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ϕ0-Josephson junction in twisted bilayer graphene induced by a valley-polarized state
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Recently, gate-defined Josephson junctions in magic angle twisted bilayer graphene (MATBG) were studied
experimentally, and highly unconventional Fraunhofer patterns were observed. In this work, we show that an
interaction-driven valley-polarized state connecting two superconducting regions of MATBG would give rise
to a long-sought-after purely electric controlled ϕ0-junction in which the two superconductors acquire a finite
phase difference ϕ0 in the ground state. We point out that the emergence of the ϕ0-junction stems from the
valley-polarized state which breaks time-reversal symmetry, and trigonal warping effects which break intravalley
inversion symmetry. Importantly, a spatially nonuniform valley-polarization order parameter at the junction
can explain the key features of the observed unconventional Fraunhofer patterns. Our work explores the novel
transport properties of the valley-polarized state, and we suggest that gate-defined MATBG Josephson junctions
could realize the first purely electric controlled ϕ0-junctions.
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I. INTRODUCTION

The discovery of correlated insulating states and super-
conducting states in magic angle twisted bilayer graphene
(MATBG) [1–3] motivated intense studies of moiré materials
in recent years. The rich symmetry-breaking states discov-
ered in MATBG [4–38] enable the creation of novel quantum
devices with various quantum phases on a single material
platform. Recently, gate-defined Josephson junctions (JJs)
were created on MATBG [39–42] when a nonsuperconducting
(weak-link) region in a superconducting MATBG device was
created by local gating. Interestingly, a highly unconventional
Fraunhofer pattern was observed in Ref. [41] when the weak-
link region was gated to near half-filling ν = −1/2 filling
(two holes per moiré unit cell).

The observed unconventional Fraunhofer pattern moti-
vated us to study the Josephson effects in a gate-defined
superconductor/valley-polarized state/superconductor (SC/
VP/SC) in MATBG, as schematically shown in Fig. 1(a).
As the unconventional Fraunhofer pattern indicates time-
reversal and inversion symmetry breaking at the weak-link
of the Josephson junction [41], we choose the weak link to
be a partially valley-polarized state. In this case, the energy
degeneracy of moiré bands of the K and −K valleys is bro-
ken due to electron-electron interactions [Fig. 1(b)]. Such
a valley-polarized state is one of the possible energetically
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favorable states at half-filling from Hartree-Fock calculations
[28–36,43], which also satisfies the symmetry requirements
of the experiment. The choice of the valley-polarized state as
the weak link in the Josephson junction is further motivated
by the observation of the anomalous Hall effect at half-filling
in a recent experiment in which the twist angle was slightly
away from the magic angle [43]. This anomalous Hall effect
can also be explained by the partially valley-polarized state.

In this work, we show that the current-phase relation
induced by the interaction-driven valley-polarized state as
the weak link of a Josephson junction is highly unconven-
tional, and it has the form Is = Ic sin(φ − ϕ0). Here, Ic is
the critical current, and φ = φL − φR is the phase difference
of the two superconductors with phases φL and φR, respec-
tively. Such Josephson junctions with general ϕ0 are called
ϕ0-Josephson junctions (ϕ0-JJs). We further point out that
the valley polarization and the trigonal warping effects are
the key ingredients for realizing ϕ0-JJs. Importantly, a spa-
tially nonuniform valley-polarization order parameter at the
junction can provide a plausible explanation for the unconven-
tional Fraunhofer patterns observed in the experiment [41].

ϕ0-JJs have important potential device applications, such
as superconducting spintronics [44,45], Josephson qubits
[46–48], and phase batteries [49]. The previously proposed
realizations of ϕ0-JJs involve ferromagnetic materials [50–56]
or materials with spin-orbit coupling [57–70]. However, ex-
perimental realizations of ϕ0-JJ were rare, and the presence
of external magnetic fields was needed [49,67–69]. This work
establishes a platform of realizing ϕ0-JJs with the interaction-
driven valley-polarized state in MATBG.

II. MODEL FOR NUMERICAL CALCULATION

First, we introduce a microscopic model that describes
a MATBG Josephson junction as realized experimentally in
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FIG. 1. (a) A schematic plot of a gate-defined MATBG Joseph-
son junction. The left (right) side of the junction is superconducting
with pairing order parameter �seiφL(R) . The weak-link region has
width d and a valley polarization order parameter �vp. (b) Il-
lustrations of the moiré bands at K and −K valleys which are
not valley-polarized, partially valley-polarized, and fully valley-
polarized, respectively [31,43]. The black dashed lines denote the
Fermi levels. (c) A schematic plot of a MATBG superconducting ring
with a region gated to the valley-polarized state. The Js (red arrow)
represents a spontaneous supercurrent.

Ref. [41] and schematically shown in Fig. 1(a). The relevant
moiré bands near charge neutrality of MATBG can be cap-
tured by an effective two-orbital tight-binding model on a
hexagonal lattice [4,5], which can be written as

H0 =
∑

〈i j〉,ξσ

t1c†
iξσ c jξσ +

∑
〈i j〉′,ξσ

t2ξ c†
iξσ c jξσ + H.c.

−
∑
i,ξσ

μic
†
iξσ ciξσ . (1)

Here, ξ labels the two p-wave-like orbitals px + iξ py as a
representation of two valleys τ = ±K , σ =↑ / ↓ denotes
the spin indices, and t1 = 0.331 meV and t2ξ = −0.01 +
0.097ξ i meV denote the first-nearest-neighbor and the fifth-
nearest-neighbor hopping. Note that the imaginary part of t2ξ

describes the warping effects. Moreover, the spatial depen-
dent chemical potential is denoted by μ, which is chosen
such that the filling factor ν satisfies −1 < ν < −1/2 for the
superconducting part of the junction and ν ≈ −1/2 at the
weak-link region [41]. As shown in Refs. [4,5], H0 captures
the symmetries of the moiré bands of MATBG.

To include the effects of interactions, we introduce the
superconducting order parameter on the left (L) and right (R)
sides of the Josephson junction and the valley-polarization
order parameter to the weak link. The resulting effective tight-
binding Hamiltonian is

Heff = H0 +
∑

i∈(L,R),ξ

(�se
iφL(R) c†

iξ↑c†
i−ξ↓ + H.c.)

+
∑

i∈WL,ξσ

�vpc†
iξσ (τz )ξξ ′ciξ ′σ . (2)

Here, the second term characterizes the pairing potential on
the left and right side of the Josephson junction with phases
φL and φR, respectively. To be specific, we set the spin-singlet
pairing [10,71] amplitude �s = 0.1 meV according to the
experiments [3,41], which is roughly one order smaller than
the moiré bandwidth. It is important to note that other time-
reversal invariant unconventional pairings have been proposed
in MATBG [37,72]. For simplicity, a conventional spin-singlet
pairing order parameter is assumed in the main text. The
conclusions obtained here are still valid even if we assume
other momentum-independent pairings which involve both the
spin and valley degrees of freedom of MATBG (Appendix E).
The temperature effects on the pairing can be included by
setting �s(T ) = �s tanh (1.74

√
(Tc − T )/T ) (Tc is the super-

conducting critical temperature) [73].
On the other hand, the third term with the Pauli ma-

trix τz characterizes the valley polarization in the weak-link
(WL) region with valley-polarization order parameter �vp.
The order parameter �vp can be seen from the Hamiltonian
with Coulomb interactions under the Hartree-Fock mean-field
approximation (see Appendix A). More details about the
tight-binding model can be found in Appendix C.

III. UNCONVENTIONAL JOSEPHSON JUNCTION
INDUCED BY THE VALLEY-POLARIZED STATE

To study the properties of the gate-defined MATBG
Josephson junction, we first calculate the energy dispersion as
a function of the phase difference φ of the junction, which is
described by Heff. Here, we set the length of the nonsupercon-
ducting part of the junction be d = 10LM/

√
3 [41] (LM ≈ 14

nm is the moiré lattice constant), and set the filling ν to
be close to half-filling. To match the experimental situation
in which the junction resistance is much smaller than the
quantized resistance h/e2 [41], we set the weak-link regime
to be partially valley-polarized [31,43] such that the weak-link
section is metallic as schematically illustrated in Fig. 1(b). The
case of fully valley-polarized topological state is studied in the
Appendix C.

Figures 2(a) and 2(b) show a typical energy spectrum of
the MATBG Josephson junction as a function of the phase dif-
ference φ = φL − φR, obtained by diagonalizing the junction
Hamiltonian Heff with �vp/�s = 0 and �vp/�s = 1, respec-
tively. As expected, there is a large number of Andreev bound
states within the superconducting gap. The energy-phase re-
lations of a few Andreev bound states with large slopes are
highlighted by red solid lines in Figs. 2(a) and 2(b). It can be
seen that the in-gap Andreev bound states with large slopes
∂E
∂φ

contributing mostly to the supercurrent exhibit a phase
shift that is close to (but not equal to) π when the valley
polarization �vp/�s = 1. This phase shift gives the first in-
dication that the valley polarization has nontrivial effects on
the Josephson junction.

To study the ground state of the Josephson junction, we
calculate the free energy as

F (φ) = −kBT
∑

n

ln(1 + e−En (φ)/kBT ), (3)

where T is the temperature, and the energy of the states
En(φ) is obtained by diagonalizing the Hamiltonian Heff(φ).
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FIG. 2. (a), (b) The energy levels of a MATBG Josephson junc-
tion vs the phase difference φ in the cases of no valley polarization
(�vp/�s = 0) and with valley polarization �vp/�s = 1, respec-
tively, where red lines highlight the positions of Andreev bound
states with large slopes. The width of the junction is WJ = 10LM

and the length is d = 10LM/
√

3. The filling of the weak-link region
and the superconducting region are ν ≈ −0.5 and ν ≈ −0.6, respec-
tively. (c) The landscape of the free energy FJ (φ) (in units of �s/LM )
with �vp/�s = 0, 1, 3. The temperature is fixed at T/Tc = 0.3. (d),
(e) The supercurrent density (in units of nA μm−1) vs φ at various
temperatures in the cases of �vp/�s = 0 and 3, respectively. The
total supercurrent across the junction would be given by JsWJ . (f) The
anomalous supercurrent Js(φ = 0) vs the valley polarization strength
�vp at T/Tc = 0.05 and 0.3.

For the sake of convenience, we define the free energy of the
Josephson junction per unit width to be FJ (φ) = W −1

J (F (φ) −
min[F (φ)]), where WJ is the width of the junction. Therefore,
the phase difference of the two superconductors at the ground
state is determined by φ0 such that FJ (φ0) = 0. In Fig. 2(c),
we plot the free-energy landscapes FJ (φ) with temperature
T = 0.3Tc at various valley polarization strengths (�vp/�s =
0, 1, 3). As expected, without valley polarization, the junction
is conventional so that the ground state appears at φ = 0.
Interestingly, the ground state of the Josephson junction can
appear at a finite φ in the presence of valley polarization. For
example, in the case of �vp/�s = 1, the ground state with
FJ (φ) = 0 appears at a phase difference close to (but not equal
to) π . For a larger � such that �vp/�s = 3, the ground state
appears at a phase further away from π .

To show the effect of valley polarization on the current-
phase relation, the supercurrent density Js (in units of
nA μm−1) as a function of φ is depicted in Fig. 2(d) for the
case without valley polarization (�vp/�s = 0) and in Fig. 2(e)
for the case with valley polarization (�vp/�s = 3). Here, the

supercurrent density is obtained from the free energy of the
Josephson junction as Js = 2e

h̄
∂FJ (φ)

∂φ
. Without valley polariza-

tion, the junction has a conventional current-phase relation at
both the low- and high-temperature regimes [74,75]. However,
in the case with finite valley polarization, the supercurrent
can either exhibit a sign change or even display a generic
phase shift [see Fig. 2(e)]. In particular, it can be seen that
the curves with higher temperature [the red and green lines
in Fig. 2(e)] follow a standard ϕ0-JJ current-phase relation of
Js = Jc sin(φ − ϕ0). Our calculation thus clearly shows that
the valley polarization can result in ϕ0-JJs in MATBG.

One important consequence of a ϕ0-JJ is that there is a
supercurrent even at zero phase difference (φ = 0), called
anomalous supercurrent [59,60]. The anomalous supercurrent
density Js(φ = 0) for �vp/�s = 3 can be seen in Fig. 2(e).
The Js(φ = 0) as a function of valley-polarization strength
�vp at various temperatures is shown in Fig. 2(f). We find
that the anomalous supercurrent is generally finite with val-
ley polarization. Moreover, when �vp 
 �s, the anomalous
current density at the low-temperature range can be as large
as tens of nA µm−1. As depicted in Fig. 1(c), we expect to
see an anomalous current in a ring geometry when part of
the superconducting ring is gated to the valley-polarized state.
It is also important to note that unlike previously studied
ϕ0-JJs, the MATBG ϕ0-JJs do not involve ferromagnetism or
spin-orbit coupling, which calls for a new understanding about
the underlying mechanism for the formation of ϕ0-JJs in the
MATBG.

IV. UNDERLYING MECHANISM FOR ϕ0-JJs IN MATBG

Next, based on the scattering matrix method [74,75],
we show analytically that the valley-polarization and the
warping effects of moiré bands are crucial in realizing
a ϕ0-JJ. At the junction, the states can be labeled by
the transverse momentum ky. For illustration, we demon-
strate how the Andreev bound state associated with the
ky = 0 mode (normal incident states) is affected by valley
polarization and the warping terms. The 1D Hamiltonian
associated with the ky = 0 mode can be written as H1D =∑

τα

∫
dx�†

τα (x)Ĥτα (x)�τα (x). Here, τ = +/− labels the
valley index, α = +/− labels the incoming/outgoing normal
states near the Fermi energy, �τν = (ψτα (x), ψ†

−τ,−α (x))T de-
notes the Nambu basis, and

Ĥτα (x) =
(

HN,τα (x) + �vp(x)τ �s(x)
�s(x) H∗

N,−τ−α (x) + �vp(x)τ

)
.

(4)

Here, the linearized single-particle Hamiltonian HN,τα (x) =
−iαh̄v f ,τα (x)∂x, and the longitudinal Fermi velocity along
the current direction is given by v f ,τα such that v f ,τα (x) =
vs,τα[�(x) + �(x − d )] + vvp,τα�(x)�(d − x), where vs,τα

and vvp,τα are the Fermi velocities for the superconducting
region and the valley-polarized weak-link region, respectively.
Notably, the warping term that breaks the intravalley inversion
symmetry could lead to vvp,τα �= vvp,τ−α . The superconduct-

ing pairing potential is written as �s(x) = �s(ei φ

2 �(−x) +
e−i φ

2 �(x − d )), and the valley-polarized order parameter is
�vp(x) = �vp�(x)�(d − x).
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(b) The Josephson current Is (normalized by its maximal value) vs
φ calculated with the Andreev bound states given by Eq. (5) with
�vp/�s = 0 (gray dots) and �vp/�s = 3 (red dots), respectively.
The two other energy scales are given by ET = 0.65�s and EA =
12�s, respectively.

With the effective one-dimensional Hamiltonian H1D, we
can solve the energies of the Andreev bound states ετ analyt-
ically (τ is a good quantum number), which are given by (for
more details, see Appendix B)

cos

(
2β − 2(ετ − τ�vp)

ET

)
= cos

(
φ + ετ − τ�vp

τEA

)
. (5)

Here, β(ετ ) = arccos ετ

�s
, ET = h̄v̄vp/d is the Thouless en-

ergy, and EA = h̄δv̄vp/d is an energy scale that reflects the
intravalley asymmetry induced by the warping term, where
v̄vp and δv̄vp are defined by v̄vp = 4(

∑
τν v−1

vp,τα )−1 and δv̄vp =
2(v−1

vp,++ + v−1
vp,−− − v−1

vp,+− − v−1
vp,−+)−1.

Importantly, many features of the numerical results as
shown in Fig. 2 can be captured by Eq. (5). For example,
we can calculate the Andreev bound state energies associated
with the τ = +/− valleys by solving ετ (φ) from Eq. (5)
at �vp/�s = 0 and �vp/�s = 1 [see the gray lines and
blue lines in Fig. 3(a), respectively]. Note that in Fig. 3(a),
the valley degeneracy of Andreev bound states is lifted by
the warping term and valley polarization. With the bound state
energies ετ , it is straightforward to obtain the supercurrent
Is(φ) by adopting the relation

Is(φ) = −2e

h̄

∑
τ

∑
ετ >0

tanh

(
ετ

2kBT

)
∂ετ

∂φ
. (6)

As an illustration, we plot the calculated Is(φ) at the low-
temperature limit in the cases of �vp/�s = 0 and �vp/�s = 3
[see Fig. 3(b)]. Notably, the features are in agreement with the
ones shown in Figs. 2(d) and 2(e).

In the short junction and at the high-temperature limit, we
can obtain an analytical form for the Josephson current:

Is(φ) ≈ e�2
s

2h̄kBT
cos

(
2�vp

ET

)
sin(φ − ϕ0). (7)

It can be seen that Is(φ) indeed significantly differs from the
conventional form given by Is(φ) ∝ sin φ. Specifically, the
supercurrent exhibits a phase shift ϕ0 = �vp/EA, which is
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vs the magnetic flux � passing through the junction (in units of
�0 = h/2e) for the 0-0 (gray), 0-π (blue), and ϕ1-ϕ2 (red) Josephson
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model with different valley-polarization-induced phase shifts ϕ1 and
ϕ2. The Fraunhofer pattern of the ϕ1-ϕ2 junction matches the exper-
imental observations well with ϕ1 = 0.2, ϕ2 = π + 0.8. The widths
of the ϕ1 and ϕ2 sections are chosen to have the ratio WJ1/WJ2 ≈ 2.3.

determined by both the valley polarization and Fermi velocity
asymmetry induced by warping effects (ϕ0 = 0 if there is no
asymmetry as EA → ∞). Remarkably, the factor cos( 2�vp

ET
)

indicates that the supercurrent oscillates periodically as a
function of �vp, being consistent with the numerical result
in Fig. 2(f). It is worth noting that the results are similar
to Eq. (7) for modes with small transverse momentum ky as
well.

V. UNCONVENTIONAL FRAUNHOFER PATTERN

In practice, the sample inhomogeneity and the formations
of valley-polarization domain walls may lead to spatially
nonuniform �vp inside the weak-link region [76], which can
affect the transport properties of the ϕ0-JJ. As an illustration,
we calculate the Fraunhofer pattern for a simple geometry
with two valley-polarization domains (see the inset of Fig. 4),
in which each domain generates a phase difference of ϕ1

and ϕ2, respectively, at the junction. Such a ϕ1-ϕ2 junction
is a generalization of the previously studied 0-π junctions
[77–79]. Here, we plot the resulting Fraunhofer patterns in
Fig. 4, and the details can be found in Appendix D. Interest-
ingly, the Fraunhofer pattern in the ϕ1-ϕ2 junction captures
the main features found in the recent experiment [41], which
exhibits a shift in the central peak, a large asymmetry with
respect to the central peak, and a nonvanishing critical cur-
rent as a function of magnetic fields. These features are not
naturally expected by conventional Josephson junctions nor
0-π Josephson junctions [77–79]. It is worth noting that al-
though our study provides a plausible mechanism for the
unconventional Fraunhofer pattern seen in the experiment
based on ϕ0-JJs, we cannot exclude other ways of generat-
ing such Fraunhofer patterns. To directly view the ϕ0-JJs in
the experiment, it would be more straightforward to use the
SQUID structures as in previous experiments [67,68], which
are discussed in detail in Appendix D.
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VI. DISCUSSION

It is important to note that our model exhibits some simi-
larities between the ϕ0-JJ model induced by Rashba spin-orbit
coupling and exchange field [57,64] by regarding the valley
as a pseudospin. Specifically, the trigonal warping term and
valley polarization can play the role of spin-orbit coupling
and spin polarization, respectively. The detailed mapping is
illustrated in Appendix F. This mapping provides a good in-
sight about the appearance of the ϕ0-Josephson junction in the
MATBG platform, although it is one in which the spin-orbit
coupling is negligible. We expect that the ϕ0-Josephson is only
an example, while other profound physics that typically arises
from the interplay of spin-orbit coupling and ferromagnetism
can also be explored in the MATBG according to our frame-
work.

In the main text, we focus on the Josephson junction in the
ballistic limit. On the other hand, intervalley backscattering
can couple the two valleys and effectively weaken the valley
polarization and reduce ϕ0, similar to the spin-relaxation ef-
fects in ϕ0-JJ with spin-orbit coupling [64,65,80]. However, as
long as the valley polarization is finite, we still expect a ϕ0-JJ.
Furthermore, our work can be easily extended to study the un-
conventional Josephson effects mediated by valley-polarized
states in other moiré materials/superconductor heterostruc-
tures.
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APPENDIX A: TRIGONAL WARPING EFFECTS OF
MOIRÉ BANDS AND VALLEY-POLARIZED STATES

1. Moiré bands of MATBG and trigonal warping effects

In the main text, the trigonal warping impact of moiré
bands and its important effects on creating ϕ0-Josephson junc-
tions (JJs) in twisted bilayer graphene is highlighted. Here,
we present the details of showing the trigonal warping effects
using the continuum model of magic angle twisted bilayer
graphene (MATBG) [which is depicted in Fig. 5(a)]. The
continuum model of MATBG (cf. [1,4]) can be written as

Hτ (r) =
(

Hb(r) T (r)
T †(r) Ht (r)

)
. (A1)

Here, the intralayer moiré Hamiltonian is

Hl = −h̄vR(θ )
[(

k̂ − K(l )
τ

) · (τσx, σy)
]
R†(θ ), (A2)

where h̄v/a = 2.1354 eV. Here, l = t/b and τ = ± label the
top/bottom layers and ± valleys, respectively. The twist an-
gle is denoted as θ , σ j represent the Pauli matrices defined
in the AB sublattice space, K(l )

τ labels the Dirac point at
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FIG. 5. (a) A schematic plot of the twisted bilayer graphene
moiré superlattice (LM is the lattice constant), which is formed using
two layers of graphene with a small twisted angle θ . (b) The lowest
moiré bands of twisted bilayer graphene near charge-neutrality points
with the magic twist angle θ = 1.05◦. The blue/red bands are from
+K/ − K valley (τ = +1/τ = −1). Note that we have shifted the
charge-neutrality points to be at zero energy. (c) The Fermi contour
(in blue) near half-filling [the black dashed line in (a)]. The green
dashed line is plotted with k f (ϕ) = a + b cos 3ϕ. The black solid
lines label the moiré Brillouin zone. (d) The blue line shows the
anisotropic Fermi velocity along the radical direction v f (ϕ). The
black lines are a plot of v f (ϕ) estimated using k f (ϕ). The radius is in
units of meV/h̄L−1

M ≈ 2×104 m/s.

valley τ of the l-layer, and the rotational operator R(θ ) =
diag(e−il θ

2 , eil θ
2 ). The interlayer Hamiltonian T (r) can be writ-

ten as

T (r) =
(

u u′
u′ u

)
+

(
u u′e−iωτ

u′eiωτ u

)
e−iτGM

2 ·r

+
(

u u′eiωτ

u′e−iωτ u

)
e−iτGM

3 ·r. (A3)

Here, ωτ = 2π
3 τ , GM

i = 4π√
3LM

(cos (i−1)π
3 , sin (i−1)π

3 ) with the
moiré unit length LM = a/ sin θ ∼ 14 nm, and we adopt u =
0.0797 eV, u′ = 0.0975 eV according to Ref. [4]. The moiré
bands can be obtained by diagonalizing the continuum Hamil-
tonian using the plane-wave basis ψk(r) = ∑

G CGei(k+G)·r
with G = n1GM

2 + n2GM
3 , where n1, n2 are integers.

Figure 5(b) show the band structure of the lowest moiré
bands near the charge-neutrality point of MATBG [4].

To highlight the trigonal warping features of the moiré
bands, a Fermi energy contour near half-filling of the τ =
+1 valley [the black dashed line in Fig. 5(b)] is plotted in
Fig. 5(c) (blue line). We can denote the warped Fermi energy
contour as k f (ϕ). k f (ϕ) = k f (ϕ + 2π

3 ) due to the C3 symme-
try and an emergent C2x symmetry in each valley such that
k f (ϕ) = k f (−ϕ). To the lowest order in ϕ, we can expand
k f (ϕ) ≈ a + b cos 3ϕ. By using a = 2.315, b = −1.299 (in
unit of L−1

M ), we find that k f (ϕ) can approximately fit the
warped Fermi energy contour of the continuum model. The
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Fermi energy contour at the τ = −1 valley can be obtained
by a time-reversal operation.

Such prominent warping behavior is a direct consequence
of the narrow bandwidth and the constraint of D3 point group
symmetry of MATBG [4,5]. Here, we present the symmetry
transformation properties under the generators of D3 which
include a threefold rotation along the z-axis and a twofold ro-
tation along the y-axis. Note that the moiré bands are assumed
to be decoupled in the valley space so that only the terms that
involve τ0 and τz are allowed. Without loss of generality, we
consider that the Fermi energy cuts the lower branch of the
moiré bands only, as shown in Fig. 5(b). In this case, we can
construct a simple symmetry-invariant continuum model near
the �m point as

Heff = λ0
(
k2

x + k2
y

) + λ1kx
(
k2

x − 3k2
y

)
τz − μ. (A4)

Here, the first term is the kinetic energy term, μ denotes the
chemical potential term, and the second term is the warping
term, which is opposite at the opposite valley to preserve
the time-reversal symmetry T = τxK and C2y = τx symme-
try. The presence of the warping term breaks the intravalley
inversion symmetry as I0Heff(k)I−1

0 �= Heff(−k), where under
I0 : τ �→ τ, k �→ −k. As emphasized in the main text, the
breaking of intravalley inversion symmetry together with the
valley polarization enables the generation of the ϕ0-Josephson
effect in MATBG even in the absence of the spin-orbit cou-
pling.

One of the important consequences of the warping effects
is to enable the velocity of incoming and outgoing states in
the junction to be asymmetric, which plays a crucial role in
creating a nontrivial ϕ0 as shown in later sections. To show
the asymmetry of the Fermi velocity in the moiré bands, we
plot the angular dependence of Fermi velocity v f (ϕ) [see
the blue line in Fig. 5(d), in units of meV/h̄L−1

M ], which is
defined as v f (ϕ) = √

vx[k f (ϕ)]2 + vy[k f (ϕ)]2, where k f (ϕ) is
the Fermi momentum contour as shown in Fig. 5(c). In other
words, v f (ϕ) is the Fermi velocity along the radical direction
at each ϕ. For normal incident states, we can estimate that
the asymmetry of the Fermi velocity is given by v f (ϕ=0) −
v f (ϕ = π ) ≈ meV/h̄L−1

M ≈ 2×104 m/s. Note that the Fermi
velocity is two orders smaller than that of monolayer graphene
due to the formation of flat bands under a moiré superlattice
potential.

To highlight the anisotropy of Fermi velocity induced
by the warping term in Eq. (A4), we can rewrite the Heff

in polar coordinates as Heff(kr ) = λ0k2
r + λ1k3

r cos(3ϕ)τz −
μ. For the τ = +1 valley, the v f (ϕ) can be obtained

as v f (ϕ) = ∂Heff(k f (ϕ))
∂kr

= 2λ0k f (ϕ) + 3λ1k2
f (ϕ) cos(3ϕ). In-

serting k f (ϕ) ≈ a + b cos 3ϕ, the form of v f (ϕ) is obtained.
We made a plot of v f (ϕ) with parameters λ0 = 0.5347 and
λ1 = 0.0885 [see the dashed line in Fig. 5(d)]. Although there
is some deviation from the numerical one (in blue), all the
symmetry features are captured. To obtain a closer fitting to
the numerical results, one can expand it to higher-order terms,
which is not necessary for the purposes of this manuscript.
Therefore, we have shown that the trigonal warping effects
would result in anisotropic Fermi velocities. The warping
term would induce an asymmetry for the velocities of the

incoming and outgoing modes in our scattering matrix method
calculations later.

2. An illustration of valley-polarized states from
the Hartree-Fock mean-field approximation

A more detailed Hartree-Fock mean-field approximation
for the moiré bands upon Coulomb interaction has been ex-
tensively studied in previous works. However, for the sake
of completeness, and to illustrate some features of the moiré
bands upon the valley-polarization, we present the basic for-
malisms of the valley-polarized states from the Hartree-Fock
approximation with a minimal interacting Hamiltonian:

H0 =
∑
k,τ,s

(εk,τ − μ)ψ†
k,τ,sψk,τ,s + 1

2A

∑
q

Vq : ρqρ−q : .

(A5)

Here, A is the sample area, s denotes the spin index, μ is the
chemical potential for the single-particle moiré band, and the
density operator ρq = ∑

k,k′,τ,s 〈ck,τ,s|eiq·r|ck′,τ,s〉 c†
k,τ ck′,τ,s.

Without loss of generality, we focus on the first valence
moiré band, and the Coulomb interaction is projected to
this moiré band [71]. The singlet-particle wave function
can be decomposed into the plane-wave basis as |ck,τ,s〉 =

1√
A

∑
G ak+G,τ,sei(k+G)·r, with G being the moiré reciprocal-

lattice vector.
The Hartree-Fock mean-field Hamiltonian with a spin- and

valley-polarized ground state can be written as

HHF
0 ≈

∑
k,τ

Ek,τ,sψ
†
k,τ,sψk,τ,s, (A6)

where
Ek,τ,s = (εk,τ − μ) + �k,τ,s, (A7)

�k,τ,s = 1

A

∑
k′,τ ′,s′

V ττ ′τ ′τ
kk′k′k,ss′s′snF (Ek′,τ ′,s′ )

− 1

A

∑
k′

V ττττ
kk′kk′,ssssnF (Ek′,τ,s). (A8)

Here, nF is the Fermi-Dirac occupation function, the first term
on the right-hand side of Eq. (A8) is the Hartree energy, while
the second term is the Fock energy. The Coulomb interaction
strength is written as

V ττ ′τ ′τ
k1k2k3k4,ss′s′s =

∑
q

Vq 〈ck1,τ,s|eiq·r|ck4,τ,s〉

× 〈ck2,τ ′,s′ |e−iq·r|ck3,τ ′,s′ 〉
=

∑
q,G1,G2,G3,G4

Vqa∗
k1+G1,τ,sa

∗
k2+G2,τ ′,s′ak3+G3,τ ′,s′

× ak4+G4,τ,sδk1+G1,q+k4+G4δk3+G3,q+k2+G2 .

(A9)

Hence, the Coulomb interactions in the Hartree term and the
Fock term are written as

V ττ ′τ ′τ
kk′k′k,ss′s′s =

∑
q,G1,G2,G3,G4

Vqa∗
k+G1,τ,sa

∗
k′+G2,τ ′,s′

× ak′+G3,τ ′,s′ak+G4,τ,sδG1,q+G4δG3,q+G2 , (A10)
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V ττττ
kk′kk′,ssss =

∑
q,G1,G2,G3,G4

Vqa∗
k+G1,τ,sa

∗
k′+G2,τ,sak+G3,τ,s

× ak′+G4,τ,sδk+G1,q+k′+G4δk+G3,q+k′+G2 . (A11)

One can solve Eq. (A8) in a self-consistent way. Note that the
doubly counted interacting energy should be subtracted after
the mean-field approximation, which is given by

E0 = 1

2A

∑
k,k′,τ,τ ′,s,s′

[
V ττ ′τ ′τ

kk′k′k,ss′s′s − V ττ ′τ ′τ
kk′kk′,ss′s′s

× δτ,τ ′δs,s′
]
nF (Ek,τ,s)nF (Ek′,τ ′,s′ ). (A12)

Depending on the filling and the Coulomb interac-
tion strength, various time-reversal breaking states with
valley-polarization that satisfy the self-consistent Hartree-
Fock equation can be obtained, including the following:
(i) The fully valley-polarized, spin-unpolarized insulating or
semimetallic state. This state can appear when the Coulomb
interaction strength is strong and the filling factor is near
some integer fillings. (ii) The partially valley-polarized,
spin-unpolarized metallic states, which can appear when
the Coulomb interactions are weaker [31]. (iii) The valley-
polarized, spin-polarized states. A schematic illustration of
the valley-polarized states is presented in the main text
(Fig. 1). As the focus of this work is the valley-polarized state,
we neglect the spin polarization and rewrite the mean-field
Hamiltonian as

HHF
0 ≈

∑
k,τ

ψ
†
k,τ [(ε̃k,τ − μ) + �vp,kτz]ψk,τ , (A13)

where ε̃k,τ = εk,τ + (�k,τ + �k,−τ )/2 and �vp,k = (�k,τ −
�k,−τ )/2, and �vpτz is the valley-polarized order parameter.
Note that here we are directly taking the valley-polarized
state as the ansatz state. It is actually difficult to determine
which state is more energetically favorable based on Hartree-
Fock consideration alone. Especially when the correlated state
appears at the weak-link region, the coupling with the super-
conducting regions can also be important.

APPENDIX B: ANALYTICAL CALCULATIONS OF THE
CURRENT-PHASE RELATION USING THE SCATTERING

MATRIX METHOD

In the main text, we have used the scattering matrix method
to show that the studied MATBG Josephson junction is a ϕ0-
JJ, and we find that the valley polarization and warping effects
are crucial in giving rise to the observed ϕ0-JJ. We present the
corresponding details in this Appendix.

1. Model Hamiltonian

To gain some insight into the crucial features of the junc-
tion, we first look at the limit of �s,�vp � μ, i.e., the
bandwidth is the biggest energy scale. In this case, we can
linearize the momentum near Fermi energy for a fixed trans-
verse momentum ky and obtain a low-energy effective model
as

H = 1

2

∑
τα

∑
ky

∫
dx�†

ky,τα
(x)Ĥky,τα (x)�ky,τα (x). (B1)

Here, τ± labels the ±K valley, α = +/− labels the incom-
ing/outgoing normal states near the Fermi energy, �ky,τα =
(ψky,τα (x), ψ†

ky,−τ,−α
(x))T denotes the Nambu basis, and

Ĥτα (x) =
(−iαh̄v f ,τα (ky, x)∂x + �vp(x)τ �s(x)

�s(x) iαh̄v f ,−τ−α (ky, x)∂x + �vp(x)τ

)
(B2)

with the pairing potential �s(x) = �s[ei φ

2 θ (−x) + e−i φ

2 θ (x −
d )], valley polarization �vp(x) = �vpθ (x)θ (d − x) (note that
here, we have assumed a uniform valley polarization for
the sake of simplicity), and the longitudinal Fermi velocity
at a fixed ky of the superconducting part and the junction
part is given by v f ,τα (ky, x) = vs,τα (ky)[θ (−x) + θ (x − d )] +
vvp,τα (ky)θ (x)θ (d − x) [for the compact of notations, we will
denote v f ,τα (ky, x) ≡ v f ,τα (x) in the following]. Here, φ is the
phase difference, d is the length of the junction, �vp is the val-
ley polarization strength, and vs,τα , v f ,τα are the longitudinal
Fermi momentum along the current direction of the supercon-
ducting part and the junction part with valley polarization.
One can verify that the whole Hamiltonian Ĥ (dimension
is 8 by 8) preserves particle-hole symmetry PĤP−1 = −Ĥ
but breaks time-reversal symmetry T ĤT −1 �= Ĥ if �vp is
finite. Here, P̂ = ρxαxτxK̂ , T̂ = αxτxK̂ , K̂ is a complex con-
jugate, α j, K̂ is com τ j , and ρ j are Pauli matrices defined in
α = +/−, valley, and particle-hole space, respectively.

Note that in general vvp,τα �= vvp,−τ−α due to the breaking
of time-reversal symmetry, but vvp,τα ≈ vvp,−τ−α in the limit

of �vp � E ′
F . On the other hand, the warping term break-

ing intravalley time-reversal symmetry could lead to vvp,τα �=
vvp,τ−α , which plays a crucial role in giving rise to the ϕ0

junction as shown later.
It is worth noting that the model Hamiltonian resembles

that for an S/F/S junction if the valley is regarded as a
pseudospin (flips sign under both time-reversal and inversion
operation). As we will show later, the π junction, which was
commonly explored in S/F/S junctions, can also be stabilized
in S/VP/S junctions. But we would emphasize that the physics
system in our case is very different, given that the polarization
appears in valley degree of freedom rather than spin.

2. Scattering states and boundary conditions

The scattering states in the S region of the left (L) and right
(R) side are obtained as

ψL
s,τα =

(
e−iαβ

e−i φ

2

)
eiαk0

s,ταx+κταx+ikyy, x � 0, (B3)
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ke,τ+
ke,τ- kh,τ+

kh,τ-

kvp,τ+
0kvp,τ-

0

ε

FIG. 6. A schematic plot of the wave vectors ke(h),τα on the quasi-
particle excitation. The electron- and holelike quasiparticle bands are
highlighted with a solid line and a dashed line, respectively.

ψR
s,τα =

(
eiαβ

ei φ

2

)
eiαk0

s,τα (x−L)−κτα (x−L)+ikyy, x � d, (B4)

with k0
s,τα being the Fermi momentum along the longitudinal

direction for a fixed ky and the definitions

κτα =
√

�2
s − ε2

h̄vs,τα

, (B5)

β =
{

acos ε
�s

if ε < �s,

−i acosh ε
�s

if ε > �s.
(B6)

The in-gap states ψL/R
s,τα with ε � �s are superpositions of

electron and hole with an exponential decay length κ−1
τα into

the left/right superconducting regions. One can verify that
the states in the S region possess time-reversal symmetry:
ψs(ε,−φ) = T̂ ψs(ε, φ) with k0

s,τα = k0
s,−τ−α .

The scattering state in the VP region (0 � x � d ) is

ψvp,e,τα = 1√
Ne,τα

(
1
0

)
eike,ταx+ikyy, (B7)

ψvp,h,τα = 1√
Nh,τα

(
0
1

)
eikh,ταx+ikyy. (B8)

Here, ke,τα and kh,τα are the wave vectors for electron- and
holelike states, respectively (see an illustration in Fig. 6), and
Ne(h),τα are normalization factors to ensure that the scatter-
ing matrices are unitary. Up to leading order, ke,τα ≈ k0

e,τα +
δke,τα, kh,τα ≈ k0

h,τα + δkh,τα with k0
e,τα = k0

h,τα = αk0
vp,τα ,

and

δke,τα = ε − τ�vp

αh̄vvp,τα

, (B9)

δkh,τα = − ε − τ�vp

αh̄vvp,−τ−α

. (B10)

Here, ψvp,e,τ+, ψvp,h,τ− are the states moving in the +x direc-
tion, while ψvp,e,τ−, ψvp,h,τ+ are the states moving in the −x
direction. The particle-hole symmetry requires ψvp,h(−ε) =
P̂ψvp,e(ε) so that δkh,τα (−ε) = −δke,−τ−α (ε). The factors√

Ne,τα and
√

Nh,τα are to ensure that the scattering matrix
is unitary.

As Ĥ is block-diagonalized in the valley space with
[τz, Ĥ ] = 0, we can solve the scattering matrix for τ = +
and τ = − separately. We also assume that the transverse mo-
mentum ky is conserved during the scatterings. The boundary
conditions at x = 0 and x = d are

aψL
s,τ+(x = 0) + bψL

s,τ−(x = 0) = c+
e ψvp,e,τ+(x = 0) + c−

e ψvp,e,τ−(x = 0) + c+
h ψvp,h,τ+(x = 0) + c−

h ψvp,h,τ−(x = 0), (B11)

a′ψR
s,τ+(x=d )+b′ψR

s,τ−(x=d )=c+
e ψvp,e,τ+(x=d )+c−

e ψvp,e,τ−(x=d )+c+
h ψvp,h,τ+(x=d )+c−

h ψvp,h,τ−(x=d ), (B12)

avs,τ+ψL
s,τ+(x = 0) + bvs,τ−ψL

s,τ−(x = 0) = vvp,τ+c+
e ψvp,e,τ+(x = 0) − vvp,τ−c−

e ψvp,e,τ−(x = 0)

+ vvp,−τ−c+
h ψvp,h,τ+(x = 0) − vvp,−τ+c−

h ψvp,h,τ−(x = 0), (B13)

a′vs,τ+k0,τ+ψR
s,τ+(x = d ) − b′vs,τ−ψR

s,τ−(x = d ) = vvp,τ+c+
e ψvp,e,τ+(x = d ) − vvp,τ−c−

e ψvp,e,τ−(x = d )

+ vvp,−τ−c+
h ψvp,h,τ+(x = d ) − vvp,−τ+c−

h ψvp,h,τ−(x = d ). (B14)

Here, Eqs. (B11) and (B12) are obtained from the continuity of the wave function, while Eqs. (B13) and (B14) are obtained from
the conservation of particle current, which for each state is given by Im(〈ψ | ∂Hτα (r)

∂ px
|ψ〉) = 〈ψ |diag(αv f ,τα,−αv f ,−τ−α )|ψ〉.

3. Andreev bound states in the case without normal reflections

We now solve the Andreev bound states using the scattering matrix method [74,75]. First, we need to work out the scattering
matrices. We can define

a(L) = a, b(L) = b, a(R) = a′, b(R) = b′; (B15)

c†
e (L) = c+

e , c−
e (L) = c−

e , c+
h (L) = c+

h , c−
h (L) = c−

h ; (B16)

c†
e (R) = c+

e ei(k0
e,τ++δke,τ+ )d , c−

e (R) = c−
e ei(k0

e,τ−+δke,τ− )d ; (B17)

c+
h (R) = c+

h ei(k0
h,τ++δkh,τ+ )d , c−

h (R) = c−
h ei(k0

h,τ−+δkh,τ− )d . (B18)
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The scattering matrices in the scattering method are defined
as(
c+

e (L)
c−

h (L)

)
= SL

(
c−

e (L)
c+

h (L)

)
,

(
c−

e (R)
c+

h (R)

)
= SR

(
c+

e (R)
c−

h (R)

)
, (B19)

and the transition matrices are defined as(
c+

e (R)
c−

h (R)

)
= TRL

(
c+

e (L)
c−

h (L)

)
,

(
c−

e (L)
c+

h (L)

)
= TLR

(
c−

e (R)
c+

h (R)

)
. (B20)

According to the scattering matrix method [74,75], the
energies of Andreev bound states are given by

Det[1 − TLRSRTRLSL] = 0. (B21)

The transmission matrices can be directly obtained according
to the definitions Eqs. (B15)–(B18) and Eq. (B20) as

TRL =
(

ei(k0
e,τ++δke,τ+ )d 0

0 ei(k0
h,τ−+δkh,τ− )d

)
, (B22)

TLR =
(

e−i(k0
e,τ−+δke,τ− )d 0

0 e−i(k0
h,τ++δkh,τ+ )d

)
. (B23)

The form of the scattering matrix SL(R) would depend on
the interface at x = 0 and x = d . Let us first consider the case
without a chemical potential difference between the supercon-
ducting region and the valley-polarized region, i.e., μ = μ′. In
this case, vvp,τ± = vs,τ±, the factors in the scattering states can
be simply taken as Ne,τα = Nh,τα = 1. Using the definitions
Eqs. (B15)–(B18) and the boundary conditions Eqs. (B11)–
(B14), one can easily obtain

SL(R) =
(

0 e±i φ

2 −iβ

e∓i φ

2 −iβ 0

)
. (B24)

Here, β = acos ετ

�s
for in-gap Andreev bound states, and only

Andreev reflections in the scattering matrix are finite due
to the absence of momentum mismatches. By inserting the
scattering matrix back to Eq. (B21), we find that the energies
of Andreev bound states are given by

cos

(
2β − 2(ετ − τ�vp)d

h̄vvp

)
= cos

(
φ + (ετ − τ�vp)d

τ h̄δvvp

)
,

(B25)

where

v̄vp = 4∑
τα v−1

vp,τα

, (B26)

δv̄vp = 2

v−1
vp,++ + v−1

vp,−− − v−1
vp,+− − v−1

vp,−+
. (B27)

We can further define two energy scales: one is the Thou-
less energy ET = h̄v̄vp/d , and the other one is EA = h̄δv̄vp/d ,
which reflects the intravalley asymmetry induced by the warp-
ing term. Then Eq. (B25) is rewritten as

cos

(
2β − 2(ετ − τ�vp)

ET

)
= cos

(
φ + ετ − τ�vp

τEA

)
.

(B28)
It clearly shows that the phase φ is shifted as φ̃ = φ − ϕ0 with

ϕ0 = �vp/EA (B29)

due to the combination of valley polarization and warping
effects. As we will see later, ϕ0 would manifest as the phase
shift in a current-phase relation, which would result in the
so-called ϕ0 junction. In the short junction limit, ε � EA, ET ,
we can actually obtain the energies of the bound states:

ετ = �s

√
1 − sin2

(
φ̃

2
− τ�vp

ET

)
. (B30)

4. Angular dependence of the ϕ0 phase shift

Next, we briefly comment on the angular dependence of
the ϕ0 phase shift. It is important to note that the magnitude
of ϕ0 in general would depend on the angle θ between the
current direction and the lattice orientation. As an illustration,
we can evaluate the ϕ0 phase shift with the approximated
angular dependence of the Fermi velocity presented in Sec. I:
v f (θ ) = α0 + β0τ cos 3θ , where τ is the valley index, α0 cap-
tures the isotropic part, and β0 captures the anisotropic part of
the Fermi velocity. It is straightforward to obtain ϕ0 according
to the relation between EA and v f (θ ), which gives

ϕ0(θ ) = 2β0 cos(3θ )d�vp

h̄
(
β2

0 cos2 3θ − α2
) . (B31)

Therefore, it can be seen that the ϕ0 phase shift would exhibit
a threefold symmetry: ϕ0(θ ) = ϕ0(θ + 2π

3 ), depending on the
lattice orientation and the current direction.

5. Andreev bound states in the case with normal reflections

In general, the chemical potential between the supercon-
ducting region and the valley-polarized region is different with
μ �= μ′. To see the effects of such a difference in chemi-
cal potential, we solved the scattering matrices in the same
way as

SL(R) =
(

rN rAe±i φ

2 −iβ

rAe∓i φ

2 −iβ rN

)
(B32)

with

rA = eiβX −1(vvp,τ+ + vvp,τ−)(vs,τ+ + vs,τ−), (B33)

rN = 2iX −1 sin β
√

(vvp,τ+ + vs,τ−)(vvp,τ− + vs,τ+)(vvp,τ+ − vs,τ+)(vvp,τ− − vs,τ−), (B34)

X = eiβ (vvp,τ+ + vs,τ−)(vvp,τ− + vs,τ+) − e−iβ (vvp,τ+ − vs,τ+)(vvp,τ− − vs,τ−). (B35)
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Here, rA, rN are coefficients for Andreev reflections
and normal reflections. Note that we have used Ne,τ+ =
Nh,τ+ = √

(vvp,τ+ − vs,τ+)(vvp,τ+ + vs,τ−), Ne,τ− = Nh,τ− =√
(vvp,τ− − vs,τ−)(vvp,τ− + vs,τ+). One can verify that the

scattering matrix is unitary with |rA|2 + |rN |2 = 1 for the
in-gap bound states with ε < �. Evidently, the normal reflec-
tions rN would be finite due to the momentum mismatches,
i.e., vvp,τ± �= vs,τ± induced by the difference in the chemical
potential (μ �= μ′). It can also be seen that the scattering
matrix Eq. (B32) would return to Eq. (B24) if there were no
momentum mismatch.

Next, we solve the energies of Andreev bound states in the
case of finite normal reflections. For the compact of notations,
we rewrite the scattering matrix as

SL(R) =
(

ireiη
√

1 − r2eiη√
1 − r2eiη ireiη

)
. (B36)

Here, r = |rN |, η = Arg[X −1]. By substituting the scattering
back to Eq. (B21), we find that the Andreev bound states are
given by

cos

(
2η + 2(ε − τ�vp)

ET

)
+ r2 cos

(∑
α

k0
τα

)

= (1 − r2) cos

(
φ + ε − τ�vp

τEA

)
. (B37)

As expected, the phase shift ϕ0 = �vp

EA
would not be affected

by the presence of normal reflections. Instead, the normal
reflection would mainly weaken the magnitude of the super-
current and thus is not essential for our study.

6. Free energy and Josephson currents

The free energy of a JJ can be written as

F =
∫

dr
|�2

s|
U

− 1

β

∑
εn

ln(1 + e−βεn ), (B38)

where εn are the eigenenergies of the BdG Hamiltonian of the
Josephson junction, β = 1/kBT , and U is an effective inter-
action strength. We neglect the U -dependent term which is
independent of φ. One can further subtract a constant normal-
state free energy F (�s = 0) to avoid the divergence at large
energies, and it would not affect the current-phase relation
Is(φ) [75]. The supercurrent through the JJ can be obtained
from the free energy with

Is(φ) = 2e

h̄

∂F

∂φ
= 2e

h̄

∑
εn

1

eβεn + 1

∂εn

∂φ

= −2e

h̄

∑
εn>0

tanh

(
βεn

2

)
∂εn

∂φ
. (B39)

Here, e is the charge of an electron. One can easily figure out
the current units by using h̄ ≈ 6.581×10−13 meV s and

e/s ≈ 1.6×10−19A (A denotes Ampere), i.e., 2e/h̄ ≈ 486
nA/meV.

By substituting the bound state energy Eq. (B30) into
Eq. (B39), and at the high-temperature limit �s/kBT � 1, we
obtain Eq. (7) of the main text:

Is(φ) ≈ e�2
s

2h̄kBT
cos

(
2�vp

ET

)
sin

(
φ − �vp

EA

)
. (B40)

7. The scattering modes of different transverse momentum ky

In the previous sections, we have solved the 1D scattering
matrix problem for each mode at a fixed ky. To obtain the total
supercurrent through the junction, we need to insert different
longitudinal Fermi momentum v f ,τα (ky), and sum over dif-
ferent ky that are quantized by the finite width. Unfortunately,
we could not do it analytically due to the complicated warping
effects. For completeness, we still present a brief discussion of
the effects of ky here.

The total supercurrent through this Josephson junction is
given by

Is(φ) =
∑

ky

Is,ky (φ). (B41)

In the short junction and at the high-temperature limit, the
supercurrent at a phase difference φ, Is,ky (φ), carried by each
mode can be obtained by replacing ET , EA in Eq. (B40) with
the ones calculated from v f ,τα (ky). As shown in Fig. 5(d),
the value of longitudinal Fermi momentum v f ,τα (ky) and
its asymmetry near ky = 0 are similar so that the resulting
current-phase relation is expected to be similar to Eq. (B40)
for a small transverse momentum. However, the situation
becomes complicated in the large transverse momentum ky.
Because of the warping effects, there are multiple scat-
tering modes near the Fermi energy for a fixed ky [see
Figs. 5(c) and 5(d)], which are not captured by Hamilto-
nian (B2), which only includes one incoming electron- or
hole-dominant mode. Nevertheless, we expect the scatter-
ing modes with large momentum to carry less supercurrent,
and thus in the main text we find that the 1D scattering
Hamiltonian provides a good understanding of our numerical
results, in which the current carried by all incoming modes is
included.

APPENDIX C: MORE DETAILS FOR THE MATBG
JOSEPHSON JUNCTION USING THE

TIGHT-BINDING METHOD

In this Appendix, we present more details about the numer-
ical calculations, including the geometry details, the result in
the case of turning off the warping effects, and the result in
the case of the weak-link region being a half-filling valley-
polarized Chern insulator with a Chern number two.

1. Model and geometry details

As introduced in the main text, we adopt the following
effective tight-binding model to capture the MATBG
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 SC SCVP

t1

t2

d

WJ

LM

FIG. 7. The top panel presents the junction geometry that is
adopted in the evaluation of Josephson supercurrent through the JJ
using the effective tight-binding model H [Eq. (C1)]. d and WJ

represent the junction length and width, respectively. Here SC and
VP represent the regions with superconductivity and valley polar-
ization. The bottom panel shows a hexagonal lattice used in the
tight-binding model calculation, where t1 denotes the first-nearest
hopping, t2 denotes the complex fifth-nearest hopping (resulting in
warping term) in H , and the length of the next-nearest bond is LM .

Josephson junction:

Heff =
∑

〈i j〉,ξσ

t1c†
iξσ c jξσ +

∑
〈i j〉′,ξσ

t2ξσ c†
iξσ c jξσ + H.c.

−
∑
i,ξ

μic
†
iξσ ciξσ +

∑
i∈(L,R),ξ

(�se
iφL(R) c†

iξ↑c†
i−ξ↓H.c.)

+
∑

i∈W L,ξσ

�vpc†
iξσ (τz )ξξ ′ciξσ . (C1)

See the main text for the detailed definitions of the ingredients
in Hamiltonian Heff. Here, we depict the adopted geometry of
the MATBG Josephson junction in Fig. 7. The superconduct-
ing order parameter �s and valley-polarized order parameter
�vp are added in the green region and the gray region of the
top panel of Fig. 7, respectively. As shown in the bottom panel
of Fig. 7, the lowest moiré bands near the charge neutrality are
captured by hoppings on the two-orbital hexagonal lattice in
each region, where t1 represents the first-nearest hopping, and
t2 represents the complex fifth-nearest hopping (giving rise to
the warping effects). We note that the minimal tight-binding
model proposed in Ref. [4] that is used to capture the moiré
bands up to the lowest hopping is narrower than that from the
continuum model shown in Fig. 5(b). This, however, would
not affect our result as the presence of ϕ0-JJs is determined by
the symmetries according to our main text analysis. The key
length scales are also highlighted in Fig. 7. The lattice sites in
Fig. 7 label the center of Wannier orbitals so that the length
of the nearest bonds is the moiré lattice constant LM . We thus
measure the adopted junction length d and W in the main text
in units of LM .
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FIG. 8. The current-phase relation and vanishing of anomalous
Josephson current in the case without warping effects. (a) Typical
curves of Josephson current (normalized by its maximal value) vs
Josephson phase difference φ of the MATBG Josephson junction
when the warping term is turned off (t2ξ = 0), which can only display
0- or π -junction behavior. (b) The anomalous Josephson current van-
ishes for various valley-polarization strengths where warping effects
are not included.

2. Symmetry consideration

We now present a symmetry analysis to show why the
valley polarization and the warping effects are crucial for
the emergence of the ϕ0-JJ in MATBG. Without these two
ingredients, the system would exhibit time-reversal symmetry
which gives Is,τ (φ) �→ −Is,−τ (−φ), and an intravalley inver-
sion symmetry which gives Is,τ (φ) �→ −Is,τ (−φ). As Is(φ) =∑

τ Is,τ (φ), it can be seen that both symmetries would en-
force the total supercurrent to satisfy the condition Is(φ) =
−Is(−φ), so that Is(φ = 0) = 0. Therefore, according to our
symmetry analysis, the conclusion that the valley-polarized
state induces ϕ0-JJ is general as long as time-reversal and in-
travalley inversion symmetries are broken. Below, we present
more cases to verify this symmetry analysis.

3. Case without warping effects

In the main text, the warping effects are naturally included
in our calculations with the fifth-nearest hopping t2ξ �= 0 (cf.
[4,5]). As discussed in the main text, the warping term would
lift the intravalley inversion symmetry so that the minimal
free energy of the junction is not necessarily 0- or π -JJ,
resulting in a ϕ0-JJ in general. To make a comparison, we
now artificially turn off the warping term. As expected, we
find that the junction is restricted to be 0- or π -JJ [Fig. 8(a)].
We consistently find that the anomalous Josephson current,
i.e., Js(φ = 0), vanishes [Fig. 8(b)]. It thus clearly shows
that the warping effects are crucial for the ground state of
MATBG Josephson junction to be ϕ0-JJ, which is in agree-
ment with our symmetry analysis presented in the main
text.

4. Case with the junction region being valley-polarized
Chern insulating states

It was pointed out in the main text that the valley-polarized
state can mediate ϕ0-JJs even when such state is topological
nontrivial. In this section, as a demonstration, we present
the calculated current-phase relation (Fig. 9) by setting the
junction region to be half-filling (ν = −1/2) valley-polarized
Chern insulating states with Chern number C = 2 (see a
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FIG. 9. The supercurrent density Js (normalized by its maxi-
mal value) vs the phase difference φ with junction length d =
4LM , 6LM , 10LM , where the junction region is set to be the valley-
polarized Chern insulating states with C = 2 at half-filling that are
illustrated with a schematic inset plot. Here we set the temperature
T = 0.05Tc.

schematic illustration in the inset of Fig. 9). One can add a
Haldane term to the tight-binding Hamiltonian (C1) in order
to make the junction region topological (cf. Ref. [41]). In
this case, as shown in Fig. 9, the curves of supercurrent Js

(normalized by its maximal value) versus the phase difference
φ would still display a finite phase shift, i.e., sin(φ − ϕ0),
for various junction lengths d . In other words, the junction
would still behave as ϕ0-JJ. Note that in the topological case,
the edge states that can mediate some supercurrents may play
an additional role. Nevertheless, Fig. 9 clearly shows that
our conclusion about the valley polarization causing ϕ0-JJ
is not affected. It is understandable given that time-reversal
and intravalley inversion symmetry are still broken by the
valley-polarized Chern bands in this case.

APPENDIX D: THE MAGNETIC INTERFERENCE
FOR ϕ0-JOSEPHSON JUNCTIONS

1. Magnetic interference of a uniform ϕ0-Josephson
junction-standard Fraunhofer pattern

In this Appendix, we show that the magnetic interference
of a uniform ϕ0 Josephson junction should be the stan-
dard Fraunhofer pattern. The gauge-invariant phase difference
across an extended junction is

γ = φ̃ + 2e

h̄

∫
A·dl (D1)

with φ̃ = φ − ϕ0, ϕ0 denoting the phase shift in the ϕ0-
junction. For an out-of-plane magnetic field, the gauge can be
chosen as A = (−By, 0). The Josephson current is given by

Is =
∫

dy j
(

r, φ̃ − 2e

h̄

∫ d/2

−d/2
dxBy

)
. (D2)

Assuming that the current follows the simplest sin(φ − ϕ0)
feature, we will obtain

Is =
∫ WJ/2

−WJ /2
dy j(y) sin

(
φ̃ − 2e

h̄
Byd

)
.

Here, we denote the width of the junction to be WJ . In the case
of a uniform current density j(x) = jb, then

Is(�) = jb sin φ̃ sin(π�/�0)
π
�0

BL
, (D3)

where the flux quantum �0 = h/2e, � = B×WJd . Thus,

Ic(�) = Ic

∣∣∣∣ sin(π�/�0)

π�/�0

∣∣∣∣, (D4)

where the critical current at zero-field is denoted as Ic = j0WJ .
Hence, for a uniform ϕ0 JJ, our phenomenological calculation
suggests that the critical current as a function of external fields
Ic(�) follows the standard Fraunhofer pattern.

2. Phenomenological theory for the magnetic interference
of a ϕ1-ϕ2 Josephson junction

As we have mentioned in the main text, the total current
through this junction under external magnetic fields can be
written as

Is(φ) =
∫ 0

−WJ1

dy jb sin

(
φ − ϕ1 − 2e

h̄
Byd

)

+
∫ WJ2

0
dy jb sin

(
φ − ϕ2 − 2e

h̄
Byd

)
. (D5)

Note that ϕ1 and ϕ2 would be different as �vp in two domain
walls are different. If ϕ1 = 0 and ϕ2 = π , the scenario would
reduce to the 0-π JJ studied in Refs. [77–79], where the
Fraunhofer pattern exhibits a dip near the zero magnetic flux
due to the cancellation of the supercurrent of the 0-JJ parts and
π -JJ parts. In our case, the ϕ1 and ϕ2 can be a value ranging
from 0 to 2π due to the formation of ϕ0-JJ. Hence, we call it
ϕ1-ϕ2 JJ.

The Fraunhofer pattern of the ϕ1-ϕ2 JJ can be ob-
tained from Eq. (D5). Specifically, the total supercurrent is
written as

Is(φ) = Is1

2π �1
�0

[
cos(φ − ϕ1) − cos

(
φ − ϕ1 + 2π

�1

�0

)]

+ Is2

2π �2
�0

[
cos

(
φ − ϕ2 − 2π

�2

�0

)
− cos(φ − ϕ2)

]
.

(D6)

Here, Is1 = jbWJ1 and Is2 = jbWJ2 denote the current through
the two domain walls, respectively, and the magnetic flux
though the jth domain wall is � j = BWjd . For the sake
of simplicity, we denote Is1 = 1

2 (1 + δ)Is, Is2 = 1
2 (1 − δ)Is,

�1 = 1
2 (1 + δ)�, and �2 = 1

2 (1 − δ)�, where Is = Is1 + Is2

is the total supercurrent through the junction, and � =
B(WJ1 + WJ2)d is the total magnetic flux. Using these
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notations,

Is(φ) = Is
2π�
�0

[
cos(φ − ϕ1) − cos(φ − ϕ2) + cos

(
φ − ϕ2

− π (1 − δ)�

�0

)
− cos

(
φ − ϕ1 + π (1 + δ)�

�0

)]

= Is
π�
�0

[
sin

(
φ − ϕ+

2
+ δ

π�

�0

)
sin

(
ϕ−
2

+ π�

�0

)

− sin

(
φ − ϕ+

2

)
sin

(
ϕ−
2

)]
, (D7)

where ϕ± = ϕ2 ± ϕ1.
The critical current Ic = max(I (φ)), given by the maxi-

mal value of Is(φ) within 0 � φ � 2π . For the 0-0 JJ, one
can easily obtain the standard Fraunhofer pattern Ic(�) =
Is| sin(π�/�0 )

π�/�0
|. Due to the presence of the asymmetry parameter

δ, beyond 0-0 JJ, we could only find analytical solutions of the
critical current in some special cases, such as in the limit of
δ = 0:

Ic(�) = Is

∣∣∣∣ sin
(

ϕ−
2 + π�

�0

) − sin
(

ϕ−
2

)
π�
�0

∣∣∣∣. (D8)

It can be noted that the critical current is always zero if
the magnetic flux reaches a certain integer flux quantum
� = 2n�0 (n are finite integers). As there is no node in the
Fraunhofer pattern of experiments, we remove these nodes
by introducing a finite asymmetric parameter δ. For example,

at � = 2n�0, the critical current becomes Is| sin( ϕ−
2 ) sin δnπ

2nπ
|,

which could be finite if δ �= 0.
It is worth noting that another key feature of the exper-

imentally observed Fraunhofer pattern is to exhibit Ic(�) �=
Ic(−�). In the cases of 0-0 JJ and 0-π JJ, we find that the re-
sulting Fraunhofer patterns are always symmetric, regardless
of the choice of δ. However, if we consider ϕ0-JJ, where ϕ±
can take a more generic value rather than 0 or π , we find that
the resulting Fraunhofer pattern is asymmetric in general. In
Fig. 4 of the main text, we plotted the Fraunhofer pattern for
the 0-0 JJ, 0-π JJ, and ϕ1-ϕ2 JJ with δ = 0.4, ϕ1 = 0.2, ϕ2 =
π + 0.8. The resulting Fraunhofer pattern arising from ϕ1-ϕ2

JJ is quite consistent with that seen in the experiment. Our
calculation thus suggests that the presence of ϕ0-JJs could pro-
vide a plausible explanation for such highly unconventional
Fraunhofer patterns.

Here we further emphasize how the features of the uncon-
ventional pattern shown in the main text Fig. 4 are related
to the ϕ1-ϕ2 JJ model, especially the model parameters ϕ1,
ϕ2, δ: (i) The unconventional Fraunhofer pattern (red line),
|Ic(�) �= Ic(−�)|, which would indicate the time-reversal
breaking. (ii) The unconventional Fraunhofer pattern exhibits
a local minimal around zero flux. As a result, the central
peak is shifted to a finite flux. It is sharply different from the
conventional Fraunhofer pattern (gray line), which exhibits
a maximal peak around zero flux. In the ϕ1-ϕ2 JJ, the local
minimal appears around zero flux when the difference be-
tween ϕ1 and ϕ2 exceeds π , which results in a cancellation of
supercurrent through ϕ1 and ϕ2 junction parts. (iii) The uncon-
ventional Fraunhofer pattern exhibits nonvanishing nodes at
finite integer flux. According to the expression Ic(� = 2n�0),
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FIG. 10. (a) A schematic plot of a MATBG SQUID. Here,
JJ-a represents a junction region controlled by gate-a, while JJ-b
represents the other junction region controlled by gate-b. B is an
out-of-plane magnetic field. (b) The critical supercurrent (normalized
by its maximal value) as a function of the magnetic flux � in the case
of Ib = Ia (top panel) and Ib = 3Ia (bottom panel). Ia and Ib are the
supercurrent through JJ-a and JJ-b, respectively. The phase shift of
the interference pattern �ϕ is highlighted.

the nonvanishing nodes at � = 2n�0 indicate ϕ1 and ϕ2 are
different, and WJ1 and WJ2 are different as δ �= 0.

3. Detection of ϕ0-JJ with a superconducting MATBG SQUID

The SQUID can be used to identify the ϕ0-JJ behavior in
the experiments [67]. For the sake of completeness, as shown
in Fig. 10(a), here we propose a MATBG SQUID geometry
to detect the ϕ0-JJ predicted by our theory. In this geometry,
there are two weak-linked junction regions that are achieved
by local gates a,b. Without loss of generality, we consider one
is the ϕ0 − JJ with the junction gated into valley-polarized
states (JJ-a), while the other one is the conventional JJ (JJ-b).

The total supercurrent through the SQUID under magnetic
fields is written as

Is = Ib sin(φb) + Ia sin(φa − ϕ0) (D9)

with

ϕb − ϕa = 2π�/�0. (D10)

Here, Ia(ϕa) and Ib(ϕb) are the supercurrent (phase difference)
across the JJ-a and JJ-b, respectively. � is the magnetic flux
through the SQUID. In a simple case where Ia = Ib = I0, we
can obtain the critical current at each magnetic flux as

Ic = 2I0

∣∣∣∣ cos

(
π

�

�0
+ ϕ0

2

)∣∣∣∣. (D11)

Hence, the ϕ0 would cause a phase shift in the SQUID pattern
[see the top panel of Fig. 10(b)], where �ϕ = ϕ0/2π . In
general, Ia and Ib are not equal. As an illustration, we plot
the magnetic interference pattern with Ib = 3Ia in Fig. 10(c).
In this case, it can be seen that although the critical currents no
longer vanish at certain magnetic fields, the phase shift does
not change.

Therefore, the proposed MATBG SQUID provides a fea-
sible way to directly measure the predicted ϕ0 phase shift.
Upon finishing our work, we noticed that the MATBG SQUID
geometry has recently been successfully fabricated in the ex-
periment [42]. Our work thus would motive experimentalists
to further gate the junction region into valley-polarized states
and study the proposed unconventional Josephson effects in
the near future.
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TABLE I. Classifications of all possible momentum-independent
pairing of TBG according to the irreducible representations of the D3

symmetry group.

IRs A1 A2 E
C3z = τ0 ⊗ e−i π

3 σz +1 +1 +2
C2y = τx ⊗ iσy +1 +1 0

Spin-singlet τx ⊗ iσy

Spin-triplet iτy ⊗ σx (iτy ⊗ σz, iτy ⊗ σ0)

APPENDIX E: THE ϕ0-JJ BEYOND
CONVENTIONAL PAIRINGS

In the main text, to be specific, we have adopted the
spin-singlet pairing as the pairing order parameter for the
superconducting part of the MATBG Josephson junction. In
this Appendix, we point out that the ϕ0-JJ can still persist
even when the pairing is unconventional, such as various
spin-triplet pairings. The pairings can be expanded in the
space formed by spin and valley degrees of freedom. We first
classify the possible pairings using irreducible representations
of the D3 crystal group of MATBG. For simplicity, we focus
on all k-independent intervalley pairings.

Specifically, the generators of D3 point contain a threefold
rotation along the z-axis represented by C3z = τ0 ⊗ e−i π

3 σz ,
and a twofold rotation along the y-axis represented by C2y =
τx ⊗ iσy. Here, σ and τ are Pauli matrices defined in spin- and
valley-space. Note that C2y would exchange the K and −K
valley, while C3 would not.

The pairing matrix transforms under the point group sym-
metry operation as

g�̂s �→ U †(g)�̂sU
∗(g), (E1)

where �̂s is defined in the Nambu basis:
(ψ+,↑, ψ+,↓, ψ−,↑, ψ−,↓)T with +/− as valley index and
↑ / ↓ for spin-up/spin-down, and U (g) is the matrix
representation of the generator g in the spin and valley
space. Note that �̂s = −�̂T

s due to the Fermi statistics, and
the representation of �̂s in the valley degree of freedom
is restricted to be τx and τy, i.e., intervalley nature. All the
k-independent intervalley pairings are summarized in Table I.

There is one intervalley spin-singlet A1 pairing : �A1,s =
τx ⊗ iσy„ and there are two inter-valley spin-triplet pairings:
one one-dimensional spin-triplet A1-pairing �A1,t = iτy ⊗ σx,
and one two-dimensional spin-triplet E -pairing, which we
label as E1-pairing and E2-pairing with (�E ,1,�E ,2) = (iτy ⊗
σz, iτy ⊗ σ0). Note that the pairings labeled by different irre-
ducible representations do not mix, and the mixing of �A1,s

and �A1,t is expected to be neglectable as the spin-orbit cou-
pling in graphene is extremely small. It is also worth noting
that the possible nematic pairings can be constructed using
the pairing matrices in two-dimensional E -pairing.

We can replace the order parameter of the superconducting
part with the above unconventional momentum-independent
pairings in the previous tight-binding model calculation and
evaluate the supercurrent in the same way. As shown in
Figs. 11(a)–11(d), we find that the current-phase relation
is unchanged in the cases of various spin-triplet pairings,
which thus implies that our result is not sensitive to the spin
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FIG. 11. (a)–(d) The supercurrent density Js (in units of
nA μm−1) vs the Josephson phase difference φ for A1 spin-singlet
pairing, A1 spin-triplet pairings, E1 spin-triplet pairing, and E2 spin-
triplet pairing, respectively. Here we adopt a valley-polarization
strength �vp/�s = 3 and a temperature T/Tc = 0.3.

configurations of Cooper pairs of the superconducting part.
This observation is understandable as the appearance of ϕ0-JJ
is mainly induced by the valley polarization of the junction
region.

APPENDIX F: A COMPARISON BETWEEN OUR MODEL
AND THE ϕ0 JJ MODEL ARISING FROM EXCHANGE

FIELDS AND SPIN-ORBIT COUPLING

In the main text, we pointed out that the warping term and
valley-polarization effectively, respectively, play the role of
exchange fields and spin-orbit coupling in comparison with
previous ϕ0 JJ models with these terms. Here we illustrate
this with more detail. To map the trigonal warping term as
a spin-orbit coupling, we can look at the k · p normal state
Hamiltonian of our system before linearization as shown in
Sec. I:

HN = λ0
(
k2

x + k2
y

) + λ1
[
kx

(
k2

x − 3k2
y

) + �vp
]
τz. (F1)

Note that the normal part of the phenomenological model in
the main text [Eq. (3)] is given by linearizing the momentum
near Fermi energy.

If we regard the valley as a pseudospin, the trigonal
warping term λ1kx(k2

x − 3k2
y )τz indeed can be regarded as a

spin-orbit coupling, and �vpτz can be regarded as a polar-
ization induced by an exchange field. When we consider the
Josephson junction, ky can be fixed as a good number by set-
ting the current direction to be the kx-direction. For simplicity,
we set ky = 0 as we considered the phenomenological model
Eq. (3), and then HN,1D = λ0k2

x + [λ1k3
x + �vp]τz.

Next, we highlight the similarities between our model and
the Rashba nanowire model, which can be written as HR =
k2

x /2m + αkxσy + hσy, with the hσy denoting the Zeeman cou-
pling of the magnetic field with the spin of the electron in
the y-direction, and α is the strength of the Rashba spin-orbit
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coupling. It is known that the Rashba spin-orbit coupling com-
bined with an in-plane spin polarization would result in the ϕ0

JJ. Our HN,1D model (with ky = 0) is equivalent to replacing
the Rashba spin-orbit coupling model with a cubic warping
term, which can be seen by performing a unitary transfor-
mation mapping τz to τy in HN,1D: H ′

N,1D = λ0k2
x + λ1(k3

x +
�vp)τy. After this mapping, it is indeed understandable that
we can get a ϕ0 JJ.

However, it should be noted that the underlying physical
system in our case is very different, given that the polarization
appears in valley degrees of freedom rather than spin. Our pro-
posal relies on the valley-polarized moiré bands, and it does
not need to involve spin-orbit coupling or exchange fields.
Only when we restrict the game interaction-induced order

parameter to the valley polarization �vpτz can our model be
mapped to the model with Rashba SOC in some limit. Indeed,
the interaction-induced order parameter can be richer. Another
difference we would like to highlight here is that the possess-
ing of both spin and valley degrees of freedom in moiré bands
allows much more rich cases with various band alignment.
For example, the spin–valley-polarized state can also appear
at very low temperatures in the experiment [41]. In this case,
the order parameter can be written as �vpτzσ0 + �spτ0 ⊗ σz.
Both the spin polarization and the valley polarization would
contribute to the anomalous phase shift. However, this model
cannot be generally mapped to a Rashba spin-orbit coupling
model as we would deal with a 4 by 4 matrix with two kinds
of polarization.
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