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Subdiffusive movement of chromosomal loci in bacteria explained by DNA bridging
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Chromosomal loci in bacterial cells show a robust subdiffusive scaling of the mean square displacement,
MSD(τ ) ∼ τα , with α < 0.5. On the other hand, recent experiments have also shown that DNA-bridging
nucleoid associated proteins (NAPs) play an important role in chromosome organization and compaction. Here,
using polymer simulations we investigate the role of DNA bridging in determining the dynamics of chromosomal
loci. We find that bridging compacts the polymer and reproduces the subdiffusive elastic dynamics of monomers
at timescales shorter than the bridge lifetime. Consistent with this prediction, we measure a higher exponent in
a NAP mutant compared to the wild type. Furthermore, bridging can reproduce the rare but ubiquitous rapid
movements of chromosomal loci that have been observed in experiments. In our model the scaling exponent
defines a relationship between the abundance of bridges and their lifetime. Using this and the observed mobility
of chromosomal loci, we predict a lower bound on the average bridge lifetime of around five seconds.
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I. INTRODUCTION

The diffusive dynamics of chromosomal loci have been
characterised in vivo in several bacterial species by measur-
ing the scaling exponent α of the mean square displacement
MSD(τ ) = 〈(r(t + τ ) − r(t ))2〉 ∼ τα . However, while poly-
mer theory predicts a subdiffusive scaling exponent of α =
2ν/(2ν + 1) ≈ 0.54 for a self-avoiding Rouse polymer (ν ≈
0.588) [1,2], the values measured for chromosomal loci are
consistently less than this across different species, strains, and
conditions [3–8]. Fractional Brownian motion (fBm) due to
the viscoelastic nature of the cytoplasm has been proposed
as a possible explanation [3,9]. However, this model cannot
reproduce the rare but ubiquitous rapid chromosomal move-
ments (RCMs) made by loci [10] and its predictions are
inconsistent with a recent study in which compression of the
cell was found to only affect the exponent of chromosomal
loci and not cytosolic particles [6]. Other mechanisms are
therefore required to explain the observed low subdiffusive
exponent.

Nucleoid associated proteins (NAPs) are DNA-binding
proteins that condense and organize the bacterial nucleoid
through bridging, bending, or stiffening the DNA [11–13].
Recent work using high-throughput chromosome conforma-
tion capture (HiC) has investigated how different NAPs affect
the contact probability between chromosomal loci [14]. The
obtained two-point contact probabilities have then been used
in polymer models to specify an attractive potential between
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monomers and make predictions about the spatial organiza-
tion of the chromosome within the cell and the dynamics of
individual loci [15–20].

A different approach is to explicitly examine the effect of
bridging on the polymer. The earliest work on this is in the
context of the entangled and unentangled reversible networks
and gels formed by associative polymers and particularly in
how bridging affects the relaxation dynamics of the polymer
network [21–24]. More recently, and at the other extreme of
high bridge density, computational models have explored how
the resulting globular state can explain the organization of
eukaryotic chromatin [25–32]. Connected to the present study,
dynamic bridging was also shown to decrease the MSD scal-
ing exponent of single monomers in line with measurements
of chromosomal loci in bacteria and yeast [33]. However, a
systematic study of how the exponent depends on the number
of bridges and their lifetime has yet to be performed. Fur-
thermore, it is not clear whether bridging can also explain the
presence of RCMs [10].

Here, in the absence of a dynamical theory, we use polymer
simulations to investigate how DNA bridging affects the dy-
namics of the bacterial chromosome. We confirm that bridging
can reduce the scaling exponent of individual monomers be-
low the classic prediction of polymer theory and characterize
the dependence on both the number of bridges and their life-
time. Consistent with these results, we show in E. coli that
deleting the bridging protein H-NS results in an increase in
the scaling exponent compared to wild type. We also find
that bridging produces monomer dynamics that display the
same RCMs as have been observed experimentally. Finally,
we use the experimentally observed mobility of loci to fix
an internal timescale in our simulations and thereby predict
a lower bound for the average bridge lifetime.

II. POLYMER SIMULATIONS

We simulate a self-avoiding linear polymer using the
Bond Fluctuation method (BFM) [34,35]. This lattice
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FIG. 1. (a) The simulated polymer. Bridges form between spatially proximal monomers with a probability p and have a mean lifetime
λ. (b) Ensemble-averaged MSD curves with (orange) and without bridging (blue). Bridging parameters: p = 1.5 × 10−3, λ = 4 × 104 MCS.
(c) Phase diagram from Fig. 9(a) with μ remapped to the percentage of monomers bridged. Contours indicate interpolated curves of the given
exponent. (d) Velocity auto-correlation function (VAC) is negative at short lags and collapses for different windows of τ/δ, indicative of a
subdiffusive process.

polymer model is ergodic, allows a large set of bond angles,
and reproduces Rouse polymer dynamics. Each monomer is
represented by a cube (voxel) of the lattice and exclusively
occupies the corresponding 8 lattice vertices. Neighboring
monomers are connected by one of 108 allowed bond vectors
with lengths 2,

√
5,

√
6, 3, or

√
10. We use the open source

software LeMonADE [36] and modified it to add bridging
functionality. The basic (without bridging) simulation is spec-
ified by the number of monomers N and the lattice dimension
L [see Appendix A].

A. Excluded volume of the polymer

Since each monomer is represented by a cube exclu-
sively occupying eight vertices, the excluded volume of each
monomer is the set of 3 × 3 × 3 = 27 cubes around the
monomer. Note however that the excluded volume of different
monomers can partially overlap. The excluded volume V of
the entire polymer is therefore the union of the excluded vol-
ume of the individual monomers. We find that with a length of
400 monomers, the polymer occupies a total of approximately
8678 lattice sites or an average of 21.69 unique lattice sites per
monomer.

We fix the lattice dimension L by using this volume mea-
sure to match the volume density of chromosome in the cell

(∼1%)

ρ = V

L3
= 8678

L3
= 1%. (1)

This fixes the dimension of the lattice at L = 95 lattice units.
In order to compare the simulated MSD data with experi-

ments at short time lags we require sufficient spatial resolution
at ∼0.004 µm2, the MSD of chromosomal loci at 1 s lag [3,5].
We therefore fix the lattice spacing to be h = 0.0056 µm. The
number of base pairs corresponding to a monomer in our
simulations is given by

base pair

monomer
= Lg

Vc

Vb

N
, (2)

where Vc ≈ 0.88 µm3 is the volume of the cell, Lg = 4.5 Mbp
the length of E. coli genome, and Vb = L3h3 the volume of the
box. Hence, we simulate an 800 kb segment (approximately
the size of a macrodomain) of the chromosome with each
monomer representing a 2 kb segment of chromosome. We
use periodic boundary conditions in our simulations.

B. Bridging

We implement bridging following the approach of Bohn
and Heermann [33], where we select two monomers on the
polymer at random and check its colocalize at a distance less
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FIG. 2. (a) The scaling exponent α is plotted as a function of percentage bridged for different bridge lifetimes (color). (b) α as function of
bridge lifetime for different values of μ (color). Note that the curves come closer together because of the relationship in Fig. S1(e). (c), (e),
(g) The two-point correlation function G(s, τ ) is calculated from our simulations for different parameters. (d), (f), (h) Shows the collapse of
curves in (c), (e), (g) upon rescaling time by τ → s−bτ . In the absence of bridging (d) we found that a slightly different exponent b = 1.9 fits
better than the expected b = 2.1. In (f), (g) the calculated values of b = 3.03, b = 2.59 resulted in good collapse. In (d), (f), (h) s0 = 45 is a
reference distance for plotting.

than three lattice units. A bridge is formed with a probabil-
ity p that lasts an average bridge lifetime λ. While bridged,
monomers can still move on the lattice subject to maintaining
a bridge length less than three lattice units. Each monomer can
only form one bridge at a time [Fig. 1(a)].

C. Bridging leads to loci subdiffusion

We confirmed that bridging reduces the scaling exponent
of a single monomer [Fig. 1(b)], as has been previously shown
in study of eukaryotic chromatin [33]. At a level of bridging
that results in 28% of monomers bridged, the exponent de-
creased from α ≈ 0.56 (close to the scaling theory prediction
of 0.54) to α ≈ 0.4, a value in line with experimental measure-
ments [3].

To examine the dynamics further, we measured the velocity
auto-correlation (VAC) function,

VACδ (τ ) = 1

δ2
〈(r(τ + δ) − r(τ )) · (r(δ) − r(0))〉,

of a monomer with the velocity measured over time points δ

MCS apart. Bridging does not change the nature of the VAC,
which remains negative at short time lags with the lowest
value at lag equal to δ [Fig. 1(c)]. This is indicative of elastic
or sub-diffusive dynamics and is consistent with experimental
measurements of chromosomal loci [3,9,37].

To systematically examine the effect of bridging, we varied
the bridging probability p and bridge lifetime λ over a range
of values. We found that the number of bridged monomers
depends only on the product μ = pλ as would be the case for
a simple reversible process. As a dynamical measure, the scal-
ing exponent α depends on both μ and λ; the more bridges and
the longer their lifetime, the greater the reduction of the scal-
ing exponent. As the number of bridges is the more important
quantity, we remapped the phase diagram in terms it rather
than the parameter μ [Fig. 1(d)]. This makes it clear that,

for sufficiently long bridge lifetimes, an increase (decrease) in
the number of bridges formed is concomitant with a decrease
(increase) of the scaling exponent. The dependence of α on
the number of bridges also become linear for longer lifetimes,
at least in the measured range [Fig. 2(a)]. See Appendix B for
a detailed discussion on equilibrium properties.

D. Two-point correlation function

A scaling argument was recently proposed relating the
dynamic scaling exponent α, the fractal dimension 1/ν and
an exponent b = 2ν/α that specifies a time rescaling and
resultant collapse of the two-point correlation function into
a distance-independent form [38]

G(s, τ ) ≡ 〈[Rn(t + τ ) − Rm(t + τ )][Rn(t ) − Rm(t )]〉|n−m|=s,

(3)
namely

G(s, τ ) = As2νG(s−bτ ), (4)

where the prefactor A is defined by G(s, 0) = r(s) = As2ν .
Thus, G(τ s−b) is the normalized two-point correlation and the
form of its argument indicates that a transformation τ → s−bτ

collapses it onto a single curve for all s.
To test this, we used the measured values ν and α at a

different bridging parameters and examined the collapse of
correlation function at the predicted value of b. In the ab-
sence of bridging, we found ν = 0.59, α = 0.56, and hence,
b = 2.1. However, we found that the curves collapse for a
slightly lower exponent of b = 1.9 [Fig. 2(d)], likely due to
the self-avoidance of the polymer. In the presence of bridging,
predicted exponent b resulted in a very clear collapse of the
curves [Figs. 2(f) and 2(h)] but only at short lags. This could
be explained by the fact that we do not have a single dynamic
exponent α—the MSD curve transitions at a lag on the order
of the bridge lifetime to the standard exponent of ≈0.54.
While self-avoidance and lack of a single dynamical exponent
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[see Fig. 1(b) and below], leads to some discrepancies, overall
the results of our simulation are in broad agreement with this
proposal [Figs. 2(c)–2(h)].

III. LOCI TRACKING EXPERIMENTS

As discussed above, some nucleoid associated proteins
(NAPs) can form bridges between genomically distant DNA.
Therefore, our model predicts that the deletion of a bridging
NAP should increase the scaling exponent. To test this we
measured the MSD scaling exponent of a chromosomal locus
in a strain lacking the NAP H-NS. We choose this protein as its
deletion produces a very mild phenotype [14] (thus reducing
the likelihood of indirect effects), and it bridges rather than
bends DNA like other NAPs such as HU, FIS, and IHF.
MukBEF can also bridge DNA but also likely extrudes DNA
loops [13]. Following previous work [5], we used fluorescence
microscopy and the GFP-ParB/parS labeling system [39] to
track the ori locus of E. coli on short timescales.

A. Strains

The parS/P1 site from E. coli strain RM29 obtained from
[40] (originally from [39]) was transduced near the ori region
into MG1655 WT and �HNS strains, the latter obtained from
the Keio collection of the Sourjik laboratory (MPI Terrestrial
Microbiology). GFP-ParB was expressed from the plasmid
pALA2705 with no IPTG induction [39,41,42]. The strains
were grown overnight at 30 ◦C in LB medium with appropriate
antibiotics (100 µg/mL ampicillin). The overnight culture was
diluted into media made of M9-Glucose-Casamino acids (as
in [5]) and grown to an optical density of 0.1–0.2.

We chose the P1 labeling system in order to compare our
results with previous studies [3,5,10,43]. We note that while
some differences in the dynamics of the ter locus between
the ParB labeling systems, we use (P1), compared to that of
pMT1 have been observed, no substantial differences have
been reported for the ori locus [8,41,42,44]. This agrees with
experiments in our laboratory studying origin positioning and
segregation across many thousands of cell cycles.

B. Microscopy

1 µL of the sample was placed on 1.5% agraose pads
(made of same media as the day culture) and imaged under
a Nikon Ti microscope with a 60×/1.4 NA oil objective.
The strains were imaged at a constant 30 ◦C. Images were
captured on a Hamamatsu CCD camera using NIS-Elements
software. Movies were 450 frames long, with 0.1s interval and
an exposure time of 100 ms [Fig. 3(a)].

FIG. 3. (a) Snapshot of microscopy experiment of GFP-
ParB/parS labeled ori loci in E. coli. (b) Sample MSD curves of
individual foci obtained from WT strain (set 1). (c) Sample MSD
curves of mutant �HNS (set 1). Ensemble averaged MSD is repre-
sented by the black lines (b), (c). (d) Ensemble-averaged MSD curves
from experiments of wild-type E. coli and a strain lacking the NAP
H-NS (see also Fig. 6). MSD curves are fitted up to a 2 s delay (black
lines). �H-NS: α = 0.38 18089 tracks, WT: α = 0.32 6717 tracks.
Inset: Exponent α from individual replicates (see Table I).

C. Analysis

We follow the procedure and analysis in [5]. Briefly, foci
positions were located via twodimensional fitting of a Gaus-
sian function to the intensity distributions of individual loci.
The ensemble averaged MSD was calculated from pooled
trajectories using Eq. (A1). The scaling exponent α was cal-
culated for ensemble averaged MSD curves by fitting a power
law up to 2 s delays [Figs. 3(b) and 3(c)].

The code of Javer et al. was used to track the foci, and are
available at [45]. Custom MATLAB scripts were written to
analyze the data.

D. Scaling exponents of WT and �H-NS

The ensemble-averaged MSD of both the wild type and
the �H-NS strain are shown in Fig. 3(d). We found that the
scaling exponent α for the �H-NS (α ∼ 0.38) is greater than
that of the wild type α ∼ 0.32, consistent with a decrease in
the number of DNA bridges. While, we observe some vari-
ability in the exact value of the exponents between biological
replicates (see inset), the exponent of �H-NS is consistently
higher than the wild type. This result was not attributable
to differences in the signal intensity between the strains

TABLE I. Table of scaling exponents α observed in experiments from different sessions.

Scaling exponent α

Strain Set 1 Tracks Set 2 Tracks Set 3 Tracks Set 4 Tracks Set 5 Tracks Set 6 Tracks All

WT 0.31 3952 0.319 525 0.328 1193 0.339 477 0.3325 506 0.321 ± 0.011
�H-NS 0.364 12121 0.357 827 0.417 1647 0.407 1682 0.378 1062 0.364 750 0.380 ± 0.024

023034-4



SUBDIFFUSIVE MOVEMENT OF CHROMOSOMAL LOCI IN … PHYSICAL REVIEW RESEARCH 5, 023034 (2023)

FIG. 4. (a) Ensemble-averaged MSD from WT cells (blue circles) is fit to an fBm model (orange squares, Fit 0.0008τ 0.36 µm2, 6717 tracks).
(b) Drift velocity of wild type tracks (blue circles) have a wider tail than from simulations of the parameter-matched fBm (orange squares).
(c) Ensemble-averaged MSD from polymer simulations to an fBm model (orange squares, µ = 80, λ = 105 MCS, Fit 0.0009τ 0.39 µm2, 5200
tracks). (d) Drift velocity distribution from bridging simulations (blue circles) has a similar broad tail compared to the parameter-matched fBm
model (orange square). (e) Same as (a), (c) but for polymers simulations without bridging. (f) The distributions of vd overlap.

(Appendix D). We conclude that the bridging of chromosomal
DNA by nucleoid associated proteins affects the nature of
chromosome dynamics and can explain why the scaling expo-
nent of chromosomal loci is more subdiffusive than expected
from polymer dynamics alone.

IV. BRIDGING REPRODUCES RAPID
CHROMOSOMAL MOVEMENTS

A previous analysis of chromosomal loci dynamics iden-
tified a subpopulation of fast moving trajectories that could
not be explained by the null phenomenological model of
fractional Brownian motion (fBm) [10]. Instead, these out-
liers, termed Rapid chromosomal movements (RCMs), were
speculated to be due to an active machinery or some stress-
relaxation mechanism [10,46]. They were identified by fitting
the ensemble-averaged MSD curve to an fBm model [47] and
then comparing the measured drift velocity distribution to that
obtained by simulating the model. Here, the drift velocity vd

of a track is defined as the magnitude of the displacement
along the major axis divided by the elapsed time [10]. Repeat-
ing this procedure, we found that our measurements displayed
the same broad tail compared to the fBm simulations as in
Javer et al. [Figs. 4(a) and 4(b)]. This was not dependent
on the precise elapsed time used, nor on the deviation of the
MSD curve from a perfect power law (or the range over which
the parameter fitting was performed). Indeed, we found that
RCMs were also present in the �H-NS strain, which displays
a near perfect power law behavior [Figs. 5(a) and 5(b)].

Surprisingly, we found that our bridging simulations pro-
duced trajectories with a similar over-representation of high
drift velocities compared to the fBm model [Figs. 4(c) and
4(d)] and this was directly attributable to the effect of bridging
[Figs. 4(e) and 4(f)] and irrespective of the precise fitting and
the elapsed time used [Figs. 4 and 5, Appendix C]. Note that,
while bridging produces these outlier movements, overall it
slows the dynamics of the polymer and therefore results in
lower drift velocities. Consistent with this, the MSD and drift
velocities of �H-NS were slightly greater than WT [Figs. 3(d)
and 5(c)].

We explain the presence of RCMs in our simulations as
follows. On timescales much longer than the mean bridge
lifetime, each segment of the polymer is likely to be bridged
for the same percentage of time and the dynamics are there-
fore relatively homogeneous. However, on timescales less
than the bridge lifetime, there is greater heterogeneity—some
segments will remain bridged throughout, others will re-
main unbridged. This heterogeneity cannot be captured by
the single-population fBm model. Consistent with this, the
disparity in the distributions increases as the drift velocity is
measured over shorter elapsed times [Figs. 4(d) and 5(d)].

While we have not been able to quantitatively fit our
simulations to the experimental data due to the increasingly
computationally challenge of simulating longer bridge life-
times and obtaining accurate statistics of the RCMs, we
nevertheless conclude that bridging by NAPs provides a
potential explanation for both the sub-diffusive scaling of
chromosomal loci and the observed rare rapid chromosomal
movements.
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FIG. 5. (a) Ensemble averaged MSD from FBM simulations overlaid with �H-NS data (Fit, 0.0009τ 0.38). (b) Drift velocity distributions
vd from FBM simulations have a smaller tail than �H-NS data. (c) �H-NS has a slightly higher number, faster tracks than the wild type.
(d) Drift velocity distribution comparisons as in Figs. 2(b) and 2(c), but at shorter elasped time of 5000 MCS the differences between bridging
simulations and fBm model is amplified. The elasped time here is much shorter than the bridge lifetime leading to more heterogeneous
populations than in Fig. 2(d). Parameters: μ = 80, λ = 105 MCS.

V. TRANSITION TO A HIGHER EXPONENT PLACES
BOUNDS ON BRIDGE LIFETIME

In our simulations, we observed that the MSD curve tran-
sitions at longer time lags to the exponent expected in the
absence of bridging [Fig. 6(a)]. Interestingly, we found a
similar upward transition in the experimental MSD curve of
ori [Fig. 3(d)]. This was also observed in previous studies
performed at the same (0.1 s) and longer time resolutions (1 s)
and was associated to the RCMs discussed above [5,6,10].
While the cause of this transition is unknown and confounding

effects cannot be completely discounted, it is most apparent
for the terminus (ter) region [5,6,10], which is affected by
NAPs (MukBEF in particular) differently than the rest of
chromosome [14]. In our simulations, the transition is due
to bridging not affecting the exponent on timescales longer
than the bridge lifetime. Indeed, we observe a linear relation-
ship between the transition location and the bridge lifetime λ

[Fig. 6(b)]. We also note that the transition was not visible in
the MSD curve of �H-NS strain (at least within the measured
range) [Fig. 5(a)], which could be explained by this strain
having a longer average bridge lifetime.
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We next wondered whether the location of the transition
could be used to infer a bound on the effective bridge lifetime.
In this direction, we set the internal timescale of our simula-
tions by matching the MSD of ori at a lag of 1 s [Fig. 3(d)].
With our lattice spacing of 0.0056 µm (chosen to have suffi-
cient spatial resolution at this displacement), this MSD value
was reached at a lag of ≈105 MCS [Fig. 6(a)]. We can
then convert our simulation results to seconds by assigning
105 MCS ≈ 1 s. Doing this for all points in the phase diagram
we obtain a relationship between the equilibrium percentage
of monomers bridged and the bridge lifetime λ in seconds for
different values of the scaling exponent [Fig. 6(c)]. We have
extended the contours of fixed exponent to longer lifetimes by
hand as it becomes increasingly computationally challenging
to access longer bridge lifetimes (in seconds), especially for
the lowest exponents, due to the slow dynamics of the polymer
(each second corresponds to an increasingly large number
of MCS) [Figs. 7(a) and 7(b)]. While the scaling exponent
can be measured experimentally, the degree of bridging and
the effective bridge lifetime are more challenging to quantify.
Nevertheless, the relationship between these variables that we
have uncovered here should be useful in interpreting future
experimental results and contributes to our understanding of
chromosome dynamics.

We next use the linear relationship of the kink location
to the bridge lifetime [Fig. 6(b)] to estimate the location of
the transition in seconds at each point in the phase diagram.
In particular, we identify the region of the phase diagram in
which the transition occurs beyond a delay of 1 s, as seen in
our data and other measurements. For the exponent we ob-
serve, α ∼ 0.32, we find a lower bound on the effective bridge
lifetime of around 5 s, a reasonable estimate given the relative
slow dynamics of chromosomal loci. While measurements of
bridge lifetimes of the various NAPs are lacking, estimates
for H-NS and HU can be taken from the timescale of their
recovery after photobleaching (FRAP) which have given 50 s
[48] and 1 s [49], respectively.

VI. DISCUSSION

Our results provide insight into the role of DNA bridging in
determining chromosome loci dynamics within bacterial cells.

We have shown that bridging, at physically plausible levels
and lifetimes, can explain the subdiffusive scaling exponent
of bacterial chromosomal loci. Consistent with this, a strain
deleted of the DNA bridging protein H-NS exhibited an in-
creased scaling exponent. Our model also displays a similar
upturn in the ensemble-averaged MSD curve as observed ex-
perimentally and we used this to obtain a lower bound on the
effective bridge lifetime at the ori locus of about 5 s.

Bridging can also qualitatively reproduce the rare but
ubiquitous rapid chromosomal movements (RCMs) that are
observed within experimental trajectories, in contrast to the
null phenomenological model of fractional Brownian motion.
The RCMs in our model are due to the heterogeneity in the
bridging state of a locus on timescales smaller than or com-
parable to the bridge lifetime. This is in contrast to a previous
proposal that RCMs necessarily arise due to an active stress
release mechanism [10,50]. Furthermore, bridging is consis-
tent with recent work showing that cell compression lowers
the exponent of chromosomal loci but not that of diffusive
particles [6]. A lower cell volume increases the density of
DNA and therefore increases the rate of bridge formation,
lowering the exponent. More broadly, by characterizing the
relationship between an equilibrium quantity, the number of
bridges, and a dynamic quantity, the mean bridge lifetime (λ),
our framework provides an intuitive parameter landscape for
bacterial chromosome dynamics that will help guide future
studies.
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APPENDIX A: SIMULATION DETAILS

Each simulation is started from a random conformation of
the polymer. Monomer diffusion and bridging is implemented
in the following manner.

(1) Select a monomer at random and attempt a diffusive
move (BFM algorithm).
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FIG. 8. (a) Phase diagram of the dynamic bridging model in the μ = pλ and λ space. Note that μ is positively related to the percentage
of monomers bridged. Contours indicate a fixed exponent α. (b) Example polymer conformations with and without bridging. (c) Radius of
Gyration 〈R2

g/N〉 as function of Percentage Bridged. (d) The change in excluded volume relative to the nonbridging polymer �V decreases
linearly with bridging. (Inset) The relationship between �V and the model parameter μ. Black line indicates the average across bridge lifetimes.
(e) Distributions of 〈R2

g/N〉 are overlapping for different levels of bridging. (f) Distributions of Voccupied are significantly separated.

(2) Select a random monomer and if colocalized with an-
other free monomer (distance < 3 lattice units), attempt a
bridge with probability p.

(3) Select a random monomer and if bridged, remove the
bridge with probability 1

λ
.

(4) Repeat.
A set of N moves is defined as a single MCS and we

sample the configuration every 500 MCS. Note that a bridged
monomer can still diffuse as long as the bridge partner is
less than three lattice units away. We start the Monte Carlo
sampling after 5λ MCS to ensure sufficient equilibration of
the polymer.

The phase diagram is calculated as an average from multi-
ple simulations for each parameter value μ = pλ, λ. From our
simulations, we calculate the ensemble averaged MSD at lag
τ defined by

〈r2(τ )〉 = 1

N

1

T − τ

N∑
n=1

T −τ∑
t=1

[rn(t + τ ) − rn(t )]2. (A1)

We perform a linear fit to the logarithm of the MSD curves

log(〈r2(τ )〉) = αlog(τ ) + Dapp (A2)

up to a delay of 20 000 MCS and obtain ensemble averaged
α. The data in Figs. 8(d) and 1(c) are obtained from 50
(λ � 105) and 30 (λ > 105) independent simulations for each
parameter. The ensemble averaged MSD curves are calculated
from tracks of every 20th monomer on the polymer (600–1000
tracks per parameter).

APPENDIX B: EQUILIBRIUM PROPERTIES

We found that bridging, unsurprisingly, results in com-
paction of the polymer [Fig. 8(b)], as seen in previous studies
[33]. This could be quantified using the radius of gyration
[Fig. 8(c)]

〈
R2

g

〉 ≡ 1

N

N∑
i=1

(ri − rcm)2. (B1)

However, we found it to be a relatively noisy measure
of polymer size. We therefore also examined the excluded
volume of the polymer (V ), defined in the previous section.
Excluded volume V shows a clear linear decrease with the
number of bridges formed [Fig. 8(d)]. Excluded volume was
found to be a more robust measure in that different parameter
values could be more easily distinguished [Figs. 8(e) and 8(f)].
This was independent of the bridge lifetime λ with curves of
different λ collapsing onto the same line. The latter confirms
results from previous Brownian dynamics simulations that the
polymer relaxation time can be controlled (through the bridge
lifetime) independently of the equilibrium structure [51].

1. Mesh size decreases in the presence of bridging

Another measure of compaction is the mesh size. While
it is challenging to measure accurately in simulations, it has
been recently estimated for the E. coli nucleoid to be around
50 nm [54]. To estimate the mesh size ξ in our simulations we
first determine the probability of finding a monomer at a dis-
tance r and r + dr from another randomly chosen monomer.
This is given by 4πρr2g(r) dr, where ρ = 0.01 is the density
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FIG. 9. (a) Mesh size (ξ ) decreases with increasing bridges.
(b) End to end distance for subsegments on the chain scale as 〈R〉 ∼
sν . We observe an exponent ν = 0.59 in the absence of bridging as
expected for a self-avoiding polymer. The scaling exponent decreases
with increasing bridging. But, we do not observe a plateauing of
the curves which is indicative of the globule state. (c) The con-
tact probability P(s) between monomers is plotted as function of
monomer distance (s). In the absence of bridging (blue curve), we
find P(s) ∼ s2.18 as expected for a self-avoiding chain in a good
solvent [52,53]. With increasing bridging the exponent increases, but
for our level of bridging we are never below the compact globule
regime. λ = 100 000 MCS in (b), (c). (d) Percentage of monomers
bridged increases with μ and is independent of bridge lifetime.

of the polymer and g(r) is a radial density function. For a semi
dilute polymer with r 
 ξc, g(r) is expected to have the form

g(r) = 1 + A

r
exp(−r/ξc), (B2)

where A > 0 and ξc > 0. ξc is the correlation length of the
polymer which is approximately the same as the mesh size
ξ for a semidilute polymer [55]. We calculate g(r) from our
simulations and fit to (B2), and find the mesh size (ξ ) for
different parameters. We find that mesh size decreases with
increased bridging and has a range of values between 120–
85 nm [Fig. 9(a)] for the system parameters used. As we will
see below, the disparity with the experimental value may be
because our simulated system is less confined that E. coli
nucleoid.

2. End-to-End scaling and contact probability

The end-to-end distance for subsegments on the chain
scale as r(s) ∼ sν with ν ≈ 0.588 [2] for a free polymer
[Fig. 9(b)]. We observe that with increasing bridging the
exponent decreases, but stays above the transition value of
ν = 0.5. Similar behavior was observed for the contact proba-
bility [Fig. 9(c)]. Thus, for the parameters studied the polymer
does not enter the globular regime, which has been studied
elsewhere [30,33,51]. Note that like 〈R2

g〉, the aforementioned
equilibrium quantities do not depend on the bridge lifetime.

FIG. 10. (a)–(d) Confinement affects the scaling exponent of
MSD even in the absence of bridging. Mesh size decreases with
increasing confinement. Parameters: lattice size L, mesh size ξ , poly-
mer length N = 400.

3. Matching chromosome density versus confinement

Thus far, our simulation parameters were chosen to match
the density of DNA within an E. coli cell rather than the effect
of confinement due to the cell boundaries (measured as the
unconfined Rg of the polymer relative to the dimension of the
box 2Rg

L ) since the former quantity is likely to more strongly
affect the probability of bridge formation. The density d scales
linearly with number of monomers N , while confinement
scales as Rg ∼ Nν , where ν = 0.588 making it impossible to
match both quantities at the same time. Nevertheless, since
the E. coli chromosome is confined within the cell (filling
the cytosol and expanding with cell growth [7]), we also
briefly examined the effect of confinement. The results on
the scaling exponent were qualitatively the same as shown
in the main text but with a lower value for the same set of
parameters μ, λ due to the higher number of bridges. This
is consistent with recent work showing that cell compression
lowers the MSD scaling exponent of chromosomal loci but not
that of diffusive particles [6]. It also motivates our use in the
main text of the fraction of monomers bridged instead of the
parameters μ.

Additionally, we found that confinement could reduce
the mesh size even without bridging to the experimen-
tally measured value of 50 nm [Fig. 10(a)] [54]. Note also
that as confinement increases, α decreases toward α ≈
0.5, i.e., confinement screens the effect of self-avoidance
(Fig. 10) [37].

4. Circular polymer in cuboidal geometry

To briefly examine the effected of a confined geometry, we
simulate a circular polymer of length N = 440 monomers in
a cuboidal box with dimensions Lx = 88, Ly = 22, and Lz =
22 matching the 4:1 aspect ratio of E. coli cells (Fig. 11) and
given a system density as in Fig. 10(a). We then measured
the monomer density across 1000 independent configurations.
In the case of the polymer with no bridges, we observed a
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FIG. 11. A circular polymer in a cuboid with hard walls match-
ing the confinement of E. coli cells. In the presence of bridging, the
polymer is compacted and has a density that decreases across the
cross section. Lattice dimensions 88 × 22 × 22.

uniform distribution. In contrast, the bridging polymer shows
a radially decreasing density across the cross section. This
is notable, as direct imaging of an abundant NAP HU in E.
coli also revealed a similar decreasing radial density of the
chromosome across the cross-section of the cell [56,57].

APPENDIX C: BRIDGING EXPLAINS SUBPOPULATIONS

Previously, Javer et al. [10] compared the distribution
of track drift velocities, defined as the magnitude of the

displacement along the major axis between two time points
divided by the elapsed time, with that obtained by a frac-
tional Brownian motion (fBm) model, parameter-matched to
the ensemble-averaged MSD curve. They noticed that a sub-
population of tracks with a drift velocity greater than that
expected for the fBm model as we discuss in Fig. 4 of the main
text. They also found this population displayed a qualitatively
different ensemble averaged MSD curve (a higher exponent at
longer time lags) compared to the rest of the population.

For comparison, we performed the same analysis on our
data and selected the subset of outlier trajectories (39 of 6717)
with drift velocity vd > 0.012 µm s−1 [Fig. 12(a)]. We found
that the ensemble averaged MSD curves indeed show a tran-
sition to faster dynamics at longer timescales [see Fig. 12(b)],
as in [10]. This was also the case for our bridging simulations
[Fig. 12(c)]. The tracks with higher vd have a higher (gener-
alized) diffusion coefficient than the majority population and
transition to a higher exponent at long time lags [Fig. 12(d)].
However, caution is warranted interpreting this analysis since
we are self-selecting a “fast” subpopulation. Nevertheless,
repeating the procedure for simulated fBm trajectories (and
taking the fastest 0.5%), gave MSD curves that overlap at
short time lags and only deviate at long time lags [Fig. 12(e)],
i.e., the populations have the same (generalized) diffusion
coefficient. This provides further support for our conclusion
that bridging, in contrast to fBm, can reproduce the observed
loci dynamics.
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FIG. 12. (a) Drift velocity distribution comparisons between WT data and fBm measured over 28s (entire track length). (b) Ensemble
averaged MSD of the wild type strain with tracks selected based on drift velocity vd (grey dashed line in (a) shows the vd threshold). Tracks
with vd greater that fBm distribution display different dynamics to the rest of the population and transition to a higher exponent at longer time
lags. (c) Same as in (a) for the bridging simulations with vd defined over the entire track length of 5 × 105 MCS. (d) We find a similar subset
of tracks (split based vd , grey dashed line in (c)) which transition to higher exponent at longer time lags. Parameters μ = 80, λ = 105 MCS.
(e) We select the indicated sub-population of faster moving tracks in the fBm simulations. The ensemble-averaged MSD of the faster tracks
deviate from the rest of the tracks only at longer time lags and do not reproduce the behavior seen in the experimental data in (b).
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FIG. 13. (a) Mean intensity of WT tracks plotted versus scaling exponent α fitted to the entire track length. Shows weak positive correlation.
(b) Same as in (a) but for the mutant �H-NS. (c) Intensity distributions of WT and �H-NS is plotted. WT distribution has a broader tail.
(d) Ensemble averaged MSD of WT plotted for two different subpopulations with intensity I > median(I ) and I < median(I ). Scaling exponent
α shows marginal change while Dapp decreases with higher intensities [5]. (e) Same as in (d) but for the mutant. The subpopulations overlap.
(f) Intensity of loci in the WT at a MSD of 10 s. We find a very weak positive correlation.

APPENDIX D: INTENSITY OF SPOTS DOES NOT
EXPLAIN DIFFERENCES IN SCALING EXPONENTS

We wondered if the difference in MSD scaling exponents
between the WT and mutant could be related to the intensity,
as it was previously shown that the mobility of loci depends
inversely on their intensity [5]. In our experimental data,
we find that the WT and mutant have comparable intensity
distributions and show a very weak correlation between the
loci intensity and the scaling exponent α [Figs. 13(a) and
13(b)]. We also found that the intensity distributions of the
strains was comparable, while the WT had a slightly fatter
tail [Fig. 13(c)]. Comparing the ensemble-averaged MSD of
tracks with lower and higher intensity, we found that while
intensity affects the apparent diffusion constant Dapp, it has
a marginal effect on the scaling exponent α [Figs. 13(d) and
13(e)]. The intensity of loci also shows a very weak correla-
tion with the MSD at 10 s [Fig. 13(f)]. Hence, we conclude
that the intensity of loci does not explain the differences
between the ensemble-averaged MSD exponents of WT and
�H-NS.

APPENDIX E: VARIABILITY IN α AND TRANSITION
IN MSD CURVE

Time Averaged MSD of a single particle suffers from high
variation and random errors. A possible way to mitigate this is
by studying the ensemble averaged MSD. While this is gen-
erally adequate for estimating various diffusion parameters,
it has been argued that it suffers from inaccuracies if the un-
derlying population has heterogeneous subdiffusion. We can
calculate the mean logarithmic squared displacement (MLSD)

to account for the exponential dependence on delays [58]

r2
l (τ ) = log

(
T −τ∑
t=1

[rn(t + τ ) − rn(τ )]2

)
. (E1)

We have an effective exponent µ,〈
r2

l (τ )
〉 = 〈log(D)〉 + μ log(τ ). (E2)

Analyzing our experimental trajectories of WT E. coli cells,
this procedure did not produce any significant differences in
our MSD curves [Fig. 14]. While it does not exclude other
effects like photobleaching, the underlying heterogeneity in
α at different time lags might be a real effect arising from a
subpopulation of trajectories with more mobility (RCMs).
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FIG. 14. Mean logarithmic squared displacement (MLSD) also
shows a transition to higher exponent at longer delays.
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