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Topological multimode waveguide QED
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Topological insulators feature a number of topologically protected boundary modes linked to the value of
their bulk invariant. While in one-dimensional systems the boundary modes are zero dimensional and localized,
in two-dimensional topological insulators the boundary modes are chiral, one-dimensional propagating modes
along the edges of the system. Thus, topological photonic insulators with large Chern numbers naturally display
a topologically protected multimode waveguide at their edges. Here, we show how to take advantage of these
topologically protected propagating modes by interfacing them with quantum emitters. In particular, using a
Harper-Hofstadter lattice, we find situations in which the emitters feature quasiquantized decay rates due to the
increasing number of edge modes, and where their spontaneous emission spatially separates in different modes.
We also show how using a single 7 pulse the combination of such spatial separation and the interacting character
of the emitters leads to the formation of a single-photon time-bin entangled state with no classical analog, which
we characterize computing its entanglement entropy. Finally, we also show how the emitters can selectively
interact with the different channels using nonlocal light-matter couplings such as the ones that can be obtained
with giant atoms. Such capabilities pave the way for generating quantum gates among topologically protected

photons as well as generating more complex entangled states of light in topological channels.

DOI: 10.1103/PhysRevResearch.5.023031

I. INTRODUCTION

Topological photonics [1-4] is a burgeoning field aim-
ing at exporting topological concepts into photonics to bring
novel, and more robust, ways of controlling the properties
of light. At the classical level, one of the original moti-
vations of the field was to exploit the chiral, edge modes
appearing in two-dimensional topological insulators to obtain
unidirectional and robust-to-disorder photon flows [5,6]. In
their simplest instance, that is, when only a single edge mode
appears, it was soon realized in several platforms [7-9]. Re-
markably, these realizations opened up applications beyond
their initial motivation, such as the design of “topological
lasers”[10-13] and chiral light-matter couplings [14-18], or
the generation of Gaussian quantum correlations with para-
metric drivings [19-25]. Besides, they have been proposed
as robust quantum buses for quantum state transfer [26-29],
without the exponential time dependence on their distance
of their zero-dimensional counterparts [30-36]. The more
complex scenario when the two-dimensional system features
several edge modes [37,38] opens up new opportunities, e.g.,
to increase quantum communication capacity using several
topologically protected channels. Remarkably, this situation
has been much more scarcely explored in the literature,
likely because it is still unclear how to profit from these
extra modes. Coupling quantum emitters to such structures
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provide a natural route to harness these additional degrees
of freedom. On the one hand, local light-matter coupling
enables the coupling to all photonic modes at the emitter
frequencies, thus it is able to interact with several modes
simultaneously. This has already been shown to lead to un-
conventional emitter-emitter interactions when coupled to the
bulk modes of one-dimensional [39-41], two-dimensional
[40,42], and three-dimensional [43,44] topological insulators.
Besides, the strongly interacting character of the emitters
can induce (non-Gaussian) quantum correlations beyond the
ones that can be obtained with parametric drivings [19-25],
opening a path to observe exotic quantum many-body states
[45-50]. All these reasons are motivating the development of
such topological light-matter interfaces in various platforms,
ranging from superconducting qubits coupled to microwave
resonators [18,51] to solid-state emitters coupled to topolog-
ical photonic crystals [14-17]. In this work, we develop a
theory for the topological multimode waveguide QED sce-
nario that appears when quantum emitters couple to the edges
of topological photonic insulators with large Chern numbers.
The physics emerging from this scenario is very different
from the case of emitters coupled to one-dimensional topo-
logical insulators [39-41], where the localized nature of the
boundary modes leads generally to coherent emitter dynam-
ics/interactions rather than irreversible or collective decay
dynamics. Using that theory, in Sect. II we unveil the en-
tanglement structure of the spontaneously emitted photons in
such topological multimode waveguides, and show that one
can obtain almost maximally entangled W -type states between
the edge channels. Besides, combining several & pulses [52],
we show that one can obtain strongly correlated multiphoton
states. Finally, in Sec. IV we also devise a method that enables
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FIG. 1. Topological light-matter interface: Blue globes represent
lattice sites, with annihilation (creation) operators a{). The yellow-
shaded region denotes a single lattice plaquette with flux ¢. We also
represent the spontaneous emission of an emitter (in red) coupled to
the the lattice edge, which radiates through all edge modes (two in
the figure), that propagate at different group velocities (denoted by

v,0 and v, 1), causing a spatial separation of the emitted pulse.

the emitters to interact selectively with the different topologi-
cal channels using giant atoms [53-58].

II. MODEL

The model that we consider in this paper is depicted in
Fig. 1(a): A quantum emitter interacts locally with one of the
edges of a two-dimensional topological insulator. Motivated
by recent experiments [18], we particularize for a square
photonic lattice with nearest-neighbor hoppings of rate J,
subject to an effective magnetic flux ¢—the so-called Harper-
Hofstadter (HH) lattice [59]—where bands with large Chern
number appear for small magnetic fluxes [60,61]. The bath
Hamiltonian then reads (setting & = 1)

Hg = —J Zalﬂ,yam‘ + e_z”"‘”a;yﬂax_y +H.c., (1)

X,y

where ag}), represent the annihilation (creation) operator at
the (x, y) position, and where we take the cavity energy as
the energy reference. The emitter is assumed to have a sin-
gle optical transition between its ground (g) and excited (e)
states with frequency w,, that couples to one of the photonic
lattice sites at the edges through the standard light-matter
Hamiltonian, H; = (gay, y,0., + H.c.), with g being its cou-
pling strength, (x.,y.) the position where it couples, and
048 = |a)(B]| the emitter’s operators. The emitter’s Hamil-
tonian then reads Hy = w,.0,., such that the full topological
light-matter Hamiltonian reads H = Hg + Hg + H;. The HH
model displays a very rich behavior depending on the value
of ¢ [59-61]. here, we take ¢ = 1/q, with g € N, that is
enough to illustrate the behavior we are interested in. With
this parametrization, the spectrum of the system with periodic
boundary conditions features ¢ bands, labeled as Landau lev-
els [60], separated by [ =0, ...,qg — 1 band gaps. Besides,
it can be shown that the first (¢ — 1)/2] bands (with |[-]
being the floor function) have an associated quantized Chern
number C = —1 [60]. Thus, with open boundary conditions,
it is expected that the /th band gap features 2(/ + 1) gapless
edge states, associated with the [ 4+ 1 Landau levels below that
energy [62]. To illustrate this, we consider a cylinder geometry
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FIG. 2. (a) HH spectrum with periodic boundary conditions in
the Y direction and open boundary conditions in the X direction,
for ¢ = 1/9 and a lattice size of 65 x 65 sites. Each dot is colored
according to the localization parameter 7 defined in the main text:
n = 0 corresponds to a delocalized state, while n = (—)1 depicts
complete localization at the (left) right boundary. (b) Emitter spon-
taneous emission rate as a function of its transition frequency w,
approximating (w, — E) by a Gaussian function with mean w, — Ep
and width 6 = 0.07J. The emitter is coupled to the edge of a HH
lattice of size 150 x 150 with flux ¢ = 1/25. Yellow vertical fringes
are centered at Landau levels and have a width equal to 6. (c) En-
tanglement entropy, E (W), of the emitted single-photon state in the
asymptotic limit, as a function of the emitter energy, for the same
lattice parameters as panel (b).

for the bath with periodic (open) boundary conditions in the
Y (X) direction. This allows one to write the spatial wave
function of the bath eigenstates as ¥;(x, y) = e®Y W, (x), and
calculate their eigenenergies w(k,) numerically. In Fig. 2(a),
we plot an example of the bath spectrum for a bath with ¢ =
1/9 and 65 x 65 sites, showing the emergence of the gapless
modes between the bulk flat bands. Besides, we define a local-
ization parameter n = Zf;é -1+ Zﬁ)hll(x)lz, that ranges
n € [—1, 1], achieving the extremes (—)1 when the modes are
maximally localized at the left (right) edge, encoded in purple
(yellow) color, respectively, in Fig. 2(a). In this way one can
see how, for energies below w,, the edge modes at the left
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(right) have always negative (positive) group velocity along
Y, and thus have a chiral character. Thus, when coupling an
emitter to one of the edges, it will only interact with the modes
of certain chirality. An important observation from Fig. 2(a)
is that the edge-mode dispersions deviate significantly from
the linear behavior typically assumed in the literature for such
topological channels [26-28]. Since this can have important
consequences in the quantum optical behavior, we derive a
more accurate effective description of these modes for ¢ < 1,
showing that the edge-mode dispersion for the left-localized
states emerging from the /th Landau level is approximated
by

wi(ky) ~ oLL() + ai @)k, — ki (@), @

for (k, —ki(¢)) € (—m,0). Here, ow.(¢)/J~—4+
Amd(l+ 1) — (wp)*(I*>+1+1/2) is the energy of the
Ith Landau level [60], a;(¢) is the effective curvature of
the edge modes which we extract from numerical fittings,
and which converges to a;(¢ — 0) ~ 0.6, and k;(¢) is the
momentum resonant to the minimum edge-mode energy.
Besides, the spatial distribution of these modes along the X
direction is W;(x) = /2/A;(¢)e /@ where A; grows as
¢ — 0 as expected, since in ¢ = 0 we should recover the
delocalized bath eigenstates of the standard square lattice
model.

III. SPONTANEOUS EMISSION FEATURES
IN MULTIMODE WAVEGUIDE QED

Let us now see how coupling emitters to the edge of the HH
lattice leads to several unique phenomena. First, let us note
that since the emitter probes the system at fixed frequency,
w,, one can control the number of modes that will be relevant
for its dynamics just by adjusting its relative detuning with the
bath energies. A magnitude that evidences that control is the
Markovian decay rate defined by [63]

@) = Y HelHj|Es)8(we — Ep), 3)

Ep

with |Eg) being the bath eigenstates, i.e., Hg|Ep) = Ep|Ep),
for the considered configuration. In Fig. 2(b), we plot with a
blue solid line the expected I'(w, ) for an emitter coupled to the
edge of a HH lattice for ¢ = 1/25 as a function of w,. There,
we see how the expected decay rate abruptly increases from
one band-gap to the other as the emitter’s energy is varied. The
jumps occur when the emitter’s energy w, starts crossing the
Landau level energies, indicated by the shaded yellow region
in the figure, due to the emergence of another edge mode that
couples to the emitter. Note also that the decay rate remains
almost constant along the whole band-gap region, except for
a deviation that occurs due to the nonlinear energy dispersion
of the modes. As shown in the Appendix B, this quasiquan-
tized behavior is well captured by our effective model, which
gives a semianalytical approximation for the decay rates into
the different topological channels I';(w, ), that reproduces the
nonlinear dependence with the frequency, i.e.,

[(w,) ~ (0, — wrr) /2 )

As expected, the total decay is then obtained by summing
the contributions of the active channels, i.e., I' = Zl . A

more remarkable feature of these topological multi-mode
waveguide scenarios is what occurs with the spontaneously
emitted photons when the emitters are driven. Let us first
assume a perfect m-pulse driving which prepares the system
in the state |¥() = |e) ® |vac), with |vac) being the bath state
with no photons. When the laser is switched off, the whole
system evolves according to the total Hamiltonian |W(¢)) =
e "M'|W), leading eventually to a single-photon wave-packet
state

(Wt — 00)) = [g) ® Y_A(x,y)al |vac),  (5)

as occurs in other quantum optical setups [64]. However, in
this case such wave packets have unique features which we
illustrate in Fig. 3 for an emitter coupled to the edge of a
HH lattice with ¢ = 1/9. First, irrespective of the band gap
that the emitters are resonant to, the photons are emitted in a
chiral and robust fashion due to their topological origin. This
is illustrated in Figs. 3(a), 3(c), and 3(e), where we plot the full
photonic bath population, |A(x, y;t)|2, at a time T'J = 200.
There, we observe that the single-photon wave packet can
overcome the defect introduced in one of the edges without
altering significantly its propagation. Besides, we also observe
how the situations with more than one edge state, Figs. 3(c)
and 3(e), display a localized, but more complex, wave func-
tion. To appreciate better the inner structure of these wave
packets, we plot in Figs. 3(b), 3(d), and 3(f) their temporal
dynamics, focusing only on the edge population, |A(0, Y;1)|>.
In this way we observe a unique effect of these multimode
wave guides; that is, after certain time, the emission into
the different topological channels becomes spatially separated
due to the different group velocities of the modes at the emitter
frequency. Intuitively, this separation starts to occur for times
such that |vg; — ver|T Z T;' + T, ' that is, that the sepa-
ration between the wave packets is larger than their intrinsic
linewidth (F,Tl). When this separation occurs, one can say that
our emitter has generated single-photon entangled states [65]
between orthogonal time bins 7;. Defining |1); as the presence
of a photon in the 7; time bin and 0 in the rest, the photonic
state created in the asymptotic limit can be written as

[W(t — 00 ~ Y _ el (6)
1

Using that, one can calculate the entanglement entropy [66],
E (Wpn), of the asymptotic state in the different band gaps, the
result of which is shown in Fig. 2(c) and compared with the
one of a perfect W-entangled state [67] as a black dashed line.
There, we observe how the entanglement entropy of the emit-
ted state indeed approximates that of a maximally entangled
state. Note that in more conventional quantum optical setups
[52,68—-83] where such time-bin entanglement is generated it
is required to combine superpositions in multilevel emitters
and multiple drivings, while here already with a single 7 pulse
a W-type [67] entangled structure appears due to the multi-
mode nature of the waveguide. Applying several 7 pulses, one
can obtain more complex multiphoton states. For example, if
a second 7 pulse is applied at a time 7p before the excitation
from the first & pulse decays completely, the emission of
the second photon is correlated with the first. As shown in
Ref. [52], this ends up generating two-photon Bell-like states
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FIG. 3. Spontaneous emission features of a quantum emitter cou-
pled to the middle site of the left boundary of a HH lattice for ¢ =
1/9, with quantum emitter frequencies of w,/J = —3.31 (first row),
w,/J = —2.16 (second row), and w, = —1.25 (last row), resonant to
one, two, and three edge modes respectively. (a), (c), (e) Snapshots
at TJ = 200 of the bath population in real space for a lattice size
of 50 x 50 and a coupling constant of g/J = 0.1, in the presence
of a defect, depicted as a white-colored region in the lowest part of
the lattice. (b), (d), (f) Dynamics of the emitted photon. For each
w,, we plot the evolution of the population of the left boundary sites
|A(0, Y;¢)|?, in arbitrary units. At the top, we include a snapshot of
the pulse shape at the final time instant, showing one, two, and three
peaks respectively, which correspond to the number of resonant edge
modes in each case.

in the photon number basis
|When) o< (1 + afal )lvac), ©)

where aE(L) represents the photon operator emitted from
the first (second) 7w pulse. Compared to Ref. [52], in the
topological multimode setups the single-photon wave pack-
ets already have an internal superposition structure, aE(L) (o'

> 1 CEL), Zazr |vac), with a;r being the effective operator associ-
ated with the photon emitted in the /th topological channels.
Therefore, its multiphoton structure will be much richer, and
depends on the interplay between the pulse delay 7p, the
global I' and individual I'; decay times, and the asymptotic

time where it is measured. Let us emphasize that the non-
Gaussian character of these states is a consequence of the
strongly interacting character of the emitters, and could never
be obtained in classical setups.

IV. MODE SELECTIVITY VIA NONLOCAL COUPLINGS

Finally, let us show how to make the emitters interact
selectively with one of the resonant channels. The key idea
is to couple the emitter with more than a single lattice site,
as can be done with giant atoms [53-57]. Let us illustrate
it in the simplest case where we want to cancel only one
resonant momentum. This requires that the emitter couples
to two adjacent cavities with the same strength, and relative
phase €, i.e., g0 = g and g(.y+1) = ge'¢. In that case, the
k-dependent light-matter coupling reads

|Gy (ky)* o< [1 4 cos(k, + @)1, (8)

and thus it vanishes at k, = k, if we choose ¢ = 7 — k.. This
was the key idea introduced in single-mode waveguide QED
setups [84—86] to obtain chiral emission. Here, the emission
is already chiral, but we can still use it to cancel the emission
into the resonant momenta of the undesired resonant chan-
nels. In Fig. 4 we show a proof-of-principle realization of
that idea for a situation when the emitter is resonant to two
edge modes. In Fig. 4(a), we plot the energy spectrum for a
lattice with ¢ = 1/12 and 65 x 65 sites. The solid horizontal
red line indicates the energy of the emitter that is chosen in
the second band gap to be resonant to two channels with
resonant momenta k) and k{V, indicated by vertical dotted
black lines. This means that if the emitter couples locally,
it will couple to the two k channels, as shown in Fig. 4(b),
and emit in a two-mode fashion in real space, as shown by
black dots in Fig. 4(e). In contrast, if we choose nonlocal
couplings to cancel the coupling to either the momentum
k© or k{1, as depicted by orange and blue dotted lines in
Fig. 4(a), one can see that the emitter selectively emits only
in one of the channels, as illustrated in Figs. 4(c)—4(e) by
plotting snapshots of the population in momentum space and
real space. In particular, in Fig. 4(e) where we plot a snapshot
at time 7J = 150 of the spatial profile of the emitted pulse
for the different coupling choices, we observe very clearly
that the designed nonlocal couplings suppress the emission
onto the selected mode compared to local light-matter cou-
pling situation. In the Appendix C we also prove that the
number of nonlocal couplings required to cancel N; resonant
momenta scales only linearly with N;. This mode selectivity
is an interesting tool in this scenario because when a photon
propagates in a chiral channel and interacts with an emitter
it acquires a 7 phase [87]. Thus, if multiple photons are sent
in the different channels, such mode selectivity can lead to
different phases between the topologically protected photons.
This can be a resource for generating photon gates among
topologically protected photons by adapting existing proto-
cols [88].

V. CONCLUSIONS AND OUTLOOK

Summing up, we characterize the topological multimode
waveguide QED setup that appears when quantum emitters
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FIG. 4. (a) Spectrum of a HH lattice of 65 x 65 sites for ¢ = 1/12. Each dot is colored according to the localization index 7 as in Fig. 2(a).
The solid pink line depicts the quantum emitter frequency w./J = —1.86, that is resonant to two left-localized edge modes at momenta k*
and k{1 respectively. We prove mode selectivity using nonlocal couplings that in momentum space are of the form |G, (k,)|* and |G,, (k,)I?,
represented as dash-dotted lines, whose units are indicated in the right vertical axis, and are analytically described in Eq. (8). Note that the
orange (blue) line, representing |G, (ky)l2 (G, (ky)lz) vanishes at kg") (kg”). (b), (c), (d) Normalized photon population in momentum space for
the photonic state resulting from spontaneous emission at time 7J = 300 of a quantum emitter with energy w,/J = —1.86 coupled to the left
edge of a HH lattice of size 250 x 250 and ¢ = 1/12. The emitter coupling is (b) local and [(c), (d)] nonlocal, designed to cancel emission at
k© and k(P respectively. (€) Snapshot at time TJ = 150 of the photonic state in the left lattice boundary, coming from spontaneous emission in
the three distinct coupling configurations, with same values for w, and ¢. The lattice size is 600 x 600, and the light-matter coupling constant

isg/J =0.2.

couple to the edges of a Harper-Hofstadter lattice. We find
several unique features such as the quasiquantization of the
decay rates and the spontaneous generation of entanglement
in the different topological channels, as well as a way to make
the emitters interact selectively with some of the channels. We
foresee that the combination of these setups with multilevel
emitters and/or complex time-dependent [52,68—83] or para-
metric [19-25] drivings can be used to generate more complex
states of light in these topologically protected channels either
in a transient [19,20,22,24,25,89-91] or a steady-state fashion
[92-101], as well as to induce gates between topologically
protected photons [88]. Although we find our results for the
Harper-Hofstadter model, we expect our findings can be of
interest to other systems where such multiple edge states
appear [37,38,102—104]. Recently, another work studying the
coupling of emitters to the edges of two-dimensional photonic
insulators appeared [105], although it focused only on the
single-edge-mode scenario.
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APPENDIXES

In these appendixes, we provide the details of the calcu-
lations supporting this paper. In Appendix A, we describe
the main characteristic of the spectrum of the topological
photonic lattice we consider, explaining how we calculate
the spectrum for open and periodic boundary conditions. In
Appendix B, we focus on the edge modes, and show how
their features can be captured by a simple phenomenological
model. In Appendix C, we give more details of the distinctive
features of the spontaneous emission of emitters coupled to
the edge of these systems, such as their expected decay rates
and the spontaneous spatial separation of the photonic emis-
sion patterns.

APPENDIX A: CHARACTERIZATION OF THE
HARPER-HOFSTADTER LATTICE MODEL

The Harper-Hofstadter (HH) model that we consider in
this paper is a two-dimensional bosonic lattice where time-
reversal symmetry is broken by an artificial gauge field
introduced through a Peierls phase [59-61]. Denoting by a("
the annihilation (creation) operators of the bosonic mode at
site r = (x, y) of the lattice, the HH Hamiltonian can be writ-
ten (setting 7z = 1 herein)

Hp = —J Z(aiﬂ,yaw +e ”"’)xal’wlax,y) +Hec. |,
X,y

(AD)
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FIG. 5. (a), (b) Spectrum of a HH lattice of with (a) toroidal and (b) cylinder topology, for a magnetic flux ¢ = 1/12 and a system size of
48 x 48 sites. When periodic boundary conditions are imposed over both spatial directions, panel (a), the lower part of the spectrum consists
of a series of flat bands. If a boundary is opened, edge-localized, gapless excitations emerge at band-gap energies, panel (b). The color of each
dot is assigned according to the localization parameter 7 defined in Eq. (A8) (c), (d) Density of states (DoS) of a HH lattice as defined in
Eq. (A3) for the same lattice size, for different values of ¢: 1/12 (dash-dotted blue line), 1/30 (dashed orange line), and O (solid green line).
The topology of the lattice is (c) toroidal and (d) cylindrical. For ¢ # 0, the DoS exhibits divergences at Landau levels. As ¢ — 0, a Van Hove
divergence is formed at the middle of the spectrum, which is a typical feature of a standard tight-binding square lattice with nearest-neighbor
hoppings. The most relevant difference between both instances is that, for cylinder topology, the DoS deviates from zero in the band gaps due
to the presence of topological edge modes. For these fluxes and system size, the ratios between the magnetic lengths Iz and the system size
L =48 are Iy/L ~ 0.03, Ig/L ~ 0.05, and /p/L = oo respectively. Both DoS have been obtained using an auxiliary width [as expressed in

Eq. (A5)]of 0/J =0.1.

where we have assumed that time-reversal symmetry is bro-
ken by an artificial uniform magnetic field in the direction
perpendicular to the direction of the lattice, whose strength
is encoded in the value of complex phase ¢ acquired in the
nearest-neighbour hopping J along the Y direction. Note that
we have also dismissed local cavity energy terms w, ) . alay,
assuming all cavity energies to be the same along the lattice
oy = w,, and therefore considering it as the energy refer-
ence of the problem, setting w, = 0. Then, there are three
magnitudes that determine the shape of the spectrum and
eigenmodes of the system: J, ¢, and the system size L, x L.
Let us start analyzing the spectrum of the system by imposing
periodic boundary conditions along the X and Y directions,
so that momentum k = (k;, k,) is a good quantum num-
ber running over the values k, = —m, —7 + 27 /Ly, ..., T —
27 /L. As we said in the main text, we will restrict the analy-
sis to rational values of ¢ = p/q, with (p, g) being coprimes.
This simplifies the diagonalization of the Hamiltonian, since
one can write an effective unit cell that describes the bath
lattice of 1 x g sites. With that unit cell, and using a plane-
wave expansion to account for the periodicity of the lattice,
we find that the bath Hamiltonian is given by ¢ bands due to
the degeneracy introduced by the supercell:

q

Hp = Z Z Wy (k)cl,kcoc,ka

a=1 k

(A2)

where « is the index running over the different bands, and
cff}( are the operators describing the eigenstates of the bath
for a given band « and momentum k. In Fig. 5(a), we plot
an example of that bulk spectrum for ¢ = 1/12 and system
size L, = L, = 48. There, we see the emergence of g almost
flat bands well separated in energies. These are the so-called
Landau levels that appear in such a model [59-61], and which

describe a cyclic motion of lattice excitations whose radius

in lattice constant units is given by the magnetic length,
I = 1//27@. Thus, in order for this Landau level picture
to survive, it is required that this orbit fits in the lattice,
i.e., Ig < L,. When this condition is not satisfied, the spec-
trum tends to the square-lattice tight-binding spectrum w(k) =
wq — 2J[cos(k,) + cos(k,)]. This transition can be observed
in the bath density of states (DoS), defined as

DoS(E) = Y " 8(E — Ep), (A3)

Ep

where the sum is performed over all the bath eigenenergies Ep.
Since the Dirac § has only mathematical sense in the contin-
uum limit, for the finite systems we consider we approximate
it by a Gaussian distribution of width 0, that is

DoS(E) ~ Y fo(E — Ep) (A4)

Ep

with fg(E — Ep):

E — Eg)?
fo(E — Ep) = ( 5) ) (AS)

1
V2r6? P ( 262

Using that trick, we plot the DoS of the Harper-Hofstadter
Hamiltonian in Fig. 5(c), as a function of ¢ for a fixed system
size, showing the transition from the g-separated band to a
unique band with a Van Hove singularity at the central energy
w,, characteristic of the nearest-neighbor two-dimensional
tight-binding model. An important characteristic of these en-
ergy bands that appear in the bulk spectrum is that they
can have a nonzero quantized topological invariant associ-
ated with them, that is, the Chern number. In fact, it can be
shown that the Chern number of the /th band is given by
C; =t; — t;—y, where the #; are integer numbers obtained by
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solving the Azbel-Hofstader Diophantine equation [60,61]:

I+1=gs +py with ] < g, (A6)

where f_; = 0. Notice that the relation C; = #; — t;_; implies
thats; = ) <1 Cr,i.e., the topological index #; reveals the sum
of the Chern numbers of the lowest / bands. For example, in
the case of ¢ = 1/g considered in the main text, it results that
the first [(¢ — 1)/2] bands (letting [-] be the floor function)
will have a Chern number C; = —1. Thus, this choice pro-
vides us a way to explore situations with different topological
invariants #; just by probing different energies. Note that other
fluxes can lead to different Chern number combinations. For
example, as we will see below, ¢ = 4/9 leads to a lowest
energy band with Cy = 2, and ¢ = 5/14 leads to Cp = 3. Due
to the bulk-boundary correspondence, these quantized topo-
logical invariant will have important consequences when we
consider open boundary conditions, as they will give rise to a
number of localized, gapless edge states. To illustrate that, we
consider now the system to be placed in a cylinder geometry,
such that the system is periodic in the Y direction but open in
the X direction, defining two edges where localized states can
appear. To confirm that localized edge states appear, we plot in
Fig. 5(b) the spectrum of the system as function of k,, which
is still a good quantum number, for the same parameters as
in Fig. 5(a). There, we observe how, on top of the flat bands
appearing in the bulk modes, several-edge-mode dispersion
appears associated with each of the lowest Landau-levels. This
means that the larger the energy of the band gap is, the larger
the number of edge states. To further characterize the proper-
ties of the edge modes appearing in such band gaps, let us note
that the eigenmodes in these configurations can be written as
Hglky, B) = Eg(k,)lk,, B). Projecting their wave function into
their spatial coordinates (x, y|Wgy ) = e”‘f—"g//ﬁ,k\, (x), one can
find that g 4, (x) satisfies the Harpér equation,

Ve k(X + 1)+ Ypp, (x — 1) + 2cos(2m dpx — ky) g i,
= Eg(ky)Vp i, (x), (A7)

and it features a localized shape. To make it more evident, we
define a localization parameter for each eigenstate as follows:

L—-1

n=>y ( -1+ ZLXX— 1>|Wﬁ,ky(x)|27

x=0

(A8)

which features a maximum =1 value when localized in the
left/right edge, and O when it is delocalized. We codify the
value of that parameter in Fig. 5(a) in a color scale where pur-
ple/yellow indicates a maximum localization in the left/right
edges, whereas blue indicates delocalization. There, we ob-
serve another important property of the edge states: The
modes along one edge are perfectly chiral, since they feature a
positive/negative group velocity depending on the edge where
they are localized. This will have important consequences
when an emitter couples to one of the edges, as we will see
in Appendix C.

APPENDIX B: EFFECTIVE EDGE MODE DESCRIPTION
AS A MULTIMODE WAVEGUIDE

As shown in Fig. 5(b), the first band gaps of the HH can
host a controllable increasing number of edge modes. Since
these are effectively one-dimensional modes and are chiral,
they can be seen as an effective multimode one-way waveg-
uide [37,38]. Generally, such topological modes have been
described within linear approximations [26—28]. However,
from Fig. 5 it is clear that this is not the case in this scenario.
In what follows, we will derive a more accurate effective
theory that is able to analytically capture the behavior of these
multimode wave guides. For concreteness, we will derive
such expressions for the left-localized edge states, although a
similar description can be found for the right-localized ones.

1. Situation with ¢ = 1/¢q

Let us start with the situation ¢ = 1/¢ that we consider in
the main text and in Fig. 5. After extensive numerical analysis,
we find that a good empirical ansatz for the /th eigenmode
dispersion for small magnetic fluxes is given by

weft 1 (ky) = () + a(P)lk, — ki(¢, L), (B1)

where w;(¢) can be found approximately in the perturbative
limit [60] as

wl(d’)__ l _ 2 2 l
£ = 4+2n¢<z+2> (n¢)<l+l+2)

+ 0(¢?), (B2)

whereas a;(¢) and k; (¢, L) are fitting parameters that depend
on both the effective flux ¢ and /th edge mode consid-
ered, although not on system size as long as Iz < L. Note
such quadratic energy dispersions are typical of other (topo-
logically trivial) waveguides, where the finite size effects
introduce energy cutoffs for the modes that lead to that be-
havior. To further characterize this effective model, we start
plotting in Fig. 6(a) the evolution of the curvature of the
edge modes, a;(¢), as a function of ¢ for the three lowest-
energy edge modes in different colors. There, we see how
for big fluxes ¢ the curvatures of the modes differ signif-
icantly, whereas for small fluxes, they converge to a value
a;(¢) ~ 0.6. Regarding the value of the momentum cut-off
ki (¢, L), we find that there is a linear dependence with w;(¢),
i.e., kj(¢) = Brw;(¢)(mod 2rr). To illustrate that, in Fig. 6(b)
we plot them for several fluxes in the range ¢ € [%, 11—2], with
dotted lines indicating the result of the fitting. To discuss
the dependence of k; on the system size L, we may rewrite
Eq. (A7) as

Vpd (6 + 1)+ Vg, (x — 1) + Vo (x) = Eg(ky) gk, (1),
(B3)

where the potential Vi, (x) is given by
Vo(x) =2cos2mx¢p — ky), x=0,1,---,L—1. (B4)

We observe that varying L modifies the boundary condition
of the Harper equation in the right edge. However, if ¢ =
1/q and L is increased or decreased in ng sites (n € N), the
boundary condition remains, leading to k; (¢, L) — k; (¢, L') =
2w ¢p(L — L'). In Fig. 7(a), we show the comparison between
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FIG. 6. (a) Fitted values of the effective model parameter a;(¢)
in Eq. (B1), characterizing the curvature of the edge-mode dispersion
for the three lowest-energy edge states. In the limit of small fluxes,
¢ — 0, all curvatures tend to the same value ~0.6. (b) Fitted values
of k; as a function of the Landau level energy wy, for different mag-
netic fluxes ¢ = 1/q ranging from g = 12 to g = 60. We observe a
linear trend k; = B;w;(mod 27 ). Note that the discontinuity between
the lines occurs because of the definition of k;(;r) over the [—, ]
range. Both panels (a) and (b) are obtained considering a HH lattice
of 40 x 40 sites. (c) Localization length A; of the three lowest edge
modes for different values of ¢, encoded in the markers’ color. All
localization lengths are computed at the same energy, namely the
middle of the third spectral band gap, as depicted in the figure inset.

the exact diagonalization results and our effective description
for a particular value of ¢, showing indeed an excellent agree-
ment for the lowest edge-state dispersions. In Fig. 7(b), we
make a more quantitative assessment of the quality of the
model by defining an error parameter:

1
e =~ D loesaeui(ky) = wera ()P, (B5)
k

kyeQ

1072} o © © o 0o ?°
o O
: = 1=0
_ =1
~ 10 3
w . 1=
10~ " L | " m N g E ®E H @§

o
o

FIG. 7. (a), (b) Effective model vs exact diagonalization for a
magnetic flux ¢ = 1/19 and two different system sizes. In both
panels, blue dots represent the bath spectrum obtained by exact
diagonalization. Purple/yellow dots represent the prediction of the ef-
fective model of the energies of edge modes localized at the left/right
edge. Notice that with varying L, the dispersion relation of right-
localized states is shifted along k,, which can also be captured by the
effective model, although we did not explicitly show that. (c) Fitting
error, as defined in Eq. (BS), for the three lowest edge modes and
varying flux. Empty and filled markers correspond to linear and
quadratic fittings respectively. We observe that, for all cases, the
quadratic fit error is few order of magnitudes lower, showing that
this approach is significantly more realistic.

where €2 is some region in the Brillouin zone along Y
where we are interested in performing the approximation
to the exactly numerically calculated edge-mode dispersion,
Wexact,i (ky), and Ny = || is the number k, of modes within
that region. In Fig. 7(b), we plot &; as a function of ¢ and
compare the accuracy between a linear fit, i.e., wesr ; (k) o< k,
(empty markers) and the quadratic fit of Eq. (B1) (filled mark-
ers), showing how indeed the later provides a much more
accurate approximation of the modes for all fluxes. Apart
from the energies, another magnitude of the modes of interest
is the localization parameter. In particular, we know from
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FIG. 8. (a), (b) Lowest energy spectrum of a Harper-Hofstadter lattice of 80 x 80 sites with a magnetic flux of (a) ¢ =4/9 and (b) ¢ =
5/14. In each case, the lowest band has a Chern number of 2 and 3 respectively, which correspond to the number of edge modes per boundary
resonant to the lowest spectral band gap. (c), (d) Snapshots of the photonic dynamics at time 7J = 300 of spontaneous emission along the Y
axis of an emitter coupled to the left boundary of the lattice with coupling g/J = 0.2. The frequency of the emitter in each case is indicated
in the (a) and ( b) plots as a solid orange line, and is w(®/J = —2.45 and ®*/J = —2.57. We can observe that the pulse shape differs from
the single mode scenario. However, it is not possible in this case to resolve the different peaks of the pulse due to the similarity of the group

velocities of the different topological channels.

Eq. (A7) that when Eg(ky) lies within a band gap the spatial
wave function along X will be exponentially localized, i.e.,
Vp(x) = /2/A(@)e™ /"1 @, where A,(¢p) will depend on both
the energy level / and the flux ¢. In Fig. 6(c) we also plot
its dependence, showing that higher-energy edge modes are
less localized, and also that increasing the value of ¢ yields to
higher delocalization.

2. Other situations ¢ # 1/q,q € N

In this work, we have considered magnetic fluxes of the
form ¢ = 1/q, with g € N, due to the emergence of |g/2]
lowest bands with Chern number C = 1. This structure does
not prevail if ¢ does not fit this form. To illustrate this, we
consider the cases of ¢ = 4/9 and 5/14 in Figs. 8(a), 8(c) and
Figs. 8(b), 8(d), which feature Chern numbers of Cy = 2, 3,
respectively. We start by plotting the spectrum for such values
of ¢ in panels (a) and (b), where we see that the lowest band
gap features four and six edge-state dispersions, respectively,
as expected from the value of Cy. In general, through numer-
ical inspection we found that in these situations the energy
dispersions of the modes tend to be more similar than in the
different band gaps of the ¢ = 1/g situation. This will result
in qualitatively different spontaneous emission patterns, as
observed in panels (c) and (d), where we plot snapshots of the
emission in two different situations, illustrating the richness

of this setup to obtain qualitatively different photonic wave
packets.

APPENDIX C: SPONTANEOUS EMISSION OF EMITTERS
COUPLED TO THE EDGE OF THE PHOTONIC LATTICE

In this section, we will consider what happens when a two-
level emitter, with Hamiltonian Hy = w,0,., couples to one of
the edges of a HH lattice that, for concreteness, we assume
to be the left one of Fig. 1(a) of the main text. In general, we
will consider the most standard local light-matter couplings
given by

H; = gogar, +H.ec., (CD)

where g is the coupling strength of the bath, r, the position of
the cavity mode the emitter couples to, and o,g = |or) (8] the
dipole operator of the optical emitter transition that couples
the photonic bath. In Appendix C 6, however, we will con-
sider the nonlocal couplings that can be engineered with giant
atoms [53-57], as a way of selectively coupling some of the
topological edge modes.

1. Expected Markovian decay rates or local density of states

A single emitter can be prepared in its excited state with
a classical driving, e.g., using a 7 pulse. If one assumes that
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the bath has initially no excitations, this state, |¥y) = |e) ®
|vac)z, can only evolve into an state of the form

() = <ce(r>oeg+ ZAr(t)ai>|g> ® |vac);,  (C2)

because the full light-matter Hamiltonian, H = Hg + Hp +
H;, conserves the number of excitations Neye = 0, + Zr a:rfar
since [H, Nexc] = 0. Using time-dependent perturbation the-
ory or, equivalently, a Markovian approximation for the
system-bath coupling, the emitter is expected to show an
exponential decay of its excitation, i.e., |C,(¢)|> &~ e~ ", with
I" being the expected Markovian decay rate given by Fermi’s
Golden rule [106]:

M(we) =278 Y [Y5(0)*8(w, — Ep(ky))
B

=2¢Im| ———
w, + 10T — Hp

= 2¢> LDoS(r,, w,). (C3)

In the last equality we introduced the local density of states
(LDoS) at the emitter position. This quantity is defined simi-
larly to the regular DoS, but weighting the contribution of each
bath eigenstate by its support on the position of the emitter:

LDoS(r, E) = Z |(r|Eg)|*8(E — Eg) (Cc4
Ep
From this definition, the relation of the LDoS with the Marko-
vian decay rate becomes clear by comparing with Eq. (3) of
the main text, since

l(e|Hy|Ep)|* = |(e|goeear, |Ep)|?
= &°|(Olay, |Eg)|* = &I(r.|Ep)|>,  (C5)

where |0) = |g)|vac). We numerically compute the LDoS in a
similar fashion as we did for the DoS, defining a “smoothed”
Dirac delta function fy(E — Ep), that we take to be a Gaus-
sian distribution as expressed in Eq. (A5), and computing the
LDoS as

LDoS(r,, E) ~ Y [(r|Es)*fo(E — Ep),
Ep

From Eq. (C3) we read that the shape of the LDoS determines
the shape of the expected Markovian decay rate I'(w,). In
Fig. 9(a) we plot the Markovian decay rate at the emitter po-
sition calculated with exact diagonalization, for several values
of ¢. We observe that smaller ¢’s are associated with narrow
band gaps, a situation in which the LDoS “quasiquantized”
behavior leads to plateaus in I'(w, ). In Fig. 9(b), we represent
with a solid line the expected decay rate I, as a function of
w, for ¢ = 1/12, computed using exact diagonalization, and
compare it with the markers that represent the expected decay
rate computed as follows:

FOF _ 27
|vg,l(a)e)| )Vl|vg,l(we)| '

where v, (w,) is the group velocity of the /th mode at
the emitter energy, that is, vg; = O weir,i(ky)lk,—x,» With

rL) Yre

(Co)

Iﬂl (a)e) ~

(o7))

¢ =1/9
b=1/12

0.30(a> rnfif o

0 10 20 30 40 50 60

tJ

FIG. 9. (a) Markovian decay rate of a quantum emitter coupled to
the edge of a HH lattice of 100 x 100 sites, for different values of the
magnetic flux ¢, and computed by exact diagonalization [computed
using an auxiliary width of 8/J = 0.15 as defined in Eq. (AS)]. The
decay rate curves in the lowest part of the spectrum are zoomed in
the figure, showing that lower fluxes support more constant plateaus
in the spectral band gaps. (b) For the same lattice size, the Markovian
decay rate for ¢ = 1/25 is depicted as a solid line. Square markers
depict the prediction of our effective model for the decay rate in
this specific configuration. (c) Spontaneous decay of the emitter
population in the same configuration as in (b) for different values
of w, and g/J = 0.05. Each curve is linked to a value of w, and its
corresponding color is depicted by the square markers in (b).
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werr, 1 (ke) = w,. Thus, the total decay rate in a given band gap
will be given by I'(w,.) = Y, I'/(w, ), where the sum runs over
the number of edge modes that are present in that band gap.
We observe that the decay rate displays a ladderlike structure,
with jumps located at Landau levels. This quasiquantization
behavior can be probed by monitoring the decay of the emitter
population during spontaneous emission. In Fig. 9(c) we show
the quantum emitter dynamics of an initially excited emitter
for the range of w, depicted in Fig. 9(b). There, we observe
how its timescale remains approximately constant until it
crosses the Landau level energy and is able to interact with the
new mode of the higher band gap. We note, however, that the
steps of the ladder are not strictly constant due to the nonlinear
dependence of the mode dispersion. On the contrary, they
display the typical 1/,/@ — weqge dependence associated with
one-dimensional quadratic band-edge dispersions. For the
lowest-energy edge modes, we observe agreement between
the our analytical model and the numerical calculations, ex-
cept near the Landau level divergences. At these energies the
numerical computation of the LDoS entails limited resolution,
due to the finite width 6 associated with the auxiliary function
Jfo(E — Ep): If we probe the LDoS of an energy |E — ;| < 6
from below, the LDoS will count some states above w;, soften-
ing the transition. This issue is unavoidable: if we try to have
an arbitrarily small value of 6, the probe function will even-
tually observe the discreteness of the spectrum. In such case,
the computation of the LDoS would suffer from numerical
instabilities. In contrast, an excessively large value for 6 will
make the approximation states in Eq. (C6) increasingly worse.
In our case, the information about the LDoS jumps would
be lost, softening the shape of the curve. All these numerical
issues are graphically represented in Fig. 10.

2. Photonic spontaneous emission patterns

As we see in Fig. 3 of the main text, the nonuniform
group velocity of the modes along a given band gap favous
a spatial separation of the photons propagating into the differ-
ent channels. This generates naturally single-photon time-bin
entangled states [65], that when combined with sequential
generation methods [52,68—83] can be used to generate com-
plex states of light in these topologically protected channels.
Let us now analyze here the relevant magnitudes that deter-
mine such spontaneous separation of the photons, focusing
on the second band gap where there are two edge modes. If
we neglect the broadening introduced by the nonlinear mode
dispersion, which we will see below is a good approximation
in our system, the spatial separation between the different
modes is determined by

(i) The different group velocities, vg,;, which yield that
after a time 7 the wave-packet fronts are separated by |vg; —
vg|T. With our choice of units, that length is already normal-
ized to lattice constant units.

(i1) The spatial broadening of the modes, which are of the
order of 1/ Fl’l in lattice constant units [107].

Thus, one can define a parameter Ry,

|Ug,l - Ug,l’|

R ) = :
b rt+rt

(C8)
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FIG. 10. Markovian decay rate from exact diagonalization at the
boundary of a HH lattice of size 120 x 120 and ¢ = 1/15. The
figures are obtained using an auxiliary function width of (a) 6,/J =
0.03, (b) 6,/J =0.07, and (c) 65/J = 0.16. The figure insets rep-
resent as crossed markers the distribution of bath eigenvalues {Eg}.
Above these markers, we include a representation of the auxiliary
probe Gaussian function fy(E — Ejp) that is used as described in
Eq. (C6) to probe the energy spectrum and compute the LDoS. In
each figure, the vertical yellow fringes are centered at Landau levels,
and their width is equal to the corresponding value of 6.

—40 35

—-2.0

which quantifies how favorable is a given configuration to
observe the separation of the modes. This quantity has di-
mensions of energy (i.e., inverse time) and captures the
competition between the spatial broadening Ffl + Ff,l and
the pulse separation induced by the difference between group
velocities |vg; — vy |. When Ry T ~ 1, it is expected that the
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FIG. 11. (a) Group velocities of the lowest four edge modes of a HH lattice of 50 x 50 sites and ¢ = 1/40. (b) Inverse decay rate 1/
of the quantum emitter onto each topological channel /, in units of J/g?, and for the case of g/J = 0.1. (c) Distinguishability parameter Ry;, as
defined in Eq. (C8), for the two lowest edge modes in the ¢ = 1/40 configuration.

modes [/ and " are fully resolvable at time 7. In Fig. 11 we
plot the different group velocities of the modes [panel (a)],
broadenings [panel (b)], and Ry ; [panel (c)] as a function
of the quantum emitter energy w, for a given bath configu-
ration with ¢ = 1/40. From Fig. 11(c) we observe that the
pulses associated with modes 0 and 1 will be fully resolvable
at TJ ~ 10°. As expected, the best conditions to achieve
resolution will occur when the quantum emitter energy w,
is slightly above the Landau level energy w;; in this case,
[vg,0 — Vg 1| Will be maximum, which favors resolution. Apart
from the intrinsic broadening of the emitted wave packets, let
us also note that there is an additional source of broadening
coming from the curvature of the edge-mode dispersion at
the emitter’s frequency, that is, ygis in w;(k) ~ w, + vg;(k —
ke) + vais(k — k,)? /2. In particular, it is well known that a
wave packet with an initial broadening oy propagating in such
a nonlinear dispersive channel will have an increasing size

growing with
2 22
- I
o(t) =0 [1+ L
%

In the case of spontaneous emission of a quantum emitter into
the /th topological channel of a HH lattice, we can take o as
the inverse of the decay rate to such mode, '/ ! The pulse
width will then evolve as

1
o(t) ~ —/1+y3 I}
I

From this evolution equation, it follows that the role of disper-
sion will be negligible at a certain time T as long as

(€9

(C10)

vaIIT? < 1 (C11)
Taking g/J ~ 0.1, we find that T';/J ~ 1073, On the other
hand, we can estimate ygi; from our effective theory; in partic-
ular, we will have that ygs ~ 2a;(¢)[k, — k;(¢)], which will
be at most of the order of the unity. Thus, at this value of
g, dispersion effects will be thus relevant at times 7J ~ 10°,
which is several orders of magnitude above the timescale
where the pulses are separable due to different group veloc-
ities, characterized by R;y T ~ 1.

3. Robustness to disorder

In Figs. 3(a), 3(c), and 3(e) of the main text, we have
shown the robustness of single-, two-, and three-edge-mode
propagation to an edge defect. This is a consequence of the
topological nature of the edge modes. Here, we discuss in
greater detail the protection of photon propagation against
disorder by introducing random perturbations in the energy
of local lattice modes, as follows:

H— H+ Z Swealay, (C12)

r

where Sw;, is a random variable uniformly distributed along
the interval (—o, o), where o is the strength of the applied
disorder. Topological gapless modes spectrally located at a
band gap of width Ey are typically expected to be robust to
disorder strengths o up to the order of Ey . In Fig. 12, we
first analyze the effect of disorder qualitatively in two key
features: The LDoS defined in Eq. (C4) and photon emission
and propagation. In Fig. 12(a) we plot the Markovian decay
rate, computed from exact diagonalization, for an emitter
coupled at the boundary of a HH lattice for ¢ = 1/12 for
different values of o averaged among different realizations of
disorder. We observe that the laddered structure is preserved
for values of o comparable to the width of the lowest spectral
band gaps. This is a consequence of the protection of the mul-
timode spectrum in the topological band-gaps. Furthermore,
in Figs. 12(b)-12(d), we plot photon population emitted for
an emitter resonant to the second lowest band gap of the bath
spectrum and for different values of o. For weak disorder,
i.e., small o compared to Ey, we observe the same light-cone
configuration as in the o = 0 case. We only start to witness
light-cone distortion for values of o comparable to the size of
the band gap that is resonant to the emitter energy. Now, let us
make a more quantitative description of the impact of disorder
in the propagation of the edge modes in such a multimode
scenario. For that, we use the method proposed in Ref. [91],
where they quantify the robustness of photon transport by
partitioning the Hilbert space into bulk and edge modes and
by observing the edge mode content of the photonic state
when defects or local disorder are present. To distinguish
between edge and bulk modes of the spectrum, we compute
the localization properties of each eigenstate of the system
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FIG. 12. (a) Ensemble average of the Markovian decay rate of a quantum emitter coupled at the boundary of a HH lattice of 30 x 30 sites
for ¢ = 1/12 for different values of disorder strength: o /J = 0 (blue), o /J = 0.35 (orange), and o /J = 0.7 (green). Each solid line represent
the mean LDoS for a collection of 100 realizations of disorder, whose variance is represented as a shaded region around the mean. Every
curve is computed by exact diagonalization, using an auxiliary width of 6 /J = 0.15 as defined in Eq. (AS5). (b), (c), (d) Photon transport from
the spontaneous emission of such a quantum emitter with energy w,/J = —2.48 along the left boundary of a HH lattice of 70 x 70 sites and
¢ = 1/12, for several values of disorder strength. We observe that photon transport is robust for small values of o. The effects of disorder only
start to arise for o ~ 0.5/, which is of the order of the band-gap width Ey, ~ 0.77J.

using the inverse participation ratio (IPR), defined as follows: [¥on), projected into the edge-mode subspace:

1 EWp) = Y (WY,

~ 1 A (C13) <e
z : |‘~I’ |4 IPR(¥)

IPR(V) =

where the sum is performed over all lattice eigenstates |¥)
whose IPR is below a given threshold. In Fig. 13(b) we
consider a single square defect of increasing size |D|, and
study how much the excitation spreads out of the edge modes
after impinging with it. We compare the situation with two
different system sizes and find that the edge mode content in
both cases is practically constant. Furthermore, we see that
this robustness measure is higher for larger lattices, where
the protection of the edge modes is better. In the inset, we
represent a snapshot of the spontaneous emission dynamics

If a wave function is spread in a discrete space of N sites, its
IPR will be of the order of N. Then, we would expect an IPR
of the order of L? for bulk modes (which spread along the
whole lattice) and of L for edge states (which are localized
along one dimension). In Fig. 13(a) we observe these expected
scaling relations. The implication of this is that larger lattices
lead to larger distinction of the IPR of the bulk and edge
modes, thus allowing a clear bipartition by considering a
given threshold ¢ in the IPR. After defining the partition of

the Hilbert space, we quantify the edge mode content as the
associated norm of the emitted wave function at a certain time,

where we see that transport is highly protected even for large
defects. On top of that, we also consider a different disorder

0.05 -
(a) ¥ 0.006 (b) (C) "= L=06
— , 0.04 L =40
1 <
. §* 0.004 0.03
o~ ,,«. ~
S " el w 0.02
~ I X ~ L | 0002 ‘
—————————— 1 No disorder | — 0.01 /
4 edge A Defect 0.000t™ = " n -
02 o00fm = .
30 40 50 60 100 0 50 100 150 200 00 02 01
L |D| a/J

FIG. 13. (a) Scaling with lattice size L of the inverse participation ratio (IPR) for bulk and edge states in presence vs absence of defects.
The magnetic flux is ¢ = 1/9. The IPR of edge states is computed as the average of all lattice eigenstates with an energy in the lowest spectral
band gap, while bulk states IPR is calculated as an average of eigenstates with an energy equal to the second Landau level. The considered
defect has a size of 10 x 10 sites. (b), (c) Effect of disorder induced by defects (b) and local energy perturbations (c) in the edge mode content
& of the spontaneously emitted photon, for two different lattice sizes. In both cases, we plot 1 — £ (which can be interpreted as the bulk
mode content) for two different lattice sizes and varying defect sizes and disorder strengths. In both cases, the photonic state is obtained from
spontaneous emission of an atom with frequency w, &~ —2.79J and coupled to the lattice with a coupling strength g = 0.05/, and evaluated
at time 7 = 100/J. For L = 40 (L = 65), the bulk-edge IPR threshold is set to 500 (800). The insets depict snapshots of the spontaneous
emission dynamics of an emitter coupled to the center of the left edge, for a lattice size of L = 40.
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situation, that is, a random energy disorder over the lattice
sites with a normal distribution of width o [see Fig. 13(c)]. In
this case, we find it more instructive to project directly to the
edge-mode subspace of the clean system, since bulk modes
undergo Anderson localization, and hence the IPR is no longer
valid to differentiate bulk and edge states. In Eq. (C14), this
implies doing the sum over the edge eigenstates |W) of the
pristine Hamiltonian. In this case, we see that the edge-mode
content decreases for higher disorder strengths, revealing lack
of protection for values of o of the order of w, — wpyk, Which
is ~0.57/ in the situation represented in the figure. Again, we
also observe that larger sizes favor protection.

4. Photon-loss effects

In this paper, we have neglected the possibility that the
emitter or bath mode couples to another additional bath,
generating additional decay rates. In that case, the emitter-
bath dynamics must be described by a density matrix, p(t),
formalism. Assuming that the couplings to these baths are
Markovian, the dynamics of such a density matrix can be
described by the following time-local master equation:

ap .
— =1

K, B
Y [o, H] + Z §(2arpar' - azarp - paiar)

*

r
+ 7(2Ggepaeg — Oee) — POcc), (C15)

where «, and I'* are the Markovian decay rates induced by
these additional baths in the bath and emitter modes, respec-
tively. In the spontaneous emission configuration that we have
considered in this paper, all the effect of these baths can be
captured by replacing the full light-matter Hamiltonian H by a
non-Hermitian version which includes the effect of the losses:

*

K r
H*=Hs+Hp+H —i) iazar .
r

5 (C16)

In Fig. 14(a), we plot its effect in the predicted Markovian
decay rates for increasing values of k, = x and fixing I'*.
There, we observe a “softening” of the steps of the ladder,
although the quasiquantized behavior remains unaltered to a
great extent. A similar behavior will occur with I'* £ 0. The
most significant effect of « is to generate a finite propagation
length of the photon modes, as observed in Figs. 14(b) and
14(c), where we plot an example of the spontaneously emitted
photons without and with dissipation, respectively.

5. Single-photon entanglement generation

In this paper, we show that a spontaneously emitted photon
from a locally coupled quantum emitter will be distributed
over multiple boundary modes, and we point out that this
will lead to a single-particle entangled states between the
different channels [65]. In this section, we give the analyti-
cal expression of such photonic state within the Markovian
approximation, and we quantify its entanglement. Let us first
determine the asymptotic photonic state. After a time ¢ >
I'~!, the emitter population will be negligible and the state
will be purely photonic, i.e., e '|e) ® |vac) ~ |g) @ [Wpn).
Assuming a multimode waveguide of boundary modes and
letting A; x be the annihilation operator for a photon in the /th

—— k/J=0
"/

—— /] =03

2 4

0
we/J

k/J = 0.05
100

i

Y

FIG. 14. (a) Markovian decay rate of a quantum emitter coupled
at the edge of a HH lattice of 40 x 40 and ¢ = 1/12, for several
values of the local mode loss rate «. (b), (c) Excitation dynamics
along the left boundary of a HH lattice with flux ¢ = 1/12, induced
by the spontaneous emission of a quantum emitter with energy
w,/J = —2.48, resonant to two edge modes, and a local loss rate
of (a) x/J =0 and (b) k/J = 0.05 on the lattice sites. We observe
two light cones, associated with the two group velocities of both
topological channels.

mode with quasimomentum k, we can rewrite the light-matter
Hamiltonian as

H =w.0e + Z Z o1(K)A] LAl k + O <Z Z gl,kAz,k>
Ik Ik

+ H.c. (C17)

with g;x = /1'1/(2m), where T is the expected Markovian
decay rate in the I'; mode. Since the Hamiltonian preserves
the number of excitations, if the emitter is initially excited, one
can write the quantum state of the emitter+ bath system at any
time as follows: |W(7)) = C.(t)le) @ |vac) + Y, Ck(1)|g) ®
a£|vac). Applying the time-dependent Schrédinger equation
to this wave function, one can obtain the following set of
equations for the time-dependent coefficients:

dC, (1) . ilwe—w; (K)t]
= Z Xk: igi ke G (),

8Ck(t) c x o —w,
= ;lgl’ke[ A () (C18)

Formally integrating the second equation, inserting in the first
equation, and applying Markov approximation, we find that
the emitter follows exponential decay C,(t) ~ e~""/2, where
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I'=73", T, Then
t
G (1) ~ Z[ dt ig w1 @ W=t p=T1/2
T ’

\/Tl ei[w,(k)—wg]l
~ ZI: 27 w1(K) — w, + i /2

where we assumed ¢ > I'!. We conclude that the asymptotic
photonic state | W) can be written as

Fl e—iw;(k)l
) =Y /oo k).
[Yon) ; 27 o) — o +ir/2 "

For a single mode, we recover the well-known expression for
the asymptotic photonic state of the emitted light from an
emitter coupled to a single-mode waveguide [107]. From this
expression, we observe that the contribution of the /th mode
to the asymptotic photonic state population is weighted by
A/T;. Defining a multimode basis {|1,)}, where |1;) contains
one photon in the /th mode, and defining C; = /T';/T" we
can write the photonic state whose entanglement we want to
characterize as

(C19)

(C20)

[Wpn) = Y _Cill). (21
l

Here, we are consciously neglecting the contribution of the
different phases between the modes, since in principle they
can be corrected by local operations, and thus should not
contribute to the entanglement measures. One way of char-
acterizing the entanglement of this class of states is by
calculating the entanglement entropy [66] between the differ-
ent topological channels. The entanglement entropy of a given
state W for a bipartition of the Hilbert space Hy ® Hp reads
[66]

E(W)(W]) = S(Tra[W)(W]) = S(Trp| W) (W]),  (C22)

whereS(p) = —Tr(pIn p) and Try,p denotes the partial trace
along the A/B subspace. In our case, we define as P, to
the bipartition separating the /th mode from the rest. As-
suming a bipartition P;, we will take our Hilbert space as
H; @ (®r4Hr), and denote by [10) (]01)) the state with one
excitation in the /th mode and zero in the rest (and vice versa).
From Eq. (C21), and using that notation, we then know we can
always write our state as

[¥pn) = Ci110) + /1 —|C;[?|01).

Denoting by p = |C;|? the probability of measuring the photon
in the /th mode, the entanglement entropy of this state can be
readily computed as

E([Ypn) (Ypn|) = —plog p — (1 — p)log(1 — p).

In Fig. 15, we present the entanglement entropy for all possi-
ble bipartitions in each spectral band gap, in comparison with
the entanglement entropy of a W state with a number of qubits
equal to the number of resonant edge modes in each band
gap (dashed lines). The latter can be calculated by imposing
P = 1/Nnodes in Eq. (C24). In the figure, we observe that the
entanglement of our generated state is very similar to the one
obtained for a maximally entangled W state in all the band

(C23)

(C24)
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FIG. 15. Quantifying single-particle entanglement of sponta-
neously emitted photon states. For a Harper-Hofstadter lattice of
¢ = 1/25, we represent the entanglement entropy for all possible
bipartitions (blue solid lines) and the approximate population of the
bulk modes obtained using a perturbative approximation (orange
dashed line) for different values of the emitter transition frequency.
Yellow regions depict the location of the Landau levels. Horizontal
black dotted lines represent the entanglement entropy benchmark for
W states with a number of qubits equal to the number of resonant
edge modes in each band gap.

gaps. Let us note that this calculation is done assuming that
the emitter only decays through the edge modes. This will
be a good approximation as long as the population of the
bulk modes remains small. The latter can be perturbatively
approximated by g°/(w, — wpux)?, Which is what we plot in
dashed orange curves in Fig. 15. Thus, the calculation of
the entanglement entropy will be valid outside of the yellow
regions where the population into the Landau levels become
negligible. To make a more quantitative estimation of the
impact of the bulk modes on the generated entanglement,
one can use more sophisticated entanglement measures, such
as the negativity [108], that can be effectively computed for
mixed states. However, we believe that for the sake of illustra-
tion the entanglement entropy between the different channels
represents a more intuitive witness.

6. Mode selectivity using nonlocal couplings

Local light-matter Hamiltonians, such as the ones consid-
ered in Eq. (C1), lead to completely delocalized couplings in
momentum space. For example, assuming the cylinder geom-
etry that we considered in the previous section, one can rewrite
the light-matter Hamiltonian H; as follows:

H; = goear, + Hec. = Z (iaega(xe,k).)e_ikyy” + H.C'>,

o WL

(C25)

where

hyy (C26)

1
Agx, ky) = \/_E ;am,y)eﬂ

As aresult, when coupling an emitter with an optical transition
of a given energy w,, it couples to all the edge modes of a
given energy. Thus, a quantum emitter locally coupled to the
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edge of a HH lattice will couple to all topological channels. In
this section, we address the problem of selecting the channels
to which the quantum emitter can decay by using nonlocal
couplings such that the emitted photon couples selectively
to some of the topological channels. The key point is that if
one lets the emitter couple to several edge sites with different
strengths g;, the light-matter coupling acquires a k depen-
dence depending on these couplings:

Hy =) 8,0etey + He. = Y [Glky)oegay, k) + Hel,
y ky
(C27)

with

(C28)

1 .
Glhy) = —= Y gye ™
( }) \/E - gye

Such k-dependent coupling can be used to cancel the coupling
to certain momenta and thus prevent the emission in these
modes. For example, this has been used in one- [84] and
two-dimensional [54] single-mode waveguides to generate
chiral, one-directional emission in baths with isotropic bath
dispersions. In our topological multimode wave guides, for
fixed w,, the resonant modes feature a different resonant k("
Thus, choosing g, such that G(k{"’) = 0 to some of the modes,
one can selectively couple to the other ones. Let us now
illustrate a potential method to achieve that selectivity inspired
by the results in Refs. [54,84] that one only requires coupling
to N. + 1 cavities if one wants to cancel the coupling to N,
resonant momenta k(. Let us start with the case where we
want cancel only the coupling to a single resonant momentum
k). For that, let us assume that the emitter couples to neigh-
boring sites with the same amplitude, but a relative complex
phase ¢, that is, g, = g, g,+1 = ge'”. Using these values, it
can be shown from Eq. (C28) that
2¢°

|Gy, (k))* = =>-[1 + cos(k, + @1)].

L, (C29)

Thus, if we want to make it zero for certain k, = kél ) we just
have to choose a relative phase: ¢;, = 7 — k). In the case

where there are more than two edge modes, one might be
interested in canceling the coupling to two or more momenta.
A way of doing that would be to obtain an effective G(k,) out
of the product required to cancel each momentum, separately.
In the general case, where we are interested in suppressing Ny
modes, such a proposal implies taking G(k, ) as

Ni—1

Glky) = [ Gy, (k).
§=0

(C30)

where @5 = 7 — k{». With this choice, we get a nonlocal
coupling in k space of the form

Ni—1
Gky) = [T 1+
§=0
Ne—1
=Y ™ 3" exp <i2<p5>, (C31)
M=0 Q=M seQ

where the sum over |2] = M denotes a sum over all the
Ni!/M\ (N, — M)! subsets of {1, 2, .. - N;} with M elements.
From this expansion in powers of e~* we can directly read

the couplings in real space

8Oy = ) eXp (i Z%)

Q=M 5eQ

(C32)

with M =0, ..., Ny — 1. This shows that the number of non-
local couplings required to cancel N, modes scales linearly
with N, although this method will be eventually limited by
the capacity to resolve the modes. As an example, for N, = 2
we have

Gy (ky) O 1+ (€0 4 €¥1)etr 4 e/ @0te0ei2h - (C33)
which can be achieved with real-space couplings of the form
80 = & 8O.y+1) = g€ + ge¥ and g(o y12) = ge' P
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