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We study four-dimensional fractional quantum Hall states on CP 2 geometry from microscopic approaches.
While in 2d the standard Laughlin wave function, given by a power of Vandermonde determinant, admits a
product representation in terms of the Jastrow factor, this is no longer true in higher dimensions. In 4d, we can
define two different types of Laughlin wave functions, the determinant-Laughlin and Jastrow-Laughlin states.
We find that they are exactly annihilated by, respectively, two-particle and three-particle short-ranged interacting
Hamiltonians. We then mainly focus on the ground state, low-energy excitations, and the quasihole degeneracy of
determinant-Laughlin state. The quasihole degeneracy exhibits an anomalous counting, indicating the existence
of multiple forms of quasihole wave functions. We argue that these are captured by the mathematical framework
of “commutative algebra of Npoints in the plane.” The microscopic wave functions and Hamiltonians studied in
this work pave the way for a systematic study of a high-dimensional topological phase of matter that is potentially
realizable in cold atom and optical experiments.

DOI: 10.1103/PhysRevResearch.5.023042

I. INTRODUCTION

Searching for and understanding exotic phases of matter is
a long standing goal of modern condensed matter physics. In
three or lower spatial dimensions, many materials exhibiting
topological or exotic properties have been synthesized. Higher
dimensions, although realizable using optical and cold atom
experimental techniques, are less well understood. It is both
theoretically and experimentally interesting to ask about the
possible many-body phenomena in four and higher dimen-
sions [1,2].

The quantum Hall effect is the most studied phase of matter
exhibiting topological properties [3,4]. It was discovered forty
years ago in electron gases confined in two-dimensional semi-
conductor heterostructure in the presence of an ultra strong
magnetic field [3]. In magnetic fields, an electron gas reorga-
nizes itself into completely dispersionless Landau levels, in
which the complete quench of kinetic energy paves the way
for purely interaction driven physics. Interactions give raise
to exotic many-body states including the Laughlin phase [5],
which exhibits fractional Hall conductivity, and fractionalized
particles or anyons [6]. Theoretically Landau levels have been
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predicted to exist in even dimensions [1,2,7–12], and exam-
ples have been realized in optical and cold atom experiments
[13–17].

Motivated by these studies, in this work, we explore in-
teracting effects in four and higher dimensions with uniform
magnetic fields by initiating the study of the fractional quan-
tum Hall (FQH) problem on CP n geometry. We start by
microscopically describing the CP 2 geometry and the Lan-
dau levels. We then begin the discussion of many-body wave
functions with a focus on Laughlin states and their quasi-
hole descendants. In particular, we found there exist multiple
types of Laughlin wave functions that are characterized by
two-particle or three-particle clustering properties on the CP 2

space:
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Here each particle’s position on CP 2 is specified by homo-
geneous coordinates, i.e., a complex triplet zi = (z1, z2, z3)i

where subscript i = 1, . . . , N labels the particle. In Eq. (1),
det f is a “Slater,” or “generalized Vandermonde,” deter-
minant, determined by a set of N triples of non-negative
integers p j = (p1, p2, p3) j . Notations are specified in detail in
Sec. II.

The constructions of Eqs. (1) and (2) can be intuitively
thought of as follows: while the Jastrow factor equals the
Vandermonde determinant in two dimensions (for instance on
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CP 1), this is not true in higher dimensions. Viewing the CP 1

Laughlin states as determinants or as Jastrow factors leads
to distinct generalizations to CP 2. Thereby, we term Eq. (1)
as determinant-type Laughlin wave function (Det-Laughlin)
and Eq. (2) as a Jastrow-type Laughlin wave function (Jas-
Laughlin). We further show they are exact zero energy ground
states for short-ranged two-particle and three-particle repul-
sive interactions. In the end, we discuss generalized Haldane
pseudopotentials in high dimensions [18–22].

The quasihole excitations show interesting differences
when compared with two dimensions. We found huge de-
generacies in the quasihole space on CP 2 manifold, which
might be useful for storing quantum information [23]. Math-
ematically, the degeneracy of quasihole wave functions is
interesting, and we will compare our results with relevant
work of Haiman et al. [24].

The many-body wave function and model Hamiltonian
developed here serves as an explicitly solvable model of
a higher dimensional topologically ordered system [25–27],
less well known than its lower dimensional analogs [28–30],
yet potentially realizable in cold atom and optical experiments
[13–17]. Further studying collective modes and numerically
detecting non-point-like excitations [31,32] are just one of the
interesting future directions.

The paper is organized as follows. We begin in Sec. II
with an introduction to CP 2 Landau levels. We also define
coherent state representation [18,19,33] of single-particle and
multi-particle bound-state wave functions in this section. In
Sec. III, we define two types of Laughlin wave functions
and discuss their parent Hamiltonians. In Sec. IV, we nu-
merically study the low-energy excitations as well as the
quasihole excitations of the Det-Laughlin state. In the sub-
sequent section, Sec. V, we discuss symmetric interaction
and the higher dimensional generalization of Haldane-
pseudopotentials [18–22]. Finally in Sec. VI, we discuss the
connection between our studies to the commutative algebra
in the mathematical literature. We list open questions and
interesting future directions in Sec. VII.

II. CP 2 LANDAU LEVEL

The two-sphere S2 � CP 1 geometry is one of the most
useful geometries for studying two-dimensional quantum Hall
physics [18,19]. The discussion of higher dimensional quan-
tum Hall physics was initiated by S.C. Zhang and J. Hu in
Ref. ([1]), who gave single particle Landau level wave func-
tions on the four-sphere S4. Soon after, D. Karabali and V.
Nair, generalized the S2 Landau levels to the 2n-dimensional
complex projective spaces CP n in Ref. [2] and the generic
case of a compact Kähler manifold with a uniform magnetic
field was treated in Ref. [10]. In this section, we first review
Landau levels on CP 2 space, introduce a diagrammatic rep-
resentation, and discuss coherent states which turn out to be
useful for discussing interactions.

A. CP 2 geometry and lowest Landau level states

The CP 2 manifold is conveniently parameterized by three
complex variables, satisfying a real constraint and identifying

points which are equivalent up to a U(1) phase:

z = (z1, z2, z3) = (u, v,w), (3)

|u|2 + |v|2 + |w|2 = 1, z ∼ zeiθ ,

where a subscript i = 1, . . . , N will be added to label parti-
cles when discussing many-particle physics. Throughout this
work, we will use superscript a = 1, 2, 3 to denote the inner
index of SU(3) quantum number, and we will use (z1, z2, z3)
and (u, v,w) interchangeably.

CP 2 has an SU(3) symmetry under which these coor-
dinates transform in the fundamental representation. There
is a unique metric (up to the overall scale) which respects
this symmetry, the Fubini-Study metric [10]. The analogous
expression with an (n + 1) component vector parameterizes
CP n, with SU(n + 1) symmetry.

CP 2 can also be obtained as the homogeneous space
CP 2 = SU(3)/[SU(2) × U(1)]. This construction defines a
natural background SU(2) × U(1) gauge field with minimal
magnetic charge under the Dirac quantization condition and
which respects the SU(3) symmetry. The U(1) part of this
field has magnetic field strength given by a two-form Fab,
which stands in a simple mathematical relationship to the
Fubini-Study metric: it is the Kähler form for this metric. It
is this relation, which is responsible for the simple form of the
lowest Landau level (LLL) wave functions, and comparable
results could be obtained for any Kähler manifold, as derived
in Ref. [2].

In this work, we will consider particles with charge e = S
under the U(1) Abelian magnetic field, and with zero SU(2)
charge. Equivalently, we can think of charge e = 1 particles
under the influence of a magnetic field with flux S.

Following Ref. [2], the LLL wave functions are holomor-
phic functions of z = (u, v,w), with no dependence on the
complex conjugation z̄. A complete orthonormal basis for
such functions is

ψS,p = up1
vp2

wp3
, (4)

where p = (p1, p2, p3) is a vector of non-negative integers
and we define p1 + p2 + p3 = S. The subset with fixed S are
the wave functions with that U(1) charge, of total number
D = (S + 1)(S + 2)/2.

Instead of p, we sometimes use the labels (i, y), i.e.,
“isospin” and “hypercharge,” defined by

i = p1 − p2, y = p1 + p2 − 2p3.

For an N-particle many-body state, we use capital I =∑N
i=1 ii, Y = ∑N

i=1 yi to label the total “isospin” and “hy-
percharge.” The total

∑N
i=1 p1,2

i = (2NS + Y ± 3I )/6 are
integers. Therefore,

2NS + Y ± 3I ∈ 6Z. (5)

B. Diagrammatic representation and bivariate
Vandermonde determinant

Here we introduce a diagrammatic representation for CP 2

states. We represent the quantum numbers p1 and p2 by hor-
izontal and vertical axes respectively. Since p1,2,3 ∈ [0, S],
each CP 2 state is represented as a box in a triangle of base
and height S + 1. We then represent a particular N particle
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state by distributing N dots among the boxes, one per particle.
If the particles are fermions, the Pauli principle is enforced by
allowing at most one dot per box.

For example, the one particle state with S = 2 and
p = (0, 1, 1) is depicted by

(6)

As another example, consider N = 2 particles and the
S = 2, I = 1, Y = 1 subspace. There are two basis states,
depicted by

(7)

The fermionic wave function corresponding to a diagram
can be written as a bivariate determinant, a two variable gen-
eralization of the usual Vandermonde determinant. Denoting
the set of filled boxes as {p1, . . . , pN }, the corresponding N
particle wave function is

�{p} = det
i, j

(
zp j

i

)
,

= det
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N w
p3

1
N . . . up1
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N v
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N

N w
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⎤
⎥⎥⎦. (8)

Equation (8) is indeed “bivariate” (rather than tri-variate)
because u, v,w are constrained by |u|2 + |v|2 + |w|2 = 1. To
see this more explicitly, one can turn “homogeneous coordi-
nates” z = (u, v,w) into “projective coordinates”:

ũ ≡ u/w, ṽ ≡ v/w, (9)

and Eq. (8) can be rewritten as

�{p} =
(

N∏
i=1

wS
i

)
det

⎡
⎢⎢⎣

ũ
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1 ṽ

p2
1

1 . . . ũp1
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1
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1

N . . . ũp1
N

N ṽ
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N
N

⎤
⎥⎥⎦. (10)

We sometimes use captical Z ≡ (ũ, ṽ) to denote the
projective coordinate.

C. Coherent states

Instead of discrete integer-valued quantum numbers
(p1, p2, p3) or (i, y), coherent states provide an overcomplete
basis with continuous parameters [33]. They are useful for
considering multi-particle interactions [18,19].

In the following discussion, we use the notation (z1, z2, z3)
in place of (u, v,w). Bold face z is still used to represent
a vector, while z̄ represents the vector obtained by complex
conjugating each component. The dot product represents the
standard Euclidean inner product, for example, ᾱ · z = ᾱ1z1 +
ᾱ2z2 + ᾱ3z3.

1. One-particle coherent state

The single-particle coherent state wave function is param-
eterized by a CP 2 point α = (α1, α2, α3),

ψ
(1)
S,α(z) = (ᾱ · z)S, (11)

where just as in Eq. (3), α is normalized to one. The point
corresponding to an equivalence class of α under U(1) phase
rotation is the point on which the coherent state is maximized,
and in the limit S → ∞ the state is localized at this point.

The SU(3) symmetry acts on the coherent state by moving
its center α while keeping its shape invariant. Varying the po-
larization vector α continuously yields an Abelian Berry phase
corresponding to the U(1) magnetic flux described earlier.

2. Three-particle coherent state

We next seek the coherent representations of bound states.
A bound state has a center of mass α which transforms as
a fundamental of the SU(3) global symmetry, and internal
variables which can also transform. Given α there is a “little
group” SU(2) × U(1) ⊂ SU(3) which preserves α, which can
be used to define two internal quantum numbers. One is the
spin J1 under this U(1), which acts as [34–36](

8∑
i=1

λi(α) · �̂i

)
φ ≡ J1φ,

where �̂i are the Gell-Mann matrices, λi =∑3
a,b=1 ᾱa(�̂i )abα

b, and φ is a three-component vector.
The second is the SU(2) Casimir J2:(

8∑
i=1

�̂i

)2

φ ≡ J2φ.

To construct bound states with definite values of these
quantum numbers, we use invariant tensors. Now the only
invariant tensor which couples fundamental representation of
SU(3) is the three-index tensor εabc. Because of this, on CP 2

the three particle bound state is simpler than the two particle
bound state.

We define the “three particle coherent state” to be

ψ
(3)
S,J,α(z1, z2, z3) ≡ (

εabcza
1zb

2zc
3

)S−J
3∏

i=1

(ᾱ · zi )
J .

As its relative part εabcza
1zb

2zc
3 is invariant under the little

group, both of the internal quantum numbers are determined
by J:

J1 = J; J2 = 1
3 J (J + 3). (12)

3. Two-particle coherent state

This expression can be adapted to describe two particles on
CP 2 by replacing the position z3 of the third particle with a
constant vector β. In some sense it describes the precession of
the relative coordinate.

We define the “two particle coherent state” as

ψ
(2)
S,J,α,β

(z1, z2) ≡ (
εabcza

1zb
2β

c
)S−J

2∏
i=1

(ᾱ · zi )
J . (13)
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It is not invariant under the little group. An invariant state
can be made by averaging over the relative vector β, and it has
the same internal quantum numbers Eq. (12).

We will use this decomposition to revisit the pseudopoten-
tial formalism and discuss generic symmetric interactions in
Sec. V.

III. LAUGHLIN WAVE FUNCTIONS

We proceed to discuss interacting physics. An N-particle
Laughlin wave function will be defined to be a totally anti-
symmetric (for β odd) or symmetric (for β even) state on the
LLL, which vanishes to order β when any pair of particles
coincides.

On CP 1, the N-particle Laughlin wave function is defined
with S = β(N − 1) total degree. Its wave function reads

�β =
N∏

i< j

(uiv j − u jvi )
β, (14)

= det

⎡
⎢⎣u0

1v
N−1
1 . . . uN−1

1 v0
1

...
...

u0
NvN−1

N . . . uN−1
N v0

N

⎤
⎥⎦

β

. (15)

Equations (14) and (15) are respectively written in a form
of the Jastrow factor and the Vandermonde determinant. The
equivalence between the Jastrow factor and Vandermonde de-
terminant, however, is no longer true in higher dimensions. As
will be seen in this section, this leads to two types of Laughlin
wave functions on CP n>1.

Nor is it a priori clear that either type of wave function
completely exhausts the possible Laughlin wave functions. In
Sec. VI, we will show that the determinantal wave functions
do cover all of the Laughlin wave functions.

Throughout this work, when saying “Laughlin,” we im-
plicitly refers to the “Det-Laughlin,” i.e., we will use the
terminology “Det-Laughlin” and “Laughlin” interchangeably.
For the Jastrow-type Laughlin states, we will explicitly term
them as “Jas-Laughlin.”

A. Type I: determinant-Laughlin wave function

We first discuss generalizing Laughlin wave function to
four dimensions by using bivariate Vandermonde determi-
nants. For degree S, the filled Landau level has in total N =
(S + 1)(S + 2)/2 particles. We denote the filled Landau level
wave function by �FLL,S . For instance, the filled Landau level
wave function for S = 2 is represented as the following dia-
gram, which involves N = 6 particles:

(16)

We define the determinant-type Laughlin wave function at
filling fraction ν = β−1 as

�D
β = (�FLL,S/β )β, (17)

which occurs when

N = (S/β + 1)(S/β + 2)/2. (18)

The Det-Laughlin wave functions vanishes in power of
β when any two particles approach each other. Following
similar arguments of Trugman and Kivelson [37], it is the
exact zero energy ground state for short-ranged repulsive in-
teractions. The concrete form of interacting Hamiltonian is
given as follows in Eq. (19), which is generalized from the
two-dimensional form proposed by Wen et al. [30]:

HD
β = −

∑
i< j

β−1∑
l=0

Vl (∂
†)lδ(Zi, Zj )(∂ )l , (19)

where Vl are arbitrary non-negative potentials and the conju-
gation is defined with respect to an appropriate L2 structure
on many-body states. The Z = (ũ, ṽ) are the projective coor-
dinates introduced in Eq. (9).

B. Type II: Jastrow-Laughlin wave function

Alternatively, the CP 1 Laughlin wave function can be
regarded as a Jastrow factor as shown in Eq. (14). General-
izing the singlet (uiv j − u jvi ) to CP 2 requires three particles.
Considering three particles labeled by 1,2,3, the singlet wave
function is

u123 ≡ εi jkuiv jwk; i, j, k = 1, 2, 3.

We define the Jastrow-type Laughlin wave function as

�J
γ =

⎛
⎝ ∏

i< j<k

ui jk

⎞
⎠

γ

, (20)

which occurs when

S/γ = (N − 1)(N − 2)/2. (21)

To be concrete, the N = 3, 4, 5 particle Jas-Laughlin wave
functions are

S/γ = 1, �J
γ (u1,...,3) = (u123)γ ,

S/γ = 3, �J
γ (u1,...,4) = (u123 u124 u134 u234)γ , (22)

S/γ = 6, �J
γ (u1,...,5) = (u123 u124 u125 u134 u135 u145

u234 u235 u245 u345)γ .

Note that we used γ to parameter the wave function
Eq. (20). The two-particle vanishing power of Jas-Laughlin
wave function, defined as the vanishing power when any pair
of particles approach, is

β = γ (N − 2). (23)

Therefore, for both Det-Laughlin and Jas-Laughlin, β de-
termines the statistics: the wave function is fermionic if β is
odd, and bosonic if β is even.

The vanishing power β for Jas-Laughlin is tricky, as it de-
pendents on the particle number N , therefore for fixed γ there
is no thermodynamic definition for the Jas-Laughlin based on
β. The γ instead defines the three-particle clustering property
of Jas-Laughlin, and this phase is thereby characterized by
three, rather than two, particle properties.
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TABLE I. The particle number N and the associated degree S for
the Det-Laughlin �D

β and the Jas-Laughlin �J
γ , following Eqs. (18)

and (21). “Statistics” is 0 (1) means that the Laughlin state is realized
by interacting bosons (fermions). For N = 3 particles, Det-Laughlin
is equivalent as the Jas-Laughlin. The N = 4 Jas-Laughlin is the
simplest nontrivial example which are zero energy ground state of∑

i< j δ(Zi − Zj ) interactions but cannot be written as a product of
determinants.

Det-Laughlin �D
β Jas-Laughlin �J

γ

N S/β statistics N S/γ statistics

3 1 β mod 2 3 1 γ mod 2
6 2 β mod 2 4 3 0
10 3 β mod 2 5 6 γ mod 2
. . . . . . . . . . . .

C. Comparing two types of Laughlin wave functions

We end this section by tabulating the particle number N
and the associated total degree that the two Laughlin wave
functions can occur in Table. I. Note that for N = 3 particles,
the two types of Laughlin wave function coincide. Generally
speaking, �D is denser than �J as seen from Fig. 1.

The Det-Laughlin wave function has been proved to be the
unique zero energy ground state for two-particle short-ranged
interaction [20]. We verify this result numerically in the next
section. For this reason, we term the (N, S/β ) of the left
column as the “commensurate parameter” for Det-Laughlin
wave function. Similarly, the (N, S/γ ) of the right column can
be termed as the commensurate parameter for Jas-Laughlin
wave functions.

As discussed earlier, the two-particle vanishing power β

for Det-Laughlin is particle number independent. Thereby,
the Det-Laughlin admits a well defined two-particle

FIG. 1. Illustration of Table I, from which we see directly Det-
Laughlin generally is much denser than Jas-Laughlin. Moreover, it
is interesting to observe that in the thermodynamic limit N → ∞,
the flux per particle approaches 0 and ∞ for Det-Laughlin and Jas-
Laughlin, respectively. This is in contrast to the CP 1 case where the
flux density approaches constant.

pseudopotential parent Hamiltonian for all system size given
fixed β. Although the Jas-Laughlin also vanishes with certain
power when any two-particle cluster as seen from Eq. (23),
the vanishing power is particle number dependent. Therefore,
for Jas-Laughlin, only three-particle pseudopotential parent
Hamiltonian admits a system size independent definition.

In the next section, we numerically study the parent Hamil-
tonian of the Det-Laughlin, with a focus on its ground state,
low-lying excitations and quasihole degeneracies.

IV. NUMERICAL STUDIES

A. Numerical diagonalization

Laughlin wave functions are characterized by their clus-
tering behavior: on CP 1, the Laughlin wave function �β

vanishes in power of β when any two particles coincide. This
yields the consequence that Laughlin wave functions are exact
zero energy ground states for any repulsive interactions as∑

l<β −Vl∂
†lδ(Zi, Zj )∂ l where Vl > 0.

In the following sections, we numerically study the Laugh-
lin state and their quasihole descendent for repulsive two-body
interaction at various (N, S). For fermions, we use

H = −
∑
i< j

∂†δ(Zi, Zj )∂, (24)

and for bosons, we use

H =
∑
i< j

δ(Zi, Zj ). (25)

As reviewed in the first section, orthonormal noninteract-
ing single-particle states in this Hilbert space are labeled by
Eq. (4). We first derive the two-body interaction element,

Vqq′;pp′ ≡ 〈qq′|H |pp′〉, (26)

where |pp′〉 is a two-particle wave function, that is antisym-
metrized for fermions and symmetrized for bosons. With the
matrix elements Eq. (26), the second quantized Hamiltonian
reads:

H =
∑

p1 p2;p3 p4

Vqq′;pp′δp+q=p′+q′c†
qc†

q′cpcp′ , (27)

where c†
p creates a single-particle wave function ψS,p as seen

in Eq. (4). The δ function above stems from the SU(3)
quantum number conservation since the interaction is SU(3)
symmetric (corresponding to transnational invariant in the
thermodynamic limit). Diagonalizing the second quantized
Hamiltonian Eq. (27) gives many-body wave functions and
energies. The matrix elements are straightforwardly derived
using the single particle wave functions.

For all (N, S) listed in the left-panel of Table I for Vander-
monde Laughlin �D

β , numerically we found single degenerate
many-body zero mode for interaction Eq. (24). They corre-
spond to the fermionic Det-Laughlin wave functions at β = 3.
They are fermionic because the vanishing power β is odd.

We also found a single zero mode at N = 4, S = 3 for
interaction Eq. (25). This corresponds to the four-particle
bosonic Jas-Laughlin wave function of γ = 1 listed in the
second line of Eq. (22). It is bosonic because its vanishing
power β, according to Eq. (23), is even. Interestingly, this
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FIG. 2. Ground state and low-energy excitations in (N, S) =
(6, 6) sector. (a) shows the lowest energy in each quantum number
sector. The color indicates energy. (b) plots the same data as (a) but
in terms of the quadratic Casimir C2 of SU(3). In (b), a unique
zero energy ground state at I = Y = 0 is clearly seen. Moreover,
(b) indicates the low-energy excitations are well approximated by
a quadratic dispersion form.

wave function is the simplest wave function which exhibits
the anomalous counting of CP 2 which we will discuss more
in Sec. VI: this wave function cannot be represented by a
product of Vandermonde determinant, but rather is a linear
combination of determinants where the high order vanishing
powers has cancellation.

At (N, S) = (5, 6), we observed multiple zero modes for
Eq. (24). One of them is the N = 5, γ = 1 Jastrow wave
function, i.e., the last line of Eq. (22). Besides, the zero
mode space also include quasihole descendants of (N, S) =
(6, 6) Det-Laughlin as (N, S) = (5, 6) can be obtained from
(N, S) = (6, 6) by removing one particle.

B. Low-energy excitation of Det-Laughlin

In this section, we focus on the ground state and low-
energy excitation at the commensurate filling fraction for
N = 6 particle Det-Laughlin at S = 6. As shown in Fig. 2,
the numerically observed unique zero energy ground state
and a finite energy excitation may indicate the Det-Laughlin
is an in-compressible state. Careful numerical studies about
the finite size scaling of the gap are required in the
future.

Since the interaction Eq. (24) is SU(3) invariant, it will
take the same value on every state in an irreducible SU(3)

TABLE II. Zero mode space dimension for Eq. (24) interaction
in (N, S) = (3, 4) sector. All zero modes can be written as a product
of three determinants of degree S = 1 + 1 + 2. Empty grids are
invalid quantum numbers as they are constrained by Eq. (5).

I = 0 I = ±1 I = ±2 I = ±3

Y = 0 2 2
Y = ±3 2 1
Y = ±6 1 0

representation. This value can be written as a function of two
Casimir invariants, the quadratic Casimir C2 and the cubic
Casimir C3. For a given irreducible representation, there is
a unique highest weight state (largest I and Y ), and one
can write the Casimirs as functions of its quantum numbers.
Particularly,

C2 = 3I2 + Y 2 + 6(I + Y ). (28)

As shown in Fig. 2, the lowest energy in each quantum
number sector (I,Y ) displays a good linearity, if plotting
the quantum number in terms of the quadratic Casimir C2.
This indicates a quadratic low-energy dispersion which may
be captured by a high-dimensional generalization of the
magneto-roton theory [38,39], which we leave for future
studies.

C. Quasihole degeneracies

We have numerically studied the energy spectrum of short-
ranged interaction Eq. (24) in the Hilbert space (N, S) listed in
the Table I. We found the Det-Laughlin are the unique ground
states. While Jas-Laughlin are not generally the unique E = 0
states for two-particle interactions, they are for three-particle
interactions as we will discuss later.

In this section, we introduce one extra flux quanta
from the commensurate parameter of Det-Laughlin, and
study the ground state degeneracies of two-particle inter-
action Eq. (24). The ground state degeneracies correspond
to the dimension of quasihole wave functions. We found
anomalous counting in the quasihole degeneracy, which has
close connection to the mathematical subject discussed in
Sec. VI.

1. N3S4

We start with the simplest quasihole state at (N, S) =
(3, 4), which descends from the simplest Det-Laughlin wave
function at (N, S) = (3, 3). In Table II, we list the dimension
of the zero-modes in each quantum number (I,Y ) sector
which counts the dimension of quasihole wave functions.

In fact, in this case, quasihole zero modes are all given
by the wave function which is written as a product of three
determinants of degree S = 1 + 1 + 2:

�N3S4 = (�FLL,S1)2 × �N3S2, (29)

where �FLL,S is the fully filled CP 2 Landau level wave func-
tion defined above Eq. (16). The �N3S2 has three particles
filled in space of degree S = 2, and it is diagrammatically
represented as shown in Eq. (7). From Eq. (7), we also see
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TABLE III. Zero mode space dimension of (N, S) = (6, 7). Not all zero modes can be written as a product of three determinants of degree
S = 2 + 2 + 3: the number outside the bracket labels the dimension of three determinant product wave functions, while that inside the bracket
marks the dimension of additional zero modes observed in numerical calculations. The total dimension of three determinant product wave
functions is 210, while the total zero mode space dimension is 266. Empty grids are invalid quantum numbers as they are constrained by
Eq. (5).

I = 0 I = ±1 I = ±2 I = ±3 I = ±4 I = ±5 I = ± 6 I = ±7

Y = 0 12 (5) 10 (3) 6 (2) 2
Y = 3 10 (3) 6 (2) 3
Y = −3 10 (3) 8 (2) 3 (1) 1
Y = 6 8 (2) 6 (2) 3 1
Y = −6 6 (2) 6 (2) 3 (1) 1 (1)
Y = 9 3 (1) 2
Y = −9 3 2 1
Y = 12 1 (1) 1
Y = −12 1

why the dimension of (I,Y ) = (0, 0) sector in Table. II is
two. Degeneracies in other quantum number sectors can be
worked out diagrammatically straightforwardly following the
same spirit. This case does not show any anomalous properties
as the dimensions of zero modes are all expected.

2. N6S7

We next study the zero mode dimension in the (N, S) =
(6, 7) sector, which descends from the (N, S) = (6, 6) Det-
Laughlin by adding one extra flux quanta. Analogies to
Eq. (29), we first write down the quasihole wave functions
as a product of determinants of degree S = 2 + 2 + 3:

�N6S7 = (�FLL,S2)2 × �N6S3, (30)

where �N6S3 represents diagrams of N = 6 dots filled in
degree S = 3.

However, as we see in Table III, this type of quasihole wave
functions is not enough to explain the degeneracies observed
numerically: in each (I,Y ) sector, we label the dimension
of quasihole wave function of type Eq. (30) as the number
outside the bracket, and we list in the bracket the additional
zero modes dimension observed numerically. The total zero
mode space dimension seen numerically is 266, which has in
total 56 more zero modes than the total dimension of wave
function Eq. (30) which is only 210.

The unexpected extra zero modes indicates the quasihole
wave function on CP 2 has more than one expression in sharp
contrast to the CP 1 case. We noted the γ = 1 Jas-Laughlin
at (N, S) = (4, 3) is an example of zero mode which cannot
be written purely as a product of several determinants. We
anticipate besides Eq. (30), general forms of quasihole wave
function should also include those with linear combination of
determinants and cancellations, which we decide to discuss
more extensively in Sec. VI.

V. SU(3) PSEUDOPOTENTIALS

Interactions Eqs. (24) and (25) are important short-ranged
interactions. How do we classify generic SU(3) symmet-
ric interaction in high dimension? Here, we generalize
the Haldane-pseudopotential to higher dimensions, for both
two-particle and three-particle interactions. The two-particle

pseudopotential was initially derived based on group theoreti-
cal analysis by Chyh-Hong Chern et al. in Ref. ([20]). We use
a different approach by using coherent state representations
developed in Sec. II.

Considering two-particle Hilbert space, as shown in
Eq. (13), such space is block diagonalized by two-particle
coherent states labeled by non-negative integer J ∈ [0, S]. We
define the J-space projector as P̂(2)

S,J . The action of any SU(3)
symmetric interaction can be block-diagonalized into actions
within the J subspaces as follows:

H =
S∑

J=0

V (2)
J P̂(2)

S,J , (31)

where V (2)
J is the interaction decomposition coefficient, which

can be defined as the two-particle SU(3) pseudopotential.
The symmetries are manifest in the Hamiltonian Eq. (31).

To implement practical calculations, one needs to convert it
into the second quantized form such as Eq. (27). The matrix
elements vqq′;pp′ are straightforwardly derived:

Vqq′;pp′ = V (2)
J 〈qq′|P̂(2)

S,J |pp′〉 = V (2)
J

∑
α

CJ;α
qq′ CJ;α

pp′ ,

where CJ,α
pp′ is the SU(3) Clebsch-Gordan coefficient. The

above expression was initially derived in Ref. ([20]).
The three-particle coherent state wave function Eq. (12)

explicitly shows that the three-particle Hilbert space is block-
diagonalized by index J for SU(3) symmetric three-particle
interaction. Consequently, we have

H =
∑

J

V (3)
J P̂(3)

S,J , (32)

where P̂(3)
J is the three-particle projector that projects three-

particle bound states into J subspace. The V (3)
J are defined as

the three-particle SU(3) pseudopotential. And the projector
can be similarly represented by the CG coefficients.

VI. COMPARISON WITH MATHEMATICAL RESULTS

It turns out that the problem we are discussing, of fermionic
or bosonic wave functions for the Laughlin states in four
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dimensions, fits nicely into the mathematical framework of
commutative algebra of N points in the plane, as studied by
M. Haiman [24].

By “plane” here one means a space parameterized by two
complex coordinates, so this is the first relation: one can
parametrize almost all of CP 2 by taking general (u, v) in
Eq. (3), and solving the constraint to determine w. Thus we
can regard an N-particle wave function as a function of the
2N complex coordinates u1, v1, . . . , uN , vN . From Eq. (4) the
wave functions of interest are polynomial in these variables.
Thus we ask the following question.

Question VI.0.1. Characterize the polynomials in the vari-
ables u1, v1, . . . , uN , vN which vanish whenever ui = u j and
vi = v j for some (i, j).

The space of such polynomials is an ideal I = ∩i< j (ui −
u j, vi − v j ) in the polynomial ring C[u1, v1, . . . , uN , vN ] in
2N variables. Now it is easy to see that the analog of the
bivariate determinants Eq. (8) in two variables (equivalently,
solving for the wi’s) are polynomials with this property, but
it is not so obvious that all such polynomials can be obtained
this way (more precisely, are sums of bivariate determinants).
Theorem 1.1 of Ref. ([24]) is precisely this fact, that I
coincides with the ideal generated by the bivariate Vander-
mondes for N points, and indeed the author states that “this
is not an easy theorem.” We will not even try to explain the
proof here, but instead cite further relevant results from this
work.

First, let us compare with the case of complex dimen-
sion one. There the analogous statement was true, namely
all polynomials in u1, . . . , uN which vanish for any ui = u j

can be obtained as sums of determinants deti, j u
p j

i each mul-
tiplied by a polynomial. But a much simpler statement was
also true, namely, all such polynomials can be obtained by
multiplying the Vandermonde determinant �(u) = ∏

i< j (ui −
u j ) (the special case with p j = j − 1) by a single arbitrary
polynomial f . In other words, the ideal J = ∩i< j (ui − u j ) ⊆
C[u1, . . . , uN ] is a principal ideal, i.e., an ideal generated by
a single polynomial �(u). In standard algebraic notations,
J = (�(u)), where the notation on the right stands for the set
of polynomials obtained by multiplying a given polynomial �

by an arbitrary polynomial f .
To restrict this to totally antisymmetric functions, one

need only restrict f to be totally symmetric. Physically,
this is closely related to exact bose-fermi equivalence in
one dimension—the bosonic operators (totally symmetric be-
tween particles) act naturally on the free fermion Hilbert
space.

Could there be a similar simplification in two variables?
We have translated our question into: is I a principal ideal?
According to theorem 1.2 of Ref. ([24]), no: the situation is
more complicated. Fortunately we can broaden our definitions
as follows: let (�1,�2, . . . ,�k ) be the space of polynomials
obtained by taking an arbitrary linear combination

∑
a fa�a

where �a are bivariate Vandermondes and the fa’s are general
polynomials. This is a general ideal, and general results tell us
that this is possible.

In fact we can be more precise: define the generators of I to
be a basis of elements which cannot be obtained as

∑
a fa�a

where the �a ∈ I , but the fa have no constant part (so, they
can be the variables ui, vi or higher order polynomials).

Theorem 1.2 tells us that the dimension of this basis is the
N’th Catalan number,

CN = 1

N + 1

(
2N

N

)
.

However, the proof is nonconstructive, and no explicit
choice for this basis is known except for N = 2, 3. In physics
terms, this tells us that if there is an exact bosonization in two
variables, it will not suffice to let the bosonic operators act on
a unique ground state; to get the entire fermionic Hilbert space
one will need to start from several (though a finite) number of
distinct states.

Let us turn to discuss the FQHE states for the filling
fraction 1/β, where β ∈ N∗. Here we have two possible
definitions–the physics and the algebraic one.

Definition (algebraic). Laughlin states are the polynomials
in C[u1, v1, . . . , uN , vN ], which are

(1) symmetric (for even β), or antisymmetric (for odd
β) wrt exchanging the pairs of coordinates of N points
(u1, v1), . . . , (uN , vN );

(2) of partial degree S ∈ N, where partial degree is a sum
of top degrees in u j and v j [this is independent of the choice
of index j due to (1)];

(3) belonging to Iβ .
The latter condition means that a Laughlin state

can be written a linear combination of the form∑
a!,...,aβ

fa1,...,aβ
�a1 · · ·�aβ

, where fa1,...,aβ
is a (necessarily

symmetric) polynomial.
Definition (physics). Laughlin states are the polynomials in

C[u1, v1, . . . , uN , vN ], satisfying (1) and (2) above, which are
also

(3’) exact ground states of Hamiltonian (19).
The condition (3’) can be reformulated as follows. Let I 〈β〉

denote the ideal of all polynomials in C[u1, v1, . . . , uN , vN ],
which belong to I together with all of their partial derivatives
of order β − 1 and less, i.e.,

I 〈β〉 =
〈

f

∣∣∣∣ ∂r f

∂ur1
1 . . . ∂v

r2N
2N

∈ I for all r ∈ N2N ,
∑

rn < β

〉

then (3’) is equivalent to (3”) Laughlin state is a polynomial
in I 〈β〉.

It is easy to see that in complex dimension one the two
definitions coincide. Luckily, the same property holds in com-
plex dimension two, at least as long as we allow all mixed
derivatives of the order up to β − 1 in Hamiltonian (19).
We have Iβ = I 〈β〉. The proof is indirect and is a conse-
quence of the property 1.7. in Ref. [24] of the coincidence of
the powers of I with symbolic powers (a notion we do
not define here), and the coincidence of symbolic and dif-
ferential powers (Zariski-Nagata theorem) for the radicalr
ideals [40].

Now we would like to pose anothe question.
Question VI.0.2. Compute dimensions of the Hilbert

spaces of Laughlin states quasihole states, as a function of
N, S, β.

In a complex dimension, one we know that all of these
states can be obtained by multiplying the Laughlin state
�β by a symmetric function, so it would suffice to count
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the dimensions of the spaces of symmetric polynomials of
given degree. In particular, on a Riemann surface of genus-
g, we know that there are no Laughlin states for N >

S/β + 1 − g, at N = S/β + 1 − g their number is βg and the
degenaracies for N < S/β + 1 − g have been computed as
well [41].

What is the situation in two variables? Our results show
that the situation is rather complicated, and far from being
fully understood. In some sense, this question is addressed by
theorem 1.8 and its corollary 1.9. This states that the ideal Iβ ,
defined as the product of β polynomials each taken from I ,
is just the β’th power of the ideal generated by the bivariate
determinants. In other words, every polynomial which van-
ishes to at least order β when ui = u j and vi = v j for any
pair (i, j), can be obtained as a sum of terms, each of which
is a product of β bivariate determinants multiplied by some
(unconstrained) polynomial.

Now, the discussion in Ref. [24] concerns all polynomials,
with no symmetry or antisymmetry imposed. Furthermore the
quantum number S is an additional feature of our problem. It
is tempting to adapt corollary 1.1 to our physical situation by
making the following conjectures:

Conjecture VI.0.1. Every symmetric polynomial (for β

even) or antisymmetric polynomial (for β odd) of degree S in
each variable, which vanishes to at least order β when ui = u j

and vi = v j for any pair (i, j), can be obtained as a sum of
terms, each of which is a product of β bivariate determinants
multiplied by a symmetric polynomial.

Conjecture VI.0.2. Furthermore each determinant is ho-
mogeneous, and the sum of their degrees

∑
a Sa = S.

These conjectures, if true, would give us a general con-
struction of the FQHE states on CP 2. The first step is to list
all partitions of the U(1) charge of ther form:

S =
β∑

a=1

Sa.

We can then enumerate all of the bivariate determinants
of each required degree Sa, of total number ((Sa + 1)(Sa + 2)/2

N ),
using the diagrammatic method. Finally we combine the
choices, taking into account equivalences which arise if any
Sa = Sb for a �= b.

It took us some time to realize that while conjecture VI.0.1
is true (it follows from the corollary 1.9, Ref. [24]), con-
jecture VI.0.2 is in fact false. A simple counterexample is
the following: consider the four particle Jastrow wave func-
tion �J

γ with γ = 1 and thus vanishing order β = 2; see
the second line of Eq. (22). According to the conjecture, it
should be in the ideal generated by products of two bivariate
determinants, schematically

∑
fa��. Now since S = 3, if

the determinants are homogeneous, then one of them must
have degree Sa < 2. But since there are only three indepen-
dent states with S = 1, all such four particle determinantsr
vanish.

In fact the required sum of products of determinants (which
must exist by corollary 1.1) is

u123 u124 u134 u234 = �2
1 − �2�3, (33)

where the determinants are defined using the following sets of
four indices:

(34)

(35)

(36)

Each of these determinants has S = 2, and the individual
products which appear in Eq. (33) indeed have terms with
S = 4. However, these terms cancel in the difference, resolv-
ing the contradiction.

We found a similar mismatch at N = 6 and S = 7 between
the total count of β = 3 states (266) and the number of states
(210) which can be realized as a products of three determi-
nants with S = 2 + 2 + 3. We believe that the resolution is
analogous, that the extra 56 states are sums of products of
three determinants in which the higher degree terms cancel.

Thus, the construction of the FQHE states on CP 2 which
we outlined above, does not produce all of the states. To fix
this, one would need some understanding of the cancellations
we observed, and at the very least a bound on the maximal
individual degrees Sa’s.

To summarize, in this section we have emphasized the va-
lidity of the two key elements behind the analytic construction
of Laughlin states in two complex dimensions. The first is that
the Laughlin state will have a generic form of the product of
bivariate Vandermonde determinants. The second element is
the equivalnce of the algebraic and physics definitions, which
establishes the isomorphism between the ground states of the
Haldane-Wen et al. Hamiltonian (19) and the Laughlin-style
algebraic definition in terms of holomorphic polynomials. In
this respect, the situation is similar to the case of complex
dimension one.

Finally we note our question about Laughlin states can be
posed for any compact Kähler manifold, replacing the degree-
S polynomials by holomorphic sections of the line bundle [10]
and bivariate Vandermonde determinant by the corresponding
Slater determinant [42–44].

VII. CONCLUSION AND FUTURE DIRECTIONS

We have discussed the FQH effect on CP 2 manifold with
uniform U(1) background magnetic field. We defined two
types of Laughlin wave function, one of the determinant
type and one of the Vandermonde type. They are respec-
tively shown to be the exact zero energy ground states for
short-ranged two- and three-body interactions, for the (N, S)
specified from their wave functions such as those listed in
Table I. The quasihole space degeneracy shows anomalous
behavior indicating quasihole wave function has more than
one form, which is different compared to the CP 1 usual FQH
effects. There are few future research directions that the theory

023042-9



WANG, KLEVTSOV, AND DOUGLAS PHYSICAL REVIEW RESEARCH 5, 023042 (2023)

and techniques developed in this work could be useful. For
instance, a further detailed study of the compressibilities of
the two types of Laughlin wave functions, as well as their
low-energy excitations [38] are interesting. In contrast to the
two-dimension, high dimension may support membrane-like
excitations [31,32]. It may also be possible to extend this
work to other quantum Hall states including the paired states
[45] and gapless states [46–51]. A thorough mathematical
understanding of quasihole wave functions besides Sec. VI
is an open questions. Last but not least, searching for experi-
mental realizations of interacting physics in high-dimensional
Landau levels [14–16] are important future directions.
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