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Quantum Monte Carlo study of the attractive kagome-lattice Hubbard model
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The recent experimental discovery of several families of kagome materials has boosted the interest in
electronic correlations on a kagome lattice. As an initial step to understand the observed complex phenomena,
it is helpful to know the correspondence between the simple forms of interactions and the induced correlated
states on a kagome lattice. Considering the lack of such studies, here we systematically investigate the attractive
kagome-lattice Hubbard model using the mean-field approach and determinant quantum Monte Carlo (DQMC).
A charge-density-wave order satisfying the triangle rule is predicted by the mean-field treatment, and subsequent
DQMC simulations provide indirect evidence for its existence. The s-wave superconductivity is found to be
stabilized at low temperatures, and to exist in dome regions of the phase diagrams. We then determine the
superconducting critical temperature quantitatively by finite-size scaling of the pair structure factor. These results
may be helpful in understanding the observed superconductivity in kagome materials.
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I. INTRODUCTION

The kagome lattice, formed by corner-sharing triangles, is
unique in that it combines the intriguing physics of geometry
frustration, and flat band and Dirac fermions, and thus sets
an ideal platform for novel quantum phases [1]. Due to the
strong geometry frustration, the antiferromagnetic spin-1/2
Heisenberg model on the kagome lattice is a paradigmatic
realization of a quantum spin liquid (QSL). Many efforts have
been devoted to uncover its physical nature, among a gapless
U (1) Dirac QSL, a gapped topological Z2 QSL, and chiral
QSL [2–7]. The rich features in the energy dispersion of
the itinerant electrons on the kagome lattice have provoked
great interest in investigating the exotic quantum orders of
fermions. Especially, spin-orbit coupling can open a nontrivial
gap at the Dirac point and the quadratic band crossing point
touching the flat band, generating Z2 topological insulating
states [8]. Remarkably, several magnetically ordered materials
that contain a kagome lattice have been found recently, and the
experimental evidence points to the realization of the above
simple topological model [9–13]. Theoretically, a rich variety
of interaction-driven phases have been proposed, including
a dynamically generated topological phase, various spin or
charge bond orders and density waves [14–17], and the su-
perconducting instability [18–21].
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The interest in electronic correlations in a kagome lattice is
further boosted by the recent experimental discovery of sev-
eral families of kagome materials, such as TmXn (T = Fe, Co
and X = Sn, Ge) and AV3Sb5 (A = Cs, K, Rb) [9,10,22].
The exhibited topological quantum states and a cascade of
correlated phases have received significant research interest
[23–25]. Specifically, in the new kagome prototype materials
AV3Sb5 (A = Cs, K, Rb), a stacked ideal kagome network of
vanadium layers gives rise to rich correlated electronic phases
including charge-density-wave (CDW) order occurring below
T CDW

c ≈ 80–110 K, a further transition at T ′ = 35 K with an
additional unidirectional charge ordering vector, and uncon-
ventional superconductivity with critical temperatures Tc ≈
0.9–2.7 K [26]. The CDW order, which may be closely related
to van Hove singularities at the Fermi level [27], exhibits ex-
otic characteristics such as time-reversal symmetry breaking
[28–30] and nematicity [31]. Its interplay with superconduc-
tivity has been investigated by applying external pressure.
As the CDW is destabilized by pressure, the superconduct-
ing state undergoes an unconventional two-dome evolution
in the critical temperature, which suggests a complex inter-
twinement of the CDW state and superconductivity [32,33].
At present, the microscopic interacting mechanism underly-
ing the above correlated states is challenging, and remains
elusive [34–37]. First, it is helpful to know the correspon-
dence between simple forms of interactions and their induced
symmetry-breaking orders on a kagome lattice. Nevertheless,
up to now, the prototype models of interacting fermions on
a kagome lattice are still less investigated than their counter-
parts on square and honeycomb geometries [38–47].

In this paper, we perform a systematic study of an attractive
kagome-lattice Hubbard model, with the aim of estimating the
relevance of attractive on-site interactions to the experimental
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FIG. 1. (a) The geometry of the kagome lattice, which is a trian-
gular Bravais lattice with a three-site unit cell. (b) The band structure
along the high-symmetry directions in the Brillouin zone.

discoveries. We first analyze the physical property of possible
CDW orders at ρ = 2/3, and perform a mean-field study of
the CDW phase transition. Then determinant quantum Monte
Carlo (DQMC) is applied to unveil the correlated phases
therein. From the charge correlation function, an instability
to CDW patterns is found, satisfying that the triangle rule
may occur at the Dirac points. Next, we calculate the s-wave
pair structure factor, and map out the phase diagrams in the
(μ, T ) plane. Although the finite-size effect is apparent in
small lattices, robust superconducting domes exist for large
values of U, L. Finally, we determine the superconducting
(SC) transition temperature using finite-size scaling. These
results suggest that the s-wave superconductivity supported by
some experiments in AV3Sb5 may originate from an electronic
attractive on-site interaction.

This paper is organized as follows. Section II introduces
the model we will investigate, along with our computational
methodology. Section III presents the mean-field theory for
the CDW transition. Section IV uses DQMC simulations to
study a possible CDW state at 1/3 filling and superconductiv-
ity with on-site pairing. Section VI gives the conclusions.

II. MODEL AND METHOD

We start from the attractive kagome-lattice Hubbard model,

H = −t
∑
〈i j〉σ

c†
iσ c jσ − U

∑
i

(
ni↑ − 1

2

)(
ni↓ − 1

2

)
, (1)

where c†
iσ and ciσ are the creation and annihilation operators,

respectively, at site i with spin σ =↑,↓; 〈i j〉 denotes nearest
neighbors; niσ = c†

iσ ciσ is the number of electrons of spin σ on
site i, and U is the on-site attractive interaction. Throughout
the paper, the hopping amplitude is set to t = 1 as the unit of
energy.

The kagome lattice has a three-site unit cell [Fig. 1(a)]. In
momentum space, the U = 0 Hamiltonian is given by [8]

H0(k) = −2t

⎛
⎝ 0 cos k1 cos k3

cos k1 0 cos k2

cos k3 cos k2 0

⎞
⎠, (2)

where kn = k · an (the sublattice index n = 1, 2, 3) with a1 =
(1, 0), a2 = (−1,

√
3)/2, and a3 = −(a1 + a2). The spectrum

of H0(k) has one flat band E3(k) = 2t and two dispersive
ones,

E1,2(k) = t[−1 ±
√

4 f (k) − 3], (3)

with f (k) = cos2 k1 + cos2 k2 + cos2 k3. Bands 1 and 2 touch
at two inequivalent Dirac points K± = (±2π/3, 0) at energy
−t [see Fig. 1(b)]. For 1/3 filling, the lowest band is filled,
and the low-energy excitations resemble those of graphene,
which are linear, ε1,2 = ±√

3t | 	q|, with 	q = (qx, qy) a small
displacement away from the Dirac points.

At finite interactions, Eq. (1) is solved numerically
via DQMC, where one decouples the on-site interaction
term through the introduction of an auxiliary Hubbard-
Stratonovich field, which is integrated out stochastically. The
only errors are those associated with the statistical sampling,
the finite spatial lattice size, and the inverse temperature dis-
cretization. These errors are well controlled in the sense that
they can be systematically reduced as needed, and further
eliminated by appropriate extrapolations. Unlike the repulsive
Hubbard model on a kagome lattice where the infamous sign
problem exists at all densities [48–50], the attractive case
under our investigation is free of the sign problem [51–55].
This allows DQMC to reach the low temperatures needed to
study the ground-state properties. In the following, we use the
inverse temperature discretization �τ = 1/16, and the lattice
has N = 3 × L × L sites with L up to 12.

III. MEAN-FIELD THEORY

To explore possible CDW orders at ρ = 2/3, we first in-
vestigate the physical properties of the CDW order preserving
the translation symmetry of the kagome lattice. The following
CDW term is added to the noninteracting Hamiltonian in
Eq. (2),

HCDW(k) = diag(w1,w2,w3), (4)

where wl (l = 1, 2, 3) represents the on-site potential of the
lth sublattice. Since it is independent of spin, we can discard
the spin index, and focus on the spinless case at ρ = 1/3.

Here, a central concern is whether the above CDW can
open up a gap at the Dirac points. This is more easily revealed
based on the low-energy Hamiltonian, which can be obtained
by linearizing Hk = H0(k) + HCDW(k) near K± and subse-
quently projecting onto the subspace associated with the two
lowest bands. With the above procedure, we find the following
low-energy Hamiltonian,

h�(k) = v
[
σz

(
kx − A�

x

) + σx
(
ky − A�

y

)] + 1w (5)

for valley �, with the Fermi velocity v = √
3t , w = (w1 +

w2 + w3)/3, and

A�
x = (2w2 − w1 − w3)�/6v,

A�
y = (w1 − w3)�/6t .

Thus the CDW couples to the Dirac fermions as a gauge
field, which moves the positions of the Dirac point in the
Brillouin zone, and does not open up a gap. Nevertheless,
when the CDW is large enough to make the two Dirac points
meet and merge with each other, the system becomes gapped.
This is in great contrast to the situation in graphene, where an
on-site staggered potential always opens up a gap at the Dirac
points.

Then it is helpful to perform a mean-field (MF) analysis
of the Hamiltonian Eq. (2) to reveal possible CDW orders. In
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the MF approximation, the interaction term in Eq. (2) can be
decoupled as

ni,↑ni,↓ = 〈ni,↑〉ni,↓ + ni,↑〈ni,↓〉 − 〈ni,↑〉〈ni,↓〉. (6)

To perform a mean-field decomposition, one needs to prelim-
inarily assume the configuration of the charge order. There
may be various kinds of CDW phases at the low filling ρ =
2/3. To get some clues, let us first recall the situation in the
bipartite square and honeycomb lattices. At half filling, the
attractive model can be exactly mapped on a repulsive one
by the following transformation, c j↑ → c̄ j↑ and c j↓ → c̄†

j↓ =
(−1) jc j↓, where j is even (odd) on one (the other) sublattice.
The z (xy) component of the SU(2) symmetric antiferro-
magnetism in the repulsive model corresponds to the CDW
(superconducting) phase in the attractive one. Specifically, the
CDW is composed of alternating empty and doubly occupied
sites. The above knowledge gives us the following implication
for the attractive kagome-lattice model: The doubly occupied
sites are favored by negative U ; the electron-rich sites tend
to be far away from each other. Hence we consider a set of
well-established CDWs in the literature satisfying the triangle
rule [15]: Each unit cell of a kagome lattice only contains one
electron-rich site, and it is always surrounded by electron-poor
sites at the nearest neighbors. There are still multiple such
CDWs, and herein we focus on a simple configuration in
which one specific sublattice is occupied by majority elec-
trons. To incorporate the above CDW order, the average of
the number operator is written as 〈ni,σ 〉 = ρi with ρi the order
parameter. Since the assumed CDW preserves the translation
symmetry of the kagome lattice, ρi may only differ within
the unit cell, and takes three values ρl (l = 1, 2, 3). Then the
attractive Hubbard interaction becomes

−U
∑

i

ni,↑ni,↓ = −U
∑

l=1,2,3

∑
i∈l

ρl ni + E0, (7)

where ni = ni,↑ + ni,↓ is the operator of total number of elec-
trons, and E0 = NU

3 (ρ2
1 + ρ2

2 + ρ2
3 ) with N the total number

of sites is a constant. In the momentum space, the MF Hamil-
tonian is written as

Hσ
MF(k) = Hσ

0 (k) + Hdiag, (8)

with

Hdiag =
⎛
⎝−Uρ1 0 0

0 −Uρ2 0
0 0 −Uρ3

⎞
⎠. (9)

The energy spectrum is directly obtained by diagonalizing
the above Hamiltonian. Supposing the low-energy band is
Ek (degenerate for both spin copies), the total ground-state
energy is Etot = 2

∑
k Ek + E0. Minimizing Etot with respect

to ρl , we can obtain the self-consistent equation for the order
parameters

ρl = − 3

2UN

∂Etot

∂ρl

. (10)

Figure 2 plots the order parameters ρl calculated self-
consistently as a function of U . The order parameter is
uniform, and all equal to 1/3 at small interactions. Then at
a critical strength Uc/t = 4.54, the curves suddenly split into
two branches, and the value of ρ1 becomes much larger than

FIG. 2. The mean-field order parameters ρ1, ρ2, and ρ3 as a
function of U . The curves exhibit a discontinuity marking the CDW
phase transition, and the critical interaction is determined to be
Uc/t = −4.54.

that of ρ2, ρ3 (ρ2 = ρ3), suggesting the occurrence of a CDW
phase transition.

IV. DQMC RESULTS

A. CDW at 1/3 filling

Next, we apply DQMC to unveil the physical properties
of the Hamiltonian in Eq. (1) quantitatively. Figure 3 plots
the average density ρ = 1

N

∑
iσ 〈niσ 〉 vs μ for various values

of U . There exist evident finite-size plateaus near the Dirac
density ρ = 2/3, which persist up to U/t ∼ −4. Afterwards,
ρ continuously increases with μ, and the curves show no
special features. As discussed above, since the CDW may not
gap out the Dirac points, it is unclear here whether a ρ = 2/3
CDW has been induced by large attractive interactions.

In order to detect the possible CDW phase, we plot in Fig. 4
the real-space charge-charge correlation function, which is
defined as C(r) = 〈nini+r〉 with ni = ni↑ + ni↓. C(r) is nearly
uniform over the whole lattice except the nearest-neighbor
(NN) charge correlations, whose values are apparently smaller
than the other ones. We further calculate the ratio R =
C(rnn)/C(rmax) with rnn (rmax) the NN (maximum) distance
in the lattice. It is found that as the average density increases
and goes away from ρ = 2/3, R increases continuously, and

FIG. 3. The average density as a functions of μ at the attractive
interaction (a) U/t = 0, −2, −4 and (b) U/t = −6, −8, −10. Here,
the lattice size is L = 6, and the inverse temperature is βt = 18.
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FIG. 4. (a) The charge correlation function C(r) for μ/t = −0.4
(corresponding to ρ = 2/3) on an L = 6 lattice. The red star marks
the reference site, and the magnitude of the correlation is represented
by the radii of the solid blue circle. (b) C(r) in one updated con-
figuration of the DQMC measurement of (a). (c) The distribution
of the values of C(r) in (a). (d) The ratio R = C(rnn)/C(rmax) as
a function of chemical potential. Here, the interaction strength in
(a)–(c) is U/t = −8. The inverse temperature βt = 12 is used in all
panels.

becomes uniform from μ/t ∼ 1. Although no CDW pattern
is identified at ρ = 2/3, each configuration in the histogram
of DQMC measurements has clearly inhomogeneous charge
correlations. The above behavior may be due to the multifold
degeneracy of the CDW phase fulfilling the triangle rule.
After averaging over the different charge patterns, the charge
correlations become uniform. Nevertheless, since the triangle
rule always restricts the occupation of the NN sites in all
degenerate configurations, the value of the NN charge cor-
relations remains greatly reduced. Hence, our results provide
indirect evidence for the existence of CDW patterns satisfying
the triangle rule.

B. Superconductivity with on-site pairing

The s-wave superconductivity is characterized by the pair
structure factor,

Ps = 〈�†� + ��†〉, (11)

with

�† = 1√
N

∑
i

c†
i↑c†

i↓. (12)

Figure 5 plots the pair structure factor in the (μ, T ) plane for
several lattice sizes. For a small lattice, the finite-size effect
is very apparent, which is similar to what has been observed
in the attractive Hubbard model on the square lattice [56]. As
shown in Fig. 5(a), the s-wave pairing is enhanced at suffi-

FIG. 5. The pair structure factor Ps in the space of parameters
T/t vs μ/t at U/t = −4 for lattice sizes (a) L = 3, (b) L = 6, and
(c) L = 9. (d) Similar plot with U/t = −6 and L = 6.

ciently low temperatures near several special values of μ/t .
This behavior has been attributed to the coarse discretization
of the Brillouin zone in small lattices, which persists even at a
moderate interaction U/t = −4. As the lattice size increases,
there remain two disconnected superconducting domes. As
shown in Figs. 5(b) and 5(c), the gap between them de-
creases with lattice size, and seems highly related to the flat
region of the average density near ρ = 2/3. For a stronger
interaction strength U/t = −6, there is only one large su-
perconducting dome in the phase diagram. Correspondingly,
there are no visible plateaus in the curve of the average
density.

Next, we perform a quantitative analysis of the supercon-
ducting critical temperature. Here, we focus on a density
of ρ = 1.35 instead of the case of the Dirac filling ρ =
2/3 associated with a CDW phase. The reason is that the
finite-size effect is very severe at ρ = 2/3, and it is dif-
ficult to perform a proper finite-size scaling. As shown in
Fig. 5, s-wave superconductivity exists at nearly all fillings.
So to obtain a quantitative analysis of the critical tempera-
ture, we take μ/t = 0.9 (corresponding to ρ = 1.35), where
the superconductivity is most predominant for U/t = −4, al-
lowing a reasonable finite-size scaling with relatively small
lattice sizes. As the temperature is lowered, the pair struc-
ture factor increases monotonically [see Fig. 6(a)]. For high
temperatures, Ps is size independent due to the absence of
superconducting long-range order. Conversely, Ps increases
significantly with the lattice size at low temperatures, which is
a hallmark of the occurrence of the superconducting state. The
usual way to investigate the properties of the Hubbard model
is to fix the average density. However, since DQMC works in a
grand-canonical ensemble, the above routine has an increased
overhead to determine the chemical potential that produces the
desired filling. Here, we choose to fix the chemical potential
for different temperatures. In the temperature range of interest
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FIG. 6. (a) Ps as a function of temperature T for various lattice
sizes. (b) The average density vs T , which correspond to the plots
in (a). (c) The exponent η(T ) extracted according to Eq. (15) as a
function of temperature. The critical temperature is determined to
be Tc = 0.11 by the condition η(Tc ) = 0.25. (d) The collapse of the
curves in (a) using the scaling form Eq. (14) and Tc determined in
(c). The data points shown as solid circles in (a) and (b) are above Tc,
and are used for the extraction and scaling in (c) and (d). (L′, L) in
the legend of (c) represents the two different lattice sizes in Eq. (15),
with L the reference one. Here, A = −0.367 is used to obtain the
best collapse. The interaction strength U/t = −4 and the chemical
potential μ/t = 0.9 are used.

(T/t = 0.1–0.16), this routine results in a slight deviation of
the densities around ρ = 1.35 [see Fig. 6(b)].

One expects the decay of the real-space correlations as
follows,

C(r) ≡ 〈c†
i↑c†

i↓cj↓cj↑ + H.c.〉 ∼ r−η(T ), (13)

where r = |i − j|. Then the pair structure factor scales as

Ps = L2−η(T ) f (L/ξ ), (14)

with the coherence length ξ ∼ exp[−A/(T − Tc)
1
2 ]

[51,52,55,56]. Here, η(T ) is temperature dependent, and
can be extracted by dividing the above scaling form from two
different lattice sizes L, L′. The obtained exponent is written
as

η(T ) = 2 − ln [Ps(L, T )/Ps(L′, T )]

ln (L/L′)
. (15)

We take an L = 6 lattice as the reference one, and the ex-
tracted η(T ) at each temperature according to the above
equation is illustrated in Fig. 6(c). At high temperatures, the
pair structure factor has a negligible size dependence, thus the
exponent η(T ) saturates around 2 in this regime. Otherwise,
in the T → Tc limit, η(Tc) = 0.25 is expected. Above Tc,
η(T ) increases monotonically to the saturated value 2. By a
linear fit of the increasing regime, the critical temperature is
determined to be Tc/t = 0.11 for U/t = −4 and μ/t = 0.9.

Subsequently, we collapse Ps of different lattice sizes using
the scaling form in Eq. (14) with the above Tc and A being
adjusted to give the best data collapse. As shown in Fig. 6(d),
the collapse onto a single curve is rather good for the η(T )-
increasing region.

V. CONCLUSIONS

We investigate the attractive kagome-lattice Hubbard
model with two complementary methods: the mean-field
theory and large-scale DQMC simulations. The mean-field
analysis predicts a CDW transition, with the configuration
of the CDW order satisfying the triangle rule. Subsequent
DQMC simulations provide indirect evidence for its existence
at strong interactions. Then, by calculating the pair structure
factor, s-wave superconductivity is shown to be stabilized at
low temperatures, and exists in dome regions of the phase
diagrams. We finally determine the superconducting critical

FIG. 7. The charge correlation function C(r) at ρ = 2/3 on an
L = 6 lattice: (a) βt = 16 and μ/t = −0.5; (c) βt = 18 and μ/t =
−0.8; (e) βt = 20 and μ/t = −0.7. (b), (d), and (f) are C(r) in
one updated configuration of the DQMC measurements of (a), (c),
and (e), respectively. The red star marks the reference site, and the
magnitude of the correlation is represented by the radii of the solid
blue circle. The chemical potential corresponding to ρ = 2/3 varies
with temperature. Here, the interaction strength is U/t = −8.
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temperature quantitatively by finite-size scaling of the pair
structure factor.

The pairing symmetry is important to understand the SC
mechanism in AV3Sb5. Its two aspects, i.e., a gap structure
and the nature of the spin pairing state, have been much in-
vestigated experimentally. Unexpectedly, various techniques
have yielded inconsistent results, including singlet or triplet
spin pairing, and nodeless or node gap functions [57–62]. The
complexity may be due to the multiband nature of the SC
state, and it is still challenging to reconcile the apparently
contradictory observations. Nevertheless, our results suggest
an s-wave pairing mechanism by the attractive Hubbard inter-
action, which may be helpful in understanding the complex
SC phenomena in kagome materials.

ACKNOWLEDGMENTS

The authors thank Fan Yang and Wen Yang for help-
ful discussions. H.G. acknowledge support from the Na-

tional Natural Science Foundation of China (NSFC) Grants
No. 11774019 and No. 12074022, and the NSAF grant in
NSFC with Grant No. U1930402. S.F. is supported by the
National Key Research and Development Program of China
under Grant No. 2021YFA1401803, and NSFC under Grants
No. 11974051 and No. 12274036. X.Z. is supported by the
Fundamental Research Funds for the Central Universities
(Grant No. AE89991/383).

APPENDIX: CHARGE CORRELATION FUNCTIONS
AT LOWER TEMPERATURES

In Fig. 4 of the main text, we show the charge correlation
function at βt = 12 for ρ = 2/3 and U/t = −8. To address
the effect of thermal fluctuation, we have carried out DQMC
simulations at lower temperatures, and find the results are
similar (see Fig. 7). Thus the inverse temperature βt = 12 is
large enough to produce the properties of the ground state.

[1] M. Mekata, Kagome: The story of the basketweave lattice,
Phys. Today 56(2), 12 (2003).

[2] L. Balents, Spin liquids in frustrated magnets, Nature (London)
464, 199 (2010).

[3] S. Yan, D. A. Huse, and S. R. White, Spin-liquid ground state of
the s = 1/2 kagome Heisenberg antiferromagnet, Science 332,
1173 (2011).

[4] L. Savary and L. Balents, Quantum spin liquids: A review, Rep.
Prog. Phys. 80, 016502 (2017).

[5] Y. Zhou, K. Kanoda, and T.-K. Ng, Quantum spin liquid states,
Rev. Mod. Phys. 89, 025003 (2017).

[6] C. Broholm, R. J. Cava, S. A. Kivelson, D. G. Nocera, M. R.
Norman, and T. Senthil, Quantum spin liquids, Science 367,
eaay0668 (2020).

[7] M. R. Norman, Colloquium: Herbertsmithite and the search for
the quantum spin liquid, Rev. Mod. Phys. 88, 041002 (2016).

[8] H.-M. Guo and M. Franz, Topological insulator on the kagome
lattice, Phys. Rev. B 80, 113102 (2009).

[9] L. Ye, M. Kang, J. Liu, F. Von Cube, C. R. Wicker, T. Suzuki,
C. Jozwiak, A. Bostwick, E. Rotenberg, D. C. Bell et al., Mas-
sive Dirac fermions in a ferromagnetic kagome metal, Nature
(London) 555, 638 (2018).

[10] E. Liu, Y. Sun, N. Kumar, L. Muechler, A. Sun, L. Jiao, S.-Y.
Yang, D. Liu, A. Liang, Q. Xu et al., Giant anomalous Hall
effect in a ferromagnetic kagome-lattice semimetal, Nat. Phys.
14, 1125 (2018).

[11] J.-X. Yin, S. S. Zhang, H. Li, K. Jiang, G. Chang, B. Zhang,
B. Lian, C. Xiang, I. Belopolski, H. Zheng et al., Giant and
anisotropic many-body spin–orbit tunability in a strongly cor-
related kagome magnet, Nature (London) 562, 91 (2018).

[12] Z. Lin, J.-H. Choi, Q. Zhang, W. Qin, S. Yi, P. Wang, L. Li,
Y. Wang, H. Zhang, Z. Sun, L. Wei, S. Zhang, T. Guo, Q. Lu,
J.-H. Cho, C. Zeng, and Z. Zhang, Flatbands and Emergent
Ferromagnetic Ordering in Fe3Sn2 Kagome Lattices, Phys. Rev.
Lett. 121, 096401 (2018).

[13] M. Kang, L. Ye, S. Fang, J.-S. You, A. Levitan, M. Han, J. I.
Facio, C. Jozwiak, A. Bostwick, E. Rotenberg et al., Dirac

fermions and flat bands in the ideal kagome metal FeSn, Nat.
Mater. 19, 163 (2020).

[14] A. O’Brien, F. Pollmann, and P. Fulde, Strongly correlated
fermions on a kagome lattice, Phys. Rev. B 81, 235115 (2010).

[15] J. Wen, A. Rüegg, C.-C. J. Wang, and G. A. Fiete, Interaction-
driven topological insulators on the kagome and the decorated
honeycomb lattices, Phys. Rev. B 82, 075125 (2010).

[16] F. Pollmann, K. Roychowdhury, C. Hotta, and K. Penc, In-
terplay of charge and spin fluctuations of strongly interacting
electrons on the kagome lattice, Phys. Rev. B 90, 035118
(2014).

[17] M. L. Kiesel, C. Platt, and R. Thomale, Unconventional Fermi
Surface Instabilities in the Kagome Hubbard Model, Phys. Rev.
Lett. 110, 126405 (2013).

[18] S.-L. Yu and J.-X. Li, Chiral superconducting phase and chiral
spin-density-wave phase in a Hubbard model on the kagome
lattice, Phys. Rev. B 85, 144402 (2012).

[19] M. L. Kiesel and R. Thomale, Sublattice interference in
the kagome Hubbard model, Phys. Rev. B 86, 121105(R)
(2012).

[20] W.-S. Wang, Z.-Z. Li, Y.-Y. Xiang, and Q.-H. Wang, Competing
electronic orders on kagome lattices at van Hove filling, Phys.
Rev. B 87, 115135 (2013).

[21] W.-S. Wang, Y.-C. Liu, Y.-Y. Xiang, and Q.-H. Wang, Antifer-
romagnetism, f -wave, and chiral p-wave superconductivity in a
kagome lattice with possible application to sd2 graphenes, Phys.
Rev. B 94, 014508 (2016).

[22] B. R. Ortiz, L. C. Gomes, J. R. Morey, M. Winiarski, M.
Bordelon, J. S. Mangum, I. W. H. Oswald, J. A. Rodriguez-
Rivera, J. R. Neilson, S. D. Wilson, E. Ertekin, T. M. McQueen,
and E. S. Toberer, New kagome prototype materials: Discov-
ery of KV3Sb5, RbV3Sb5, and CsV3Sb5, Phys. Rev. Mater. 3,
094407 (2019).

[23] K. Jiang, T. Wu, J.-X. Yin, Z. Wang, M. Z. Hasan,
S. D. Wilson, X. Chen, and J. Hu, Kagome superconduc-
tors AV3Sb5 (A= K, Rb, Cs), Natl. Sci. Rev. 10, nwac199
(2023).

023037-6

https://doi.org/10.1063/1.1564329
https://doi.org/10.1038/nature08917
https://doi.org/10.1126/science.1201080
https://doi.org/10.1088/0034-4885/80/1/016502
https://doi.org/10.1103/RevModPhys.89.025003
https://doi.org/10.1126/science.aay0668
https://doi.org/10.1103/RevModPhys.88.041002
https://doi.org/10.1103/PhysRevB.80.113102
https://doi.org/10.1038/nature25987
https://doi.org/10.1038/s41567-018-0234-5
https://doi.org/10.1038/s41586-018-0502-7
https://doi.org/10.1103/PhysRevLett.121.096401
https://doi.org/10.1038/s41563-019-0531-0
https://doi.org/10.1103/PhysRevB.81.235115
https://doi.org/10.1103/PhysRevB.82.075125
https://doi.org/10.1103/PhysRevB.90.035118
https://doi.org/10.1103/PhysRevLett.110.126405
https://doi.org/10.1103/PhysRevB.85.144402
https://doi.org/10.1103/PhysRevB.86.121105
https://doi.org/10.1103/PhysRevB.87.115135
https://doi.org/10.1103/PhysRevB.94.014508
https://doi.org/10.1103/PhysRevMaterials.3.094407
https://doi.org/10.1093/nsr/nwac199


QUANTUM MONTE CARLO STUDY OF THE ATTRACTIVE … PHYSICAL REVIEW RESEARCH 5, 023037 (2023)

[24] T. Nguyen and M. Li, Electronic properties of correlated
kagomé metals AV3Sb5 (A = K, Rb, and Cs): A perspective,
J. Appl. Phys. 131, 060901 (2022).

[25] T. Neupert, M. M. Denner, J.-X. Yin, R. Thomale, and M. Z.
Hasan, Charge order and superconductivity in kagome materi-
als, Nat. Phys. 18, 137 (2022).

[26] H. Zhao, H. Li, B. R. Ortiz, S. M. L. Teicher, T. Park, M.
Ye, Z. Wang, L. Balents, S. D. Wilson, and I. Zeljkovic, Cas-
cade of correlated electron states in the kagome superconductor
CsV3Sb5, Nature (London) 599, 216 (2021).

[27] M. Kang, S. Fang, J.-K. Kim, B. R. Ortiz, S. H. Ryu, J. Kim,
J. Yoo, G. Sangiovanni, D. Di Sante, B.-G. Park et al., Twofold
van Hove singularity and origin of charge order in topological
kagome superconductor CsV3Sb5, Nat. Phys. 18, 301 (2022).

[28] Y.-X. Jiang, J.-X. Yin, M. M. Denner, N. Shumiya, B. R. Ortiz,
G. Xu, Z. Guguchia, J. He, M. S. Hossain, X. Liu et al.,
Unconventional chiral charge order in kagome superconductor
KV3Sb5, Nat. Mater. 20, 1353 (2021).

[29] X. Feng, K. Jiang, Z. Wang, and J. Hu, Chiral flux phase in the
kagome superconductor AV3Sb5, Sci. Bull. 66, 1384 (2021).

[30] C. Mielke, D. Das, J.-X. Yin, H. Liu, R. Gupta, Y.-X. Jiang,
M. Medarde, X. Wu, H. Lei, J. Chang et al., Time-reversal
symmetry-breaking charge order in a kagome superconductor,
Nature (London) 602, 245 (2022).

[31] L. Nie, K. Sun, W. Ma, D. Song, L. Zheng, Z. Liang, P. Wu, F.
Yu, J. Li, M. Shan et al., Charge-density-wave-driven electronic
nematicity in a kagome superconductor, Nature (London) 604,
59 (2022).

[32] K. Y. Chen, N. N. Wang, Q. W. Yin, Y. H. Gu, K. Jiang, Z. J.
Tu, C. S. Gong, Y. Uwatoko, J. P. Sun, H. C. Lei, J. P. Hu,
and J.-G. Cheng, Double Superconducting Dome and Triple
Enhancement of Tc in the Kagome Superconductor CsV3Sb5

under High Pressure, Phys. Rev. Lett. 126, 247001 (2021).
[33] F. H. Yu, D. H. Ma, W. Z. Zhuo, S. Q. Liu, X. K. Wen, B.

Lei, J. J. Ying, and X. H. Chen, Unusual competition of su-
perconductivity and charge-density-wave state in a compressed
topological kagome metal, Nat. Commun. 12, 1 (2021).

[34] X. Wu, T. Schwemmer, T. Müller, A. Consiglio, G.
Sangiovanni, D. Di Sante, Y. Iqbal, W. Hanke, A. P. Schnyder,
M. M. Denner, M. H. Fischer, T. Neupert, and R. Thomale, Na-
ture of Unconventional Pairing in the Kagome Superconductors
AV3Sb5 (A = K, Rb, Cs), Phys. Rev. Lett. 127, 177001 (2021).

[35] H. Tan, Y. Liu, Z. Wang, and B. Yan, Charge Density Waves
and Electronic Properties of Superconducting Kagome Metals,
Phys. Rev. Lett. 127, 046401 (2021).

[36] J. Zhao, W. Wu, Y. Wang, and S. A. Yang, Electronic correla-
tions in the normal state of the kagome superconductor KV3Sb5,
Phys. Rev. B 103, L241117 (2021).

[37] H. D. Scammell, J. Ingham, T. Li, and O. P. Sushkov, Chiral
excitonic order from twofold van Hove singularities in kagome
metals, Nat. Commun. 14, 605 (2023).

[38] Z. Y. Meng, T. C. Lang, S Wessel, F. F. Assaad, and A.
Muramatsu, Quantum spin liquid emerging in two-dimensional
correlated Dirac fermions, Nature (London) 464, 847 (2010).

[39] S. Sorella, Y. Otsuka, and S. Yunoki, Absence of a spin liquid
phase in the Hubbard model on the honeycomb lattice, Sci. Rep.
2, 992 (2012).

[40] F. F. Assaad and I. F. Herbut, Pinning the Order: The Nature
of Quantum Criticality in the Hubbard Model on Honeycomb
Lattice, Phys. Rev. X 3, 031010 (2013).

[41] Y. Otsuka, S. Yunoki, and S. Sorella, Universal Quantum Crit-
icality in the Metal-Insulator Transition of Two-Dimensional
Interacting Dirac Electrons, Phys. Rev. X 6, 011029 (2016).

[42] T. Paiva, R. T. Scalettar, W. Zheng, R. R. P. Singh, and
J. Oitmaa, Ground-state and finite-temperature signatures of
quantum phase transitions in the half-filled Hubbard model on
a honeycomb lattice, Phys. Rev. B 72, 085123 (2005).

[43] F. Parisen Toldin, M. Hohenadler, F. F. Assaad, and I. F.
Herbut, Fermionic quantum criticality in honeycomb and π -flux
Hubbard models: Finite-size scaling of renormalization-group-
invariant observables from quantum Monte Carlo, Phys. Rev. B
91, 165108 (2015).

[44] C. Wen, X. Zhu, Z. Xiao, N. Hao, R. Mondaini, H. Guo, and S.
Feng, Superconducting pairing symmetry in the kagome-lattice
Hubbard model, Phys. Rev. B 105, 075118 (2022).

[45] C. Wen, X. Zhu, N. Hao, H. Guo, and S. Feng, Unconven-
tional ferromagnetism and spin-triplet superconductivity in the
imbalanced kagome-lattice Hubbard model, Phys. Rev. B 105,
245131 (2022).

[46] R.-Y. Sun and Z. Zhu, Metal-insulator transition and intermedi-
ate phases in the kagome lattice Hubbard model, Phys. Rev. B
104, L121118 (2021).

[47] J. Kaufmann, K. Steiner, R. T. Scalettar, K. Held, and O.
Janson, How correlations change the magnetic structure factor
of the kagome Hubbard model, Phys. Rev. B 104, 165127
(2021).

[48] E. Y. Loh, J. E. Gubernatis, R. T. Scalettar, S. R. White, D. J.
Scalapino, and R. L. Sugar, Sign problem in the numerical
simulation of many-electron systems, Phys. Rev. B 41, 9301
(1990).

[49] M. Troyer and U.-J. Wiese, Computational Complexity and
Fundamental Limitations to Fermionic Quantum Monte Carlo
Simulations, Phys. Rev. Lett. 94, 170201 (2005).

[50] V. I. Iglovikov, E. Khatami, and R. T. Scalettar, Geometry
dependence of the sign problem in quantum Monte Carlo simu-
lations, Phys. Rev. B 92, 045110 (2015).

[51] A. Moreo and D. J. Scalapino, Two-Dimensional Negative-U
Hubbard Model, Phys. Rev. Lett. 66, 946 (1991).

[52] R. T. Scalettar, E. Y. Loh, J. E. Gubernatis, A. Moreo, S. R.
White, D. J. Scalapino, R. L. Sugar, and E. Dagotto, Phase
Diagram of the Two-Dimensional Negative-U Hubbard Model,
Phys. Rev. Lett. 62, 1407 (1989).

[53] R. R. dos Santos, Attractive Hubbard model on a triangular
lattice, Phys. Rev. B 48, 3976 (1993).

[54] K. L. Lee, K. Bouadim, G. G. Batrouni, F. Hébert, R. T.
Scalettar, C. Miniatura, and B. Grémaud, Attractive Hubbard
model on a honeycomb lattice: Quantum Monte Carlo study,
Phys. Rev. B 80, 245118 (2009).

[55] T. Paiva, R. R. dos Santos, R. T. Scalettar, and P. J. H.
Denteneer, Critical temperature for the two-dimensional
attractive Hubbard model, Phys. Rev. B 69, 184501
(2004).

[56] R. Mondaini, S. Tarat, and R. T. Scalettar, Universality and crit-
ical exponents of the fermion sign problem, arXiv:2207.09026.

[57] C. Mu, Q. Yin, Z. Tu, C. Gong, H. Lei, Z. Li, and J. Luo, S-
wave superconductivity in kagome metal CsV3Sb5 revealed by
121/123Sb NQR and 51V NMR measurements, Chin. Phys. Lett.
38, 077402 (2021).

[58] S. Ni, S. Ma, Y. Zhang, J. Yuan, H. Yang, Z. Lu, N. Wang, J.
Sun, Z. Zhao, D. Li et al., Anisotropic superconducting prop-

023037-7

https://doi.org/10.1063/5.0079593
https://doi.org/10.1038/s41567-021-01404-y
https://doi.org/10.1038/s41586-021-03946-w
https://doi.org/10.1038/s41567-021-01451-5
https://doi.org/10.1038/s41563-021-01034-y
https://doi.org/10.1016/j.scib.2021.04.043
https://doi.org/10.1038/s41586-021-04327-z
https://doi.org/10.1038/s41586-022-04493-8
https://doi.org/10.1103/PhysRevLett.126.247001
https://doi.org/10.1038/s41467-020-20314-w
https://doi.org/10.1103/PhysRevLett.127.177001
https://doi.org/10.1103/PhysRevLett.127.046401
https://doi.org/10.1103/PhysRevB.103.L241117
https://doi.org/10.1038/s41467-023-35987-2
https://doi.org/10.1038/nature08942
https://doi.org/10.1038/srep00992
https://doi.org/10.1103/PhysRevX.3.031010
https://doi.org/10.1103/PhysRevX.6.011029
https://doi.org/10.1103/PhysRevB.72.085123
https://doi.org/10.1103/PhysRevB.91.165108
https://doi.org/10.1103/PhysRevB.105.075118
https://doi.org/10.1103/PhysRevB.105.245131
https://doi.org/10.1103/PhysRevB.104.L121118
https://doi.org/10.1103/PhysRevB.104.165127
https://doi.org/10.1103/PhysRevB.41.9301
https://doi.org/10.1103/PhysRevLett.94.170201
https://doi.org/10.1103/PhysRevB.92.045110
https://doi.org/10.1103/PhysRevLett.66.946
https://doi.org/10.1103/PhysRevLett.62.1407
https://doi.org/10.1103/PhysRevB.48.3976
https://doi.org/10.1103/PhysRevB.80.245118
https://doi.org/10.1103/PhysRevB.69.184501
http://arxiv.org/abs/arXiv:2207.09026
https://doi.org/10.1088/0256-307X/38/7/077402


ZHU, HAN, FENG, AND GUO PHYSICAL REVIEW RESEARCH 5, 023037 (2023)

erties of kagome metal CsV3Sb5, Chin. Phys. Lett. 38, 057403
(2021).

[59] H.-S. Xu, Y.-J. Yan, R. Yin, W. Xia, S. Fang, Z. Chen, Y. Li,
W. Yang, Y. Guo, and D.-L. Feng, Multiband Superconductivity
with Sign-Preserving Order Parameter in Kagome Supercon-
ductor CsV3Sb5, Phys. Rev. Lett. 127, 187004 (2021).

[60] W. Duan, Z. Nie, S. Luo, F. Yu, B. R. Ortiz, L. Yin, H. Su, F.
Du, A. Wang, Y. Chen et al., Nodeless superconductivity in the
kagome metal CsV3Sb5, Sci. China: Phys., Mech. Astron. 64,
107462 (2021).

[61] C. C. Zhao, L. S. Wang, W. Xia, Q. W. Yin, J. M. Ni, Y. Y.
Huang, C. P. Tu, Z. C. Tao, Z. J. Tu, C. S. Gong et al., Nodal su-
perconductivity and superconducting domes in the topological
kagome metal CsV3Sb5, arXiv:2102.08356.

[62] Z. Liang, X. Hou, F. Zhang, W. Ma, P. Wu, Z. Zhang,
F. Yu, J.-J. Ying, K. Jiang, L. Shan, Z. Wang, and
X.-H. Chen, Three-Dimensional Charge Density Wave
and Surface-Dependent Vortex-Core States in a Kagome
Superconductor CsV3Sb5, Phys. Rev. X 11, 031026
(2021).

023037-8

https://doi.org/10.1088/0256-307X/38/5/057403
https://doi.org/10.1103/PhysRevLett.127.187004
https://doi.org/10.1007/s11433-021-1747-7
http://arxiv.org/abs/arXiv:2102.08356
https://doi.org/10.1103/PhysRevX.11.031026

