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Globally correlated states and control of vortex lattices in active roller fluids
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Active fluids demonstrate complex collective behavior and self-organization often resulting in the emergence
of localized vortices. We report on a combined experimental and computational study of the spontaneous
formation of globally correlated vortex lattices formed in active roller fluids. The vortices are comprised of
active ferromagnetic rollers placed on a patterned substrate promoting localization of self-organized vortices
in a lattice with square symmetry. Each individual vortex spontaneously selects its chiral state (clockwise or
counterclockwise). Nevertheless, confined to a square lattice, an ensemble of interacting active vortices is capable
of developing correlations between chiral states of neighboring vortices. We show that such ensembles of active
vortices can spontaneously evolve towards a globally correlated state with the antiferromagnetic ordering of their
vorticities. We explore the correlations between chiral states of neighboring vortex pairs in response to changes in
the geometry of the confining lattice. The results are supported by numerical simulations based on phenomeno-
logical coarse grained particle dynamics coupled to shallow water Navier-Stokes hydrodynamics. We show that
these ordered vortex lattices formed by magnetic rollers have the ability to self-heal the antiferromagnetic order
and stabilize individual vortical states in the activity regimes beyond optimal conditions for the collective vortex
states. The results provide insights into the collective behavior of active magnetic roller fluids in the presence of
geometrical confinement.
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I. INTRODUCTION

Active colloidal materials transduce energy from the en-
vironment into mechanical motion [1–5]. The hallmark of
these out-of-equilibrium systems is their natural tendency to-
ward spontaneous formation of large-scale collective behavior
[6–11]. While the majority of active colloidal matter rely on
linearly translating active units, recent developments in the
design of active colloids introduced systems with activities
originating from spinning [12–18] facilitated by either elec-
tric or magnetic fields. Coupled to a substrate, the rotational
motion of the particles results in a translational motion, which
gives rise to active rollers when their direction of propulsion is
not externally prescribed [12,15]. Ensembles of active rollers
demonstrate a remarkable level of complex collective behav-
ior ranging from emergence of coherent flocks, spontaneous
formation of a global vortical motion under confinement
[19,20], and development of a hidden structural order imprint-
ing the dynamic state of the system [21]. In the case of active
rollers powered by spontaneous Quincke rotations [22,23],
modulations of the activity or chiral behavior of the rollers
[24–26] lead to the emergence of multiple vortices unbound
from any geometrical confinement.
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Magnetic rollers energized by a uniaxial alternating mag-
netic field also develop spontaneous multivortical states
unbound from geometrical constraints [27,28] triggered by
spontaneous self-densifications in the ensemble of active mag-
netic rollers. While the vortices are on average long lived, they
are mobile, constantly exchanging roller material with their
neighbors, merging, falling apart, and spontaneously emerg-
ing in other locations. The challenge is to develop controls
for the chaotic behavior of active roller systems. Tailoring
an environment (e.g., hydrodynamically coupled chambers
and pillars) has been successfully utilized in active bacterial
suspensions to promote the formation of self-assembled vor-
tex lattices with vorticity at each lattice site exhibiting either
ferromagnetic or antiferromagnetic order [29–31]. In the case
of active roller liquids, passive scatterers and obstacles have
been explored as means to manipulate collective dynamics of
the out-of-equilibrium ensembles [32,33].

In this paper, we report on the spontaneous formation of
globally correlated vortex lattices in active magnetic rollers
fluids. The formation and stability of the vortex lattices is
facilitated by patterned substrates promoting a soft confine-
ment of individual magnetic rollers in an array of circular
indentations/wells arranged in vertices of a square lattice.
Each well is sufficiently shallow that rollers can escape the
confinement and move between the wells. Each individual
well gives rise to a vortex which spontaneously selects its
polar state (clockwise or counterclockwise). The reported
state is dynamic by nature and exists only while energy is
supplied to the system through a uniaxial alternating magnetic
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field. We reveal that under certain conditions an ensemble
of interacting active vortices is capable of developing cor-
relations between chiral states of its neighboring vortices
and spontaneously evolves towards a globally correlated state
with antiferromagnetic ordering of their vorticities. The ob-
served phenomenology is captured by a computational model
based on phenomenological coarse grained particle dynam-
ics coupled to shallow water Navier-Stokes hydrodynamics.
Remarkably, these out-of-equilibrium vortex lattices demon-
strate a self-healing behavior by an external modulation of the
driving magnetic field.

II. ACTIVE MAGNETIC ROLLERS ON A
PATTERNED SUBSTRATE

To realize active vortex lattices of magnetic rollers we
built on our recent discovery [28] where the emergence of
multiple unconfined long-lived vortices has been attributed to
spontaneous self-densifications of the rollers. Naturally, the
introduction of a patterned substrate that will favor certain
regions for roller densifications will provide a well-controlled
breeding ground for self-assembled roller vortices.

A. Experimental system

The patterned substrates with microwells we use here have
been manufactured using a 3D printer (Prusa; Original Prusa
i3 MK3S+). The 3D-printed substrates represent an array
of 6-by-6 microwells with diameters of the microwells, D,
ranging from 2 to 5 mm in 1 mm increment; see Fig. 1(a). The
center-to-center well’s separation distance, S, was also varied
in the range from S = D (when the neighboring wells are in
contact) to 1.5D. The size of the array was selected to ensure
that the magnetic field nonuniformity in the experimental
setup is negligible for the observed particle dynamics. We
smoothed the bottom surface of the printed wells with acetone
for 15 s, air dried the templates for 10 min, and washed them
with water. A well depth of 100 µm was chosen to realize a
soft confinement, such that the rollers still have the ability to
travel from one well to another when energized.

A water suspension of ferromagnetic nickel (Ni) spheres
(Alfa Aesar; diameter 125–150 µm) has been used as an active
magnetic roller fluid. The detailed magnetic properties of the
spherical Ni particles are provided elsewhere [34]. The experi-
mental cell (the patterned substrate with magnetic roller fluid)
is placed at the center of two magnetic coils in Helmholtz
configuration. The system is energized by a vertical alternat-
ing magnetic field, Hz = H0 sin(2π f t ). Here, H0 is the field
amplitude (H0 = 35 G in the experiments) and f is the field
frequency. A high-speed CMOS camera (iNS1, Integrated
Design Tools, Inc.) mounted on the microscope stage (Leica
MZ9.5) was used to monitor the dynamics of the system at
a frame rate of 50–200 frames per second. To investigate the
collective dynamics of the roller ensemble, image sequences
are captured and analyzed. Particle image velocity (PIV) has
been performed using the MatPIV package to extract velocity
fields, streamlines, and vorticity fields inside the wells. We
use the vorticity to determine the polar order of each vortex
and calculate the nearest-neighbor spin correlation function in

FIG. 1. Self-organized vortex lattices of active magnetic rollers
on patterned substrates. (a) Schematics of the experimental system. A
substrate with fabricated microwells hosts ferromagnetic Ni spheres
energized by a vertical alternating magnetic field promoting a rolling
motion of the spheres in the xy plane with no prescribed direction.
The zoom-in view on the right illustrates the self-organization of
active rollers into multivortex structures. The rollers with blue and
red color compose vortical structures rotating clockwise and counter-
clockwise, respectively, while the ones with gray color depict rollers
traveling between the wells. Panels (b) and (c) are examples of syn-
chronized vortex lattices in experiment and simulation, respectively.
In the vorticity map, �, the blue and red colors correspond to the vor-
tex structures rotating clockwise and counterclockwise, respectively.
The vortex-vortex correlations lead to the antiferromagnetic ordering
reflected in the alternating blue and red color of the vorticity field of
the roller vorticities in the lattice. The simulated configuration shown
in (c) illustrates a perfect antiferromagnetic order in the interior
wells, indicated by the green square. A few disoriented vortices can
be found at the perimeter, indicated by circles.

each realization of the lattice, Cs, to quantify the degree of
collective synchronization and order in the system.

The spin correlation function, Cs, is defined as

Cs =
∑

〈i, j〉 σiσ j
∑

〈i, j〉 |σiσ j | . (1)

Here, σi represents the vortex polar state parameter (spin)
in well i, −1 for clockwise and +1 for counterclockwise
vorticity, and

∑
〈i, j〉 denotes the sum over all nearest neighbor

(NN) vortex pairs in the system. We extract the time evolution
of a single configuration Cs(t ) and sample averages of stable
configurations for different initial conditions 〈Cs〉. For the
analysis we exclude the wells at the perimeter of the array.
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B. Model and simulations

To quantify the collective dynamics observed in the
system, we employ a continuum description in terms
of the coarse-grained translational velocity, u = (ux, uy) =
u(x, y, t ), and number density of the rollers, ρ = ρ(x, y, t ).
The evolution is governed by the equation [28]

∂t u = αu − β|u|2u + D∇2u + 1

ρm0
∇ · Π + γ ρv̄ + � × u.

(2)

Here, m0 is the mass of a roller, D is the diffusivity of
the particles, α = τ−1

col − τ−1
dif and β = (ω2

0a2τcol )−1 are the
Ginzburg-Landau coefficients that determine the transition
to an ordered state and the magnitude of the order param-
eter [τcol = (2ρa2

0ω0)−1 is the local mean collision time for
spheres of radius a rolling with the angular velocity ω0 = 2π f
at number density ρ and τdif is the rotational diffusion time],
Π is the stress tensor, and the last two terms characterize
the coupling between active rollers and a passive host fluid
(solvent). For more details we refer to Ref. [28]. The term
γ ρv̄ is a consequence of the overdamped roller dynamics
(see the Supplemental Material [35]), where γ = 3

4
a
hτ−1

col is
a numerical prefactor. v̄ = v̄(x, y, t ) and h = h(x, y, t ) stand
for the depth-averaged in-plane velocity and the depth of the
solvent, respectively. The last term, � × u, is well established
in the theory of ferrofluids [36] and describes the rotation of
rollers in a hydrodynamic flow with vorticity � = 1

2∇ × v̄.
In addition to these “free” equations we add a periodic con-
finement potential, which forces the particles (density) into
the wells. The resulting force of this potential is added to
the GL equation (2) for the particle velocity density. The
potential is illustrated in Fig. 2(b) for a 4 × 4 well geometry:
each well has a flat circular region of diameter D and grows
quadratically beyond that up to a distance of about 10% of
the well diameter beyond which it remains constant (to avoid
numerical instabilities). In the figure wells are slightly sepa-
rated, i.e., S > D, such that there is a (small) potential saddle
between them. For S = D, the flat well bottoms just touch.

The hydrodynamics of the solvent is modeled for the case
of a shallow solvent, |∇u| � u/h and |∇ρ| � ρ/h), i.e.,
by the two-dimensional depth-averaged Navier-Stokes equa-
tion [37,38]

∂t v̄ + (v̄ · ∇ )v̄ = −g∇h + ν∇2v̄ − 3
ν

h2
v̄ + 3πρa2 ν

h2
u, (3)

where g is the gravitational acceleration and ν the kinematic
viscosity of the host fluid. The last two terms on the right-hand
side originate from the no-slip condition at the rollers-solvent
interface.

Lastly, we describe the dynamics of the magnetic moment
density μ by

∂tμ = αμ − β ′|μ|2μ + D∇2μ − εμ × [μ × u], (4)

where, in analogy to Eq. (2), α = τ−1
col − τ−1

dif and β ′ =
(ρ2d2

0 τcol )−1, with d0 being the magnetic moment of a sin-
gle roller. The term εμ × [μ × u], which closely resembles
the damping component of the Landau-Lifshitz equation for
magnetization, does not affect the magnitude of μ but ensures
its alignment along the direction of u with the characteristic
time ∼ε−1.

FIG. 2. Simulated system. (a) Surface plot of the particle density
for the benchmark 8 × 8 well system used in all simulations. The
zoomed-in inset shows four wells with the particle velocities as vec-
tor plot with chirality arrows. (b) Sketch of the system’s confinement
potential allowing for interaction of neighboring wells illustrated for
a 4 × 4 well system: the potential is flat in the center with diameter D,
then increases quadratically up to a maximum. The center-to-center
distance of neighboring wells is S.

Equations (2)–(4) along with the appropriate continuity
conditions

∂tρ + ∇ · ρu = 0, (5)

∂t h + ∇ · hv̄ = 0 (6)

constitute our computational model.
Numerical integration of the model. We write Eqs. (2)–(6)

in the dimensionless form by choosing τdif and ω0aτdif as
units of time and length, respectively. Then the velocities
v̄ and u are rescaled by ω0a. The roller number density is
normalized by its mean value ρ̄ = σ/(πa2), where σ is the
surface fraction of the particles. Similarly, the magnetic mo-
ment density and the host fluid depth are normalized by d0ρ̄

and h̄, respectively. The frequency chosen in the simulation
corresponds to the experimental frequency of 45 Hz.

The translation diffusion coefficient is given by D =
ω2

0a2τdif/4, as shown in [39]. We assume that the alignment
of u and μ is instantaneous and set the coefficient in front
of μ × [μ × u] in the dimensionless model to 100. To solve
Eqs. (2)–(5) numerically, we discretized the system on a reg-
ular, square mesh with up to 1024 × 1024 grid points. The
physical size is chosen from 50 to 120 in units of a and
we simulate a 8 × 8 well system, where the confining well
potential is tuned such that for S = D = 6.4 the best order
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can be achieved (see next section). A typical configuration
in this system is shown in Fig. 2(a). In principle, a system
with a larger number of lattice sites or a system with periodic
boundary conditions can be easily implemented, though the
time scale needed to reach a steady state of the vortex lattice
increases with the lattice size.

All equations are integrated using quasispectral split-step
methods, which calculate all second-order spatial derivatives
in Fourier space. Technically, the solver is implemented on
the general-purpose graphics processing units (GPU) using
complex fast Fourier transforms (FFT; here the cuFFT imple-
mentation) for the x and y components of u, v, and μ and the
combined (h, ρ) vector. Compared to general-purpose CPU
finite-element solvers, this method allows for an integration
speed-up of three to four orders of magnitude and naturally
uses periodic boundary conditions due to the FFTs. Note that
the wells are not connected across the simulated system’s
boundaries. We typically simulate the behavior of the system
for 106 time steps; each time step is 0.004τsim, where τsim =
f −1
sim is the dimensionless time unit used in the simulations,

i.e., the period of oscillation at a fixed frequency fsim. For
our system with τdif = 0.25 s, fsim = 1 corresponds to 60 Hz
or τsim to 16.7 ms, resulting in the total simulation time (106

time steps) being about 1 min in real time. The dimensionless
frequency of the external magnetic field is typically set to
f = 0.75 (corresponding to 45 Hz) in all simulations (for the
healing protocol, the frequency is briefly lowered to 20 Hz).
For the calculation of the averaged spin correlation function,
〈Cs〉, we ran up to 100 simulations with different random
initial conditions.

III. RESULTS AND DISCUSSION

Ferromagnetic nickel spheres develop a steady rotation
in synchrony with an energizing uniaxial alternating mag-
netic field applied perpendicular to the substrate and display
a net rolling motion in a certain range of the driving field
parameters [15,40]. The particles steadily spin when the fol-
lowing condition is satisfied: Im(ν[−p2, 2q]) − p > 0 [15].
Here the Mathieu characteristic exponent ν is the function of
the two parameters p = αr/(ωI ) and q = μB0/(ω2I ), where
ω = 2π fB, η is a fluid kinematic viscosity, and μ, m, I =
2
5 mR2

Ni, and αr = 8πηR3
Ni are correspondingly the magnetic

moment, mass, moment of inertia, and the rotational drag
coefficient of a roller. The direction of propulsion of the in-
dividual rollers is not prescribed by the external field and is
spontaneously selected by each particle. The frequency, f , of
the oscillating magnetic field controls the speed of the rolling
motion and is used to manipulate the activity in the system.
Collective dynamics of the rollers is defined by an interplay
between magnetic and hydrodynamic interactions and leads
to the emergence of a set of dynamic phases ranging from
gas and flocks to large scale vortices [15,20,41]. The emer-
gence of multivortical states in magnetic roller suspensions
with freestanding vortices proceeds through spontaneous lo-
cal self-densifications of the rollers’ number density, which
give rise to free-standing self-organized vortices [27,28].
The amplitude of the external magnetic field is a conve-
nient knob to fine-tune the balance between hydrodynamic
and magnetic interactions. It was demonstrated [27] that the

FIG. 3. Individual roller vortex lifetime, τlife, as a function of a
confining well diameter, D, taken for vortices induced at f = 40 Hz.
The mean time of spontaneous chirality switching of vortices was
used to determine the vortex lifetime. The solid line is a guide for the
eye.

field amplitude can independently tune the magnetic dipole-
dipole interactions between the rollers. Small variations of the
field amplitude, H0, within the range not affecting the ferro-
magnetic moment of the particles (±5 G) induce additional
paramagnetic moment in the particles along the field direction
and result in changes of the roller-to-roller spacing within
vortices [27]. To control the location of the self-organized vor-
tices we utilize an array of 3D-printed microwells (Fig. 1). It
provides natural locations for the densifications of the rollers
and effectively seeds the self-organized vortices. While the
vortices on substrates without patterning are often mobile
[27], the presence of patterned wells effectively localizes them
and only individual rollers may still occasionally travel be-
tween the wells. When the wells are well separated, such
that the interactions between individual vortices can be ne-
glected, each individual vortex spontaneously selects its polar
state (clockwise or counterclockwise) and the dynamics of
the vortices is defined only by the parameters of the well
confinement. For instance, as the diameter of a well decreases,
the vortex inside becomes unstable and may intermittently fall
apart, and self-assemble to a new vortex with a random polar
state. Such behavior is reflected in a decrease of the individual
vortex lifetime as the radius of the confining well decreases;
see Fig. 3.

The decrease in the well separation distance promotes
interactions between neighboring vortices (both by induced
hydrodynamic flows and roller material exchange) and leads
to a buildup of the correlations between neighboring vortical
states that, eventually, results in the emergence of globally
correlated vortex lattices; see Fig. 1(b) illustrating the emer-
gence of a globally correlated vortex lattice in the experiment
at f = 40 Hz. A similar behavior of self-organized vortical
lattices is recovered in simulations [Fig. 1(c) based on the
above continuum model with confining well potentials] with
alternating blue and red colors indicating the antiferromag-
netic ordering of the polar states in the vortex lattices.

Naturally, the geometry of the lattice controls the dynamics
of emergent vortex lattices: the degree of the correlations
(or strictly speaking anticorrelations) between the polar states
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FIG. 4. Temporal and geometrical dependence of the spin correlation function. (a) Representative time evolution of the spin correlation
function Cs(t ) in experiment (black)and simulations (purple) starting from a random initial condition. The system typically does not reach
a fully antiferromagnetic state with Cs = −1 and often plateaus at Cs ∼ −0.5. (See also Supplemental Movies S1, S2, and S3 [35].) The
experimental curve was obtained for f = 40 Hz. (b) Average spin correlation 〈Cs〉 as function of the well diameter D. The well-to-well
separation distance, S, is chosen to equal to the D (wells are in contact). Both experimental and simulation results are shown with comparable
length scales. (c) 〈Cs〉 as function of S. D is fixed at 3 mm while varying S in the experiment and D = 6.4a in the simulation [the same scaling
factor as in panel (b) is used]. The numerical results in (b) and (c) are averaged over about 100 simulated configurations and show that the
antiferromagnetic order is best at a certain well geometry (see text).

of the neighboring self-organized roller vortices strongly
depends on the unit vortex size and vortex-to-vortex spacing,
which both can be independently tuned by the well diameter,
D, and the well-to-well separation distance, S.

To characterize the degree of the polar states’ correlations
in the vortex lattices, we calculate the spin correlation function
of the lattice, Cs, where Cs = −1 corresponds to a lattice with
perfect antiferromagnetic ordering [Figs. 1(b) and 1(c)]. The
formation of correlated polar lattices is gradual and proceeds
through a slow process (103–107 driving field periods) of
polar state switching of individual vortices that are not in a fa-
vorable polar state. Those instances of a polar state switching
are manifested as steplike changes of Cs(t ) shown in Fig. 4(a)
(see also Supplemental Movies S1, S4 [35]). The process of a
polar state reversal (and the corresponding time scale) is de-
fined by the ability of individual vortices to change their polar
state and by the influence of their neighbors (through a buildup
of hydrodynamic sheer stresses in the case of unfavorably
oriented polar states). As illustrated in Fig. 3, the stability of a
vortex (and as a result the difficulty of a polar state switching)
grows with the well size. Correspondingly, when larger wells
(D > 3.5 mm) are brought even in close contact (S = D), no
formation of a correlated lattice is observed. On the other
extreme, when the confinement is too small (a few particle
diameters) the self-organized roller vortices in each well are
intrinsically unstable due to a small number of rollers forming
the collective vortical state, which also prevents the formation
of a globally correlated vortical lattice. Figure 4(b) illustrates
a typical nonmonotonic behavior of the average spin corre-
lation function, 〈Cs〉, as a function of the well diameter. The
experimental and computational results are shown at compa-
rable scales (1 mm corresponds to 2.3a simulation scale). It
is also expected that the emergence of vortex lattices with
correlated polar states will strongly depend on the interwell
spacing S and vanish when S becomes large; see Fig. 4(c).

For an intermediate region of the well sizes [about 3 mm
for our system as seen from Fig. 4(b)] and minimal well-
to-well spacing S = D (corresponding to a lattice with the
wells in contact) the system exhibits spontaneous formation

of correlated lattices with predominantly antiferromagnetic
ordering of the vortical polar states; see Fig. 5 and Supple-
mental Movies S1, S2, and S3 [35]. Nevertheless, the system
typically does not reach a perfect antiferromagnetic state
with Cs = −1 and often plateaus at a lower value of Cs; see
Fig. 4(a).

The onset of spin correlation in vortex lattices is observed
by virtue of vortex-vortex interactions when S becomes com-
parable to D [Fig. 4(c)] and largely driven by macroscopic
hydrodynamic flows induced by the rollers forming a vortex.
Vortices in neighboring wells become entangled.

The simulation results confirm the experimentally ob-
served behavior and provide additional insight over a wider
range of well sizes and well separation distances revealing
that the correlation function/antiferromagentic (AF) order can
be optimized in certain geometries. As mentioned before, the
simulated 8 × 8 well system was tuned to be “optimal” at a
well diameter of Dsim = 6.4a, which translates to an optimal
experimental well diameter of D ≈ 2.7 mm. Deviations from
this optimal size result in less AF order developed over a fixed
time.

The formation of vortex lattices with globally correlated
polar states can be further manipulated by activity modula-
tions (controlled by the excitation frequency, f , of the driving
magnetic field) that allow one to significantly increase the
“annealing” speed of the unfavorable polar states in the vortex
lattice.

We note that vortex lattices formed by self-assembled
roller vortices are out of equilibrium and sustain their structure
only under the continuous application of a uniaxial oscillating
magnetic field at certain frequencies that facilitate high roller-
to-roller velocity correlations (e.g., f ∼ 40 Hz) [15,40]. A
modulation of the activity (by either decreasing or increasing
the frequency f beyond the values favoring vortical collective
states) disrupts the self-assembled vortices and promotes the
formation of a gaslike phase due to a significant decrease of
roller-to-roller velocity correlations [15]. Thus, intermittently
switching between “gaslike” ( f = 20 Hz) and “vortex” ( f =
45 Hz) frequencies, we can temporarily disrupt and restore the
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FIG. 5. Self-healing behavior in synchronized vortex lattices. (a) Time evolution of Cs(t ) in a vortex lattice at a magnetic field with high f
(45 Hz). At t = 0, the application of a magnetic field with f = 20 Hz disrupts and resets the lattice (i.e., Cs = 0). As the magnetic field with
f = 45 Hz is applied, the vortex lattice self-heals and attains antiferromagnetic ordering (i.e., 〈Cs〉 = −1). (b) Snapshots of the PIV vorticity
(top) and velocity (bottom) map in the vortex lattice demonstrating the annealing process. No vortex lattice at t = 0 min, an emergent vortex
lattice with defects at t = 1 min, and a completely ordered vortex lattice t = 2 min. (c) Simulated Cs(t ) for the 8 × 8 well system with low
frequency pulse at 2000τsim with frequency corresponding to 20 Hz. After the pulse, Cs reaches zero briefly and then drops close to the full
AF state after local rearrangements shown in (d), which shows the particle density (top row) and velocity vector field (bottom row) at different
times. Regions of local vortex rearrangement are indicated by ovals and disoriented vortices in the steady state after self-healing by a rectangle.
(See also Supplemental Movies S5 and S6 [35].)

vortical states, making it easier for otherwise stable vortices
to change their dynamic polar state to the one more favorable
by the neighboring vortices. This “dynamic structure anneal-
ing” by the activity modulations is in principle analogous to
thermal annealing, extensively used to help materials progress
towards its equilibrium state by supplying energy to increase
the rate of atom diffusion. However, there is one fundamental
difference—the activity annealing of self-assembled dynamic
(out-of-equilibrium) materials requires only a change in the
activity (that could be increased or decreased) to break away
from the dynamic state being annealed. Figure 5 illustrates
the activity annealing of a square lattice of self-assembled
roller vortices from an initially uncorrelated state to a glob-
ally correlated lattice with antiferromagnetically ordered polar
states of the vortices. The time evolution of Cs(t ) shown in
Fig. 5(a) captures a rapid (t ∼ 100 s) descent of the structure
towards the ordered state with Cs = −1 [also visualized by
the vorticity and velocity maps in Fig. 5(b); see Supplemental
Movie S4 [35]]. A similar procedure was also realized in sim-
ulations, where we first let the system evolve at high frequency
of a vortex state (corresponding to 45 Hz in the experiment),
then apply a low frequency pulse (20 Hz, at simulation time

2000τsim) and switch back to the original high frequency.
Animated time evolutions are shown in Supplemental Movies
S5 and S6 [35]. The result is illustrated in Fig. 5(c) with the
low frequency pulse shown as a shaded vertical bar. After
the pulse, the system first goes back to a disordered state
and then rapidly drops to nearly ideal AF order (about three
vortices remained disoriented in the interior, indicated by a
rectangle in Fig. 5(d) at large times). Panel 5(d) shows the
vorticity and particle velocity at different times. Examining
the behavior after the low frequency pulse more closely we
see that the vortex structure becomes locally dislocated from
the wells (indicated by ovals in the plot), allowing the system
to reassemble an AF order in a smaller subsystem (which is
easier than in larger arrays).

In that sense, the activity annealing can reversibly trig-
ger the self-healing of anti-ferromagnetic ordering in vortex
lattices. The self-healing process is driven by a dynamic
realignment of the polar states of adjacent vortices by macro-
scopic hydrodynamic flows generated by the neighbors.
Stable vortices favor the nearest neighbors to have oppo-
site chiralities of the polar states that facilitate unobstructed
hydrodynamic flows in between them [27,28]. Although a
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vortex lattice in the process of annealing gains rather high
average spin correlation in a relatively short time, the process
of a dynamic annealing of the lattice defects continues [see,
for instance, Fig. 5(b) at t = 120 s and Supplemental Movie
S4 [35]] until the system reaches a nearly perfect antiferro-
magnetic ordering. Once formed, a globally correlated vortex
lattice is very stable and shows no further dynamic evolution;
see Figs. 5(b) and 5(c). Correlated AF vortex lattices also
help to stabilize vortices that are individually unstable, for
instance, while individual vortices generated at f = 50 Hz
are at the verge of transition to a linear flocking state [15],
the antiferromagnetic lattice of vortices at f = 50 Hz is stable
(see Supplemental Movie S7 [35]).

IV. CONCLUSIONS

In summary, we report on spontaneous formation of glob-
ally correlated lattices comprised of self-assembled roller
vortices in active magnetic fluid. We show how the formation
and stability of such active vortex lattices is promoted by
patterned substrates with predesigned soft confinements for
the individual rollers. We reveal that under certain condi-
tions (controlled by the parameters of the confining geometry)
an ensemble of interacting self-organized active vortices

develops correlations between the polar states of the neigh-
boring vortices and spontaneously evolves towards a globally
correlated state with antiferromagnetic ordering of the vortic-
ities. We introduce and demonstrate the process of “activity
annealing” that allows one to significantly shorten the time
scale of achieving a steady dynamic state with nearly perfect
antiferromagnetic order of these out-of-equilibrium systems.
The formation of globally correlated states in ensembles of
emergent roller vortices facilitates the effective coupling of
macroscopic hydrodynamic flows that can, in principle, be
useful for directed transport applications at the microscale.
Our studies provide insights into the onset of correlated
motion in active magnetic roller fluids and could be ex-
tended towards more complex lattice geometries such as Lieb,
Kagome, and heterogeneous lattices.
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