Zhang
(KPZ) stochastic equation [17–19], whose universality class
is recently proving paradigmatic for the space-time critical
behavior of fluctuations in low-dimensional, strongly corre-
lated systems. Examples range from nonquantum systems like
active matter [20], turbulent liquid crystals [21], stochastic
hydrodynamics [22], colloidal aggregation [23], thin-film de-
position [24], reaction-diffusion processes [25], or random
geometry [26], to the quantum realm, including exciton po-
lariton condensates [27,28] or quantum entanglement [29],
integrable and nonintegrable quantum spin chains [30–33],
or electronic fluids [34]. Probably, such a ubiquity for the
KPZ universality is in turn related with the fact that the statis-
tics of fluctuations is described [18,19] by the Tracy-Widom
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(TW) family of probability density functions (PDF) for the
maximum eigenvalue of Hermitian random matrices [35,36].
Indeed, TW statistics is recently being found ubiquitously
[37] across length scales in natural and technological sys-
tems, providing an analog of Gaussian statistics for correlated
variables.

Connections between oscillator synchronization and sur-
face kinetic roughening have been occasionally pointed out in
the literature—see e.g., Refs. [1,38,39] and others therein—
often through mappings to the KPZ equation, to its Gaussian
approximation, the so-called Edwards-Wilkinson (EW) equa-
tion [9,40], or variations thereof. For instance, a discretized
KPZ equation has been recently shown to approximate a noisy
Kuramoto-Sakaguchi model of an (one or two-dimensional)
oscillator lattice [41], while the related compact KPZ equa-
tion has been shown to describe the dynamics of the phase
of a driven-dissipative Bose-Einstein condensate of exciton
polaritons [42]. Even more recently, randomness in the nat-
ural frequencies of the latter system has been shown [43]
not to destroy synchronization and KPZ scaling has been
experimentally reported in a 1D polariton condensate [28]. In
a related context, KPZ universality is known to be relevant
in the hydrodynamic phase fluctuations of spatially-extended
nonequilibrium oscillating systems, see e.g., Refs. [44,45].
However, a systematic assessment of the relevance and im-
plications of KPZ fluctuations to the synchronization of
oscillator lattices does not seem available in the literature yet.

In this paper, we aim to fill in this gap. Focusing on a
generalization of the model of one-dimensional (1D) oscilla-
tor lattices addressed in Refs. [41,43]—which allows for both
odd (as in the seminal Kuramoto model [3,46]) and non-odd
coupling functions among oscillators—we unambiguously
elucidate synchronization in these systems as an instance of
GSI, with anomalous forms of scaling and universal fluctua-
tion statistics which are most conveniently phrased in terms of
those characterizing GSI in surface kinetic roughening, and in
which KPZ fluctuations play an important role. The lack of
awareness that the dynamics of synchronizing oscillators is
endowed with universal features due to nonequilibrium criti-
cality probably explains why the dynamical process whereby
synchronization is achieved has remained poorly studied.

Previous analytical results [47] show that synchronization
of oscillator lattices is not possible in the thermodynamic limit
for odd coupling functions. Viewing the oscillator array as an
evolving interface, we show this lack of synchronization to
be a consequence of so-called super-rough kinetic roughen-
ing [48], whereby the local slopes along the interface only
stabilize upon saturation [49,50]. Moreover, the odd sym-
metry of the coupling function becomes the condition for
which synchronization features the precise scaling behavior
of the EW model with so-called columnar noise, known as the
Larkin model in the context of elastic interfaces in disordered
media; see, e.g., Ref. [51] and references therein. For generic
coupling functions, on the other hand, we show that synchro-
nization becomes possible for arbitrarily large systems [52],
leading to the growth of faceted interfaces (oscillator clus-
ters) where the slopes stabilize earlier [53]. The large-scale
effective description is now given by the KPZ equation with
columnar noise, which, however, is not in the universal-
ity class of the celebrated KPZ equation [54]. Different

synchronous dynamics thus map into different surface growth
models.

From the stand point of kinetic roughening, the dynamic
scaling Ansatz satisfied by the space-time fluctuations of the
oscillator array is anomalous [48–50,53], akin to those found
in many systems with morphological instabilities and/or
quenched disorder [55]. What is more striking is that for
non-odd coupling functions, phase fluctuations follow the
ubiquitous TW PDF, one of the hallmarks of KPZ universality,
in spite of the fact that neither the scaling Ansatz, nor the
critical exponent values, nor the covariance of the fluctuations
are those of the 1D KPZ universality class. This is in line
with very recent observations in continuous [56] and discrete
[57] models that, somewhat unexpectedly, the fluctuation PDF
and covariance, and the scaling exponents are all independent
traits of a GSI universality class.

This paper is organized as follows. In Sec. II we describe
first the connection between synchronization and kinetic
roughening, followed by a discussion of the observables of
interest. Section III contains a description of the particular
model to be considered in the numerics and a general discus-
sion and results on the synchronous dynamics. Section IV is
devoted to the study of synchronization with the Kuramoto
(sine) coupling form, for which we solve the continuum-limit
(linear) Larkin model. Numerical simulations reveal a super-
rough scaling adequately described by the analytical results.
In Sec. V we study synchronization with a non-odd coupling
function, whose effective description yields a (nonlinear) KPZ
equation with columnar noise. Sections IV and V also contain
the study of the one- and two-point statistics of fluctuations
that yields Gaussian (respectively, TW) statistics for odd (re-
spectively, non-odd) couplings, but the same covariance of the
Larkin model in all cases. Finally, in Sec. VI we provide some
concluding remarks and ideas for future work. Additional
numerical results are organized into five appendices at the end.

II. SYNCHRONIZATION VS KINETIC ROUGHENING

A. General lattices of phase oscillators

We consider a system of Ld phase oscillators at the sites
of a d-dimensional hypercubic lattice of linear size L. Each
oscillator is an idealized dissipative dynamical system with
an attracting limit cycle, whose state is given by a phase φi(t ).
The time evolution is determined by its intrinsic frequency
ωi and the interactions with its neighbors through a smooth,
2π -periodic coupling function �(φ j − φi ),

dφi

dt
= ωi +

∑
j∈�i

�(φ j − φi ), i = 1, 2, . . . , Ld , (1)

where �i is the set of 2d neighbors of site i. The intrinsic
frequencies are independent and identically distributed ac-
cording to a probability density g(ω) with zero mean and
finite variance, i.e., 〈ωi〉 = ∫

dωg(ω) ω = 0 and 〈ωiω j〉 =
δi j

∫
dωg(ω) ω2 = 2σδi j , where δi j is the Kronecker delta.

A nonzero mean would only introduce a uniform frequency
shift, easily removable by moving to the rotating frame. More-
over, we assume that the distribution is even, g(−ω) = g(ω).
The coupling function �(φ j − φi ) is assumed to include a
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coupling strength K , i.e., an overall nonnegative proportion-
ality factor with dimensions of inverse time.

The effective frequencies of oscillation are defined as

ωeff
i ≡ lim

T →∞
φi(τ + T ) − φi(τ )

T
, i = 1, 2, . . . , Ld , (2)

where [0, τ ] is a time interval sufficiently long to contain
the transient behavior, and the limit is assumed to exist.
Oscillators that evolve at the same effective frequency are
said to be frequency entrained or frequency locked. The
kinetic-roughening observables that we consider focus on this
(time-averaged) form of synchronization, which does not re-
quire the instantaneous frequencies dφi/dt to become strictly
identical at all times.

B. Continuum approximation

Generalizing the 1D approach of Ref. [46], we write the
positions of the oscillators as vectors in continuous space, x =
(x1, x2, . . . , xd ) ∈ Rd , so the phase of oscillator i, φi, is now
denoted φ(x), and the neighboring oscillators are placed at
positions x ± aek , where ek for k = 1, 2, . . . , d is a canonical
basis vector. Thus Eq. (1) becomes

∂tφ(x, t ) = ω(x) +
d∑

k=1

[�(φ(x + aek, t ) − φ(x, t )).

+ �(φ(x − aek, t ) − φ(x, t ))], (3)

where 〈ω(x)〉 = 0, and 〈ω(x)ω(x′)〉 = 2σδ(x − x′), using the
Dirac delta. We will focus on a coarse-grained descrip-
tion where a is assumed to be small compared to the
wavelengths over which the phase field φ(x, t ) fluctuates.
Taylor-expanding the phase field around x,

φ(x ± aek, t ) − φ(x) = ± a∂kφ(x, t ) + 1
2 a2∂2

k φ(x, t )

± 1
6 a3∂3

k φ(x, t ) + O(a4), (4)

where ∂k is shorthand for the partial derivative with respect to
the kth coordinate xk . In Eq. (3), after Taylor expanding the
coupling functions, terms of odd order in a vanish due to the
a → −a symmetry of the coupling term, yielding

∂tφ(x, t ) = ω(x) + 2d�(0) + a2�(1)(0)
d∑

k=1

∂2
k φ(x, t )

+ a2�(2)(0)
d∑

k=1

(∂kφ(x, t ))2 + O(a4), (5)

where �(n) denotes the nth derivative of �.
For a relatively slow spatial variation of the phase field

φ(x, t ), as occurs for coupling strengths K well into the syn-
chronized regime, it may be reasonable to neglect terms of
order higher than a2, which is the dominant one for spatial
coupling in the oscillating medium. By analogy with surface
growth, we will refer to this as a small-slope approximation,
which yields the effective continuum equation

∂tφ(x, t ) = ω∗(x) + ν∇2φ(x, t ) + λ

2
[∇φ(x, t )]2, (6)

where ω∗(x) ≡ ω(x) + 2d�(0), and as usual the Laplacian
∇2φ(x, t ) ≡ ∑d

k=1∂
2
k φ(x, t ) and the squared norm of the gra-

dient [∇φ(x, t )]2 ≡ ∑d
k=1[∂kφ(x, t )]2. The appropriateness of

the truncation for specific cases will be discussed when mak-
ing the comparison between predictions derived from it and
results based on the direct numerical integration of particular
instances of Eq. (1). A similar continuum approximation for
extended systems with time-delayed couplings was analyzed
and applied to the study of long-wavelength modes of the
vertebrate segmentation clock in Ref. [58].

Equation (6) features the same deterministic derivative
terms as the KPZ equation [17]. We have introduced two
parameters, ν ≡ a2�(1)(0) and λ/2 ≡ a2�(2)(0), following the
standard notation in the surface growth literature, where they
quantify smoothening surface tension and interface growth
along the local surface normal direction, respectively [9]. In
the case of the oscillators such names at most provide an
intuitive meaning to the parameters, which are not necessarily
positive. This formal connection between oscillator lattices
and rough interfaces has been pointed out on several occasions
in the literature, with some recent papers even exploiting it for
the study of synchronization in novel scenarios [41,43].

Notice, however, that in Eq. (6) the noise term ω∗(x) is
time-independent, in contrast with the time-dependent noise
of the standard KPZ equation. In the presence of such
quenched disorder the system evolves deterministically from
the initial condition. The dynamics is akin to that of a growth
process in a medium for which the disorder values depend on
the substrate coordinate x but not on the local value of the
interface “height” φ(x, t ). In the kinetic roughening literature,
Eq. (6) is known as the KPZ equation with columnar noise
[7,54]. Its linear version, obtained for λ = 0, is the EW equa-
tion with columnar noise, known also as the Larkin model.

C. Morphological analysis

In our analysis we consider the phase field φ(x, t ) as if
it were describing the height h(x, t ) of an interface growing
above point x ∈ Rd on a d-dimensional substrate, at time t . In
surface kinetic roughening processes [7–9], the fluctuations
of the local height around the mean value are captured by the
global width or roughness

W (L, t ) ≡ 〈[h(x, t ) − h]2〉1/2, (7)

where the overbar denotes a spatial average in a system of
linear (substrate) size L and the angular brackets denote av-
eraging over different noise realizations. GSI implies that
surface height values are statistically correlated for distances
smaller than a correlation length ξ (t ), which increases with
time as a power law, ξ (t ) ∼ t1/z, where z is the so-called
dynamic exponent. Such an increase takes place until ξ (t )
reaches a value comparable to L, which results in the width
saturating at a steady-state, size-dependent value W (L, t �
Lz ) ∼ Lα . Here, α is the so-called roughness exponent, which
is related with the fractal dimension of the interface profile
h(x, t ). In a wide variety of physical contexts and conditions,
the global roughness satisfies the Family-Vicsek (FV) scaling
Ansatz [7–9,59]

W (L, t ) = tβ f (L/ξ (t )), (8)
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where the scaling function f (y) ∼ yα for y  1, while f (y)
reaches a constant value for y � 1. The ratio β = α/z is
known as the growth exponent, and characterizes the short-
time behavior of the roughness, W (t ) ∼ tβ . Notably, the FV
Ansatz is verified by classical models of equilibrium critical
dynamics [11]. Away from equilibrium, it is also verified
by representatives of important universality classes of kinetic
roughening, like those of the KPZ and EW equations, which
are characterized by the set of (α, z) exponent values and their
dependence on the substrate dimension d [7–9]. In this sense,
kinetic roughening extends classical equilibrium critical dy-
namics far from equilibrium [11].

Beyond global quantities like W (t ), the GSI occurring
in kinetic roughening systems also impacts the behavior of
correlation functions. A particularly useful one is the height-
difference correlation function,

G(r, t ) ≡ 〈[h(x + r, t ) − h(x, t )]2〉. (9)

In our cases of interest, due to rotational invariance, the corre-
lations only depend on � ≡ |r|. For FV scaling G(�, t ) scales
differently depending on how � compares with the correlation
length [7–9],

G(�, t ) ∼
{

t2β, if t1/z  �,

�2α, if �  t1/z.

}
= �2αg(�/ξ (t )), (10)

where we are assuming � < L and g(y) is a suitable scaling
function [8,9]. In fact, G(�, t ) scales like the square of the lo-

cal width w(�, t ) ≡ 〈[h(x, t ) − h]2〉1/2 (the spatial average is
here restricted to a region of linear size �), G(�, t ) ∼ w2(�, t ).
One can see that the scaling form in Eq. (10) only reflects the
growth and saturation discussed above for the whole system,
but now restricted to a region of linear size � [60]. A related
correlation function that is also frequently studied [19] is the
so-called height covariance

C(r, t ) ≡ 〈h(x, t )h(x + r, t )〉 − 〈h̄(t )〉2, (11)

such that, again under the assumption of rotational invariance,
G(�, t ) = 2[W 2(t ) − C(�, t )] [8].

Whenever the roughness exponent α � 1, it is useful to
consider [60,61] an alternative two-point correlation function,
namely, the surface structure factor, i.e., the power spectral
density of the height fluctuations, defined as

S(k, t ) ≡ 〈ĥ(k, t )ĥ(−k, t )〉 = 〈|ĥ(k, t )|2〉, (12)

where ĥ(k, t ) ≡ F[h(x, t )] is the space Fourier transform of
h(x, t ) and k is d-dimensional wave vector. The FV Ansatz
now reads

S(k, t ) = k−(2α+d )sFV(kt1/z ), (13)

with sFV(y) approaching a constant value for y � 1 and
sFV(y) ∝ y2α+d for y  1. This can be derived by realizing
that W 2(L, t ) equals the integral of S(k, t ) over wave vector
space (Parseval’s theorem) [9]. Likewise, S(k, t ) is analyti-
cally related with, e.g., G(r, t ) via space Fourier transforms
[8].

In the case of a system of oscillators, analogous observ-
ables to the global roughness and the correlation functions,
to be denoted as Wφ (L, t ), Gφ (r, t ), Cφ (r, t ), and Sφ (k, t ),

are simply defined by replacing the height field h(x, t ) by
the phase field φ(x, t ). They will be the main objects of
our analysis in the sections to follow. Regarding two-point
correlations, we will be particularly interested in their value
at a distance of one site, Gφ (� = 1, t ), which will be referred
to as the average squared slope, and denoted as 〈(�φ)2〉.
Our interest lies in finite systems, where saturation may be
eventually attained. The key point is that differences between
oscillator phases that do not evolve at the same effective
frequency ωeff must grow steadily in time for long times. Thus
the phases of two oscillators with effective frequencies ωeff

1
and ωeff

2 eventually separate, φ2(t ) − φ1(t ) ∼ (ωeff
2 − ωeff

1 )t .
For this reason, the saturation of Wφ (L, t ) [or equivalently, that
of Sφ (k, t ) or Gφ (r, t )] as t → ∞, which shows that the phase
differences stop growing at some time, indicates the presence
of synchronization in the sense mentioned above.

D. Anomalous scaling and universal fluctuations
in the synchronization process

Two further aspects of surface growth, which have been
the focus of much recent research, will turn out to be
indispensable for the analysis of the synchronization prob-
lem. They both challenge the traditional characterization of
kinetic-roughening universality classes in terms of just two
independent exponents appearing in the FV dynamic scaling
Ansatz, Eq. (8). One is the existence of growth processes with
anomalous scaling properties [8,48–50,53,55]. While for stan-
dard FV systems height fluctuations at local distances �  L
scale with the same roughness exponent as global fluctuations
do at distances comparable with the system size L, in systems
displaying anomalous scaling local and global fluctuations
scale with different roughness exponents, i.e., w(�, t � �z ) ∼
�αloc with αloc �= α.

The anomalous scaling that occurs in our paper is most
conveniently identified by means of the structure factor, as a
new independent exponent αs appears (termed spectral rough-
ness exponent), in the dominant contribution in Fourier space,
namely [53],

S(k, t ) = k−(2α+d )s(kt1/z ), (14)

where s(y) ∝ y2(α−αs ) for y � 1 and s(y) ∝ y2α+d for y  1.
Equation (14) generalizes the FV Ansatz, Eq. (13), which is
retrieved if αs = α. In general, the value of αs and its relation
with respect to α determines the type of anomalous scaling
[53].

We will be interested in cases such that αs > 1, for which
the correlation function scales as [60]

G(�, t ) ∼
{

t2β, if t1/z  �  L,

�2αloct2(α−αloc )/z, if �  t1/z  L.
(15)

This means that the two-point correlations keep increas-
ing (anomalously) with time even at distances which are
smaller than the correlation length, at which they saturate
in case of FV scaling; in contrast, now they only saturate
at �2αloc L2(α−αloc ) when t1/z ∼ L. If α = αs > 1, the anoma-
lous scaling is termed super-rough [50], due to the large
interface fluctuations that occur. The scaling Ansatz satisfied
by the structure factor is FV in this case, but αloc = 1 �= α.
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Otherwise, if α �= αs with both exponents being larger than
1, faceted anomalous scaling takes place [53], and again
αloc = 1. There exist cases (like that of the tensionless KPZ
equation [62]) in which αs < 1, leading to so-called intrinsic
anomalous scaling for which αloc need not equal 1 [50].

A second aspect of surface kinetic roughening that is rele-
vant to our analysis has to do with the statistics of fluctuations.
For rough surfaces, the observable of interest is the PDF of
the fluctuations of the heights h(x, t ) [in our case, that of the
phases φ(x, t )], around their mean. By a straightforward adap-
tation of the definition employed in the kinetic roughening
literature [7,18,19], we will focus on the PDF of

ϕi ≡ δφi(t0 + �t ) − δφi(t0)

(�t )β
, (16)

where δφi(t ) = φi(t ) − φ(t ), t0 is a reference time beyond the
initial transient dynamics, and t0 + �t is some intermediate
time within the growth regime. The division by (�t )β removes
the systematic increase of the fluctuations in time so that, re-
markably, the PDF of ϕi reaches a universal, time-independent
form [7,18,19]. Important examples in the kinetic roughening
literature are, e.g., the Gaussian distribution for the linear EW
equation [8,9] and a TW PDF (whose precise form depends,
e.g., on boundary conditions) for the KPZ equation [7,18,19].

Our main numerical findings can be summarized as
follows: (i) for odd (Kuramoto) coupling the scaling is super-
rough, the exponents and scaling Ansatz are those of the
EW equation with columnar noise (Larkin model), and the
fluctuations follow a Gaussian PDF; (ii) for generic couplings
the scaling is faceted, the exponents and the scaling Asantz
are those of the KPZ equation with columnar noise, and the
fluctuations follow a TW PDF. The covariance (11), however,
is that of the Larkin model in all cases. Thus, the case of
non-odd coupling seems to be the first known example of
kinetic roughening displaying TW statistics but not an Airy
covariance. These results are based on a 1D model of phase
oscillators described and explored in Sec. III, whose scaling
and fluctuations are studied in Secs. IV (for odd coupling) and
V (for non-odd coupling).

These findings, together with some more specific details,
are summarized in Table I. The exponents are divided into two
classes: the standard exponents α and z, and the anomalous-
scaling exponents αs and αloc. In the case of odd coupling, all
these exponents are simply read from the exact Larkin model
solution (see e.g., [51]). In the case of generic couplings, they
are obtained numerically, and what is presented is a rough
approximation, as they slightly change with different coupling
parameters. Moreover, they may depend on other nonuniversal
details according to what is known on the scaling behavior of
the KPZ equation with columnar noise [8,54,63,64].

III. MODEL AND CONDITIONS FOR SYNCHRONIZATION

A. Description of the model

The coupling function �(�φ) in Eq. (1) is assumed to
be 2π periodic and smooth. One property that has been
highlighted in the literature is its symmetry under phase
inversion �φ → −�φ, i.e., whether the function is odd,
�(�φ) + �(−�φ) = 0, or not [47,52]. We will see that this

TABLE I. Summary of correspondences between oscillator
models and kinetic roughening equations, and main scaling and
fluctuation properties. Depending on whether the coupling is odd
or generic (non-odd) we find different continuum approximations
(corresponding to the two main models of kinetic roughening with
columnar noise), with different forms of anomalous scaling, expo-
nent values, and fluctuation PDF. The covariances take the same
form, however. References are given to papers on the corresponding
interface equations. Results on the scaling exponents are contained
there and confirmed by our simulations for the oscillator models.
Results quoted for the PDF and covariance are obtained from our
simulations for the oscillator models.

�(�φ) Odd Generic (non-odd)

Continuum Columnar EW [51] Columnar KPZ [54]
Scaling Super-rough [48] Faceted [53]
Exponents α = 3/2, z = 2 α ≈ 1.07, z ≈ 1.39
Anom. Exp. αs = 3/2, αloc = 1 αs ≈ 1.40, αloc ≈ 0.96
PDF Gaussian TW
Cφ (r, t ) Larkin model Larkin model

symmetry has crucial implications in several dynamical
features of synchronization, which can be related to the oc-
currence of the nonlinearity in the continuum approximation
given by Eq. (6). An obvious feature already in the oscillator
model, Eq. (1), is that only when �(�φ) is odd does the sys-
tem have up-down symmetry, i.e., invariance under φi → −φi,
in a statistical sense.

Our simulations will be based on oscillator rings, i.e., 1D
chains with periodic boundary conditions. For simplicity we
always assume that the coupling function �(�φ) is described
by the fundamental term in a Fourier series, so higher harmon-
ics are not considered. Moreover, we assume that �(0) = 0:
when an oscillator phase is equal to that of a neighbor, the
coupling between them vanishes. Therefore the noise term in
the effective dynamics, Eq. (6), is simply given by the intrin-
sic frequencies, ω∗(x) = ω(x). Under such assumptions, the
coupling function can be written, without loss of generality,
as

�(�φ) = K ( sin(�φ + δ) − sin δ), (17)

for δ ∈ (−π, π ]. With a slightly different notation, it was
previously considered in the seminal Ref. [38]. The odd sym-
metry �(�φ) + �(−�φ) = 0 is obtained only for δ = 0 and
π , which correspond to �(�φ) = K sin(�φ) (Kuramoto cou-
pling) and �(�φ) = −K sin(�φ), respectively.

The model that we study numerically is thus

dφi

dt
= ωi + K[sin(φi+1 − φi + δ) + sin(φi−1 − φi + δ)

− 2 sin δ], (18)

for i = 1, 2, . . . , L, where φ0 ≡ φL and φL+1 ≡ φ1. The sys-
tem starts from a homogeneous initial condition, φi(0) = 0 for
all i, and is integrated by means of a fourth-order Runge-Kutta
algorithm with time step δt = 0.01. The intrinsic frequencies
ωi are uniformly distributed over [−1, 1], a choice of the
distribution g(ω) that satisfies the properties discussed imme-
diately after Eq. (1). The synchronous dynamics of the system
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of phase oscillators governed by Eq. (18) has been explored
(except for a uniform shift in the intrinsic frequencies) for
the parameter choice δ = −π/4 in a recent publication that,
motivated by the study of driven-dissipative bosonic systems,
examines the transition to synchronization as a diffusion pro-
cess in a random medium [43]. Some of the morphologies to
be discussed here present similarities to those displayed in that
paper, as well as in the study of the growth process arising
from the KPZ equation with columnar noise [54].

Another symmetry will be relevant in the following: The
coupling function, Eq. (17), changes sign under the simulta-
neous reversal of the phases and the angle δ. This results into
the invariance of Eq. (18) under φi → −φi and δ → −δ, in
the same statistical sense mentioned above for the invariance
under phase reversal (up-down symmetry) of an odd coupling
function. In fact the latter can be considered as a particular
case of the former invariance for δ = 0 or π in the dynamical
model, Eq. (18).

B. Synchronization in 1D systems of phase oscillators:
Summary of previous results

Strogatz and Mirollo proved [47] that, in order for syn-
chronization to occur in a typical chain of L oscillators, for
large L, with Kuramoto coupling �(�φ) = sin(�φ) (and a
distribution of intrinsic frequencies with finite mean and vari-
ance), a coupling strength of size O(

√
L) is required, which

precludes the existence of synchronization in the thermody-
namic limit. Their proof rests on the fact that the sine function
is odd. In fact, the (non-)odd character of the coupling func-
tion has been pointed out as an important feature for the
emergence of synchronization in other works. Thus, Kopell
and Ermentrout showed [65] that a non-odd coupling leads to
frequency entrainment when the intrinsic frequencies satisfy
|ωi+1 − ωi| = O(1/L). For spatially uncorrelated frequen-
cies, Sakaguchi et al. provided evidence [38] indicating that
a coupling function of the form K (sin(�φ + δ) − sin δ) for
δ �= 0 favors synchronization when compared to the odd δ = 0
case. Their arguments are based on a simplified two-oscillator
problem and a mapping of the many-oscillator problem into
the Schrödinger equation of a particle in a random potential
(which presents some similarities with the recent analysis in
Ref. [43]), as well as numerical results. A more elaborate
theoretical treatment, under some mathematical assumptions
concerning the coupling function, was provided by Östborn,
who showed [52] that for non-odd couplings synchronous
solutions exists and are stable for coupling strengths above
a critical value that is independent of the system size. This
estimate of the critical coupling strength, together with the
one based on the two-oscillator model in Ref. [38], will be
discussed in the next section.

C. Critical coupling strength Kc

The oscillator model in Eq. (18) has two parameters,
namely the angle δ and the coupling strength K . As our inter-
est lies in synchronous dynamics, we will focus on sufficiently
strong couplings K � Kc, where Kc is the critical coupling
strength for synchronization, which in general may depend
on both δ and the system size L. Further, we will restrict

FIG. 1. Theoretical and numerical estimates of the critical cou-
pling strength Kc as a function of δ. The estimate based on a
two-oscillator model KSSK

c , Eq. (21), is shown as a magenta dashed
line. The many-oscillator estimate KO

c , Eq. (24), is shown as a
blue dotted line. Numerical estimates based on the stability of the
roughness Wφ (L, t ) are represented as isolated points, with symbols
depending on the system size L (see legend). It has been proved
[47] that synchronization in a typical chain of oscillators for δ = 0
requires a critical coupling strength Kc that increases as

√
L, which

is also illustrated. See text for definitions and references.

the numerical analysis to parameter choices for which the
small-slope approximation leading to Eq. (6) is sensible.

To gain some insight into the dependence of the critical
coupling strength Kc and the stationary slopes �φ on the
parameters, it is useful to consider the simple two-oscillator
model introduced in Ref. [38],

dφ1

dt
= ω1 + K ( sin(φ2 − φ1 + δ) − sin δ),

dφ2

dt
= ω2 + K ( sin(φ1 − φ2 + δ) − sin δ). (19)

In terms of the auxiliary variables φ̄ = (φ1 + φ2)/2 and �φ =
φ2 − φ1, and the corresponding intrinsic frequencies ω̄ =
(ω1 + ω2)/2 and �ω = ω2 − ω1, it becomes

dφ̄

dt
= ω̄ − K sin δ(1 − cos �φ),

d (�φ)

dt
= �ω − 2K cos δ sin �φ. (20)

Synchronization in this simple model is achieved for K ex-
ceeding the critical strength KSSK

c ≡ |�ω/2 cos δ|, as only for
such coupling can the slope �φ assume a stationary value.
To distinguish this one from the other estimate of the critical
coupling strength Kc that we will use, we have added a super-
script indicating the initials of the authors in KSSK

c [38]. Since
the distribution of natural frequencies g(ω) that we consider
is uniform over [−1, 1], we take as the intrinsic frequency
difference in our (many-oscillator) model the upper bound
given by |�ω| = 2, which yields

KSSK
c = 1

| cos δ| . (21)

Its dependence on δ is shown as a magenta dashed line in
Fig. 1.
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As long as δ �= ±π/2, for K � KSSK
c the phase difference

�φ stabilizes, and the two-oscillator model achieves synchro-
nization. The stable equilibrium of the second line in Eq. (20)
is found for �φ satisfying the following two conditions:

cos δ cos �φ > 0, sin �φ = �ω

2K cos δ
. (22)

According to the first condition in Eq. (22), the stable fixed
point is reached for �φ mod 2π in (−π/2, π/2) or in
(−π,−π/2) ∪ (π/2, π ], depending on whether δ is in one or
the other subset of (−π, π ]. Moreover, the second condition
in Eq. (22) implies that | sin �φ| = KSSK

c /K . Therefore, as
K (>KSSK

c ) increases �φ gets closer to 0 or π (again, depend-
ing on the sign of cos δ).

We focus on δ ∈ (−π/2, π/2) (cos δ > 0) in Fig. 1, as it
is only there that the small-slope approximation �φ  1 can
be expected to hold. The two oscillators synchronize for K �
KSSK

c , with a stationary �φ (whose sign is given by that of
�ω), that gets closer to 0 with increasing K . They evolve at
the common frequency

ωeff
1 = ωeff

2 = ω̄ − K sin(δ)

(
1 −

√
K2 − (

KSSK
c

)2

K2

)
, (23)

which, for δ �= 0, is shifted away from the average of the
intrinsic frequencies ω̄ by an amount that is proportional to
− sin δ. While this two-oscillator model cannot provide an
accurate picture of the many-oscillator system, it is in fact
quite useful for discussing various points related to the sta-
tionary slope distribution and the general phenomenology of
our model, as will be shown below.

In Ref. [52] the full many-oscillator problem is analyzed,
and synchronization is shown to be possible above a given
coupling strength KO

c ≡ (ωmax − ωmin)/|d (�̃φ)|. Here
d (�φ) = [�(�φ) + �(−�φ)]/K = 2 sin δ(cos �̃φ − 1),
where in the last step we have particularized the coupling
function to the one given in Eq. (17). The phase difference or
slope �̃φ is defined to be the largest value such that �(�φ)
is increasing for all �φ < |�̃φ| [as our �(�φ) always is
in some neighborhood of the origin for δ ∈ (−π/2, π/2)].
We find �̃φ = π/2 − δ for δ ∈ (0, π/2) and −π/2 − δ for
δ ∈ (−π/2, 0), which yields d (�̃φ) = −2 sin δ(1 − | sin δ|).
Hence, the estimate of the critical coupling strength in our
model,

KO
c = 1

| sin δ|(1 − | sin δ|) , (24)

which is shown as a blue dotted line in Fig. 1. In principle this
estimate works for an arbitrarily large system.

Both KSSK
c and KO

c show a divergence of the critical cou-
pling as δ → ±π/2, see Fig. 1, which will be important in the
discussion of the following subsection. KO

c can be expected to
work better, as it is based on a sophisticated analysis of the full
many-oscillator problem. Furthermore, it diverges for δ → 0,
as Kc is known to do in the thermodynamic limit [47]. On
the other hand, KO

c appears to overestimate Kc in some cases
[52], and possible discrepancies have been found in a recent
contribution [43]. The remaining information displayed in
Fig. 1 will be discussed at the end of the following subsection.

D. Saturation and stationary slopes: Parameter choices

We next explore numerically the existence of synchronous
motion in our many-oscillator model, and its dependence on
δ and the system size L. In Fig. 2 we show the roughness
Wφ (L, t ) as a function of time for the oscillator lattice defined
by Eq. (18), each panel containing results for one possible
value of δ, including δ = 0, π/4, π/2, 3π/4, and π . In order
to investigate the role played by the system size, we consider
systems with L = 16, 64, and 256 oscillators. Let us first focus
the discussion on the case of odd coupling, δ = 0 and π ,
Figs. 2(a) and 2(e), respectively. While synchronization, i.e.,
the saturation of Wφ (L, t ), is indeed achieved for sufficiently
large coupling strength K , the critical value clearly increases
with the system size, as expected from the exact results for
δ = 0 [47]. Take for example the case of K = 4 (green lines),
which stabilizes the width for long times if L = 16 (squares),
but not for L = 64 (stars) or 256 (circles).

In contrast, for δ = π/4 and 3π/4, Figs. 2(b) and 2(d)
respectively, the critical coupling strength seems to be in-
dependent of the system size, as argued in Ref. [52]. A
qualitatively similar behavior is observed for δ = −π/4 and
−3π/4, as expected from the invariance mentioned at the
end of Sec. III A, as well as for other inspected values in
each of the four quadrants (not shown). As for δ = π/2, i.e.,
the even-symmetry case �(�φ) − �(−�φ) = 0, considered
in Fig. 2(c), the behavior is completely different and syn-
chronization is never achieved. In fact, the coupling between
oscillators does not even reduce the rate of increase of the
roughness with respect to the uncoupled (K = 0) case, and
the same behavior is observed for δ = −π/2. Both estimates
of the critical coupling strength Kc considered in the previous
subsection diverge for δ → ±π/2, see Fig. 1; in fact not even
a system of two oscillators synchronizes, so this is expected.

These numerical results for the roughness Wφ (L, t ) will be
helpful in finding values of K (>Kc) appropriate for the study
of synchronous dynamics for different δ in the following.
But before doing that, we need to determine the range of δ

for which the small-slope approximation is expected to hold.
According to the discussion in Sec. II B, for such values of
δ the dynamics is effectively described by the continuum
approximation in Eq. (6), whose parameters—which are re-
lated to those of the synchronization model (18) through the
derivatives of the coupling function (17) at �φ = 0—are

ν = a2K cos δ,
λ

2
= −a2K sin δ. (25)

The range of validity of this approximation is studied in detail
in Appendix A, and leads to the conclusion that it can only
be valid for δ ∈ (−π/2, π/2), i.e., for cos δ > 0, see also the
first condition in Eq. (22). On the other hand, the fact that the
results reported in Fig. 2 (and also Fig. 11 in Appendix A)
are unaffected by a change in the sign of δ (not shown)
can be traced back to the invariance of the oscillator system
under the global sign flip φi → −φi and δ → −δ, discussed
in Sec. III A. For cos δ > 0, when the continuum description
is justified, this fact is possibly related with the known inde-
pendence (at least for the case of time-dependent noise) of the
large-scale behavior with respect to the sign of λ [8,9]. Indeed,
the only feature of the KPZ universality class that depends on
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FIG. 2. Roughness Wφ (L, t ) as a function of time for the oscillator lattice defined by Eq. (18) for different values of δ in each panel.
(a) δ = 0, (b) δ = π/4, (c) δ = π/2, (d) δ = 3π/4, and (e) δ = π . For each δ we consider sizes L = 16, 64, and 256 (denoted by different
symbols and line styles) and coupling strengths K = 0, 1, 4, 7 (denoted by different colors); see the legends in panels (a) and (b), which are
valid for all panels. Results are averages over 200 realizations (i.e., assignments of the intrinsic frequencies).

this sign is that of the skewness of the (TW) fluctuation distri-
bution [18,19]. Most of our results will explore the interval
[0, π/2), because this invariance under simultaneous phase
and δ reversal makes (−π/2, 0) redundant.

Thus, in the following, we focus our numerical analysis
on values of K (>Kc) large enough so that synchronization is
achieved with sufficiently small stationary slopes �φ, for δ

taking values through the interval [0, π/2). This is in principle
always possible, though for δ = 0 it requires choosing some
K that grows with the system size as

√
L [47]. To that end,

we will consider coupling strengths K that are roughly twice
as large as our numerical estimate for Kc. The latter is defined
as the smallest value of K for which we obtain a saturation of
the roughness Wφ (L, t ) for 200 realizations (as many as those
employed in the results reported in Fig. 2); see Appendix B for
more details. Such numerical estimates, which are likely to be
lower bounds for the actual value of Kc, are shown in Fig. 1
for different system sizes L (see legend). They are consistently
larger than the two-oscillator estimate KSSK

c (21), as expected,
and smaller than KO

c (24), in agreement with previous results
[52]. For the case of δ = 0, the estimate does grow with

√
L,

while in the other cases it appears to be only weakly dependent
on L. A complementary analysis of the dependence of Kc on L
for different δ, including some additional results, is provided
in Appendix B.

IV. SYNCHRONIZATION AS A GROWTH PROCESS
FOR KURAMOTO COUPLING (δ = 0)

In this section we address the numerical solution of
Eq. (18) for δ = 0, which becomes

dφi

dt
= ωi + K[sin(φi+1 − φi ) + sin(φi−1 − φi )]. (26)

This is the Kuramoto model in a one-dimensional lattice,
which is known not to synchronize in the thermodynamic
limit, L → ∞ [47]. Since we are nonetheless interested in
systems of finite size, we will focus on a value of K that is
large enough to achieve synchronization for the size under
consideration. By studying the saturation of Wφ (t ), we find
Kc � 0.6

√
L based on systems with sizes ranging from L =

16 to 512 (see Appendix B). The transition to synchronization

in higher-dimensional lattices of Kuramoto oscillators has
been studied in Refs. [66,67].

A. Kinetic roughening: Scaling Ansatz and exponents

In the upper panel of Fig. 3 we show the roughness Wφ (t ) of
a system of L = 1024 oscillators with coupling strength K =
40. According to the numerical estimate mentioned above,
the critical coupling strength in this case is Kc � 20, so the
strength of choice is roughly twice as large. A clear region of
growth with exponent β = α/z = 3/4, is observed, followed
by a saturation that consolidates around t ≈ 103. As indicated
in Table I, this is consistent with the exponent values of the
Larkin model, α = 3/2 and z = 2.

In the inset we show that the average squared slope
〈(�φ)2〉 (black circles) increases as t2(α−αloc )/z = t1/2 (where
again the Larkin model exponent αloc = 1 ensues; see the
black dashed line) until the growth saturates [68]. Indeed, this
is one of the hallmarks of anomalous scaling [48–50]: the
local slopes, instead of stabilizing rapidly as the correlation
length ξ (t ) exceeds their length scales, keep on increasing
with time until saturation, ξ (t ) ∼ L. This increase is given
by Eq. (15) when the spectral roughness exponent αs > 1,
which is shown to be the case below. Such a saturation of
the slopes may provide a natural explanation for the fact
that one-dimensional systems of oscillators with Kuramoto
coupling �(�φ) = K sin(�φ) do not synchronize in the ther-
modynamic limit, where saturation can never be achieved
[47]. The average of the maximum squared local slope, i.e.,
the average across realizations of the maximum squared slope
in the system, see also the inset of the upper panel of Fig. 3
(red asterisks), also increases similarly. We also report the
most probable value of the squared slope (blue crosses), which
always stays close to zero, as corresponds to an asymptotic
unimodal distribution with zero mean, see Fig. 11(a) below.
This feature, which is also explored in Appendix C, will reveal
a sharp distinction between the Kuramoto coupling (δ = 0)
and other couplings for δ �= 0 in the next section and in the
appendices.

A more detailed view on the two-point correlations beyond
nearest neighbors can be obtained by inspection of the full
height-difference correlation function Gφ (�, t ), shown in the
lower panel of Fig. 3. The correlation function behaves as
expected from a system displaying super-rough anomalous
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FIG. 3. Roughness Wφ (t ) and height-difference correlation func-
tion Gφ (�, t ) for the Kuramoto model, Eq. (26) (δ = 0) with size
L = 1024 and coupling strength K = 40. (Upper panel) Wφ (t ) as a
function of time in the synchronous regime, with error bars display-
ing the standard error of the average across realizations. The inset
shows the average squared slope 〈(�φ)2〉 (black circles), as well
as the average of the maximum squared local slope (red asterisks),
and the most probable value of the squared slope (blue crosses), as a
function of time for the same parameter values. The black dashed line
shows the power-law growth of the average squared slopes predicted
by the super-rough scaling Ansatz, Eq. (15), as t2(α−αloc )/z. (Lower
panel) G(�, t ) as a function of � in the synchronous regime for
different times (see legend). The dashed line shows the power-law
growth with the distance �2αloc . Inset: Rescaling of G(�, t ) following
the theoretical form in Eq. (15). In all power-law visual guides we
have used the Larkin model values α = 3/2 and z = 2, as derived
from Eq. (28), and αloc = 1 due to the super-rough scaling. Averages
based on 2000 realizations.

scaling, see Eq. (15), with a dependence on distance of the
form �2 that reveals a local exponent αloc = 1, and a growth
in time that proceeds until the width reaches the saturation
regime. In the inset we show Gφ (�, t )/t2α/z as a function of
a rescaled time variable u = �/t1/z, which scales as u2αloc for
u  1 and reaches a constant value for u � 1, as expected
from Eq. (15).

This is all in agreement with the analysis of the contin-
uum description. Indeed, from the discussion in Sec. II B, the
small-slope approximation for odd coupling functions yields
for the Kuramoto model

∂tφ(x, t ) = ω(x) + ν∇2φ(x, t ), (27)

where the surface tension ν is defined as in Eq. (25). No-
tably, now the KPZ nonlinearity is absent, as λ ∝ �(2)(0) = 0.

FIG. 4. Structure factor Sφ (k, t ) as a function of time for the Ku-
ramoto model, Eq. (26), with L = 1024, and K = 40. (Upper panel)
Sφ (k, t ) as a function of k (colored dots) and analytical expression for
the Larkin model, Eq. (28) (dotted lines). (Lower panel) k2α+1Sφ (k, t )
as a function of y = kt1/z. In all rescalings and power-law visual
guides, α = αs = 3/2, and z = 2. The structure factor curves are
shown for the same time points displayed in the lower panel of Fig. 3.
Averages based on 2000 realizations.

Equation (27) is the Larkin model, namely, the EW equa-
tion with columnar noise, in which ν > 0 plays the role of
an elastic constant. Some of its main features from a kinetic
roughening perspective are reviewed in Ref. [51]. This equa-
tion was first proposed in the study of pinning of vortex lines
in type II superconductors [69]. In the synchronization context
it was considered in Ref. [66].

The solution of Eq. (27) is straightforward in Fourier space,
as the equation is linear. For the initial condition of a homo-
geneous phase profile, φ(x, 0) = 0, the exact structure factor
reads [51]

Sφ (k, t ) = 〈φ̂(k, t )φ̂(−k, t )〉 = (2π )d2σ

ν2k4

(
1 − e−νk2t

)2
.

(28)

Comparing with the generic scaling ansatz in Eq. (14), the
roughness exponents are α = αs = 3/2 and the dynamic ex-
ponent is z = 2 [51,53]. Given that this structure factor
follows the FV scaling form, Eq. (13), it corresponds to a sys-
tem with super-rough anomalous scaling in which αloc = 1.
Actually, the analytical solution of the Larkin model, Eq. (28),
describes very accurately the structure factor calculated in
simulations of the Kuramoto model, Eq. (26). Results of the
latter are provided in Fig. 4, which shows the numerical
Sφ (k, t ) as a function of k for different values of time.
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FIG. 5. Phases φi and instantaneous frequencies dφi/dt across
time in a representative trajectory of the Kuramoto model, Eq. (26),
with L = 1024 and K = 40. (Left panel) Phases φi for t =
200, 400, 600, 1600, and 2600. Earlier times are shown in darker
colors, later times in lighter colors. (Right panel) Instantaneous fre-
quencies dφi/dt for the same trajectory, at the same time points.

In the upper panel, the structure factor of the Larkin model,
Eq. (28) (represented as black dotted lines), shows excellent
agreement with the simulation data of the oscillator lattice.
We have particularized the analytical expression for ν =
�(1)(0) = K , the overall constant factor, which includes the
(unknown) noise strength σ in the continuum approximation,
being manually adjusted to the data but time independent. The
agreement for large k values improves by replacing the wave
number k by 2 sin(k/2), which makes the structure factor
a periodic function of k, as implied by the existence of a
finite wave-vector cut-off in the oscillator lattice [61]. This
replacement has very little effect at small k. Once again, visual
guides (represented as black dashed lines) based on the scaling
form, Eq. (14) with the theoretical exponents corresponding
to FV scaling with super-rough behavior are shown to work
extremely well, including the spectral roughness exponent
αs = 3/2. This is further confirmed in the lower panel, where
we perform a data collapse of the S(k, t ) data, which agrees
with Eq. (14), except for wave numbers in close proximity
to the cutoff. The behavior just described for the structure
factor is known to imply [50] the anomalous scaling and expo-
nent values of the roughness and height-difference correlation
functions assessed in Fig. 3.

B. Dynamics of synchronization

To shed light on the phenomenology underlying this super-
rough scaling, in Fig. 5 we show a representative trajectory
(see file S1 within the Supplemental Material [70] for a
movie). Specifically, we show the phases φi (left panel) and
instantaneous frequencies dφi/dt (right panel) as functions of
time, with darker colors indicating earlier times and lighter
colors later times. At the initial time considered (t = 200)
we find a configuration where important differences in the
instantaneous frequencies exist. These differences lead to os-
cillators evolving at different rates, so that the “interface”
becomes rougher. As a result of this roughening, however,
there is a progressive reduction of the differences in the instan-
taneous frequencies, which eventually leads to a synchronous
dynamics.

The evolution appears to be quite modest and slow, in the
sense that, apart from slight rearrangements of the slopes,
the main motion is a uniform displacement at the average

frequency ωeff that is eventually attained by all the oscillators.
Indeed, if one performs the space average of Eq. (27), due
to the periodic boundary conditions and to the fact that the
mean intrinsic frequency 〈ω〉 is zero, one obtains a vanishing
interface velocity. For time-dependent noise, this is a standard
feature of EW surface growth [9]. At the discrete level, from
Eq. (26) we obtain, after a slight manipulation of the indices,

dφi

dt
= ωi + K[sin(φi+1 − φi ) + sin(φi − φi+1)] = ωi. (29)

The odd symmetry of the function �(�φ) = sin(�φ) makes
the coupling term vanish in Eq. (29). If the system is suffi-
ciently large, the average instantaneous frequency becomes

zero, dφi

dt = ωi ≈ 〈ω〉 = 0, by the law of large numbers.

C. Fluctuation statistics

Finally, beyond scaling exponents and the general phe-
nomenology of trajectories, we also explore the statistics
of the phase fluctuations, as recent developments in kinetic
roughening show that the fluctuation PDF and covariance are
also essential traits to define a universality class, see e.g.,
Refs. [18,19,56,57] and others therein. In Fig. 6 we show
the numerically-obtained PDF of the fluctuations ϕi defined
as in Eq. (16) for several values of δ. Our discussion for the
moment is focused on the case δ = 0, see the magenta circles.
A larger size, namely L = 8192 (with K = 110, which again
is roughly twice as large as the estimated Kc) is considered for
these observables, which are especially affected by finite-size
effects. An initial time of t0 = 50 and time windows �t =
50, 100, . . . , 500 have been chosen, which correspond to the
intermediate growth regime. In Fig. 6 the same distribution is
shown in linear (upper panel) and in logarithmic scales (lower
panel). The histogram has been rescaled and shifted so that
the sample mean is zero and the sample standard deviation is
one. The purpose is to make the comparison with a normalized
Gaussian PDF, which is shown with a black solid line. A very
good agreement is found between the numerical results and
the theoretical distribution without any kind of fit, which con-
firms expectations based on the good agreement between the
Kuramoto and the Larkin models, and the fact that the latter
is linear. Indeed, for time-dependent noise the EW equation is
another well-known instance of Gaussian height fluctuations
[8,9].

One further ingredient of the fluctuation statistics is the
phase covariance Cφ (�, t ). Results for this correlation function
based on the numerical solution of Eq. (18) are shown in Fig. 7
for the same values of δ and the same time points employed
in Fig. 6. We again focus on δ = 0 (Kuramoto model) for the
time being, see the magenta circles. In the growth regime, the
covariance should scale as [18,19]

Cφ (�, t ) = a1t2βC(a2�/t1/z ), (30)

where C is a scaling function. The constants a1 and a2 are
determined with respect to a reference value x0 based on an as-
sumed functional form for C(x), so that all curves pass through
(x0, C(x0)), see Ref. [71] for further details. We have chosen
the covariance of the Airy1 process [19] as the functional form
for C(x), which is shown as a black dotted line, a choice whose
significance will be discussed in the next section.
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FIG. 6. Histogram of fluctuations ϕi defined as in Eq. (16) for
the oscillator lattice, Eq. (18), in a system of L = 8192 oscillators,
for δ = 0 (K = 110), δ = π/8 (K = 4), δ = π/4 (K = 4), and δ =
3π/8 (K = 8). (Upper panel) Linear scale. (Lower panel) Logarith-
mic scale. We always take as reference time t0 = 50, and values
of �t = 50, 100, 150, . . . , 500, which are in the interval where a
power-law growth Wφ (t ) ∼ tβ is observed. The black solid line cor-
responds to a Gaussian distribution, while the dotted line shows a
GOE-TW distribution, see Sec. V. Histograms and theoretical curves
have been normalized to zero mean and unit variance. No fitting
parameters are used. Histograms based on 104 realizations.

For the Kuramoto model (δ = 0), the covariance again
follows accurately the analytical curve of the Larkin model,
which differs substantially from Airy1. Indeed, since Cφ (�, t )
is the inverse Fourier transform of the structure factor [61],
using Eq. (28) the covariance of the Larkin model can readily
be shown to comply with a scaling form like that described by
Eq. (30) with β = 3/4 and z = 2, but with a scaling function
which differs from Airy1, namely,

Cφ (�, t ) = 4πσ t3/2

ν1/2
F−1

[(
1 − e−κ2)2

κ4

]
(�/

√
νt ), (31)

where κ = √
νtk. This analytical form for the covariance of

the Larkin model is shown in Fig. 7 as a black solid line,
and shows an excellent agreement with the numerical data
for the oscillator lattice with δ = 0 across the growth interval.
Surprisingly, it also shows an excellent agreement with the
covariances obtained for other values of δ (which are also dis-
played in Fig. 7) across their corresponding growth regimes,
despite the crucial differences found for all other observables.
This point will be further discussed in the next section.

FIG. 7. Rescaled covariance Cφ (�, t ) for the oscillator lattice,
Eq. (18), in a system of L = 8192 oscillators for δ = 0 (K = 110),
δ = π/8 (K = 4), δ = π/4 (K = 4), and δ = 3π/8 (K = 8). The
time points considered are in the growth regimes and coincide with
those included in Fig. 6. The axes have been rescaled according to
Eq. (30). The black solid line corresponds to the exact covariance of
the Larkin model, Eq. (31), while the dotted line shows the covari-
ance of the Airy1 process, which has been used in the determination
of the rescaling factors a1 and a2, see the text. Numerical covariances
based on 103 realizations.

V. SYNCHRONIZATION AS A GROWTH PROCESS
FOR NON-ODD COUPLING

In the continuum approximation of the general oscilla-
tor model discussed in Sec. II B, if the coupling function is
not odd, �(�φ) + �(−�φ) �= 0, in general no derivatives of
�(�φ) can be assumed to vanish, and the dominant contribu-
tions in Eq. (5) are those of the KPZ equation with columnar
noise, Eq. (6). This equation can be formally related to a
diffusion problem in the presence of random traps and sources
[7]. It is especially in that form that the equation has been
studied, showing sharply localized solutions around pinning
centers, which eventually hop to the basin of a more attracting
center. This hopping dynamics proceeds across time scales,
with longer times being spent at each new localization center
that is attained. The connection between such form of local-
ization and synchronization was first discussed a long time
ago [38], although it appears to be only very recently that the
subject has been more thoroughly elucidated [43].

For the study of anomalous scaling in synchronous oscil-
lator lattices, the main interest lies in the KPZ equation with
columnar noise itself, which has been previously studied in the
kinetic roughening literature [54]. The localization of the dif-
fusion problem is there shown to translate into the formation
of facets, i.e., regions of nearly constant slope. Specifically,
there is a coarsening process whereby some facets, which
move uniformly at constant velocity, absorb other facets. In
a finite-size system, the asymptotic solution is a triangular-
looking surface growing at constant velocity. As will be seen
next, in the oscillator problem the facets correspond to clus-
ters of synchronized oscillators, and the coarsening process
leads to larger (and faster) synchronized clusters, as previ-
ously observed in some models of oscillators in one and two
dimensions [38,43].
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A. Kinetic roughening: Scaling Ansatz and exponents

As we did in Sec. IV, we study numerically a system of
L oscillators governed by Eqs. (18), but this time δ = π/4
(instead of δ = 0). Other choices of δ ∈ (0, π/2), namely
δ = π/8 and 3π/8, are considered in Appendix E and lead
to similar conclusions. The system synchronizes for K above
a critical value that is roughly Kc � 2, according to the proce-
dure described at the end of Sec. III D, see also Appendix B.
Therefore, we will take as the coupling strength K = 4, which
is approximately twice as large as the critical value.

In what follows, we find that a consistent description of the
scaling behavior obtained in our simulations can be achieved
for faceted exponent values α = 1.07 ± 0.05, αs = 1.40 ±
0.05, z = 1.36 ± 0.05, and αloc = 0.97 ± 0.05; these must be
adjusted quite precisely in order to satisfy the various scaling
constraints pertaining to the different observables, so indeed
the quoted uncertainties are conservative. Note also that the
local roughness exponent αloc = 1 for faceted scaling [53] is
an upper bound for the local exponent for geometrical reasons
[72], so that the possibility of finite-size effects distorting
some of the exponents (for αloc, necessarily towards smaller
values) should also be considered. Their possibly nonuni-
versal nature may also explain why these exponents differ
somewhat from those of Ref. [54], and also (though less so)
from those found for other values of δ in Appendix E.

In Fig. 8 we show the roughness Wφ (t ) and the height-
difference correlation Gφ (�, t ) for a system of L = 1024
oscillators, from numerical simulations of Eq. (18) with δ =
π/4 and K = 4. All the elements, symbols, and colors have
the same meaning as in Fig. 3. In the upper panel, the rough-
ness saturates for times on the order to 103. In the inset we
show that the average squared slope 〈(�φ)2〉 (black circles)
hardly follows the power-law growth, t2(α−αloc )/z expected
from Eq. (15), and stabilizes at a much shorter time scale
than that needed for the saturation of the roughness [68].
This somewhat puzzling behavior is anticipated by the early
saturation of the average of the maximum squared local slope
(inset, red asterisks). Indeed the latter quantity is a proxy for
the evolution of the facet with the steepest slope, as will be il-
lustrated below. The most probable value of the squared slope
(inset, blue crosses) also behaves in a completely different
way than it did for δ = 0 (see the inset of the upper panel
in Fig. 3): at some point it leaves the very small values from
which it started and rises close to the value of 〈(�φ)2〉 itself.
This issue will be addressed further in Appendix C.

A more detailed view on space correlations beyond nearest
neighbors is provided by the full height-difference correla-
tion function Gφ (�, t ), shown in the lower panel of Fig. 8.
A dependence on distance of the form �2αloc is observed, as
well as a growth in time that proceeds until Wφ (t ) reaches
saturation, but it appears to slow down earlier than for δ = 0.
Full agreement with Eq. (15) can be appreciated in the data
collapse of Gφ (�, t ), which is displayed in the inset.

Results for the KPZ equation with columnar disorder indi-
cate [54] the occurrence of faceted anomalous scaling whose
full assessment can be best provided by studying correlations
in Fourier space. Thus, the upper panel of Fig. 9 shows
the structure factor Sφ (k, t ) as a function of k for different
times, also enabling qualitative comparison with the results

FIG. 8. Roughness Wφ (t ) and height-difference correlation func-
tion Gφ (�, t ) for the oscillator model defined by Eq. (18), with
δ = π/4 (non-odd coupling), L = 1024, and K = 4. (Upper panel)
Wφ (t ) as a function of time in the synchronous regime, with error bars
displaying the standard error of the average across realizations. In the
power-law visual guides we have used the exponent values α = 1.07
and z = 1.36. The inset shows the average squared slope 〈(�φ)2〉
(black circles), as well as the average of the maximum squared local
slope (red asterisks), and the most probable value of the local slope
(blue crosses), as functions of time for the same parameter values.
The black dashed line shows the power-law growth of the average
squared slopes predicted by Eq. (15), t2(α−αloc )/z, for αloc = 0.97.
(Lower panel) G(�, t ) as a function of � in the synchronous regime
for different times (see legend). The dashed line shows the power-law
growth with distance �2αloc . Inset: Data collapse of G(�, t ) follow-
ing the full theoretical form of Eq. (15). Averages based on 2000
realizations.

discussed in the previous section. The structure factor cer-
tainly does not follow the FV form, Eq. (13), but indeed
shows a very good agreement with the faceted scaling form
of Eq. (14). This is explicitly confirmed in the lower panel,
where the S(k, t ) data are collapsed closely following the
expected behavior, Eq. (14), except for wave numbers that
are close to the ultraviolet (discretization) cutoff. Similar
results—supporting the existence of faceted scaling close to
that found for the KPZ equation with columnar noise [54]—in
the synchronization of a 1D system of oscillators with non-
odd coupling are obtained for other values of δ ∈ (0, π/2),
which are provided through Gφ (�, t ) and Sφ (k, t ) in Ap-
pendix E, as well as for other coupling strengths K > Kc,
such as K = 3, 10, or 20 (not shown). One last point worth
mentioning is that the study of localization effects in the mul-
tiplicative diffusion equation and directed polymers in random
media, related with the KPZ equation with columnar noise, in-
dicates that the precise time behavior of the correlation length
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FIG. 9. Structure factor Sφ (k, t ) as a function of time for the os-
cillator model defined by Eq. (18) with δ = π/4 (non-odd coupling),
L = 1024, and K = 4. (Upper panel) Sφ (k, t ) as a function of k.
(Lower panel) k2α+1Sφ (k, t ) as a function of y = kt1/z. In all rescal-
ings and power-law visual guides, α = 1.07, αs = 1.40, z = 1.36,
and αloc = 0.97. The structure factor curves are shown for the same
time points displayed in the lower panel of Fig. 8. Averages based on
2000 realizations.

is sub-ballistic, with ξ (t ) ∼ t ln−3/4 t [63,64]. The value we
are considering here for the dynamical exponent z is thus an
effective one which in general is not universal (it may depend,
for instance, on the noise distribution [64]), as it facilitates the
comparison with results obtained for δ = 0. Moreover, this
approach was shown to provide a satisfactory description in
the numerical study of the KPZ equation with columnar noise,
where it was compared with the sub-ballistic form just quoted
[54].

B. Dynamics of synchronization

In the upper panels of Fig. 10 we show phases φi, and in the
lower panels we show instantaneous frequencies dφi/dt , from
representative trajectories for δ = π/4 (left column) and δ =
−π/4 (right column). Files S2 and S3 within the Supplemen-
tal Material [70] are animated movies for the corresponding
time evolutions. In Fig. 10, different colors correspond to
different time values, darker colors indicating earlier times
and lighter colors later times. The oscillators rapidly form
clusters that evolve at the same frequency, which is negative
for δ = π/4 and positive for δ = −π/4, as expected from
the previous discussions, see Sec. III. These clusters merge
into large ones progressively, the faster evolving one at the
interface between two clusters always absorbing the slower
one. Eventually, the fastest cluster of oscillators recruits more

FIG. 10. Phases φi and instantaneous frequencies dφi/dt as
functions of time in a representative trajectory of the oscillator lattice
defined by Eq. (18), with size L = 1024 and coupling strength K =
4, for δ = π/4 (left column) and δ = −π/4 (right column). (Upper
row) Phases φi for t = 200, 700, 1200, 1700, and 2200. Earlier times
are shown in darker colors, later times in lighter colors. (Lower row)
Instantaneous frequencies dφi/dt for the same trajectories, at the
same time points.

and more oscillators, some of which have been previously ab-
sorbed multiple times into progressively faster clusters, until
it spans the whole system, which moves uniformly.

There is an obvious similarity with the phenomenology re-
ported in Ref. [43], for a model which (except for the addition
of a uniform frequency) corresponds to δ = −π/4, and, less
evidently, to that of the KPZ equation with columnar noise
[54]. In both references the authors resort to the Cole-Hopf
mapping into a diffusion problem with random traps and
sources for an explanation. In the present context of systems
of oscillators (also that of Ref. [43]), further light can be shed
by means of the simple two-oscillator problem, Eq. (19), and
its stable equilibrium point, Eq. (22). Indeed, according to that
model when two oscillators synchronize for δ �= 0, the effec-
tive frequency is changed by a factor proportional to −K sin δ

[see Eq. (23)], which is of course negative for δ = π/4 and
positive δ = −π/4. Having undergone some previous coars-
ening, when two oscillators at the boundary of two clusters
interact, their intrinsic frequencies must be “renormalized”
(in some sense) in order to take into account the effect of
the rest of the synchronized oscillators in the cluster. The
result at different stages of the coarsening process, however,
is always similar, in the sense that it leads to a change in the
effective frequencies of the clusters under consideration that
consistently pushes towards smaller/larger values, depending
on whether sin δ is positive or negative. Indeed, the space
average of Eq. (18) yields

dφi

dt
= ωi + K[sin(φi+1 − φi + δ) + sin(φi − φi+1 + δ)

− 2 sin δ]

= ωi − 2K sin δ(1 − cos �φ). (32)
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where the average instantaneous frequency vanishes, ωi ≈
〈ω〉 = 0, by the law of large numbers. Thus, dφi/dt ≈
−2K sin δ(1 − cos �φ). Unless the phases are all equal, the
average instantaneous frequency will be nonzero and pro-
portional to −K sin δ. In fact, the larger the slopes �φ (i.e.,
the smaller cos �φ is), the larger the effective frequency is.
Since the spatial averaging may be restricted to a cluster of
oscillators, this may explain the fact that the steepest slopes
are associated with the faster (in absolute value) clusters in
Fig. 10. The relationship between this and the bimodal dis-
tributions in Fig. 11 in Appendix A, and also the behavior of
the slopes in the inset of the upper panel in Fig. 8, is further
discussed in Appendix C.

From the point of view of the continuum approximation,
the crucial difference between the synchronization observed
for the Kuramoto model (δ = 0) and for |δ| ∈ (0, π/2), is
the existence for the latter of a KPZ nonlinearity in Eq. (6),
whose coupling precisely equals λ = −2Ka2 sin δ, according
to Eq. (25). Such a term is well known to introduce an excess
velocity that drives the interface dynamics [8,9], which is no
longer up-down symmetric. In analogy with Eq. (32), if one
performs the space average of Eq. (6), due to the periodic
boundary conditions and to the fact that the mean intrinsic
frequency is zero, the excess velocity is the integral of the
KPZ nonlinearity, and its sign is therefore that of λ, indeed
proportional to − sin δ.

C. Fluctuation statistics

To complete the description of the kinetic roughening
universality class obtained for δ �= 0, Fig. 6 shows the dis-
tribution of the fluctuations ϕi, defined as in Eq. (16), for
δ = π/4 (K = 4 and again we take a larger system with
L = 8192 for this purpose), as well as for other nonzero
values of δ to be discussed below. The initial time t0 = 50
and several values of �t from 50 to 500 have been chosen, all
within the growth regime. The same distribution is shown in
Fig. 6 in linear (upper panel) and in logarithmic scales (lower
panel). The histogram has been rescaled and shifted so that the
sample mean is zero and the sample standard deviation is one.
The TW distribution for the maximum eigenvalue of random
matrices in the Gaussian orthogonal ensemble (GOE) [35],
also normalized, is shown as a black dotted line in the figure.
This distribution is the one found for the growth dynamics
of the 1D KPZ universality class when using, e.g., periodic
boundary conditions [18,19], and is clearly very different
from the Gaussian fluctuations obtained for δ = 0. Very good
agreement is thus found between the numerical results for
the oscillator lattice and the GOE-TW PDF. While points in
the right tail appear to deviate for probabilities �10−3, which
might be related to finite-size effects, the left tail continues to
follow very closely the theoretical curve for the lowest values
inspected, on the order of 10−6, below which large statistical
uncertainties exist (not shown). An alternative visualization of
the results in Fig. 6, including the comparison of the numerical
histograms with other distribution in the TW family of PDFs is
provided in Appendix D. Thus an explicit connection between
synchronization and the ubiquitous TW family of distributions
is found. Even their relevance in the growth process given
by the KPZ equation with columnar noise is not yet estab-

lished, although the strong phenomenological links between
that model and the synchronization model under investigation
suggest that they might also characterize the fluctuations in
that context.

The occurrence of the TW distribution is robust with re-
spect to changes in δ and K . Indeed, when changing the sign
of δ, we have found a GOE-TW with the opposite sign for
the skewness, which agrees with that of λ ∝ − sin δ, as is
also the case in the standard KPZ universality class [18,19].
Note that, for representation purposes, the PDF curves shown
for δ > 0 in Fig. 6 have been normalized to have positive
skewness. More importantly, the results reported in Fig. 6
for δ = π/8 and 3π/8 (two values of δ for which results
analogous to those of Figs. 8 and 9 for δ = π/4 are displayed
in Appendix E), confirm that practically the same distribution
is found for other nonzero values of δ ∈ (−π/2, π/2). As for
the effect of the coupling strength K , we also find the same
kind of fluctuation PDF, which nicely follows the GOE-TW
form, for smaller K and for larger K , including values as large
as K = 20. Moreover, for all these different values of δ and
K the choice of the time window (as determined by t0 and
�t) does not seem to be particularly important [as long as
it is kept within the growth time interval where Wφ (t ) ∼ tβ],
nor do small modifications in the value of β affect it. Taken
together, these results suggest that the TW fluctuations are a
generic and robust feature of the oscillator lattice, Eq. (18), for
δ = (−π/2, π/2), provided that δ �= 0, at least for sufficiently
large coupling strengths K > Kc.

The TW fluctuation PDF is currently considered as one of
the universal traits induced by the KPZ nonlinearity [18,19],
although examples are known of systems, which, while dis-
playing it, do not have, e.g., the same scaling exponent
values of the KPZ universality class, see e.g., Ref. [57] and
references therein. For systems within the KPZ universality
class proper, it is accompanied by a covariance that scales
as Eq. (30), where the scaling function C is the covariance
of the Airy1 process [73] if the boundary conditions are pe-
riodic as in our present paper [19,74,75]. This function is
precisely the one employed in the data collapse of Fig. 7, as
explained at the end of the previous section, and is shown
there as a black dotted line. But despite the TW form of
the fluctuation distribution, the scaling function C(x) of the
phase covariance Cφ (�, t ) for δ = π/8, π/4, and 3π/8 seems
to be identical to that observed for the Kuramoto coupling
(δ = 0), for which the fluctuations are Gaussian. Actually,
the numerically-obtained Cφ (�, t ) for all the values of δ that
have been inspected follow quite closely the covariance of the
Larkin model in Eq. (31), as can be observed in Fig. 7, see
black solid line. At this point, we note that the covariance of
the EW equation with time-dependent noise is also Airy1 [76],
as for the nonlinear KPZ equation, in spite of the fact that EW
features Gaussian fluctuations.

Taken together, the results reported in this section, in com-
bination with those of Appendixes D and E, suggest that a
faceted anomalous scaling and KPZ (TW) fluctuations are
generic properties of synchronization for values of δ �= 0 in
(−π/2, π/2). The same can be said about the general ap-
pearance of the trajectories, which are for δ = π/8 and 3π/8
(not shown) qualitatively very similar to those displayed for
δ = π/4 in Fig. 10 and to those of the KPZ equation with
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columnar noise [54]. The super-rough scaling and Gaussian
fluctuations found for Kuramoto coupling (δ = 0) are thus
rather peculiar, and likely due to the up-down symmetry (and
the resulting absence of the KPZ nonlinearity in the effective
continuum description) that only holds for that parameter
choice. It is intriguing, although not completely unexpected
for the reasons mentioned above, that this sharp distinction is
not present in the phase covariance Cφ (�, t ).

VI. DISCUSSION AND CONCLUSIONS

Our results demonstrate a very strong connection between
synchronization in lattices of oscillators and kinetic rough-
ening in systems with columnar noise. Both the dynamics
of synchronizing oscillators and that of growing interfaces
display GSI: provided the system is in the synchronized phase,
its critical behavior does not depend on the values of the
parameters K and δ as long as they are generic. For δ = 0
the universality class differs from that of δ �= 0, but does not
depend on K either, provided synchronization takes place.
The scaling behavior we find in all cases is anomalous, with
forms which are here elucidated in a synchronization context.
While the scaling of synchronization with Kuramoto cou-
pling �(�φ) = sin(�φ) (δ = 0) is super rough [48], for other
forms of Kuramoto-Sakaguchi coupling (δ �= 0), the scaling
is generically faceted [53], requiring one additional exponent
for its description. Moreover the fluctuations, which in the
former case are simply Gaussian, in the latter cases follow
a TW distribution, an important characteristic of the KPZ
universality class, known to be displayed by an increasing
variety of low-dimensional strongly-correlated classical and
quantum systems, see e.g., Ref. [37]. From this point of view,
the behavior observed for the Kuramoto coupling (δ = 0) is
a singular exception to what seems to be the general rule for
0 < |δ| < π/2, as has been sometimes discussed in the syn-
chronization literature, see Ref. [52] and references therein.
This is most likely related to the same up-down symmetry
(and corresponding lack of excess velocity) that distinguishes
the EW equation from the KPZ equation in kinetic roughening
systems with time-dependent noise [8,9].

The most conspicuous phenomenological aspects of such
faceted scaling of synchronization, as illustrated by the trajec-
tories displayed in Fig. 10, which present obvious similarities
with the growth dynamics of the KPZ equation with columnar
noise [54], were already apparent in a model of phase oscil-
lators that corresponds to ours for δ = −π/4 except for the
constant term proportional to sin δ in Eq. (18) that guarantees
that �(0) = 0 [43]. It is remarkable that such a model arises
from the effective description of a system of driven-dissipative
bosons, which raises the possibility of experimentally observ-
ing faceted anomalous scaling in quantum systems.

This connection between synchronization and kinetic
roughening is established through a continuum effective de-
scription that relies on a perturbative expansion, which is
expected to work for high enough K > Kc if cos δ > 0. The
resulting continuum equations in 1D are those of the Larkin
model (EW equation with columnar noise) for Kuramoto cou-
pling, and the KPZ equation with columnar noise generically
for the other types of couplings investigated. Presumably the
effective description is valid in higher dimension, which might

explain the obvious similarities between the phenomenology
of 2D synchronization in the particular instance of the model
discussed above [43] and the 2D KPZ equation with colum-
nar noise [54]. In this regard, note that due to the excellent
agreement between the Kuramoto model and the analytical
predictions of the Larkin model, the conclusion that the for-
mer is in the universality class of the EW equation with
columnar disorder can hardly be questioned, and may also
hold in higher dimensions [notice that the exponents in those
cases can also be read from Eq. (28)]. For δ �= 0, the type of
scaling Ansatz and the scaling exponent values, as well as the
sign of the skewness of the fluctuation PDF with respect to
that of δ, all strongly suggest the occurrence of the universality
class of the KPZ equation with columnar disorder. The slight
numerical disagreements that persist between the numerical
values we obtain for the exponents for some δ and those re-
ported from simulations of the KPZ equation with this type of
disorder [54] may be expected due to known properties of the
latter [8]. For example, for bounded probability distributions
of the columnar disorder that depend on a parameter, correc-
tions to scaling ensue, which depend on that parameter [64],
thus manifesting (weak) nonuniversal behavior. Moreover, for
d � 2 the nonlinear fixed point for the KPZ equation with
columnar disorder is unstable with respect to infinitely many
nonlinear terms generated under the renormalization group
(RG) [63], possibly inducing the logarithmic corrections to
the power-law growth of the correlation length mentioned in
Sec. V A.

Within the continuum approximation, the basic difference
between the Kuramoto sine (δ = 0) and the other forms of
coupling (δ �= 0) lies in the KPZ nonlinearity, absent for the
Kuramoto coupling due to its odd symmetry. The KPZ non-
linearity is known to cause growth along the local surface
normal direction, which gives rise to a nonzero excess veloc-
ity [8,9]. Its inclusion breaks the up-down symmetry of the
Larkin model, and, in the discrete lattices of oscillators un-
der investigation, changes the (still anomalous) scaling from
super rough to faceted, and the fluctuations from Gaussian to
TW distributed. Additional systems are also known in which
fluctuations are TW [57,77] due to the occurrence of a KPZ
nonlinearity [78,79], even if scaling exponent values differ
from those of the KPZ universality class, and irrespective
of its λ coupling being time dependent or not. Conversely,
recent examples are also available, like the tensionless KPZ
equation, in which the KPZ nonlinearity induces a nonsym-
metric distribution [62,80], which, however, does not take the
precise TW form. Apparently, no kinetic-roughening system
is yet known with TW-distributed fluctuations, but in which
the KPZ nonlinearity is absent. Completing the description
of the universality class, for our oscillator lattices we obtain
that, surprisingly, the covariances follow the analytical form
of the Larkin model regardless of the value of δ. As was
mentioned above, an analogous behavior is known for time-
dependent noise, whereby the covariance of the linear EW
and the nonlinear KPZ equations are both Airy1 [76]. The
precise reason remains unclear, although it may be related
with the fluctuation-dissipation theorem accidentally satisfied
by the KPZ equation in one dimension [8,9], which makes it
share a number of properties with its (EW) linear approxima-
tion. At any rate, to our knowledge δ �= 0 oscillator lattices
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thus provide the first known examples of TW fluctuation
statistics without Airy covariance.

Related with the dynamic scaling Ansatz, a recent paper
has shown that the Larkin model also loses its super-rough
scaling in favor of faceted scaling in the presence of anhar-
monicities [51]. In the synchronization context, our paper
raises the question whether the singularity of the Kuramoto
coupling as an isolated point displaying super-rough scaling in
a parameter space where faceted scaling seems to be generic
extends to other kinds of symmetry-breaking perturbations. In
the kinetic roughening context, on the other hand, it raises the
question whether KPZ fluctuations are also present in those
other models displaying faceted scaling, which then should
be added to the currently increasing list of systems known to
display a TW PDF. Moreover, it would be interesting to know
whether those models also display covariances like those of
the linear theory (which is the Larkin model in our case), or
they follow those of the Airy1 process.

Overall, our paper opens up vistas on the problem of
synchronization in finite dimensions by making use of the
powerful conceptual framework of nonequilibrium kinetic
roughening to an unprecedented level, incorporating also quite
recent developments in that field. This allows us to clarify the
dynamical process by which synchronous motion is achieved,
which remained a relatively poorly explored aspect of syn-
chronization, and is here shown to be characterized by forms
of nonequilibrium criticality previously observed in growth
processes. Many important issues remain to be studied at the
interface between these two topics of contemporary statistical
physics and nonlinear science. For example, the role of ther-
mal noise in the effective dynamics of synchronized motion,
as in fact variations of the Kuramoto model and similar mod-
els of phase oscillators are frequently studied in the presence
of time-dependent noise sources [4]. The connection to the
(standard, thermal noise) KPZ equation in such models has
already been discussed and recently exploited in the study
of routes out of synchronization [41], but every aspect of
GSI in that context, including the nature of scaling and its
fluctuations, apparently remains unknown. Finally, while we
have considered synchronous dynamics for coupling strengths
K > Kc, which guarantee that synchronization is achieved for
long times, an obviously relevant goal would be to understand
the transition to synchronization at the level of the effective
continuum description. Ideally, this should provide accurate

estimates of Kc, and shed further light on the role played by
the symmetry of the coupling function [47,52].
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APPENDIX A: STATIONARY SLOPES �φ AND VALIDITY
OF THE SMALL-SLOPE APPROXIMATION

To determine the range of δ for which the small-slope
approximation in Eq. (6) is expected to hold, we focus on
the stationary slopes �φ upon saturation in the synchronous
regime. Figure 11 shows the distribution of slopes �φ at
long times in systems of L = 256 oscillators for the same
five values of δ displayed in Fig. 2. The coupling strength of
choice, K = 10, is high enough to achieve synchronization in
all cases, except (of course) for δ = π/2.

Let us focus initially on the two bimodal distributions
in panels (b) and (d), corresponding to δ = π/4 and 3π/4
(non-odd coupling), respectively. The first of the two condi-
tions in Eq. (22) rightly predicts the centering of the peaks
around 0 or π , depending on the sign of cos δ. The second
condition in Eq. (22) yields the upper and lower bounds
± arcsin(K cos δ)−1, for �ω = ±2, which are shown as red
dotted lines in Fig. 11 and roughly correspond to the peaks
observed around �φ = 0 for δ = π/4 [panel (b)] and around
�φ = π for δ = 3π/4 [panel (d)]. Indeed these peaks get
closer to 0 or π (as the case may be) as K is increased (not
shown).

Furthermore, the two-oscillator model, Eq. (19), also cap-
tures qualitative aspects of the phenomenology presented in
Sec. V, some of which are briefly discussed in the original
reference [38]. We summarize here those that shed light on
the results reported in Fig. 11. When two oscillators lock, the

FIG. 11. Distributions of slopes �φ for the oscillator lattice defined by Eq. (18) with L = 256 and K = 10, for different values of δ in each
panel. (a) δ = 0, (b) δ = π/4, (c) δ = π/2, (d) δ = 3π/4, and (e) δ = π . The red dotted lines in (b) and (d) indicate the position of the upper
bounds for �φ of the two-oscillator condition, Eq. (22). Each histogram is based on at least 2000 realizations at time t = 5000 (sufficiently
large for synchronization to be attained).
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frequency they achieve for δ �= 0, π and K � KSSK
c is shifted

with respect to the average frequency, see Eq. (23), a shift
that in turn must influence oscillators in some neighborhood,
which need to adjust to it. The net result, as show in Fig. 10, is
a coarsening dynamics of clusters of contiguous synchronized
oscillators, which merge and, as a result, gradually become
less in number and faster. Similar results were recently re-
ported in Ref. [43] and, in the context of growing interfaces,
Ref. [54]. In a sense, at each boundary between two clusters
there is approximately a new two-oscillator problem, only
with “renormalized” intrinsic frequencies that also include
the effect of further oscillators. The tendency towards having
a bimodal distribution of slopes can be inferred from the
numerical results in Sec. V and in Appendix C, which show a
gradual disappearance of slower clusters with smaller station-
ary slopes. The random assignment of intrinsic frequencies ω

causes the finite width of the peaks.
In Figs. 11(a) and 11(e) we observe unimodal distributions

centered around 0 (for δ = 0) or ±π (δ = π ). The first con-
dition in Eq. (22) once again rightly predicts the centering
of the peaks. For such values of δ (odd coupling), in the
two-oscillator model synchronization is achieved at the aver-
age frequency ω̄, see Eq. (23). Extrapolating once more this
picture to the many-oscillator problem, when two oscillators
lock, the effect must propagate to neighboring oscillators,
smoothening the differences in effective frequencies, which
gradually become closer to the mean of the frequency distribu-
tion (here it is zero). As there are all types of (“renormalized”)
effective �ω in the many-oscillator problem, which moreover
become smaller in absolute value with time, the unimodal
distribution around zero is expected, given the proportionality
of sin �φ and �ω in Eq. (22). This situation is also analyzed
in Appendix C for δ = 0.

The only nonsynchronous evolution in Fig. 11 is observed
for δ = π/2, panel (c), for which the slopes keep evolving
at arbitrarily long times. We find a triangular distribution of
�φ, which is known [81] to be the PDF of a random vari-
able (the local slope �φ) defined as the difference between
two uniformly-distributed variables (the two phases whose
difference yields �φ). This is in agreement with the main
conclusions drawn in Sec. III about this highly peculiar case,
and in fact confirms that the overall behavior is similar to that
of uncoupled oscillators, as shown in Fig. 2(c).

We next reassess the previous results from the perspective
of the continuum description Eq. (6), with a special emphasis
on the validity of the small-slope approximation. This will
help us restrict the range of δ, and, guided by the analysis
of Sec. III C and Appendix B, choose appropriate values for
the coupling strength K . We shall consider separately situa-
tions for which cos δ > 0 and those for which cos δ < 0; the
cos δ = 0 condition is only to be considered as a limiting case
of the former as δ → ±π/2. We always assume that K > Kc.

When cos δ > 0, for sufficiently large K the phase dif-
ferences, as illustrated in Figs. 11(a) and 11(b), are close
to zero and the small �φ approximation leading to Eq. (6),
with parameters given in Eq. (25), is justified. As previously
explained, for δ = 0 the KPZ nonlinearity drops out from
Eq. (6), namely λ = 0. The lack of the corresponding lateral-
growth mechanism, which would result in a nonzero average
excess velocity [9], sets this most-studied case apart from the

others. On the other hand, as δ approaches π/2 and −π/2
(cos δ → 0), ν → 0, and the smoothening effect of the surface
tension thus disappears [9]. This might provide a comple-
mentary explanation for the lack of synchronization observed
in panel (c) of Figs. 2 and 11, at least for the initial stages
starting from the flat initial condition, as later on the small �φ

approximation is expected to fail. Incidentally, for the case
of time-dependent noise, the KPZ equation with zero surface
tension has been recently shown to define a universality class
with a scaling Ansatz that is intrinsically anomalous [62].

For cos δ < 0 and sufficiently large K , on the other hand, as
shown in Figs. 11(d) and 11(e), the phase differences stabilize
around ±π . That may explain why the roughness Wφ (t ) for
δ = 3π/4 and π in Fig. 2 is initially larger for K > 0 than
for the uncoupled K = 0 case: there are “forces” pushing
neighboring phases to distance from each other as much as
possible. In those cases, the perturbative expansion leading to
Eq. (6) is unjustified.

APPENDIX B: DEPENDENCE OF THE CRITICAL
COUPLING STRENGTH Kc ON THE SYSTEM SIZE L

The critical coupling strength Kc is defined as the minimum
value of the coupling strength K for which saturation of the
roughness Wφ (L, t ) is achieved, which implies the equality
of the effective frequencies in the system. In our numerical
estimation of Kc, we consider a reference time tref = 5000,
several times larger than needed to leave the growth regime
behind, and saturation is considered to take place whenever
the roughness, based on 200 disorder realizations, varies
across the time window [tref, 2tref] less than 1% of its variation
across [0, tref], i.e.,∣∣∣∣Wφ (L, 2tref ) − Wφ (L, tref )

Wφ (L, tref ) − Wφ (L, 0)

∣∣∣∣ < 0.01. (B1)

Strictly speaking, this is expected to provide only a lower
bound for Kc, as the inclusion of further realizations
might show that a larger value of K is needed to achieve
synchronization for all possible disorder configurations.

FIG. 12. Critical coupling strength Kc as a function of L for dif-
ferent values of δ. Numerical estimates of Kc based on the saturation
of the roughness Wφ (L, t ) (see text for details) are represented for
different values of δ with various symbols and colors (see legend).
The black solid line corresponds to 0.6

√
L growth, and is shown for

comparison with the numerical estimates for δ = 0.
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FIG. 13. PDF of the local slopes P(�φ) across time in a system of L = 1024 oscillators for different values of δ, together with the
square root of three slope observables considered in the main text. (a) δ = 0 and K = 40, (b) δ = π/8 and K = 4, (c) δ = π/4 and K = 4,
(d) δ = 3π/8 and K = 8. P(�φ) shown across time using the color code specified in the color bars, together with the square root of the
average squared slope (black dots), that of the mean maximum squared local slope (red asterisks), and that of the the most probable value of
the squared slope (blue crosses). Histograms and averages are based on 2000 realizations.

In Fig. 12 we show the critical coupling strength Kc thus
obtained as a function of the system size L for various val-
ues of δ, including δ = 0, π/8, π/4, and 3π/8, which were
already shown in Fig. 1 in a different representation. As ex-
plained in Sec. III C, while for δ = 0 we have Kc ∝ √

L, for
those other values of δ the dependence on L is much weaker.
In fact, there is a consistent moderate increase for the largest
sizes inspected which could indicate a mild dependence on L,
or simply reflect that the statistical threshold implied in the
numerical determination of Kc becomes comparatively easier
to be exceeded for large system sizes.

Some values of δ not considered elsewhere in our analysis,
namely δ = π/16, π/32, and π/64, are included in Fig. 12
so as to provide some insight into the behavior of Kc as
δ → 0. One can see that Kc follows the dependence observed
for δ = 0 for small sizes L, beyond which there is a gradual
change towards δ �= 0 behavior. Such crossover gets displaced
towards larger values of L as δ becomes smaller. In the ef-
fective continuum approximation, this might be related to
the minimal length scale needed for the effect of the KPZ
nonlinearity to be observable at very small values of λ ∝ sin δ.

FIG. 14. Histograms of fluctuations ϕi defined as in Eq. (16) for the oscillator lattice, Eq. (18), in a system of L = 8192 oscillators, for
δ = 0 (K = 110), δ = π/8 (K = 4), δ = π/4 (K = 4), and δ = 3π/8 (K = 8). Each column corresponds to a value of δ, as indicated above
the upper row panels. (Upper row) Linear scale. (Lower row) Logarithmic scale. We always take as reference time t0 = 50, and values of
�t = 50, 100, 150, . . . , 500, which are in the interval where a power-law growth Wφ (t ) ∼ tβ is observed. The black solid line corresponds
to a Gaussian distribution, the dotted line to a GOE-TW distribution, the dash-dotted line to a GUE-TW distribution and the dashed line
to a GSE-TW distribution, each of them being normalized to the sample mean and variance of the corresponding histogram, based on 104

realizations.
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APPENDIX C: TIME-DEPENDENT DISTRIBUTION
OF SLOPES �φ

While discussing the insets in the upper panels of Figs. 3
and 8 (see also Figs. 15 and 17 in Appendix E) various observ-
ables related to the time evolution of the distribution of the
slopes �φ were mentioned. Specifically, there we discussed
the evolution of the average squared slope 〈(�φ)2〉, as well as
the maximum squared local slope (defined as the square of the
greatest slope in the system, averaged over realizations) and
the most probable squared local slope (defined as the squared
local slope that has a higher probability in the distribution). A
more complete picture emerges by inspecting the distribution
of local slopes P(�φ) itself across time, which is what we
show in this Appendix. In fact we have already shown some
instances of P(�φ) in Fig. 11, but they correspond to single
snapshots of the slope distribution for long times. Moreover,
as they were used to restrict the range of parameters based on
the validity of the small-slope approximation, they included
values of δ that were finally not studied in Secs. IV and
V. Here we focus on δ ∈ [0, π/2) for the same values of
K chosen in the main text and in Appendix E (K ≈ 2Kc).
For δ ∈ (−π/2, 0), we obtain equivalent results due to the
symmetry discussed at the end of Sec. III A.

In Fig. 13 we show the PDF of the slopes P(�φ) for four
values of δ. Those are the values that were fully discussed in
the main text, namely δ = 0 [panel (a), which was considered
in Sec. IV] and δ = π/4 [panel (c), which was considered
in Sec. V], as well as two values, δ = π/8 [panel (b)] and
δ = 3π/8 [panel (d)], for which only the fluctuation PDF and
the covariances were studied in the main text (see Figs. 6
and 7, respectively, and the pertinent discussion in Sec. V),
while the scaling Ansatz and exponent values are addressed
in Appendix E. The PDF of the slopes P(�φ) is represented
as it evolves across time using the colors specified in the
color bars. Additionally, we include the observables that we
showed in the insets of the upper panels of Figs. 3 and 8
(and also Figs. 15 and 17 in Appendix E). In fact, as they
are dimensionally squared slopes, we take their square root to
make the comparison with P(�φ) possible. Thus, we show
the square root of the average squared slope (black dots), that
of the mean maximum squared local slope (red asterisks) and
that of the the most probable value of the squared slope (blue
crosses).

For δ = 0, panel (a), P(�φ) is unimodal, and the most
probable value is always close to �φ = 0. The distribution
simply spreads over a larger interval of �φ as time increases,
until it saturates. For the remaining values of δ, panels (b),
(c), and (d), the distribution starts being unimodal close to the
flat initial condition, but at some point it becomes bimodal,
and the most probable value becomes distinctly different from
zero. This seems to be something that Eq. (32) can explain, as
it shows that for a typical cluster of oscillators (or a cluster of
oscillators which is large enough) such that the average of the
involved intrinsic frequencies approaches zero, the absolute
values of the average instantaneous frequencies of the cluster
approach 2K sin δ(1 − cos �φ), where cos �φ is the spatial
average of cos �φ over the cluster. Therefore a faster cluster
requires larger slopes (smaller values of cos �φ), and when
the system starts being dominated by a few fast clusters (see

Fig. 10) there is a reshuffling of the slopes towards larger
(absolute) values. These three cases, δ = π/8, π/4, and 3π/8,
correspond to an effective description given by the KPZ equa-
tion with columnar noise, with faceted anomalous scaling and
KPZ fluctuations (see Sec. V and Appendix E), so their qual-
itative similarity is expected. The most conspicuous effect of
modifying δ( �= 0) is the following: As δ increases, the spread
of the distribution P(�φ) decreases and the saturation of the
largest values occurs earlier.

APPENDIX D: FLUCTUATION PDFS

In this Appendix we provide an alternative visualization
of the fluctuation PDFs included in Fig. 6. Specifically, in
Fig. 14 we show the histograms of the fluctuations defined
as in Eq. (16), but without normalizing them to zero mean
and unit variance. Panels in different columns correspond to
different values of δ (specifically, 0, π/8, π/4, and 3π/8), for
the same parameter values used in Fig. 6, with representations

FIG. 15. Roughness Wφ (t ) and height-difference correlation
function Gφ (�, t ) for the oscillator lattice, Eq. (18), with δ = π/8,
L = 1024, and K = 4. (Upper panel) Wφ (t ) as a function of time in
the synchronous regime, with error bars displaying the standard error
of the average across realizations. In the power-law visual guides
we have used α = 1.12 and z = 1.42. The inset shows the average
squared slope 〈(�φ)2〉 (black circles), as well as the average of
the maximum squared local slope (red asterisks), and the most prob-
able value of the local slope (blue crosses), as a function of time
for the same parameter values (see text for definitions). The black
dashed line shows the power-law growth of the average squared
slopes predicted by the theory, t2(α−αloc )/z for αloc = 0.95. (Lower
panel) G(�, t ) as a function of � in the synchronous regime for
different times (see legend). The dashed line shows the power-law
growth with the distance l2αloc . Inset: Rescaling of G(�, t ) following
the theoretical form in Eq. (15). Averages based on 2000 realizations.
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FIG. 16. Structure factor Sφ (k, t ) as a function of time for the
oscillator lattice, Eq. (18), with δ = π/8, L = 1024, and K = 4. (Up-
per panel) Sφ (k, t ) as a function of k. (Lower panel) k2α+1Sφ (k, t ) as
a function of y = kt1/z In all rescalings and power-law visual guides,
α = 1.12. αs = 1.40, z = 1.42, and αloc = 0.95. The structure factor
curves are shown for the same time points displayed in the lower
panel of Fig. 15. Averages based on 2000 realizations.

in linear (upper row) and logarithmic (lower row) scales.
The theoretical curves are adjusted to the sample mean and
variance of the histograms in each case. They correspond
to a Gaussian PDF and to the three different types of TW
PDF giving the distribution of the largest eigenvalue of ran-
dom Hermitian matrices [18,19,35,36], namely, the Gaussian
orthogonal ensemble (GOE), the Gaussian unitary ensemble
(GUE), and the Gaussian symplectic ensemble (GSE). The
numerical histograms for δ �= 0 follow quite closely the GOE-
TW PDF (already considered in the main text, and in Fig. 6)
across a wide range of values, more so than they do for any
of the other two TW PDFs, as shown by systematic effects
at the peak and in the tails of the distribution. This is in line
with many results in the kinetic-roughening literature showing
that 1D systems with periodic boundary conditions displaying
TW fluctuations are described by the GOE-TW PDF, see e.g.,
Refs. [18,19] and references therein. For δ = 0, however, the
fluctuation PDF is clearly Gaussian.

APPENDIX E: SCALING ANSATZ AND EXPONENTS
FOR OTHER VALUES OF δ

In the following we show results analogous to those
displayed in Sec. V for δ = π/4, but for other values of
δ ∈ (0, π/2). Specifically, we study the scaling of the syn-
chronization dynamics for δ = π/8 and 3π/8, which were
considered in the analysis of the fluctuations and the covari-

FIG. 17. Roughness Wφ (t ) and height-difference correlation
function Gφ (�, t ) for the oscillator lattice, Eq. (18), with δ = 3π/8,
L = 1024, and coupling strength K = 8. (Upper panel) Wφ (t ) as a
function of time in the synchronous regime, with error bars dis-
playing the standard error of the average across realizations. In the
power-law visual guides we have used α = 1.03 and z = 1.36. The
inset shows the average squared slope 〈(�φ)2〉 (black circles), as well
as the average of the maximum squared local slope (red asterisks),
and the most probable value of the local slope (blue crosses), as a
function of time for the same parameter values (see text for defi-
nitions). The black dashed line shows the power-law growth of the
average squared slopes predicted by the theory, t2(α−αloc )/z for αloc =
0.95. (Lower panel) G(�, t ) as a function of � in the synchronous
regime for different times (see legend). The dashed line shows the
power-law growth with the distance l2αloc . Inset: Rescaling of G(�, t )
following the theoretical form in Eq. (15). Averages based on 2000
realizations.

ances, see Figs. 6 and 7. As all the elements in the figures were
previously discussed for δ = π/4 in connection with Figs. 8
and 9 and the qualitative conclusions are the same, the de-
scriptions will be brief.

In Fig. 15 we show the roughness Wφ (t ) (upper panel) and
height-difference correlation function Gφ (�, t ) (lower panel)
for δ = π/8 in a system of L = 1024 oscillators. The criti-
cal coupling K = 4 is roughly twice as large as the critical
coupling strength obtained from the saturation of the width
as described at the end of Sec. III D and in Appendix B.
The exponents values are α = 1.12, αs = 1.40, z = 1.42, and
αloc = 0.95, with uncertainties again below 0.05 for the same
reasons discussed for δ = π/4 in the main text, which differs
slightly in the exponent values. The inset of the upper panel
shows again the mean, maximum, and most probable value of
the squared slopes averaged across realizations, and that of the
lower panel shows a rescaling of the two-point correlations
based on the theory of anomalous scaling, Eq. (15). All the
comments given for δ = π/4 apply in this case too.
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The structure factor Sφ (k, t ) also for δ = π/8 (with
the same parameter choices and exponents) is shown
in its original form (upper panel) and in rescaled form
(lower panel) in Fig. 16. As in the case of δ = π/4,
the scaling is anomalous of the faceted type discussed in
Ref. [53].

We next focus on analogous results for δ = 3π/8. In
Fig. 17 we show the roughness Wφ (t ) (upper panel) and
height-difference correlation function Gφ (�, t ) (lower panel)
in a system of L = 1024 oscillators. The critical coupling
K = 8 is again roughly twice as large as the critical cou-
pling strength obtained from the saturation of the width.
The exponents of choice are α = 1.03, αs = 1.40, z = 1.36,
and αloc = 0.95, with uncertainties again below 0.05, for the
same reasons discussed for δ = π/4 in the main text, with
slightly different exponents. The inset of the upper panel
shows again the mean, maximum, and most probable value
of the squared slopes averaged across realizations, and that of
the lower panel shows a rescaling of the two-point correlations
based on the theory of anomalous scaling, Eq. (15). All the
comments given for δ = π/4 apply in this case too. The
most remarkable difference is perhaps the abruptness in the
change of the most probable value of the squared slope (upper
panel inset, blue stars), which was also shown in Fig. 13 in
Appendix C.

The structure factor Sφ (k, t ) for δ = 3π/8 (with the same
parameter choices and exponents) is shown in its origi-
nal form (upper panel) and in rescaled form (lower panel)
in Fig. 18. As in the cases of δ = π/8 and δ = π/4,
the scaling is anomalous of the faceted type discussed in
Ref. [53].

FIG. 18. Structure factor Sφ (k, t ) as a function of time for the
oscillator lattice, Eq. (18), with δ = 3π/8, L = 1024, and K = 8.
(Upper panel) Sφ (k, t ) as a function of k. (Lower panel) k2α+1Sφ (k, t )
as a function of y = kt1/z In all rescalings and power-law visual
guides, α = 1.03, αs = 1.40, z = 1.36, and αloc = 0.95. The struc-
ture factor curves are shown for the same time points displayed in
the lower panel of Fig. 17. Averages based on 2000 realizations.
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