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Topological transitions with an imaginary Aubry-André-Harper potential
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We study one-dimensional lattices with imaginary-valued Aubry-André-Harper (AAH) potentials. Such
lattices can host edge states with purely imaginary eigenenergies, which differ from the edge states of the
Hermitian AAH model and are stabilized by a non-Hermitian particle-hole symmetry. The edge states arise
when the period of the imaginary potential is a multiple of four lattice constants. They are topological in origin,
and can manifest on domain walls between lattices with different modulation periods and phases, as predicted
by a bulk polarization invariant. Interestingly, the edge states persist and remain localized even if the gap in the
real spectrum closes. These features can be used in laser arrays to select topological lasing modes under spatially
extended pumping.
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I. INTRODUCTION

The Aubry-André-Harper (AAH) model is a foundational
theoretical model that illustrates the deep connections be-
tween quasicrystals, localization, and band topology [1–3]. It
consists of a one-dimensional (1D) periodic discrete lattice,
on which is applied a sinusoidal potential with a mismatched
period. Varying the potential’s period and phase produces an
assortment of spectral gaps, which map to the band gaps
of a two-dimensional (2D) quantum Hall lattice [3–6]. The
boundary states in certain gaps of the 1D AAH model like-
wise map to topological edge states of the 2D lattice, which
are linked to bulk topological invariants (Chern numbers).
These interesting features have inspired numerous investi-
gations into variants of the AAH model. For example, an
AAH-type model with commensurate hopping modulations
was found to have a separate class of topological boundary
states [7]: zero modes whose energies are pinned to zero by
particle-hole symmetry [8] and are linked to the topological
properties of the Majorana chain [9].

Over the past decade, there has been increasing interest in
non-Hermitian extensions of the AAH model [10–19], as part
of a broader program to explore the properties and uses of
non-Hermitian systems [20–22]. These models have included
AAH-type lattices with parity/time-reversal (PT) symmetric
gain/loss [10–13,17], and lattices with asymmetric hoppings
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violating both Hermiticity and reciprocity [14,18,19]. For
example, PT-symmetric AAH models have been found to
exhibit fractal spectra, similar to the Hermitian AAH model,
in the real part of their eigenenergies [11]. Their PT symme-
try breaking transition points also have interesting properties
[12,13,17], such as governing the formation of boundary
states [12] and mobility edges [17].

The boundary states in these non-Hermitian AAH models
are directly related to the boundary states of the original AAH
model. Similar persistence of topological boundary states into
the non-Hermitian regime has been observed in other models;
for example, in PT-symmetric Su-Schrieffer-Heeger (SSH)
models [23–27], topological zero modes can be stabilized
by particle-hole symmetry (as in the original Hermitian SSH
model) or a non-Hermitian particle-hole symmetry [28,29].
Very recently, researchers have also found lattice models that
host intrinsically non-Hermitian boundary states with no di-
rect link to the Hermitian case [30–32]. For instance, Takata
and Notomi discovered a periodic 1D lattice, with four atoms
per unit cell, that hosts zero modes induced purely by gain and
loss [32]. In view of these advances, it is worthwhile to ex-
amine zero modes in non-Hermitian AAH models. Can such
modes be induced by gain/loss? What topological properties
govern them, and how are they influenced by the AAH-style
potential?

Here, we investigate a non-Hermitian AAH model with
imaginary commensurate potentials. We find that when the
modulation has period λ = p/q, where p and q are coprime
integers and p is a multiple of 4, there arise topological
boundary states whose energies have zero real part, which we
refer to as “zero modes.” The case of λ = 4 corresponds to the
Takata-Notomi lattice [32]. The zero modes are stabilized by a
non-Hermitian particle-hole symmetry [28,29], and are linked
to a non-Hermitian topological invariant based on the electric
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FIG. 1. (a) Schematic of a one-dimensional lattice with imaginary modulation. The model consists of a discrete chain with uniform nearest-
neighbor hopping t (top panel), with imaginary on-site mass iVn varying sinusoidally in space, with wave number 2πα. The bottom panels plot
Vn versus site index n for α = 1/4, 3/8, and 5/12 (black bars), along with the modulation profile (light gray curves). (b) Plot of the complex
eigenenergies E versus modulation phase δ, for a finite lattice of size N = 200 with open boundary conditions. The model parameters are
V = 1.4 and α = 3/8, corresponding to the white dashes in (e). The zero modes are plotted in red. (c)–(d) Wave function magnitude |ψn|
versus site index n for the zero modes at (c) δ = 0.4π and (d) δ = 1.8π , respectively indicated by the green and pink dots in (b). Lower panels
are semilogarithmic plots for the sites nearest to one lattice boundary, showing that the zero modes are exponentially localized at the boundary.
(e) Phase diagrams for different α, with orange (blue) regions indicating gaps at Re(E ) = 0 that are topologically nontrivial (trivial) according
to the polarization and global Berry phase invariants calculated from the bulk band structure (see Appendix B). In the black regions, the real
part of the bulk spectrum is gapless at Re(E ) = 0.

polarization [33–36], which depends on the modulation pa-
rameters. We derive the topological phase diagrams, and show
that they predict the existence of zero modes at domain walls
between different modulation functions (including those with
different periods). Interestingly, the zero modes can survive
and retain their localized character even if the gap in the real
spectrum closes.

As the zero modes are governed by an imaginary sinu-
soidal potential, it may be possible to use them for mode
selection in laser arrays. In existing implementations and pro-
posals for topological lasers [26,27,37–46], including those
based on the 1D SSH lattice [37,38,43] or its PT-symmetric
variant [26,27], it is typically necessary to selectively pump
the spatial regions where the desired topological modes are
localized [26,27,37–45]. This induces the topological modes,
rather than the numerous other nontopological modes, to lase.
Using our non-Hermitian AAH model and its zero modes,
a topological lasing mode can be selected via a spatially
extended pump, such as the interference pattern formed by
two optical pumping beams. The topological lasing mode can
even be enabled or disabled by tuning the phase and period of
the pumping pattern.

II. MODEL

We consider a one-dimensional chain with coupling t
between nearest neighbors and a purely imaginary on-site

potential described by a sinusoidal modulation, as depicted
in Fig. 1(a). The Schrödinger equation is

t (ψn+1 + ψn−1) + iVnψn = Eψn,

Vn = V sin(2παn + δ), (1)

where ψn is the wave function at site n, E is the eigenenergy,
and V , α, and δ are the amplitude, inverse period, and phase
of the potential modulation function. We will set the unit of
energy so that t = 1. We consider rational values of α = q/p,
where p and q are coprime positive integers; hence, the mod-
ulation function is commensurate with the underlying lattice,
and the model is periodic with p sites per unit cell [3].

If p is even, the bulk Hamiltonian Ĥk (a p × p matrix)
satisfies the non-Hermitian particle-hole symmetry [29]

−Ĥk = ĈT̂ Ĥ∗
−kT̂ Ĉ = ĈT̂ Ĥ†

k T̂ Ĉ, (2)

where Ĉ = Ip/2 ⊗ σz, with Ip/2 denoting the p/2 × p/2 iden-
tity matrix and σz denoting the third Pauli matrix, and T̂ is the
complex conjugation (time-reversal) operator. Equation (2)
implies that the bulk eigenstates either occur in pairs with
energies {E1, E2} satisfying Ê1(k) = −Ê∗

2 (k), or form a flat
band with purely imaginary energy [29]. Moreover, for a finite
lattice with N sites (with N even), the Hamiltonian Ĥ obeys
the non-Hermitian particle-hole symmetry

{Ĥ , ĈT̂ } = 0, (3)

where Ĉ = IN/2 ⊗ σz.
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We will focus on the case of p = 4N, where N ∈ Z+. In
this case, the bulk band structure can host a real line gap,
meaning a gap in the real part of the spectrum [21,47], around
Re(E ) = 0. Such a gap does not appear for other choices of α

(see Appendix A). As an example, Fig. 1(b) plots the complex
spectrum for α = 3/8, using a lattice of N = 200 sites with
open boundary conditions (OBC). In the bulk spectrum, calcu-
lated using periodic boundary conditions (PBC) with the same
lattice parameters, the real line gap closes at mπ/4, where
m ∈ Z. In Fig. 1(b), it appears that the gap does not fully
close at certain of these points (e.g., at δ = π/2), but this is
a finite-size effect; for larger N , the OBC spectrum has gap
closings at the same points as the PBC spectrum (for details,
see Appendix C).

Within half of the gaps, the lattice with OBC exhibits
eigenenergies with Re(E ) = 0, plotted as red curves in
Fig. 1(b). The wave functions of these “zero modes” are
exponentially localized to the lattice boundary, as shown
in Figs. 1(c) and 1(d). The zero modes preserve the non-
Hermitian particle-hole symmetry: each eigenvector |ψ〉
obeys |ψ〉 = eiθĈT̂ |ψ〉, where θ is some global phase factor
[28]. Note also that the zero modes need not have Im(E ) = 0;
in fact, we see from the lower panel of Fig. 1(b) that they
can have larger Im(E ) than the bulk states. We will explore
the possibility of using this feature for lasing in Sec. IV. In
Appendix E, we show that the “zero modes” are robust to the
disorders preserving particle-hole symmetry.

In Fig. 1(b), we can also see some in-gap states in the other
band gaps, away from Re(E ) = 0. These are similar to the
topological boundary states of the original AAH model [3–6],
and are not the focus of the present work.

Takata and Notomi [32] have studied the case of p = 4,
q = 1, which corresponds to the repeating gain/loss sequence
{g1,−g2,−g1, g2}. In particular, they noted the existence of
zero modes induced by the imaginary potential. The present
work extends these results to a wider range of gain/loss mod-
ulations based on non-Hermitian AAH models.

III. TOPOLOGICAL PHASES

The zero modes introduced in the previous section are
linked to topological features of the non-Hermitian band
structure. These are expressible using the non-Hermitian
Berry connection, calculated via a biorthogonal product in-
stead of the Hermitian inner product [48–50].

The non-Hermitian band topology can be characterized in
two complementary ways (see Appendix B). The first ap-
proach involves the non-Hermitian generalization [33–36] of
the electric polarization [51,52]. When there is a real line
gap, we can calculate the non-Abelian, non-Hermitian Berry
connection for all bands with Re(E ) < 0, and use the nested
Wilson loop method [53–55] to integrate it around the Bril-
louin zone. This procedure has previously been shown to yield
quantized polarizations in other non-Hermitian systems with
real line gaps, e.g., non-Hermitian higher-order topological
insulators [33]. The second approach to characterizing the
band topology is the global Berry phase [26,32,49], which
involves integrating the non-Hermitian Berry connections for
all bands (with care taken to fix the gauge and sort the bands

[56,57]; see Appendix B). Both methods are based on the bulk
band structure, derived under PBC.

When there is a real line gap at Re(E ) = 0, the polarization
and global Berry phase calculations are in agreement, and
yield the topological phase diagrams shown in Fig. 1(e). These
phase diagrams are plotted using the modulation parameters
(V, δ) as polar coordinates, for various α = q/p with p, q
coprime and p a multiple of 4. In the orange regions, the band
structure gives quantized polarization px = 1/2 and a global
Berry phase of 2π . In the blue regions, the polarization and
global Berry phase vanish. In the black regions, there is no real
line gap at Re(E ) = 0 and the polarization calculation is inap-
plicable; we will discuss the lattice’s behavior in this regime
later in this section. Evidently, the real line gap phases form
p spokes in the phase diagram, extending outward from the
origin V = 0, and alternating between trivial and nontrivial
phases. The phase diagrams for other α = q/p are consistent
with the pattern shown in Fig. 1(e).

To test whether the phase diagrams correctly predict the
existence of zero modes, we examine the behavior at domain
walls between different modulation functions [24,32,38,58–
60]. The lattice shown in Fig. 2(a) consists of two adjacent
domains with different gain/loss distributions. The two mod-
ulation functions have different α (3/8 and 1/4), as well as
different δ, as indicated by the phase diagrams in the lower
panels of Fig. 2(a). With the two domains chosen to be
topologically inequivalent, we see that the complex spectrum,
plotted Fig. 2(b), contains a zero mode (highlighted in green).
Its wave function is exponentially localized to the domain
wall, as shown in Fig. 2(c). [Note that this zero mode has the
largest Im(E ) among all the eigenstates; we will discuss the
significance of this in Sec. IV. The other zero mode that can be
seen in Fig. 2(b) is localized to the opposite end of the topo-
logically nontrivial domain, rather than the domain wall.] In
Appendix D, we show other combinations of modulation pa-
rameters, which all behave as expected. In particular, if the do-
mains are both trivial or both nontrivial, there is no zero mode
at the domain wall. This verifies that the zero modes arise from
a non-Hermitian topological bulk-edge correspondence.

An interesting feature of the non-Hermitian zero modes
is that they can persist for a short but nonzero interval after
the closing of the real line gap in bulk spectrum, pinned to
Re(E ) = 0. This contrasts with the Hermitian case, where
the closing of the band gap causes zero modes and other
localized boundary states to hybridize with bulk states and
lose their localized character. In Fig. 3(a), we plot parametric
trajectories in the α = 3/8 phase diagram, extending into the
gapless (i.e., no real line gap in bulk spectrum) phases to
each side of the gapped phase. The complex band energies
along these trajectories are plotted in Figs. 3(b) and 3(c).
When the real line gap in the bulk spectrum closes, the
complex-valued zero-mode energies and bulk energy bands
(specifically, their imaginary parts) do not overlap. Hence, the
zero modes remain spatially localized, as shown in Figs. 3(d)
and 3(e). In Appendix C, we show that zero modes vanish
by coalescing with each other at exceptional points [20,22],
rather than hybridizing with bulk states; moreover, within the
gapless phase, they are robust against disorder that preserves
particle-hole symmetry (see Appendix E). Related behavior
has recently been pointed out in the context of topological

023044-3



ZHU, LANG, WANG, WANG, AND CHONG PHYSICAL REVIEW RESEARCH 5, 023044 (2023)

18

2

0

-2

-2 0 2

2

0

-2

-2 0 2

0

1

-1

20 22 24 26 28 30

5000

0

0.5

-0.5

-1

1

2-2 10

100

10-2

10-4

20 30 40

32

FIG. 2. (a) Lattice formed by joining two chains with different
gain/loss modulations. In the upper panel, the left (right) domain,
marked in orange (blue), is topologically nontrivial (trivial). In the
middle panel, the black bars indicate Vn, the gain/loss on site n, and
the solid curves plot the modulation functions, which notably have
different periods in the two domains. For the left domain, α = 3/8,
V = 1.5, and δ = 0.4π ; for the right domain, α = 1/4, V = 1.5,
and δ = −0.4π . In the lower panels, the phase diagrams for the
two domains are shown, with the choice of modulation parameters
marked by yellow stars. (b) Complex eigenenergy spectrum for the
lattice, with a total of N = 48 sites (24 in each domain). The mirror
symmetry around Re(E ) = 0 is due to the non-Hermitian particle-
hole symmetry in Eq. (2). (c) Spatial distribution of the zero mode
highlighted in green in (b). Vertical dashes indicate the domain wall.

crystalline insulators, where higher-order topological modes
can persist despite having Re(E ) degenerate with the bulk
bands [61,62].

IV. MODE SELECTION IN LASER ARRAYS

The non-Hermitian AAH model can be used as the basis for
a topological laser distinct from the other topological lasers
studied to date [26,27,37–45,56]. It has previously been noted
that lasers are a natural setting for realizing and exploiting
non-Hermitian topological phenomena, since they necessar-
ily contain gain (stimulated emission) and loss (outcoupling
and material dissipation). Thus, for instance, researchers have
implemented laser arrays based on the PT-symmetric SSH
model, with lasing modes based on the non-Hermitian zero
modes of that model [26,27].

In this context, the non-Hermitian AAH model’s most
striking feature is that its properties are governed directly by
the gain/loss modulation function, whose period differs from
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FIG. 3. (a) Close-up view of the phase diagram for α = 3/8.
Dashes indicate a trajectory corresponding to V sin δ = 2. (b)–
(c) Complex eigenenergy spectrum corresponding to the dashes in
(a), for lattice size N = 200. The ranges corresponding to the non-
trivial real line gap phase of bulk spectrum are highlighted in orange.
The topological zero modes, plotted in red, persist even when the real
line gap in bulk spectrum closes, and remain exponentially localized
to the boundary. (d)–(e) Spatial distribution of the zero modes at
V cos δ = 0.4, marked by squares in (b)–(c).

(and can be significantly larger than) that of the photonic
lattice. One interesting possibility is to excite the lattice using
a sinusoidally varying pump profile, such as an interference
pattern of two optical pumping beams. The period and phase
of the pump profile could be easily varied to access different
parts of the non-Hermitian AAH model’s phase diagram.

To investigate this, we consider a laser model consisting
of a non-Hermitian AAH chain with a nonlinear imaginary
potential iVn, where

Vn = 	λn

1 + |ψn|2 − γ . (4)

Here, 	 is an overall pump strength, λn ∈ [0, 1] is the nor-
malized sinusoidal modulation, |ψn|2 is the local intensity
on site n, and γ is a passive loss rate (which can include
outcoupling loss). The 1 + |ψn|2 denominator represents the
effects of gain saturation [28,39]. Taking α = 3/8, δ = 0.4π ,
and γ = 3, we performed time-domain simulations by numer-
ically integrating the nonlinear equation i∂t |ψ〉 = H (|ψ〉)|ψ〉
[28,39,63]. The wave function is initialized to the random
values ψn(t = 0) = (αn + iβn) f0, where αn, βn are drawn
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FIG. 4. (a)–(b) Simulation results for a laser with a spatially
modulated pump strength, given by Eq. (4). The lattice consists of
a single domain with α = 3/8, δ = 0.4π , and size N = 48, with pas-
sive loss rate γ = 3. (a) Output intensity Iout versus pump strength 	.
Inset: Spatial distribution of |ψn|2 at t = 5000 for 	 = 3.6 (top) and
	 = 4 (bottom). (b) Output spectrum for 	 = 3.6 (orange line) and
	 = 4 (blue dashes). (c)–(e) Simulation results for a laser with spa-
tially modulated loss and uniform pump strength, given by Eq. (5),
with lattice size N = 48. (c) Spatial distribution of the loss term
γn − γ (black bars), along with the underlying modulation functions.
These modulation functions form a domain wall in the center of
the lattice, and are identical to those of Fig. 2 up to a constant
offset. (d) Output intensity Iout versus pump strength 	. Inset: Spatial
distribution of |ψn|2 at t = 5000 for pump strengths 	 = 0.6 (top)
and 	 = 0.8 (bottom). (d) Output spectrum at 	 = 0.6 (orange line)
and 	 = 0.8 (blue dashes).

independently from the standard normal distribution, n is the
site index, and f0 = 0.01 is a scale factor. The simulated time
interval is t ∈ [0, 5000], long enough for transient oscillations
to cease. The laser output Iout is obtained by averaging the
on-site intensities |ψn|2 over the evolution interval of t ∈
[2000, 5000] (we assume equal outcoupling from each site,
with normalized power units).

The resulting plot of Iout versus pump strength 	 is shown
in Fig. 4(a). Because the zero mode of the linear lattice has
(in this case) the highest relative gain, it lases first. As shown
in the inset of Fig. 4(a), the frequency spectrum at 	 = 3.6
consists of a single peak at ω = 0. (Note that in an actual laser,
ω is a frequency detuning, relative to the natural frequency
of the decoupled resonators.) The intensity is localized to
one boundary of the lattice, as shown in the upper panel
of the inset in Fig. 4(a). These two features of the lasing

mode—the pinning of the frequency to ω = 0 and the spa-
tial localization—are inherited from the linear non-Hermitian
AAH model, and are selected by the choice of the pump’s
spatial modulation λn, which can be easily adjusted (e.g., by
changing the interference pattern of an optical pump). When
	 is further increased, the additional modes of the lattice
also start to lase (see Appendix F), and the system enters the
multimode lasing regime, as shown for the case of 	 = 4 in
Fig. 4(b) and the bottom panel of the inset in Fig. 4(a).

An alternative way to access the non-Hermitian AAH
model with a laser array is to use loss engineering. We can
modulate the (linear) loss on individual sites, and then pump
the entire lattice, as described by the imaginary potential iVn,
where

Vn = 	

1 + |ψn|2 + γn − γ . (5)

For this case, we suppose γn − γ is formed by two modu-
lation functions with a domain wall at the center, as shown
in Fig. 4(c). Within each domain, γn = V sin(2παn + δ), and
we pick the same values of V , α, and δ as in Fig. 2. We
also include an additional constant loss γ = Im(E0) + 0.5,
where E0 is the eigenenergy of the desired zero mode [square
marker in Fig. 2(b)]. As shown in Fig. 4(d), this sets the
laser threshold to 	 = 0.5. For some range of pump strengths
above threshold, the lasing frequency is pinned to ω = 0 and
localized at the domain wall, as shown in Fig. 4(e) and the
upper panel of Fig. 4(d) for pump strength 	 = 0.6. Mul-
timode lasing is observed at higher pump strengths (e.g.,
	 = 0.8). Although the spatial modulation in the lattice recalls
the conventional distributed-feedback (DFB) laser, the basic
mechanism is quite different, as the spatial modulation in DFB
lasers only provides reflection (optical feedback), while the
imaginary AAH-style potential alters the topology properties
and gives rise to topologically protected edge modes. The
laser design proposed here also differs from previous 1D topo-
logical lasers [26,27], which were based on the SSH model
and its non-Hermitian variants. In particular, the topological
modes of the SSH lasers are inherited from the Hermitian SSH
model, whereas the present topological phases are generated
from non-Hermitian gain/loss modulations.

V. DISCUSSION

We have demonstrated that a non-Hermitian variant of the
AAH model, consisting of a sinusoidally modulated poten-
tial that is not real but rather purely imaginary, can exhibit
topological boundary modes with purely imaginary energy.
These zero modes are found when the modulation period is a
multiple of four lattice constants, and are pinned to Re(E ) = 0
by an unbroken non-Hermitian particle-hole symmetry [28].
Our results generalize the period-four lattice found by Takata
and Notomi [32] to a wider family of AAH-type imagi-
nary potentials. The complex band structure has two distinct
phases with real line gaps at Re(E ) = 0, characterized by
non-Hermitian topological invariants. The invariants correctly
predict the existence of zero modes, even for domain walls
between modulations with different periods.

Previously, Hermitian zero modes have been observed in a
variant of AAH model that has commensurate modulations in
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the hoppings (rather than the on-site potential) [7]. However,
that model was based on a Hermitian particle-hole symmetry
different from Eq. (2), and we have not found any deeper
relationship between these sets of results.

In the non-Hermitian AAH model, it is possible to tune
the imaginary potential so that the zero modes can have the
highest relative gain of all the eigenstates. This property can
be exploited for mode selection in laser arrays, as we showed
using simulations. One interesting possibility is to use optical
pumping beams in an interference pattern (corresponding to
spatially modulated gain) to control the lasing of the zero
modes; alternatively, one can modulate the loss in the laser ar-
ray and pump uniformly. In both cases, our simulations results
show that a non-Hermitian zero mode can be the first lasing
mode, and retain its key characteristics (frequency pinning
and spatial localization) from the lasing threshold up to the
onset of multimode lasing.
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APPENDIX A: BULK BAND STRUCTURES FOR
α = 1/6 AND LINE GAP WIDTH

In this section, we discuss the band structure for α =
q/p = 1/6. This is representative of the behavior for other
p values that are even but not a multiple of 4 (i.e., p =
2, 6, 10, . . . ). The bulk Hamiltonian is

Hk =

⎡
⎢⎣ iV1 t te−ikx

. . .

teikx t iVn

⎤
⎥⎦, (A1)

where n = 1, 2, . . . , 6 is the site index within the unit cell, and
the Vn is the value of the modulation function V sin(2παn +
δ) on site n.

The complex eigenenergy spectrum {Emk} (where m is the
band index) consists of the eigenvalues of Hk for k ∈ [−π, π ].
Figure 5(a) plots Re(Emk ) versus k and the modulation ampli-
tude V , while Fig. 5(b) plots the band structures for V = 0.

In the absence of the imaginary modulation (V = 0), there
are six cosinusoidal bands with degeneracies at k = 0, π , with
one of the k = π degeneracies occurring at E = 0, as shown
in Fig. 5(b). For V �= 0, the real band gap around Re(E ) = 0
remains closed, and instead an imaginary band gap appears
around Im(E ) = 0, as shown in Fig. 5(c).

We have also investigated the width of the real line gap for
different p and q. Figure 6 plots the gap widths against V cos δ

and V sin δ, for lattices with periodic boundary conditions
(PBC) and α = {1/4, 1/8, 3/8, 1/12}. Smaller values of p
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FIG. 5. (a) Evolution of the real bulk band structure with Bloch
wave number k and modulation amplitude V , for α = 1/6. (b) Bulk
band structure for V = 0. (c) Complex bulk band energies at k = π

versus V , with the solid black and dashed red lines denoting the real
and imaginary parts.

produce a wider band gap, which tends to make the zero mode
more robust against disorder (see Appendix E).

APPENDIX B: TOPOLOGICAL INVARIANTS

The calculation of the non-Hermitian polarization px fol-
lows previous analyses of non-Hermitian topological lattices
[33,36,50]. First, we define a generalized complex-valued
Berry connection,

[Ak]mn = i

〈
uL

m,k

∣∣∂kuR
n,k

〉
〈
uL

m,k

∣∣uR
m,k

〉〈
uL

n,k

∣∣uR
n,k

〉 , (B1)

where m, n are band indices and L/R denote left/right eigen-
vectors. This definition is based on the fact that although the
eigenvectors of a non-Hermitian Hamiltonian are not orthogo-
nal, they obey a biorthogonality relation 〈uL

m(k)|uR
n (k)〉 = δmn.

We also use a “nested” Wilson loop operator, defined using a
base point k that progresses across the Brillouin zone until it
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FIG. 6. Heat map of the width of the real line gap with model
parameters, calculated using PBC with different modulation frequen-
cies: (a) α = 1/4, (b) α = 1/8, (c) α = 3/8, and (d) α = 1/12.
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reaches k + 2π [33,36]:

Wk+2π←k = Gk+2π−�k · Gk+2π−2�k . . . Gk+�k · Gk, (B2)

where Gk is a rank p/2 matrix whose elements are

[Gk]mn = 〈
uL

m(k)
∣∣uR

n (k + �k)
〉
. (B3)

For a large lattice with a real line gap at Re(E ) = 0, the
electric polarization is related to the Wilson loop by [36,55]

px= i

2π
ln det

[∫ k+2π

k
Ak dk

]
= i

2π
ln (det[Wk+2π←k]),

(B4)

where the band indices of the A matrix only run over (say) the
lower bands, i.e., those with Re(E ) < 0.

This procedure has previously been used to topologically
characterize other non-Hermitian lattice models [36]. In the
present work, we apply it to non-Hermitian AAH models with
real line gaps at Re(E ) = 0. We find that either |px| = 1/2
(which we call the topologically nontrivial phase), or px = 0
(the topologically trivial phase). These results, obtained from
the bulk (PBC) model, are found to match the presence or
absence of topological edge modes in the finite (OBC) lattices.

Definition of global Berry phase. Suppose we have a
non-Hermitian band indexed by n, whose right and left eigen-
vectors are denoted by |ψ (n, k)〉 and |λ(n, k)〉, where k is the
Bloch wave number. The Berry phase over a k-space contour
C can be defined as [49]

φn = i
∮

C
〈λ(n, k)|∂k|ψ (n, k)〉 dk. (B5)

Liang and Huang [49] devised a “global Berry phase” that
consists of the sum of the Berry phases for all bands,

φG =
∑

n

φn. (B6)

In exemplary non-Hermitian lattice models, such as a
bipartite dissipative model [49] and a non-Hermitian Su-
Schrieffer-Heeger (SSH) model [26], it has been found that
discontinuities in φG, for a given gauge, coincide with topo-
logical phase transitions. However, it should be noted that
gauge transformations cause φG to change by multiples of 2π ,
so the actual value of φG is not used to identify specific phases.

APPENDIX C: CLOSING OF THE REAL LINE GAP

In this section, we discuss the closing of the real line gap
in the finite-size (OBC) lattice. In Fig. 1(b) of the main text,
the bulk modes’ real line gap appears not to fully close at
certain points (e.g., near δ = π/2); the spectrum is replotted
in Fig. 7(a) for ease of reference. However, this can be shown
to be a finite-size effect. Figure 7(b) presents a zoomed-in
view of the spectrum near δ = π/2. Figure 7(c) shows the
spectrum for a much larger lattice size, N = 2000. In both
Figs. 7(b) and 7(c), the gray-shaded regions indicate the range
of eigenenergies for the infinite lattice, under PBC with phase
shift swept through k ∈ [0, 2π ). Evidently, as N becomes
large, the OBC spectrum approaches the PBC spectrum, and
the bulk gap closes at δ = π/2 as claimed. We find a similar
situation for δ = 3π/4, δ = 3π/2, δ = 7π/4, etc.

0.45 0.5 0.55
-0.5

0

0.5

0 0.5 1 1.5 2
-1

-0.5

0

0.5

1

0.45 0.5 0.55
-0.5

0

0.5

FIG. 7. (a) Real part of the bulk eigenenergies near δ = π/2, for
a finite lattice of size N = 200 with OBC. (b) Zoomed-in plot of the
bulk band structure for a finite lattice of size N = 2000 with OBC.
In (b)–(c), the gray-shaded regions indicate the eigenenergies under
PBC, with k ∈ [0, 2π ). All other model parameters are the same as
in Fig. 1(b) of the main text.

It can be seen in Figs. 7(b) and 7(c) that the zero modes
persist to the right of the bulk gap closing at δ = π/2. This
is the persistence discussed in the last paragraph of Sec. III
(and Fig. 3) in the main text. Unlike zero modes of Hermitian
models, the zero modes of the non-Hermitian AAH model do
not hybridize with the bulk states when the gap closes. Instead,
two zero modes approach along the imaginary energy axis,
and annihilate at an exceptional point (EP).

In Figs. 8(a) and 8(d), we plot Im(E ) versus δ for the
zero modes, close to the EP, for two different values of V .
Figures 8(b) and 8(e) show the complex eigenenergy plots
just before the EP, with the zero modes close to each other
on the imaginary axis. Figures 8(c) and 8(f) show the spatial
distributions of the zero modes; they are localized on the same
boundary, consistent with the fact that they will eventually
coalesce to the same eigenstate at the EP.

The boundary states that extend into the trivial phase can
be shown to be “nonuniversal,” in the sense that they are
affected by disturbances to the boundaries. Figure 9(a) plots
the real part of the complex eigenenergies for a finite lattice
of length N = 198 (rather than N = 200 in the main text; this

FIG. 8. (a) Plot of Im(E ) versus δ for the boundary modes, in
the vicinity of the bulk gap-closing point δ = 0.5π . The modulation
amplitude is V = 1.2. (b) Distribution of eigenenergies in the com-
plex plane for a lattice of size N = 2000 with OBC, for the value
of δ marked by an arrow in (a). The blue star and red hollow circle
denote two zero modes whose energies lie along the imaginary axis.
(c) Spatial distribution of the two eigenmodes marked in (b). (d)–(f)
Similar to (a)–(c), but for V = 1.4.
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FIG. 9. Plot of the complex eigenenergies E versus modulation
phase δ, for a finite lattice of size N = 198 with open boundary con-
ditions. The model parameters are V = 1.4 and α = 3/8 in (a) and
V = 1.9 and α = 1/4 in (b). The zero modes are plotted in red.

involves truncating a unit cell at the boundary). This shifts the
range over which the zero modes exist in the trivial phase.
However, they still exist throughout the nontrivial phase. The
persistence of edge modes is not exclusive for α = 3/8, and
can be also observed with other modulation period, e.g., the
case with α = 1/4 in the paper by Takata and Natomi [32].
The complex eigenenergies of a finite lattice with α = 1/4 and
V = 1.9 are plotted in Fig. 9(b), while all the other parameters
are the same as Fig. 9(a). In the figure, similar effects are also
observed.

APPENDIX D: DIFFERENT DOMAIN
WALL CONFIGURATIONS

In Fig. 10, we consider several domain wall configurations
different from the one shown in Fig. 2 of the main text. Apart
from the choices of modulation phase δ in each domain, all
the other lattice parameters are the same as in Fig. 2 of the
main text.

In the first case, both domains are topologically trivial, with
parameters given by yellow stars in the phase diagrams of
Fig. 10(a). We find that the complex spectrum of the OBC
lattice lacks any eigenenergies at Re(E ) = 0, as shown in
Fig. 10(b). In the second case, corresponding to the green stars
in Fig. 10(a), both domains are topologically nontrivial. Here,
we do observe zero modes, but they are not localized at the
domain wall. For example, for the zero mode indicated by a
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FIG. 10. (a) Schematic of a lattice with two domains of different modulation functions. The bottom panel shows the phase diagrams for the
two domains, with different colored stars corresponding to the following panels. All other parameters are the same in Fig. 2 of the main text.
(b) Complex spectrum for a trivial-trivial configuration [yellow stars in (a)]. (c) Complex spectrum for a nontrivial-nontrivial configuration
[green stars in (a)]. (d) Spatial distribution of the zero mode indicated by the square marker in (c). (e) Complex spectrum for a nontrivial-trivial
configuration [pink stars in (a)]. (f) Spatial distribution of the zero mode indicated by the square marker in (e).
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FIG. 11. Real and imaginary parts of the spectrum versus dis-
order strength D. The green squares are the eigenenergies closest
to Re(E ) = 0, and the gray regions are the other eigenenergies. All
eigenenergies are averaged over 100 disorder realizations for each D.
Three types of disorder are studied: (a)–(b) purely real and reciprocal
disorder in the nearest-neighbor hoppings; (c)–(d) purely imaginary
on-site disorder; and (e)–(f) purely real on-site disorder. In each case,
D times a normally distributed random number is added to each
specified term in the Hamiltonian. All other model parameters are
the same as in Fig. 1(b) of the main text.

square marker in Fig. 10(b), the spatial distribution is plotted
in Fig. 10(c). The wave function is localized on an external
boundary, rather than the domain wall. The other zero mode
behaves similarly. In the final case, corresponding to the pink
stars in Fig. 10(a), the left domain is topologically trivial and
the right domain is topologically nontrivial (the opposite of
what we considered in Fig. 2 of the main text). As shown in
Fig. 10(e), there are zero modes in the complex spectrum. The
spatial distribution of the mode indicated by a square marker is
plotted in Fig. 10(f), revealing that the mode is exponentially
localized to the domain wall.

APPENDIX E: ROBUSTNESS ANALYSIS
AGAINST PERTURBATIONS

In this section, we study the robustness of the edge modes
against three types of disorder:
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FIG. 12. Real [(a), (d), (g)] and imaginary [(b), (e), (h)] eigenen-
ergies versus disorder strength D, in the absence of a real line gap.
The edge modes (green squares) and the other modes in the complex
band structure (gray areas) are plotted separately. The inverse partic-
ipation ratio, a measure of localization [64], is also plotted in (c), (f),
(i). The three rows, (a)–(c), (d)–(f), and (g)–(i), correspond to type
(i), (ii), and (iii) disorder as described in the text. These results were
obtained for V cos δ = 0.48, with all other parameters the same as in
Figs. 3(b) and 3(c) of the main text.

(1) Disorder in the nearest-neighbor hoppings (real-
valued, reciprocity-preserving disorder in the off-diagonal
terms of the Hamiltonian).

(2) Disorder in the on-site gain/loss (the imaginary part of
the diagonal terms of the Hamiltonian).

(3) Disorder in the on-site mass (the real part of the diag-
onal terms of the Hamiltonian).

Note that cases (i) and (ii) preserve the non-Hermitian
particle-hole symmetry discussed in the paper, whereas case
(iii) breaks this symmetry. In all cases, the disorder is im-
plemented using random numbers drawn independently from
a normal distribution, multiplied by a factor D that repre-
sents the disorder strength. The eigenvalues of the perturbed
Hamiltonian are then numerically obtained. The procedure
is repeated 100 times, and we plot the mean of E for the
zero-energy modes (green squares), as well as the mean of
the other eigenenergies in the complex band structure (gray
area).

First, consider Figs. 11(a) and 11(b), which correspond
to type-(i) disorder, and Figs. 11(c) and 11(d), which corre-
spond to type-(ii) disorder. We see that increasing the disorder
strength D broadens the real part of the bulk bands, nar-
rowing the real band gap. However, the zero modes of the
disorder-free lattice persist, and remain pinned to Re(E ) = 0,
as the disorder strength is increased. This is due to these
forms of disorder preserving the non-Hermitian particle-hole
symmetry.
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FIG. 13. (a) Distribution of complex eigenenergies in the mul-
timode laser. The eigenenergies are calculated from the nonlinear
Hamiltonian (obtained via the time domain simulations described in
the paper), by time-averaging the intensity on each site to determine
the gain saturation. The pump strength is 	 = 0.8. (b) Spatial distri-
bution of the effective gain/loss Vn for the nonlinear (gain-saturated)
lattice in (a) (blue bars). For comparison, we also plot the unsaturated
gain/loss profile (black curves). (c)–(e) Distributions of the three
eigenmodes marked by a triangle, circle, and square in (a); panel
(d) corresponds to the domain wall state, which is also the threshold
lasing mode. All model parameters are the same as in Figs. 4(d) and
4(e) of the main text.

For Figs. 11(e) and 11(f), which corresponds to type-(iii)
disorder, the non-Hermitian particle-hole symmetry is not pre-
served, and the boundary state is not pinned to Re(E ) = 0.
Note that a sufficiently large disorder strength D may reduce
the effective gain of the edge mode, eventually making it
lower than the effective gain of the bulk modes.

These results were obtained for α = 3/8, with the disorder-
free parameters chosen to be the same as in Fig. 1(b) of
the main text. The results for other α (e.g., α = 1/4 and
α = 1/12) are similar.

Using a similar approach, we investigated the stability of
the edge modes in the gapless phase. Figure 12 shows the
results for lattices with V cos δ = 0.48—a situation where the
edge modes persist despite the absence of a real line gap,
consistent with Fig. 3 of the main text. The same three types of
disorder defined above, types (i)–(iii), are separately studied.
The edge mode is identified by picking out the mode with
the highest inverse participation ratio, a measure of mode

localization [64]. In Figs. 12(a) and 12(d), we observe that
the edge modes remain pinned at Re(E ) with increasing dis-
order strength D, for the symmetry-preserving type (i) and
(ii) disorder. For smaller values of D, the edge state still has
the highest gain, but for larger D the edge state hybridizes
with the bulk states, and becomes no longer distinguishable
both in terms of Im(E ) and the degree of localization. For
type (iii) disorder, shown in Fig. 12(g), the gapless edge mode
remains isolated from other bulk modes even for large D. This
interesting phenomenon will be investigated in future work.

APPENDIX F: TRANSITION FROM SINGLE-MODE
TO MULTIMODE LASING

In our study of the lasing properties of non-Hermitian AAH
lattices, the transition to multimode lasing occurs because
the pump strength becomes sufficiently large that the com-
peting (nontopological) modes are also crossing their lasing
thresholds (i.e., receiving net positive gain). This behavior
is not specific to the present system or to topological lasers,
but happens for many other laser systems that have multiple
modes [39].

To show that this is indeed what happens in the present
model, Fig. 13(a) plots the modal gains for the various modes
at a typical pump strength (	 = 0.8) in the multimode regime.
These modal gains take account of gain saturation (a nonlinear
effect), and are calculated from the eigenvalues of an effec-
tive nonlinear Hamiltonian obtained by inserting the mean
intensity distribution (time-averaged over t ∈ [2000, 5000])
into Eq. (5) of the main text. As can be seen, aside from
the zero mode (red square), several other modes have reached
the threshold condition Im(E ) = 0. Three of the mode distri-
butions are plotted in Figs. 13(c)–13(e); it can be seen that
the additional lasing modes are not edgelike but arise from
the bulk. Note that the case of Figs. 4(a) and 4(b) is similar to
the situation here.

Figure 13(b) plots the nonlinear (i.e., inclusive of gain
saturation) gain profile (blue bars). It is very similar to the
unsaturated gain profile (black sinusoidal curves), aside from
the sites near the domain wall. This is to be expected: the
first lasing mode is the topological edge mode, so the gain
is saturated near the domain wall and relatively unsaturated
elsewhere.
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