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We generalize the classical shadow tomography scheme to a broad class of finite-depth or finite-time local
unitary ensembles, known as locally scrambled quantum dynamics, where the unitary ensemble is invariant
under local-basis transformations. In this case, the reconstruction map for the classical shadow tomography
depends only on the average entanglement feature of classical snapshots. We provide an unbiased estimator
of the quantum state as a linear combination of reduced classical snapshots in all subsystems, where the
combination coefficients are solely determined by the entanglement feature. We also bound the number of
experimental measurements required for the tomography scheme, so-called sample complexity, by formulating
the operator shadow norm in the entanglement feature formalism. We numerically demonstrate our approach
for finite-depth local unitary circuits and finite-time local-Hamiltonian generated evolutions. The shallow-circuit
measurement can achieve a lower tomography complexity compared to the existing method based on Pauli or
Clifford measurements. Our approach is also applicable to approximately locally scrambled unitary ensembles
with a controllable bias that vanishes quickly. Surprisingly, we find a single instance of time-dependent local
Hamiltonian evolution is sufficient to perform an approximate tomography as we numerically demonstrate it
using a paradigmatic spin chain Hamiltonian modeled after trapped ion or Rydberg atom quantum simulators.
Our approach significantly broadens the application of classical shadow tomography on near-term quantum
devices.
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I. INTRODUCTION

Quantum state tomography [1–3] is an essential task in
many quantum technology applications. It seeks to recon-
struct a quantum state from experimental data of repeated
measurements. While reconstructing the full density matrix
of a many-body system quickly becomes unfeasible with in-
creasing system size due to the curse of dimensionality [4,5],
predicting a collection of (possibly exponentially many) prop-
erties of the quantum system can still be efficiently achieved
with an only polynomial number of state copies, which was
the idea of shadow tomography proposed by Aaronson [6,7].
The idea is further improved by the recent work [8] to propose
the classical shadow tomography, which significantly reduces
the demand on the quantum hardware and enables efficient
classical postprocessing.

Given a copy of an unknown quantum state ρ of N
qubits, the classical shadow tomography protocol (see Fig. 1)
first transforms the state ρ → ρ ′ = UρU † by a unitary U ,
which is randomly sampled (independently each time) from
some probability distribution P(U ), then measures the trans-
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formed state ρ ′ in the computational basis ρ ′ → |b〉〈b|,
which collapses the system to a product state |b〉 labeled
by a bit string b ∈ {0, 1}×N of measurement outcomes b =
(b1, . . . , bN ) with the probability P(b|ρ ′) = 〈b|ρ ′|b〉. Based
on the observed bit string b and the classical description of
the unitary U , a classical snapshot σ̂U,b = U †|b〉〈b|U can be
constructed in principle, which essentially encodes the mea-
surement outcomes together with their basis choice (pulled
back through the unitary evolution). Repeating such mea-
surements on independent and identical copies of ρ for a
few times, a collection of classical snapshots Eσ |ρ = {σ̂U,b}
can be obtained (which correlates with ρ). Reference [9]
showed that as long as the unitary ensemble is expressive
enough (i.e., tomographically complete), there exists a lin-
ear reconstruction map M−1 such that the density matrix
ρ can be formally recovered as ρ = Eσ̂∈Eσ |ρ M−1[σ̂ ]. This
also enables the prediction of many properties of ρ, like the
expectation value of any physical observable O as 〈O〉 =
Tr(Oρ) = Eσ̂∈Eσ |ρ Tr(OM−1[σ̂ ]). The construction of clas-
sical snapshots σ̂U,b and the computation of their associated
properties are performed on a classical computer.

However, the existing methods [6–8,10] have limitations in
applying to near-term quantum devices. First, depending on
the type of observables O that we are interested in, one needs
to employ different strategies to design the unitary circuit U .
Two limiting cases have been analyzed in Ref. [8]: (i) if the
observable is low rank (such as many-body overlap fidelity), it
is most efficient to adopt deep circuits, such that U effectively
forms a global Haar random ensemble; (ii) if the observable is
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high rank and quasilocal, it would be more efficient to adopt
shallow circuits (e.g., the onsite Haar random). Otherwise the
sample complexity will be high. However, the flexibility to in-
terpolate between these two limits has not been available yet,
such that the tomography protocol can not adjust to the target
observables in a more adaptive manner. Second, more im-
portantly, in existing quantum simulation platforms, applying
random unitary circuits is very challenging because it requires
high degrees of sophisticated quantum controls. In particular,
for programmable quantum simulators of large systems based
on trapped ions or Rydberg atom systems [11–13], a certain
set of entangling unitary evolution is much more favorable
to implement than typical random unitaries that require fine-
tuned control. Therefore, it is desirable to develop a method
applicable for systems with limited controls.

In this work, we address these challenges by generalizing
the classical shadow tomography methods to a broad class
of unitary ensembles. In our approach, the specific details
of the unitary ensemble are not important as long as the en-
semble generates locally scrambled quantum dynamics [14].
Rigorously speaking, the probability distribution P(U ) of
evolution unitaries is invariant under local-basis transforma-
tions, i.e., ∀ V ∈ U(d )N : P(U ) = P(UV ) = P(VU ) where
V = ∏

i Vi is a product of local unitary operator Vi on each
qudit. This basically means that the unitary evolution U is
efficient in scrambling local quantum information, such that
the initial local-basis choice is quickly “forgotten” under the
quantum dynamics. Examples of locally scrambled quan-
tum dynamics includes random unitary circuits (including
random Clifford circuit at the three-design level) [15–20]
and quantum Brownian dynamics [21–25]. As the unitary
ensemble does not care about local-basis choice, the only
information that matters will be the quantum entanglement
that the unitary dynamics can create in the quantum sys-
tem. Therefore, for locally scrambled quantum dynamics, the
reconstruction map only depends on the entanglement prop-
erty of the classical snapshots. The density matrix ρ can
be reconstructed as a linear superposition of the classical
snapshot σ̂ reduced in different subsystems. The combination
coefficient can be calculated from the entanglement feature
[26,27] of the classical snapshots, which is simply the collec-
tion of average purities of classical snapshots in all possible
subregions.

Since our method is applicable to a broad class of quantum
dynamics, it is natural to consider an ensemble of realistic
Hamiltonian evolutions that are readily available in near-term
quantum devices. To this end, we introduce an approximate
classical shadow tomography (with a nonvanishing but small
bias) applicable to an ensemble of time-dependent Hamilto-
nian evolution that generates approximately locally scrambled
dynamics. We numerically demonstrate this idea by using a
simple spin chain Hamiltonian modeled after programmable
trapped ions or Rydberg atom array systems. We introduce
the local frame potential to characterize the bias and we show
the bias decreases rapidly for the initial short period of time,
and reaches a vanishingly small plateau value for the proposed
Hamiltonian. Surprisingly, we find even a single instance from
an ensemble of Hamiltonian evolution suffices to perform an
approximate tomography, implying that our method is hard-
ware efficient for existing quantum devices [28,29].

In the following, we will first establish the general the-
oretical framework to calculate the reconstruction map in
Sec. II A and to bound the sample complexity in Sec. II B.
We also provide a two-qudit toy model to analytically demon-
strate our construction in Sec. II C. We comment on how to
carry out the computation efficiently in Sec. II D. Then we
apply our construction for local unitary circuits and numeri-
cally demonstrate its accuracy in quantum fidelity and Pauli
observable estimation tasks in Sec. III A, as well as their
scaling of sample complexity in Sec. III B. Finally, we show
in Sec. III D that our approach can be extended to broader
classes of unitary ensembles that are approximately locally
scrambled. We propose a frame potential to characterize the
level of approximation, which serves as a powerful indicator
to design nearly locally scrambled unitary ensembles that are
available for existing analog quantum simulators [28,29]. We
summarize our classical postprocessing protocol and outline a
few interesting future applications in Sec. IV

II. THEORETICAL FRAMEWORK

A. Reconstruction map from entanglement features

To be general, we consider a quantum system consists of
N qudits, where each qudit has the Hilbert space dimension
d (where d = 2 corresponds to the qubit system). The pro-
tocol of classical shadow tomography describes a process
that first measures the unknown quantum state ρ in a ran-
dom basis specified by the unitary transformation U and then
prepares the classical snapshot σ̂U,b ≡ U †|b〉〈b|U based on
the measurement outcome b. The randomness involved in the
process includes (i) sampling U from the distribution P(U )
and (ii) obtaining the measurement outcome b conditioned on
the evolved state ρ ′ = UρU † with the probability P(b|ρ ′) =
〈b|ρ ′|b〉 = Tr(σ̂U,bρ). Inspired by the discussion in Ref. [30],
we define

Eσ |ρ = {σ̂U,b | P(σ̂U,b|ρ) = Tr(σ̂U,bρ)P(U )} (1)

as the posterior snapshot ensemble, as it is conditioned on the
observation of ρ. The posterior snapshot ensemble reduces to
the prior snapshot ensemble

Eσ = {σ̂U,b | P(σ̂U,b) = d−N P(U )}, (2)

when there is no knowledge contained in ρ, i.e., ρ = d−N1.
For the prior distribution P(σ̂U,b), the outcome b is uniformly
drawn from all possible outcomes in {0, 1, . . . , d − 1}×N (in-
dependent of U, ρ). The prior snapshot ensemble Eσ only
depends on the unitary ensemble EU = {U |P(U )}.

With the notation introduced above, the expected classical
snapshot σ can be expressed as

σ ≡ E
σ̂∈Eσ |ρ

σ̂ = E
σ̂∈Eσ

σ̂ Tr(σ̂ ρ)dN = M[ρ], (3)

which is related to the original state ρ by a quantum channel
M, called the measurement channel. It is easy to check that
the measurement channel M is trace preserving, completely
positive, and self-adjoint. It is generally difficult to obtain an
explicit expression of M for generic unitary ensemble EU (or
for generic prior snapshot ensemble Eσ ). Results of M are
known for global and onsite two-design unitaries [9,31,32]
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(possibly with noise [33,34]), fermionic Gaussian unitaries
[35], and many-body Gaussian unitaries [10].

We can make progress in computing the measurement
channel M (and its inverse) for yet another class of unitary
ensemble, namely, the locally scrambled unitaries [14], for
which P(U ) obeys the local-basis invariance condition

∀ V ∈ U(d )N : P(U ) = P(UV ) = P(VU ), (4)

where the local scrambling unitary V is an element in the
group U(d )N [the tensor product of the onsite unitary group
U(d ) of each qudit]. This condition is sufficient to ensure the
prior ensemble Eσ of snapshot states σ̂ to be invariant under
σ̂ → V †σ̂V :

∀ V ∈ U(d )N : P(σ̂ ) = P(V †σ̂V ). (5)

In this case, we say that Eσ is a locally scrambled ensemble.
In fact, our following derivation only requires the weaker
condition (5) at the state level, instead of Eq. (4) at the channel
level, though it will be practically more straightforward to de-
sign unitary circuits that satisfy Eq. (4) by assembling locally
scrambled unitary gates.

Nevertheless, as long as the states σ̂ are locally scrambled
(even if the unitaries U may or may not be locally scrambled),
we will be able to insert local-basis transformations V in
Eq. (3), and average V over any ensemble of our choice:

σ = E
V ∈U(d )N

E
σ̂∈Eσ

V †σ̂V Tr(V †σ̂V ρ)dN . (6)

We can choose the ensemble of V = ∏
i Vi to be such that

every Vi is independently a local two-design unitary. With
this choice, the ensemble average of V can be evaluated by
averaging every Vi over the Haar unitary measure following
Refs. [36,37], and the result can be written as (see Appendix A
for derivation)

σ =
∑

B,C∈2�N

d2N−|B|ρBWgB,CW (2)
Eσ ,C, (7)

with B,C summing over all possible subregions of the N
qudit system, where each subregion is labeled by a subset of
�N = {1, . . . , N} (as an element in the power set 2�N ). |B|
denotes the size (cardinality) of the region B. ρB = (TrB̄ ρ) ⊗
(1B̄/d |B̄|) is the reduced density matrix of ρ in region B
embedded back into the total Hilbert space. B̄ denotes the
complement of region B. Note that B and B̄ do not need to
be consecutive regions in the space, and they can intertwine
with each other in general. WgB,C = (d2 − 1)−N (−1/d )|B
C|
is the Weingarten function of regions B and C, where B 
 C
denotes the subregions that belong to either B or C but not
both,

W (2)
Eσ ,C ≡ E

σ̂∈Eσ

TrC (TrC̄ σ̂ )2 = E
σ̂∈Eσ

e−S(2)
C (σ̂ ) (8)

is the second entanglement feature [26,27] of the prior
snapshot ensemble Eσ , where S(2)

C (σ̂ ) denotes the second
Rényi entanglement entropy of the state σ̂ in region C. The
entanglement feature W (2)

Eσ ,C is merely a property of the unitary
ensemble EU (which determines Eσ ). It describes how the
unitary channel entangles a product state in general. It de-
pends on neither the underlying state ρ to be reconstructed nor

any particular snapshot state σ̂ collected in the tomography
process.

Given the entanglement feature W (2)
Eσ ,C , Eq. (7) spells out

how the expected classical snapshot σ is written as a linear
combination of reduced density matrices ρB in all regions,
which explicitly specifies the measurement channel M as a
linear map σ = M[ρ] from ρ to σ . Therefore, any reduced
classical snapshot σA must also be a linear combination of
reduced density matrices ρB, which implies that the measure-
ment channel can be represented as a matrix MAB such that
σA = ∑

B MABρB. Suppose the map M is invertible (i.e., the
unitary ensemble is tomographically complete), the inverse
map M−1 (the reconstruction map) must also be a linear map
that combines all reduced classical snapshots σA to reconstruct
ρB = ∑

A(M−1)BAσA. In particular, we are most interested
to reconstruct the full density matrix ρ (because all reduced
density matrices follow from its partial trace), which must also
be a linear combination of σA with some coefficients rA ∈ R,

ρ = M−1[σ ] = dN
∑

A∈2�N

rAσA, (9)

where σA = (TrĀ σ ) ⊗ (1Ā/d |Ā|) follows the same definition
as the reduced density matrix. The reconstruction map M−1 is
not a physical channel because the reconstruction coefficients
rA may not be positive definite in general. Nevertheless, M−1

is still trace preserving and self-adjoint. Since M−1 is lin-
ear, we have ρ = M−1[Eσ̂∈Eσ |ρ σ̂ ] = Eσ̂∈Eσ |ρ M−1[σ̂ ], which
enables us to reconstruct the underlying state ρ from the en-
semble of classical snapshots. The collection of ρ̂ = M−1[σ̂ ]
is also called the classical shadow [8] of ρ, which can then be
used to predict many properties of ρ efficiently.

Now the key problem is to compute rA from W (2)
Eσ ,C . For

a system of N qudits, there will be 2N many reconstruction
coefficients rA. To determine them, we substitute Eq. (7) to
Eq. (9) and find

ρ =
∑

A,B,C∈2�N

fA,B,CrAρBW (2)
Eσ ,C, (10)

with the fusion coefficient fA,B,C given by

fA,B,C =
∑

D∈2�N

δB,A∩Dd2N+|A|−|B|+|Ā∩D̄|WgD,C

=
(

d3

d2 − 1

)N ∑
D∈2�N

δB,A∩Dd−|D|
(

− 1

d

)|C
D|
, (11)

which is universally determined by the qudit dimension d .
Here δA,B denotes the Kronecker delta of two regions A and B,
such that δA,B = 1 (or 0) if A = B (or A �= B). Equation (10)
will hold for any choice of ρ if and only if∑

A,C∈2�N

rA fA,B,CW (2)
Eσ ,C = δB,�N , (12)

where �N = {1, . . . , N} is the full set that labels the full
system of N qudits. By solving this linear equation, we can
determine the reconstruction coefficients rA in terms of of the
entanglement feature W (2)

Eσ ,C , such that the reconstruction map
M−1 can be constructed according to Eq. (9).
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In conclusion, we provide a general framework to compute
the reconstruction map for the classical shadow tomography
with locally scrambled quantum dynamics. The protocol is
summarized as follows:

(1) Given the prior snapshot ensemble Eσ , first calcu-
late its entanglement feature by

W (2)
Eσ ,C = E

σ̂∈Eσ

TrC (TrC̄ σ̂ )2.

(2) Solve for the reconstruction coefficient rA by∑
A,C∈2�N

rA fA,B,CW (2)
Eσ ,C = δB,�N .

(3) Then the reconstruction map is given by

ρ = M−1[σ ] = dN
∑

A∈2�N

rAσA.

All computations are supposed to be carried out on a
classical computer in the postprocessing procedure. Although
solving for rA may be computationally demanding for large
systems, it only needed to be done once and its result can be
applied to process all classical snapshots collected from all
possible states ρ to be learned.

B. Variance estimation and sample complexity

Given the ensemble Eσ |ρ of classical snapshots collected
from measuring the unknown state ρ, we can use the recon-
struction map M−1 to predict properties of ρ. For example,
let O be a traceless Hermitian operator representing a phys-
ical observable. Its expectation value 〈O〉 ≡ Tr(Oρ) can be
predicted via

〈O〉 = E
σ̂∈Eσ |ρ

Tr(OM−1[σ̂ ]) = E
σ̂∈Eσ |ρ

Tr(M−1[O]σ̂ ), (13)

where we have used the self-adjoint property of M−1 to
transpose its action from σ̂ to O. We can interpret ô(σ̂ ) ≡
Tr(M−1[O]σ̂ ) as the single-shot estimation of the observ-
able (based on a particular classical snapshot σ̂ ), such that
〈O〉 = Eσ̂∈Eσ |ρ ô(σ̂ ).

The variance of the single-shot estimation is defined
as Var ô ≡ Eσ̂∈Eσ |ρ ô(σ̂ )2 − (Eσ̂∈Eσ |ρ ô(σ̂ ))2, which can be
bounded by (the first term in Var ô)

Var ô � ‖O‖2
Eσ |ρ ≡ E

σ̂∈Eσ |ρ
ô(σ̂ )2

= E
σ̂∈Eσ

(Tr M−1[O]σ̂ )2 Tr(σ̂ ρ)dN . (14)

The bound ‖O‖Eσ |ρ can be considered as a generalized ρ-
dependent notion of the (squared) shadow norm [8] of an
operator O (whereas the shadow norm originally defined in
Ref. [8] further maximizes over all possible underlying states
ρ to remove the dependence on ρ). Assuming Eσ is locally
scrambled, following the same approach of inserting and av-
eraging local-basis transformations as in Eq. (6), the bound in

Eq. (14) becomes

‖O‖2
Eσ |ρ =

∑
g,h∈SN

3

‖O‖2
ρ,gWgg,hW

(3)
Eσ ,h, (15)

where g, h are group elements in the SN
3 (product of threefold

permutation groups over N qudits). Wgg,h is the Weingarten
function of permutations g and h, which is equivalent to tradi-
tional Weingarten function as Wgg,h = Wg(gh−1, d ), where d
is the local Hilbert dimension of qudit. ‖O‖2

ρ,g is a generalized
operator norm for O, which is defined as

‖O‖2
ρ,g ≡ dN Tr[(M−1[O]⊗2 ⊗ ρ)χg], (16)

where χg is the representation of the SN
3 permutation g in the

threefold Hilbert space. W (3)
Eσ ,h is the third entanglement feature

of the ensemble Eσ , defined as

W (3)
Eσ ,h ≡ E

σ̂∈Eσ

Tr(σ̂⊗3χh). (17)

Note that the second entanglement feature previously defined
in Eq. (8) can be consistently cast into the form of Eq. (17) in
terms of permutation operators (see Ref. [27]).

In practice, the expectation value 〈O〉 is always estimated
based on a finite collection of the snapshot states. Let M be the
number of samples of ρ measured in the data acquisition stage
(each sample results in a snapshot state σ̂k). The finite-average
estimation ō = 1

M

∑M
k=1 ô(σ̂k ) will fluctuate around the true

expectation value 〈O〉 with a variance that scales as (Var ô)/M.
By the Chebyshev inequality, the probability for ō to deviate
from 〈O〉 by more than ε amount is bounded by

Pr(|ō − 〈O〉| � ε) � Var ô

ε2M
�

‖O‖2
Eσ |ρ

ε2M
. (18)

Therefore, to control the failure probability within a threshold
δ, i.e., Pr(|ō − 〈O〉| � ε) � δ, sufficient number of samples is
required

M �
‖O‖2

Eσ |ρ

ε2δ
. (19)

A larger (smaller) shadow norm ‖O‖2
Eσ |ρ indicates that more

(less) samples are needed.
However, the ρ-dependent shadow norm ‖O‖2

Eσ |ρ is gener-
ally complicated to evaluate. If we are not interested in the
shadow norm for a specific state ρ, but rather the expectation
of the shadow norm over an ensemble of states {V ρV †} that
are similar to ρ by local-basis transformations V ∈ U(d )N , we
can actually define a ρ-independent shadow norm by averag-
ing over V :

‖O‖2
Eσ

≡ E
V ∈U(d )N

‖O‖2
E

σ |V ρV †
. (20)

The expected shadow norm can be expressed purely in terms
of the entanglement features of Eσ and EO (see Appendix B
for derivation),

‖O‖2
Eσ

=
∑

A,B,C,D∈2�N

vA,B,C,DW (2)
Eσ ,A∩B∩CW (2)

EO,D, (21)

where the coefficient vA,B,C,D is given by

vA,B,C,D = rArB

(
d2

d2 − 1

)N

d |A∩B∩C|−|C|
(

− 1

d

)|C
D|
, (22)
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FIG. 1. Illustration of classical shadow tomography protocol.
This work focuses on the case when the unitary channel is of finite
depth and respects locality.

and EO = {V †OV |V ∈ U(d )N } denotes the locally scrambled
ensemble [or known as U(d )N twirling] associated with the
observable O in question.

In conclusion, given a traceless Hermitian operator O, its
expected shadow norm ‖O‖2

Eσ
provides a typical lower bound

for the number of samples needed

M �
‖O‖2

Eσ

ε2δ
, (23)

in order to control the error of the prediction ō given by the
classical shadow tomography within the probability bound
Pr(|ō − 〈O〉| � ε) � δ. Here we have only analyzed the sam-
ple complexity for a single linear observable. For the analysis
of multiple and/or nonlinear observables, we refer to the orig-
inal paper of Ref. [8]. Their result applies to our case simply
by replacing the shadow norm with our version.

C. A toy example of two-qudit system

To demonstrate our framework and to gain some analytical
intuition, we present a toy example to compute the reconstruc-
tion map in a two-qudit (N = 2) system. We assume that the
two-qudit system always evolves under a locally scrambled
quantum dynamics, which can be modeled (for example) by a
finite-time Brownian evolution1 driven by random Hamiltoni-
ans. Every classical snapshot σ̂U,b = U †|b〉〈b|U is generated
by the reversed evolution from the product state |b〉〈b|. In the
long-time limit [Fig. 2(a)], the entanglement feature W (2)

Eσ
=

(1, 2d
d2+1 , 2d

d2+1 , 1) follows from that of Page states, where the
subregion basis is arranged in the order of {·}, {1}, {2}, {1, 2}.
This is because the evolution of entanglement feature under
any locally scrambled quantum dynamics always converges
to the Page state, regardless of the initial state, as proven in
Ref. [14]. In the short-time limit [Fig. 2(b)], σ̂ remains as a
product state, therefore, the entanglement entropy vanishes for
all regions, which translates to W (2)

Eσ
= (1, 1, 1, 1). In general,

for any intermediate time, the entanglement feature should
take the form of

W (2)
Eσ

= (1,w,w, 1), (24)

1The Brownian unitary evolution is a product of a sequence of
infinitesimal time evolution U = ∏

t e−iHt δt , but the Hamiltonian Ht

at each time step is independent drawn from a random Hamiltonian
ensemble (unlike the coherent quantum dynamics, where the same
Hamiltonian drives the dynamics through all time.)

with w varies between 2d
d2+1 (the long-time limit) and 1 (the

short-time limit). The physical meaning of w is the average
single-qudit purity in the snapshot state σ̂ .

Given W (2)
Eσ

in Eq. (24), Eq. (12) reads as

d2

⎡
⎢⎢⎢⎢⎢⎣

1 d (d−w)
d2−1

d (d−w)
d2−1

d2(d2−2dw+1)
(d2−1)2

0 dw−1
d2−1 0 d (d2w−2d+w)

(d2−1)2

0 0 dw−1
d2−1

d (d2w−2d+w)
(d2−1)2

0 0 0 d2−2dw+1
(d2−1)2

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

r{}
r{1}
r{2}

r{1,2}

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0
0
0
1

⎤
⎥⎥⎦.

(25)
By solving this linear equation, the reconstruction coefficient
rA can be obtained:

r =

⎡
⎢⎢⎣

r{·}
r{1}
r{2}

r{1,2}

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

d3w−3d2+3dw−2w2+1
(dw−1)(d2−2dw+1)
−d4w+2d3−2d+w

d (dw−1)(d2−2dw+1)
−d4w+2d3−2d+w

d (dw−1)(d2−2dw+1)
(d2−1)2

d2(d2−2dw+1)

⎤
⎥⎥⎥⎥⎥⎦. (26)

The behavior of rA as a function of w is shown in Fig. 2(c),
which continuously interpolates the two limits.

In the short-time limit, w = 1 and Eq. (26) reduces to rA =
(1,−(d + 1)/d,−(d + 1)/d, (d + 1)2/d2), corresponding to
the reconstruction map

M−1[σ ] =
⊗
i=1,2

[(d + 1)σi − 1i], (27)

FIG. 2. Two-qudit unitary channel in (a) the long-time (Page
state) limit and (b) the short-time (product state) limit. (c) Recon-
struction coefficients rA and (d) the shadow norm ‖O‖2

Eσ
/ Tr O2 vs

the single-qudit purity w, for d = 2. w varying from 1 to 4
5 effec-

tively models the circuit depth (or evolution time) growing from
0 to ∞.
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matching the result of onsite two-design circuits [31,32]. In
the long-time limit, w = 2d

d2+1 and Eq. (26) reduces to rA =
(−1, 0, 0, (d2 + 1)/d2), corresponding to the reconstruction
map

M−1[σ ] = (d2 + 1)σ − 1, (28)

matching the result of global two-design circuits [31,32]. The
general result in Eq. (26) provides the reconstruction map that
interpolates these two limits, which allows us to perform clas-
sical shadow tomography for intermediate unitary channels
that are neither onsite nor global two-design.

To investigate the sample complexity of the tomography
scheme in the two-qudit system, we consider a traceless Her-
mitian operator O (i.e., Tr O = 0) and define two parameters
k1 and k2 to parametrize the purity:

k1 = Tr{1}(Tr{2} O)2/ Tr O2,

k2 = Tr{2}(Tr{1} O)2/ Tr O2. (29)

Then the entanglement feature of the observable O can be
arranged as the following vector:

W (2)
EO

= (0, k1, k2, 1) Tr O2, (30)

with the same choice of region basis as in Eq. (24). Given
r, W (2)

EO
, and W (2)

Eσ
, we have all the information needed to

calculate the shadow norm, according to Eq. (21),

‖O‖2
Eσ

= d2 − 1

d3

(
ktot

dw − 1
+ (d2 − 1)(d − ktot )

d2 − 2dw + 1

)
Tr O2,

(31)
where ktot = k1 + k2.

The operator locality crucially affects ktot. Consider mod-
eling a local operator Oloc by a random operator drawn from
the Gaussian unitary ensemble (GUE) and acting on the first
qudit only, we have

W (2)
EOloc

= (0, d, 0, 1) Tr O2
loc, (32)

hence ktot = d . On the other hand, for a global operator Oglb

modeled by a global GUE random operator acting on both
qudits simultaneously, we have

W (2)
EOglb

=
(

0,
d

d2 + 1
,

d

d2 + 1
, 1

)
Tr O2

glb, (33)

hence ktot = 2d
d2+1 . In these two cases, the shadow norm in

Eq. (31) becomes

‖Oloc‖2
Eσ

= d2 − 1

d2(dw − 1)
Tr O2

loc,

‖Oglb‖2
Eσ

= d2 − 1

d2(d2 + 1)

(
(d2 − 1)2

d2 − 2dw − 1
+ 2

dw − 1

)
Tr O2

glb.

(34)

Their dependence in w is plotted in Fig. 2(d). In the short-time
limit (w = 1), ‖Oloc‖2

Eσ
< ‖Oglb‖2

Eσ
, meaning that the shallow

circuit is more efficient in predicting local observables. In
the long-time limit (w = 2d

d2+1 ), ‖Oloc‖2
Eσ

= ‖Oglb‖2
Eσ

= (1 +
d−2) Tr O2, such that there is no difference in predicting both
local and global observables in terms of the sample efficiency,
because all operators are equally scrambled in this limit.

L

a

U
fix
ed

L orT

b

H
1

H
2

H
3

T

c

FIG. 3. Classical shadow tomography with (a) finite-depth ran-
dom unitary and Clifford circuits (of L layers), (b) a fixed unitary
twirled by single-qubit random Clifford gates, and (c) discrete-time
Hamiltonian dynamics (of T steps).

D. Additional remarks on computational methods
and future directions

Efficient numerical methods have been developed [20,38]
to calculate the evolution of entanglement feature W (k)

Eσ
under

locally scrambled quantum dynamics by solving the corre-
sponding entanglement dynamics equation (without simulat-
ing the quantum dynamics using brute force). However, we
will leave this approach for future exploration. In this work,
we will compute the entanglement feature beforehand based
on the definition (8), by direct sampling from the prior snap-
shot ensemble Eσ . For experimentally generated random uni-
taries whose distribution is a priori unknown, it is also possi-
ble to estimate the entanglement feature efficiently from Rényi
entropy measurements [39–41] following the definition (8).

As shown in Ref. [38], for one-dimensional quantum sys-
tems, the entanglement feature vector W (k)

Eσ
admits efficient

matrix product state (MPS) representation, even if snapshot
states in Eσ are volume-law entangled. Combining the MPS
representation of W (2)

Eσ
with the fact that fA,B,C is factorizable

to every qudit, one can develop efficient MPS-based numeri-
cal approach to find the solution of rA (also as a MPS). How-
ever, we will defer the development of this approach to future
work. In the following numerical demonstrations, we will
directly solve Eq. (12) for small systems as a proof of concept.

The MPS representations for r, W (2)
Eσ

, and W (2)
EO

also enable
us to calculate the shadow norm ‖O‖2

Eσ
efficiently by a four-

way MPS contraction. In Appendix C, we discuss the detail of
the efficient classical postprocessing algorithm with the tensor
network method. The ability to compute the shadow norm
efficiently will be particularly useful if we want to design
optimal unitary channels to minimize the sample complexity
for a given set of designated observables. It is possible to
apply machine-learning approaches (such as deep reinforce-
ment learning) to perform the circuit structure optimization.
Therefore, our construction provides the flexibility to allow
the classical shadow tomography to adapt to designated ob-
servables, which has not been possible before. We will also
leave this promising direction to future research.

III. NUMERICAL DEMONSTRATIONS

To demonstrate the effectiveness of our approach, we con-
sider three types of unitary ensembles for the unitary channel
in the data acquisition protocol, as illustrated in Fig. 3.
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A. Classical shadow tomography with shallow random unitary
and Clifford circuits

We first consider using random unitary circuits (RUCs)
[15] for the unitary channel. As illustrated in Fig. 3(a), the
unitary circuit consists of two-qubit local unitary gates ar-
ranged in the brick-wall pattern with a periodic boundary
condition. Each gate in the circuit is independently drawn
from the Haar random unitary ensemble. The depth L of the
circuit can be adjusted. Obviously, RUCs are locally scram-
bled, as any local-basis transformation (from both left and
right) can be absorbed by the Haar random unitary gates in the
circuit. Therefore, we expect our reconstruction map to work
perfectly in this case for any choice of the circuit depth L.

For illustration purpose, we start with a Greenberger-
Horne-Zeilinger (GHZ) state ρ = |�〉〈�|, where |�〉 =

1√
2
(|00 . . . 0〉 + |11 . . . 1〉). For every given circuit depth L,

we first calculate the entanglement feature W (2)
Eσ ,C to determine

the reconstruction map M−1. This calculation is done for
once and stored in the classical memory for future reference.
In our numerical simulation of the data acquisition process,
we sample the RUC, apply it to the GHZ state |�〉, and
perform the computational basis measurement. We generate
a collection of classical snapshots Eσ |ρ = {σ̂ } of size M by
repeated measurements. We then estimate the fidelity F of the
reconstructed state by

F =
√√√√ 1

M

∑
σ̂∈Eσ |ρ

〈�|M−1[σ̂ ]|�〉. (35)

Following the philosophy of classical shadow tomography,
one should view Eq. (35) as a prediction task. If the shadow
tomography is successful, then the estimated fidelity should
converge to F = 1. This estimation can be achieved accu-
rately by a few measurements, even though the full density
matrix estimation avgσ̂∈Eσ |ρ M−1[σ̂ ] may still have large fluc-
tuations. In addition, when the reconstruction is biased, for
example, the experimental channel M does not match the
theoretical assumption of the unitary ensemble, then the fi-
delity estimation will deviate from one. Figure 4(a) shows
that the entanglement-feature-based reconstruction map M−1

EF
indeed gives unbiased estimation of fidelity F for different
circuit depths L and for different system sizes N . Furthermore,
when the GHZ state is prepared with Z errors, our method can
give the correct fidelity estimation that decreases linearly with
the probability of Z error, which is challenging for the cur-
rent state-of-art machine-learning quantum state tomography
method [8,42] (see Appendix D for more discussions).

To compare with the existing classical shadow tomography
method [8], we consider the reconstruction maps M−1

GH[σ ] =
(dN + 1)σ − 1 and M−1

LH[σ ] = ⊗
i((d + 1)σi − 1i ), where

M−1
GH (or M−1

LH) assumes the unitary ensemble is global (or
onsite local) Haar random. They can be viewed as special
limits where circuit depth L tends to infinity and zero, respec-
tively. Although they can also achieve an unbiased estimation
of quantum fidelity, the tomography efficiency differs. In
Fig. 4(b), the error bar shows how the (3-times) standard devi-
ation of the estimated fidelity scales with the number of qubits
N at 5000 sample size. As we can see [both from the error

EF, N 6
EF, N 7
EF, N 8

a

0 2 4 6 8
0.0
0.2
0.4
0.6
0.8
1.0
1.2

L

F

LH, 0 layer
EF, 3 layer
GH, layer

N

V
ar
F

3 4 5 6 7 8 9
0.1
0.2
0.3
0.4

b

3 4 5 6 7 8 9
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N
F

FIG. 4. (a) Fidelity estimation of GHZ state with RUC of differ-
ent circuit depth L using entanglement-feature-based reconstruction
M−1

EF (denoted by EF) over different number N of qubits. (b) Fidelity
estimation of GHZ state using shallow RUC (three layer, with M−1

EF ,
denoted by EF), random onsite (local Haar) gates (zero layer, with
M−1

LH, denoted by LH), and global Haar unitary (∞ layer, with M−1
GH,

denoted by GH). The inset shows the variance Var F of the predicted
fidelity as a function of system size N . In both subfigures, the sample
size is 5000. Error bar indicates 3 standard deviations estimated
by the bootstrap method. Points are split horizontally to avoid the
overlap of markers.

bar and from the inset of Fig. 4(b)], the variance of (onsite)
local Haar estimation increases drastically as N increases,
which implies an increasingly high sample complexity for
large systems.

In the other limit, the variance of global Haar estimation
is independent of system size, achieving the optimal sample
complexity as advocated in Ref. [8]. However, to realize the
global Haar ensemble, the circuit depth needs to be at least of
order O(N ), which is quite demanding for quantum devices.
If we approximate the global Haar ensemble with finite-depth
circuits and use the reconstruction map M−1

GH on data col-
lected from finite-depth circuit measurements [9], this will
yield systematically biased predictions for physical quantities
when the circuit is not deep enough. In Fig. 5(a), we show that
the biased prediction tends to overestimate the fidelity, leading
to the unphysical result of F > 1 (the correct behavior is
F = 1). This occurs because, when the measurement channel
M in data acquisition protocol disagrees with the reconstruc-
tion channel M−1 in classical postprocessing protocol, the
reconstructed density matrix 1

M

∑
σ̂∈Eσ |ρ M

−1[σ̂ ] may not be
positive definite (see Appendix E for detailed discussions),
resulting in the unphysical fidelity estimation. This bias gets
worse for larger system size. In Fig. 5(b), we also show the
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GH,N 6
GH,N 7
GH,N 8

a

0 2 4 6 8
1.0
1.2
1.4
1.6
1.8

F
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GH,N 7
GH,N 8

b

0 2 4 6 8
0.5
1.0
1.5
2.0
2.5

L

P 0

FIG. 5. (a) Fidelity estimation of the reconstructed GHZ state
with RUC of finite depth L. (b) Estimation of observable P0 =
|〈�|00 . . . 0〉|2 (the projection operator to the |00 . . . 0〉 state) on
the reconstructed GHZ state with RUC of finite depth L. In both
cases, the reconstruction uses the global Haar reconstruction map.
The sample size is 5000. Error bar indicates 3 standard deviations
estimated by the bootstrap method.

estimation of P0 = |〈�|00 . . . 0〉|2. For GHZ state, the correct
behavior is P0 = 0.5, and we still see significant bias when
applying M−1

GH for shallow circuits.
However, with the entanglement-feature-based reconstruc-

tion map M−1
EF , as demonstrated in Fig. 4(b), we are able to

achieve an unbiased fidelity estimation with a three-layer shal-
low circuit, approaching similar variance level (i.e., similar
sample efficiency) as global Haar ensemble while keeping a
low-circuit complexity. This clearly demonstrates the advan-
tage of our approach.

B. Scaling of variance and tomography complexity

The above discussion motivates us to define the tomog-
raphy complexity as C = (L + 1)M, where L is the circuit
complexity (the number of layers in the quantum circuit), and
M is the sample complexity (the number of samples needed).
M will be proportional to the single-shot variance Var ô. Sup-
pose applying each layer of quantum gates and performing
measurements both take a unit of time on the quantum device,
then C is roughly the total amount of time needed to collect the
classical shadow from M copies of the quantum state, which
characterizes the complexity of the data acquisition protocol.
This notion of complexity is consistent with the quantum
algorithmic measurement (QUALM) complexity introduced
in Ref. [43] (with LM and M being their gate and query com-
plexities, respectively). In the following, we will investigate
the scaling of single-shot variance Var ô as a function of circuit
depth L and system size N for both low-rank operators (such
as fidelity) and full-rank operators (such as Pauli operators),
and show how the tomography complexity C can guide us to
find the optimal circuit depth L∗.

For low-rank operators, we will focus on quantum fidelity,
which is important in many quantum information applica-
tions, such as (variational) state preparation. We will define
the zero-depth limit (L → 0) of the RUC to be a single layer
of onsite Haar-random gates because even if there is no two-

0.72

ln L 1

ln
ln
V
ar
F

0.0 0.5 1.0 1.5 2.0 2.5

0.0
0.5
1.0

a

0 2 4 6 8
0

10

20

30

40

L

V
ar
F

c 0.4
7

L 0
L 1
L 2
L 3

b

2 4 6 8
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

N L 1

ln
V
ar
F

c
k 1
k 2
k 3
k 4
k 5
k 6
k 7
k 8
k 9

0 2 4 6 8
1

10

102
103
104

L

V
ar
Z
k

FIG. 6. (a) Single-shot variance of estimated fidelity vs circuit
depth L for a nine-qubit GHZ state. (b) Single-shot variance of
estimated fidelity as a function of the effective system size Neff.
The best fit for Var F ∝ exp (c N

(L+1)α ) gives c = 0.47 ± 0.08 and
α = 0.72 ± 0.1. (c) Variance of full-rank operator estimation on a
nine-qubit GHZ state. The full-rank operators are Pauli-Z operators
of the form Z (k) = Z⊗kI⊗(N−k) with different support k. The dots are
experimental results from simulation, and the lines are theoretical
prediction using operator shallow norm by Eq. (21). They match
perfectly.

qubit gate in the “zero-depth” circuit, we still assume that the
unitary ensemble is locally scrambled such that onsite scram-
bling unitaries continue to persist. In this limit, the single-shot
variance Var F of fidelity estimation scales exponentially with
the number of qubits N . On the other hand, in the deep circuit
limit (L → ∞), RUCs will approach the global Haar unitary
ensemble, and the variance Var F will be independent of sys-
tem size. We are interested to investigate how Var F behaves
in the shallow circuit regime. In Fig. 6(a), we calculated
Var F numerically using the bootstrap method for the nine-
qubit GHZ state. It shows the variance Var F will decrease
quickly in the shallow circuit regime. Interestingly, we found
that an empirical formula Var F ∝ exp (c N

(L+1)α ) fits the data
well in the shallow circuit regime, with α = 0.7 ± 0.1. In
Fig. 6(b), we plot Var F as a function of N

(L+1)α for different
fixed circuit depth L. We find curves with different choices of
circuit depth L all collapse together with the same coefficient
c = 0.47 ± 0.08.

The physical intuition behind the empirical formula has to
do with the operator growth in RUCs. If the quantum circuit is
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very shallow, then the computational basis measurement will
only probe local information in the original basis. If the circuit
becomes deeper, computational basis measurement can probe
information in larger regions in the original basis because the
measurement operator has grown under the (backward) cir-
cuit evolution. Suppose the size of the measurement operator
grows in a power-law manner ∼(L + 1)α ,2 with respect to the
depth L of the RUC, the relative size of the system will ef-
fectively shrink to Neff = N

(L+1)α , such that Var F should scale
universally with Neff, as proposed in the empirical formula.
We might expect α = 1

2 (or α = 1), if the operator grew diffu-
sively (or ballisticaly). However, the best fit of our numerical
result seems to indicate an effective operator growth between
the diffusive and ballistic limits. Due to the limited system
size in this study, we are unable to determine whether our
observation persists to the thermodynamic limit. We will leave
this intriguing scaling behavior for further investigation in the
future. Nevertheless, for any α, the variance decreases faster
than exponential with L in the shallow circuit regime, which
already speaks for the advantage of applying shallow circuits
in classical shadow tomography.

For full-rank operators, we mainly focus on consecutive
strings of Pauli operators of the form

Z (k) = Z⊗kI⊗(N−k) = ZZ . . . Z︸ ︷︷ ︸
k

II . . . I︸ ︷︷ ︸
N−k

, (36)

where Z is the Pauli-Z operator, and I is the identity operator.
We define the locality of the Pauli string operator by its length
k. In the shallow circuit limit (L → 0), the variance of estima-
tion for Z (k) scales Var Z (k) ∝ 4k . So the shallow circuit is only
efficient for predicting the local observables, and becomes
inefficient for nonlocal observables. In the deep circuit limit
(L → ∞), as the unitary ensemble becomes globally Haar,
there is no difference between local and nonlocal operators
in this limit, and Var Z (k) ∝ 2N . A simple comparison indi-
cates when k � N/2, Var Z (k) will decrease with L, thus deep
circuits will have lower sample complexity; when k � N/2,
Var Z (k) will increase with L, thus shallow circuits will have
lower sample complexity. In Fig. 6(c), the dots show the
variance Var Z (k) as a function of circuit depth L for different
support k. The trend agrees with our simple argument. For
nonlocal operators, their variance will quickly decrease with
the circuit depth L, while the variance for local operators will
mildly increase with L. The behavior is theoretically described
by how the operator shadow norm ‖O‖2

Eσ
depends on both

the circuit depth L and the operator locality k, which are
separately encoded in the entanglement features of Eσ and
EO. We calculate the shadow norm ‖Z (k)‖2

Eσ
based on the

entanglement feature formalism using Eq. (21), and plot the
result as lines in Fig. 6(c). The theoretical calculation agrees
perfectly with the numerical results, which also indicates that
the shadow norm bounds the single-shot variance (and hence
the sample complexity) quite tightly.

Based on the discussion in Sec. II B, the sample complex-
ity M is proportional to the single-shot variance. Given the

2In the L → 0 limit, the measurement operator is still of at least
size 1, which motivates the “+1” regularization in (L + 1)α .
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FIG. 7. (a) Tomography complexity C ∝ (L + 1) Var F as a
function of circuit depth L for the fidelity (low-rank observable)
estimation task. Dots are tomography complexities for GHZ states of
qubit number N by our numerical simulation. Solid curves are best
fits based on the empirical formula (37). (b) Tomography complexity
C ∝ (L + 1) Var Z (k) for the Pauli string (full-rank observable) esti-
mation task. Dots are numerical simulation results. Solid curves are
analytic calculations using the operator shadow norm formula (21).

scaling of variance with the circuit depth L, we can study the
scaling of the sample complexity, as well as that of the tomo-
graphy complexity C. For fidelity estimation task, C scales as

C = (L + 1)M ∝ (L + 1) Var F

∝ (L + 1) exp

(
cN

(L + 1)α

)
. (37)

For sufficiently large systems, the complexity C can have a
nontrivial minimum at a finite circuit depth L∗ � (αcN )1/α −
1. Our simulation result in Fig. 7(a) verifies such behavior.
For small systems (N � 5), random single-qubit measure-
ments can efficiently benchmark the quantum state, so we
do not need to use a finite-depth circuit for data acquisition.
However, as the system size N gets larger, to maintain the
prediction accuracy, single-qubit measurements will require
more and more samples that have to grow exponentially with
N . As shown in Fig. 6(a), applying a few layers of quantum
circuits before the measurement can quickly bring down the
single-shot variance (and hence reduce the sample complex-
ity). However, we also do not want to go too far in the circuit
depth because that would increase the circuit complexity.
Therefore, we expect an optimal circuit depth L∗ where the
sample complexity and the circuit complexity reach a balance,
and the total tomography complexity is minimized. This ex-
plains the advantage of shallow circuits in classical shadow
tomography, as compared to the existing method that requires
either onsite Haar random (L → 0) or global Haar random
(L → ∞) unitaries.
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We also study the tomography complexity C ∝ (L +
1) Var Z (k) for the full-rank observables, such as Pauli strings
Z (k), as shown in Fig. 6(b). In this case, what matters is the
locality k of the full-rank operator (the length k of the Pauli
string). For local operators (small k), onsite measurement will
be most efficient. However, for nonlocal operators (large k),
we observe that the tomography complexity is minimized at
some finite circuit depth, again demonstrating the advantage
of employing shallow circuits in classical shadow tomogra-
phy. For different classes of physical observables, we can use
the tomography complexity C as an objective function to guide
the design of the optimal circuit structure. We will leave this
promising direction for future investigation.

C. Classical shadow tomography with fixed quantum
circuits or Hamiltonian dynamics

Compared to other classical shadow tomography protocols,
our method can be applied to a large family of unitary ensem-
bles that only requires the local scrambling condition, which
is more appealing to near-term quantum devices. One of the
biggest challenges in realizing the original proposal of global
Clifford classical shadow tomography is that the realization
of global Clifford unitary requires ∼N2 many local Clif-
ford gates (for a N-qubit system), which remains challenging
for near-term quantum devices. Even though global Clifford
shadow tomography is very efficient in predicting nonlocal
properties, it has not been implemented even for few-qubit
systems as far as we know.

As we have seen in Sec. III A, the quantum entangle-
ment created by the unitary channel plays an important role
in reducing the sample complexity. With the quantum en-
tanglement generated by the unitary channel, the classical
shadow tomography is essentially an entanglement-assisted
nonlocal measurement protocol. To circumvent the difficulty
of sampling (fully scrambled) deep random unitaries but still
harness the power of entanglement, we can use the idea of
locally scrambled unitaries to design randomized measure-
ment protocols that have sandwich structures like Fig. 3(b),
where random single-qubit Clifford gates (green boxes) are
introduced at the beginning and the end of the unitary channel,
and a fixed unitary circuit/quantum dynamics (the blue box) is
sandwiched in-between to provide entanglement generation.
This sandwiched protocol satisfies the local scrambling con-
dition rigorously, therefore, the reconstruction map in Eq. (12)
can be applied.

We will give two examples to demonstrate this sandwiched
protocol. In the first example, as shown in Fig. 8(a), the
fixed unitary is taken to be a fixed Clifford circuit consist
of a sequence of controlled-NOT (CNOT) gates that gener-
ates entanglement. In the second example, as illustrated in
Fig. 8(b), the fixed unitary is generated by the time evolution
of a Rydberg atom Hamiltonian3:

H = �

2

∑
i

Xi − 

∑

i

Zi + �
∑
i< j

(
Rb

a|i − j|
)6

ZiZ j . (38)

3For simulation of Rydberg Hamiltonian, we choose parameters
� = 2.75, 
 = 1, Rb = 1.

FIG. 8. Classical shadow tomography with a fixed unitary and
onsite random Clifford gates. The fixed unitary can be generated with
single quantum circuit, such as (a) CNOT gates, or fixed quantum
dynamics, such as (b) Rydberg Hamiltonian dynamics.

Both cases are ready to be implemented with near-term quan-
tum devices, such as trapped-ion-based quantum simulator or
Rydberg-atom-based quantum simulator, given the fact that
single-qubit Clifford gates can be efficiently implemented,
and randomized Pauli measurements have been demonstrated
[44].

For comparison, we use both our proposed sandwiched
protocol and the standard randomized Pauli measurement to
perform the classical shadow tomography on a GHZ state and
to evaluate the fidelity of the reconstructed state. The results
are shown in Fig. 9. As we can see, the variance of the fidelity
estimation based on randomized Pauli measurements grows
exponentially with increasing system size. As expected, the
variance (or the sample complexity) reduces dramatically if
one adds a fixed unitary generated by the CNOT circuit or the
Rydberg Hamiltonian dynamics. More specifically, the vari-
ance of prediction is reduced by one order of magnitude even
for a small system of N = 9 qubits. In both cases, the quantum
entanglement generated by the locally scrambled quantum
dynamics helps to improve the tomography efficiency. This
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FIG. 9. Fidelity estimation of GHZ state using randomized Pauli
measurements (denoted as Pauli), classical shadow tomography with
fixed CNOT gates as in Fig. 8(a), and classical shadow tomography
with fixed Rydberg Hamiltonian dynamics as in Fig. 8(b). The inset
shows the variance Var F of the predicted fidelity as a function of
system size N . The sample size is 10 000. Error bar indicates 3
standard deviations estimated by the bootstrap method. Points are
split horizontally to avoid the overlap of markers.
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result demonstrates the power of our protocol: it is both very
flexible in terms of the design and very efficient in terms of the
sample complexity.

D. Approximate classical shadow tomography with local
Hamiltonian dynamics

Requiring an unitary ensemble to be strictly locally scram-
bled could be restrictive. To this end, we would like to explore
a broader class of unitary ensembles that are only approx-
imately locally scrambled. In particular, we study unitary
evolutions U = e−iHT generated by a local Hamiltonian H for
finite amount of time T , as depicted in Fig. 3(b). Two classes
of Hamiltonians are of particular interest. In the first class, we
consider a model of random local Hamiltonians

H =
∑

i

Hi,i+1, (39)

where each term Hi,i+1 is independently sampled as 2-local
GUE random matrices. We dub this class the GUE2 ensemble
to remind ourselves that the Hamiltonian is 2-local. The local
Hamiltonian describes a disordered one-dimensional quan-
tum system in general. Once every Hi,i+1 term is sampled,
we will use the Hamiltonian H to drive the time evolu-
tion without changing H during the evolution. The unitary
GUE2 ensemble is only invariant under U → V †UV (not
U → UV ) for V ∈ U (d )N , such that its corresponding prior
snapshot ensemble Eσ will transform as σ̂U,b = U †|b〉〈b|U →
V †U †V |b〉〈b|V †UV �= V †σ̂U,bV , which does not satisfy the
locally scrambling condition at the state level (i.e., the invari-
ance under σ̂ → V †σ̂V ). However, we anticipate that under
a sufficient amount of time evolution, the original local-basis
choice (of |b〉) will be quickly randomized given the chaotic
nature of the local Hamiltonian, such that the initial choice of
V |b〉〈b|V † or |b〉〈b| will not make a substantial difference sta-
tistically, so the GUE2 ensemble will become approximately
locally scrambled after some local thermalization (scram-
bling) time TTh.

Another more realistic class of random Hamiltonians to be
considered is based on the quantum Ising model with both
disordered coupling in space and random fields in time:

Ht =
∑
〈i j〉

Ji jXiXj + h
∑

i

(cos θt Xi + sin θtYi ), (40)

where the local coupling Ji j ∼ Uni[J − J
2 , J + J

2 ] is drawn
from a uniform distribution, and the angle of magnetic field
θt ∼ Uni[0, 2π ] is also random. We use this Hamiltonian to
drive the quantum dynamics in discrete time steps. In each
period of time, the magnetic field h will be applied along a
different random direction θt in the x − y plane for all spins
uniformly. However, Ji j will remain the same throughout the
time evolution. The ensemble of unitary consists of

U =
T∏

t=1

e−iHt . (41)

which we name as the disordered quantum Ising model or
DQIM for short. The DQIM ensemble is friendly for quantum
technology such as Rydberg-atom-based [28] or trapped-
ion-based [29] quantum simulators. Similar construction of

approximate unitary designs by Hamiltonian evolution with
random quenches in time was also proposed in Refs. [39,40].
We would like to investigate how well our framework applies
to these two cases.

Each approximately locally scrambled unitary ensem-
bles EU leads to a prior snapshot ensemble Eσ = {σ̂U,b|b ∈
{0, 1}×N ,U ∈ EU } that is also approximately locally scram-
bled. We propose to characterize how close the prior snapshot
ensemble Eσ is towards its local-basis invariant limit by the
following frame potential:

F (k)
Eσ

= E
σ̂ ,σ̂ ′∈Eσ

(Tr σ̂ σ̂ ′)k . (42)

Recall that in deriving Eq. (6) from (3), we only require the
second moment to match, i.e.,

E
σ̂∈Eσ

σ̂⊗2 = E
V ∈U (d )N

E
σ̂∈Eσ

(V †σ̂V )⊗2, (43)

therefore, we will be most interested in the second frame
potential F (2)

Eσ
. The frame potential F (2)

Eσ
for any ensemble Eσ is

lower bounded by its locally scrambled [U(d )N -twirled] limit
F (2)

ELS
σ

as

F (2)
Eσ

� F (2)
ELS

σ

=
∑
A,B

W (2)
Eσ ,AWgA,BW (2)

Eσ ,B. (44)

The fact that F (2)
ELS

σ

is expressed purely in terms of the en-
tanglement feature of Eσ indicates that it is indeed free of
any local-basis-dependent information. We can define the gap
between the frame potential and its locally scrambled limit as



(2)
Eσ

= F (2)
Eσ

− F (2)
ELS

σ

= Tr

(
E

σ̂∈Eσ

[
σ̂⊗2 − E

V ∈U(d )N
(V †σ̂V )⊗2

])2

, (45)

which turns out to match the trace-square-difference be-
tween the second moment Eσ̂ σ̂⊗2 and its local twirling
EV,σ̂ (V †σ̂V )⊗2. The frame potential gap 


(2)
Eσ

serves as an
indicator of the validity of our approach, as it vanishes if Eσ is
locally scrambled such that our construction becomes exact.

Different unitary ensembles can lead to different frame
potential gaps of Eσ , which can be used to evaluate the quality
of the unitary ensemble in obeying the local scrambling con-
dition. In Fig. 10(a), we first focus on the frame potential gap

(2) for the GUE2 ensemble. We find the gap will first decay
exponentially and then saturate to a plateau at a very low level.
The quickly vanishing gap implies that the GUE2 ensemble
quickly becomes approximately locally scrambled as time
evolves. We define the characteristic time associated with the
exponential decay as TTh, i.e., 
(2)(T ) ∝ exp(−T/TTh), which
can be considered as the local scrambling (thermalization)
time. Such an exponential decaying behavior in the early time
regime is generally expected for noncritical quantum dynam-
ics, which admit typical local energy scales (or timescales). In
addition, the inset plot in Fig. 10(a) shows that TTh is indepen-
dent of the system size N , as the slope remains the same for
different N within error bar. Unlike global scrambling (global
thermalization) which requires a long time (∼N ) to achieve,
achieving local scrambling only requires a fixed amount of
time set by the ultraviolet energy scale that is independent of
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FIG. 10. (a) Frame potential gap 

(2)
Eσ

of the GUE2 ensemble as a
function of evolution time T . The inset shows the decay behavior for
different system sizes N . (b) Frame potential gap of DQIM ensemble
at different coupling strength J , in comparison with that of the GUE2
ensemble. (c) The dependence of the local scrambling time TTh on
the coupling strength J . (d) Frame potential gap for single instances
in the DQIM ensemble. Each instance corresponds to a light-green
curve in the background.

the system size N . This is another advantage of using locally
scrambled quantum dynamics for classical shadow tomogra-
phy in practice.

As for the DQIM ensemble, we fix the strength of the
magnetic field at h = π/4 since this value produces the fastest
onsite scrambling of a single qubit. According to the definition
(40), the only tuning parameter will be the mean value J of
Ising couplings (which also sets their disorder strength). We
calculate the frame potential gap 
(2) for DQIM ensemble
with different J . We observe that the frame potential gap
always decays exponentially in the early time regime, in
correspondence to the local thermalization process. Then it
will typically crossover to a plateau (i.e., saturate to a finite
constant) in the late time. The early-time exponential decay
region is larger for larger J , and we use the exponential decay
regime to define the local scrambling time TTh. The result is
shown in Fig. 10(b). The DQIM ensemble also approaches
local scrambling as time evolves, although the final satura-
tion plateau is not as low as the GUE2 ensemble. Larger
Ising coupling J will lower the saturation plateau and shorter
the local scrambling time TTh, as shown in Fig. 10(c). In

DQIM J � 0.5
DQIM J � 1
DQIM J � 2
GUE2�a�
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0.0
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�b�

0 5 10 15 20 25
0.0
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T �TTh

FIG. 11. Fidelity prediction by (a) different approximated locally
scrambled ensembles, and (b) the GUE ensemble at different system
sizes N . Sample number is 10 000 and error bar indicates 3 standard
deviations.

addition, as shown in Fig. 10(d), we find the frame potential
gap for a single realization quenched-disorder Hamiltonian
does not deviate significantly from the ensemble mean value.
This indicates that a single fixed disordered Ising chain under
a randomly rotating uniform magnetic field is already good
to generate an approximately locally scrambled ensemble that
can be used for classical shadow tomography.

In practice, we use the two proposed approximated ensem-
bles, (i) the GUE2 ensemble and (ii) a single instance of the
DQIM ensemble, to perform the tomography task and predict
the fidelity of a seven-qubit GHZ state. In Fig. 11(a), we
see the predicted fidelity will be biased in the beginning (the
biased fidelity can be greater than one, see Appendix E for
more discussions), due to the fact that the quantum dynamics
is still on its way to establish local scrambling. After around
T ∼ 10TTh, the local scrambling condition is approximately
established, then the entanglement-feature-based reconstruc-
tion map M−1

EF can provide a good reconstruction of the
quantum state, as indicated by the convergence of the quantum
fidelity to identity. In Appendix E, we further investigate the
quantum fidelity of ρ̃ projected to the physical space (to tame
the unphysical F > 1 behavior) and show that the reconstruc-
tion is nearly perfect after around T ∼ 10TTh. In addition,
Fig. 11(b) also shows the local scrambling time for GUE2
is independent of system size, which is consistent with the
same behavior in Fig. 10(a). The results in Fig. 11 suggest that
the entanglement-feature-based approach could be applicable
for approximately locally scrambled unitary ensembles. The
reconstruction bias vanishes as the frame potential gap decays.
As long as the frame potential gap is low enough, the bias
is also expected to be vanishingly small for all predictions.
This significantly broadens the application of classical shadow
tomography to a large class of quantum dynamics that can be
achieved on NISQ devices.

IV. SUMMARY AND DISCUSSIONS

Our result can be further extended to more general mea-
surement channels, which can involve ancilla qubits and
partial measurements. The unitary channel can be noisy and
the measurements can be weak. Under generalized mea-
surements, the state ρ collapses to ρ → KaρK†

a /(Tr KaρK†
a ),
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FIG. 12. Classical postprocessing protocol to estimate the oper-
ator expectation value and shadow norm.

where Ka is the Kraus operator [45] associated with the mea-
surement outcome a. We can define the measurement operator
σ̂a = K†

a Ka (with the standard normalization
∑

a σ̂a = 1),
which forms the prior snapshot ensemble Eσ = {σ̂a|P(σ̂a) =
d−N }, and the posterior snapshot ensemble will be Eσ |ρ =
{σ̂a|P(σ̂a|ρ) = Tr σ̂aρ} correspondingly. As long as the gen-
eralized prior snapshot ensemble Eσ is locally scrambled, i.e.,
∀V ∈ U(d )N : P(σ̂ ) = P(V †σ̂V ), our theoretical framework
automatically applies, and all formulations in this work re-
main valid in the same form. This enables us to consider
classical shadow tomography with very general data acqui-
sition protocols.

The entanglement feature formalism plays a central role
in our approach. Figure 12 summarizes the proposed classi-
cal postprocessing protocol to predict the expectation value
〈O〉 of a physical observable O, together with its estimated
variance (given by the shadow norm ‖O‖2

Eσ
divided by the

sample size M). Given the circuit structure, the entanglement
feature (EF) solver calculates the entanglement feature W (2)

Eσ

of the prior snapshot ensemble as defined in Eq. (8) (the
algorithm is developed in previous works [14,20,38]). The re-
sult is passed to the inverse channel solver to calculate the
reconstruction coefficients rA by solving Eq. (12). With rA, we
can predict any physical observable O by 〈O〉 = dN

∑
A rAoA

where oA = Eσ̂∈Eσ |ρ Tr Oσ̂A (the median-of-means trick [8]
can be used here if multiple observables are to be predicted).
For every sample of classical description of the Kraus oper-
ator K , a quantum circuit simulator (running on a classical
computer) is needed to construct the (efficient representation
of) measurement operator σ̂ = K†K . The classical simulation
could be efficient if the circuit is Clifford [46] (our formalism
applies to random Clifford circuits with no problem). The
part of computation in the dashed box of Fig. 12 should be
repeated for every sample to evaluate the ensemble average.
Finally, given the reconstruction coefficient r and the entan-
glement features W (2)

Eσ
and W (2)

EO
, the shadow norm ‖O‖Eσ

can
be calculated, which provides an estimation for variance of
the predicted observable. Although it takes some effort to
process the entanglement feature data and to calculate the

FIG. 13. Illustration of holographic classical shadow tomogra-
phy scheme, where the quantum circuit is arranged in a hierarchical
structure (forming the hyperbolic bulk space).

reconstruction coefficients, such computation (everything out-
side the dashed box in Fig. 12) only occurs once for a
given circuit structure, therefore this computational effort is
usually affordable (especially when efficient tensor-network
approaches are developed and employed) [47].

The theoretical framework established in this work ex-
tends the classical shadow tomography to general quantum
circuits, which opens up many possible applications. As one
interesting example, we consider performing the classical
shadow tomography in the “holographic bulk” by transform-
ing the original state by a random Clifford circuit arranged
in a hierarchical structure (see Fig. 13), similar to the multi-
scale entanglement renormalization ansatz (MERA) network
[48,49] or the holographic quantum error-correcting code
[50]. Following the idea of holographic duality, local mea-
surements in the holographic bulk translate to measurements
at all different scales on the holographic boundary. Therefore,
it is conceivable that the holographic classical shadow tomog-
raphy could achieve high sample efficiency for operators of
all scales, potentially evading the dichotomy between sample
complexity and circuit complexity.

Another interesting application is to consider random cir-
cuits hybrid with random measurements inserted into the
circuit at a fixed rate [51–55]. Conditioned on the intermediate
measurement outcomes, the hybrid quantum circuit forms a
quantum channel that transmits quantum information from
end to end. Driven by the measurement rate, the final state
can undergo an entanglement transition [19,56,57] (or the
quantum channel can undergo a purification transition [58]
equivalently). When the measurement rate is high, the quan-
tum information in the initial state can be efficiently extracted
by intermediate measurements (eavesdroppers), such that the
channel has zero transmission capacity. When the measure-
ment rate is lower than a critical threshold, the channel will
have a finite capacity and can transmit quantum information in
an error-correcting manner [18,20,59]. However, it is unclear
how to take advantage of the self-organized quantum error
correction in these hybrid quantum circuits. We anticipate that
the classical shadow tomography with a flexible measurement
scheme can help decoding the measurement-induced quantum
error-correcting code. We will leave these interesting applica-
tions for future explorations.

Finally, the classical shadow tomography provides an ef-
ficient interface that converts quantum states to classical
shadow data, which enables us to exploit the power of
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classical computation, especially data-driven and machine-
learning approaches, to advance our understanding of com-
plex quantum systems and to solve challenging quantum
many-body problems. As shown in Ref. [60], classical al-
gorithms that learn from the classical shadow data have
provable performance advantages over conventional numeri-
cal approaches that do not learn from data. Our work further
adds to this promising direction by providing a more flexible
classical shadow tomography scheme that works with very
general measurement protocols (beyond onsite Pauli mea-
surements), which could lead to potentially more efficient
classical-shadow-based learning algorithms.
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APPENDIX A: ENTANGLEMENT FEATURE
AND THE RECONSTRUCTION CHANNEL

In this Appendix, we discuss the details about the
derivation on measurement channel σ = M[ρ] and recon-
struction channel ρ = M−1[σ ]. With the notation developed
in Sec. II A, the expected classical snapshot σ is expressed as

σ = M[ρ] = E
σ̂∈Eσ

σ̂ Tr(σ̂ ρ)dN . (A1)

By utilizing the assumption that prior ensemble Eσ is locally
scrambled, i.e., P(σ̂ ) = P(V †σ̂V ),∀ V ∈ U(d )N , we are free
to insert local-basis transformations V , and average it out. By
doing so, we have

σ = EV ∈U(d)N Eσ̂∈EσV †σ̂V Tr(V †σ̂V ρ)dN

= σ̂

V †
1

V †
2

V †
N

V1

V2

VN

σ̂

V †
1

V †
2

V †
N

V1

V2

VN

ρE
V ∈U(d)N

E
σ̂∈Eσ

...
...

...
...

... dN

= σ̂
σ̂

CN

C2

C1

...
...

...
ρ

B1

B2

BN

...
WgB,CdN

∑

B,C∈2ΩN

E
σ̂∈Eσ( ),

(A2)

where each Bi and Ci have two choices: swap operator (1) or
identity operator (0), and WgB,C = (d2 − 1)−N (−1/d )|B
C| is
the Weingarten function of regions B and C, where B 
 C =
(B \ C) ∪ (C \ B) denotes their symmetric difference. In the
above tensor diagram, short parallel lines indicate the periodic
boundary condition, and the summation of B and C is over all
possible subregions of the N qudit system. As we can see, if
we choose a subregion B to be the swap operators, then ρ will
be traced out on the counter part B̄. In addition, the identity
operators (red lines) on B̄ are inserted. So the first tensor
diagram in Eq. (A2) is the reduced density matrix embedded
back into the total Hilbert space. We spoil the notation and use
ρBdB̄ = (TrB̄ ρ) ⊗ 1B̄ to denote the first tensor diagram, but
one should remember the identity operators are supported in
region B̄. The tensor product ⊗ notation indicates that (TrB̄ ρ)

and 1B̄ act separately in regions B and B̄, which does not
imply that B should be a consecutive region “in front of” B̄
(as in the conventional notation). The second tensor diagram
in Eq. (A2) is the second entanglement feature of the prior
positive-operator-valued mechanism (POVM) Eσ ,

W (2)
Eσ ,C ≡ E

σ̂∈Eσ

TrC (TrC̄ σ̂ )2 = E
σ̂∈Eσ

e−S(2)
C (σ̂ ), (A3)

where S(2)
C (σ̂ ) denotes the second Rényi entanglement entropy

of the state σ̂ in region C. The above tensor diagram represen-
tation is equivalent to Eq. (7) in the main text.

APPENDIX B: VARIANCE ESTIMATION AND SAMPLE
COMPLEXITY

In the main text, we relate the sample complexity M with
the ρ-dependent shadow norm ‖O‖2

Eσ |ρ , by

M � ‖O‖2
Eσ |ρ /ε

2δ. (B1)

However, the ρ-dependent shadow norm ‖O‖2
Eσ |ρ is generally

complicated to evaluate. If we are not interested in the shadow
norm for a specific state ρ, but rather the expectation of the
shadow norm over an ensemble of states {V ρV †} that are
similar to ρ by local-basis transformations V ∈ U(d )N , we can
actually define a ρ-independent shadow norm by averaging
over V . The result is similar to Eq. (15),

‖O‖2
Eσ

≡ E
V ∈U(d )N

‖O‖2
E

σ |V ρV †

=
∑

g,h∈SN
3

‖O‖2
gWgg,hW (3)

Eσ ,h, (B2)

where ‖O‖2
g is inherited from Eq. (16),

‖O‖2
g ≡ E

V ∈U(d )N
‖O‖2

V ρV †,g

= Tr((M−1[O]⊗2 ⊗ 1)χg). (B3)

Compared with Eq. (16), we can see that the ensemble average
EV ∈U(d )N in Eq. (B3) removes the ρ dependence by effectively
replacing ρ with d−N1 (the prior density matrix that defines
the prior POVM Eσ ). This explains the consistency in our
notation that ‖O‖2

Eσ
= Eσ̂∈Eσ

ô(σ̂ )2 follows from essentially
the same definition as in Eq. (14).

Note that the reconstruction map M−1 always com-
mutes with the local-basis transformation V = ∏

i Vi, i.e.,
M−1[V †OV ] = V †M−1[O]V , because Vi acts on each qudit
separately and hence does not interfere with the partial trace
operation. This indicates that the norm ‖O‖2

g = ‖V †OV ‖2
g is

invariant under the transformation V . This suggests us to
define a locally scrambled ensemble EO [or known as U (d )N

twirling] associated with any given observable O,

EO ≡ {V †OV |V ∈ U(d )N }, (B4)
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such that ‖O‖2
g in Eq. (B3) can be redefined as its ensemble

average

‖O‖2
g = E

O∈EO

‖O‖2
g

= E
V ∈U(d )N

Tr((M−1[V †OV ]⊗2 ⊗ 1)χg)

=
∑

A,B,C,D∈2�N

d2N rArBWgC,DW (2)
EO,D Tr([(χC )A,B ⊗ 1]χg).

(B5)

Here χC denotes the swap operator supported in region C
that acts between the first two copies of the Hilbert space,
and (χC )A,B denotes the reduction of χC in regions A and B.

respectively, in the first and the second copies of the Hilbert
space, which results in (χC )A,B = χA∩B∩Cd |A∩B∩C|−|C|. The
operator entanglement feature W (2)

EO,D = EO∈EO TrD(TrD̄ O)2

follows from the same definition given in Eq. (8). rA, rB are the
reconstruction coefficients given by the solution of Eq. (12).
Substituting Eq. (B5) to (B2), we can evaluate the summa-
tion of g, h given that

∑
g,h∈SN

3
Tr(χA∩B∩Cχg)Wgg,hW (3)

Eσ ,h =
W (2)

Eσ ,A∩B∩C . The reduction of the third entanglement feature to
the second entanglement feature is a consequence of the fact
that ρ drops out from the tensor product in Eq. (B3), such that
only twofold Hilbert space is required to define ‖O‖2

Eσ
.

Thus, we finally arrive at the expression for the operator
shadow norm purely in terms of the entanglement features of
Eσ and EO,

‖O‖2
Eσ

=
∑

A,B,C,D∈2�N

vA,B,C,DW (2)
Eσ ,A∩B∩CW (2)

EO,D, (B6)

where the coefficient vA,B,C,D is given by

vA,B,C,D = rArB

(
d2

d2 − 1

)N

d |A∩B∩C|−|C|
(

− 1

d

)|C
D|
. (B7)

APPENDIX C: EFFICIENT CLASSICAL
POSTPROCESSING ALGORITHM WITH TENSOR

NETWORK METHOD

1. Overview of tensor network based classical postprocessing

In the main text, we have derived the following proto-
col for predicting quantities of states with locally scrambled
quantum circuits: It seems that the number of coefficients rA

scales exponentially with system size, therefore not efficient.
Surprisingly, with clever design and the help of tensor net-
work, there indeed exists efficient tensor network method that
can achieve efficient classical postprocessing. Figure 14 sum-
marizes the classical postprocessing workflow of predicting
operator expectations with tensor network methods.

On the right side of workflow, given the circuit structure,
the entanglement feature can be efficiently encoded as a tensor
network using “EF solver.” Then the tensor network represen-
tation of the entanglement feature is inputted into the M−1

solver, whose output is a tensor network representation of the
reconstruction coefficient rA. The nice thing is that one only
need to solve the tensor network representation for rA once.
And this representation can be stored for future usage.

a

oA rA

W 2

O

description
of Ka

circuit
structure

circuit
simulator

EF
solver

TrO A
1

solver

O

FIG. 14. Classical postprocessing protocol to estimate the oper-
ator expectation value and shadow norm.

On the left of the workflow, we do experiments on quantum
devices and calculate classical shadows σ̂ . And one should no-
tice that our formulation is general enough to include Clifford
circuits that do not have group structure. And the classical
shadows of those circuits can be calculated efficiently. Then
we can combine the classical shadows σ̂ and tensor network
representation of rA to predict operator expectations 〈O〉.

A detailed discussion on how to model both Tr(Oσ̂A) and
rA with tensor network is discussed in the following two
subsections.

2. Efficient matrix product state representation
of�o = {oA| Tr(OσA)}

In the main text, we have shown the reconstruction channel
under local scrambling assumption can be written as

ρ = M−1[σ ] = dN
∑

A∈2�N

rAσA. (C1)

At first sight, the exponential summation of subregion A seems
to be troublesome. However, it can be circumvented by tensor
network methods. Here, we will introduce a concrete algo-
rithm. First of all, if the unitaries used in the classical shadow
experiment are Clifford gates, then classical shadows σ̂ are
stabilizer states, and each of them can be efficiently stored
with O(N2) memory on a classical computer, where N is the
system size.

Proposition I. Given O is a Pauli observable and σ is a
stabilizer state, the vector �o = {oA|oA = Tr(OσA)} has an effi-
cient matrix product state (MPS) representation with internal
bond dimension equal to one, where σA = DĀ[σ ]. And DA[◦]
is the depolarizing channel acting on region A.
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Proof. If the circuit is composed of Clifford gates, then
classical shadow σ is a stabilizer state with stabilizer group
generated by

S = 〈(−1)b1U †Z1U, . . . , (−1)bnU †ZNU 〉 = 〈Z̃1, . . . , Z̃N 〉,
(C2)

σ =
n∏

i=1

1 + Z̃i

2
= 1

2N

∑
g∈S

g. (C3)

The reduced state σA = DĀ[σ ] restricted to region A is also a
stabilizer state with stabilizer group SA ⊆ S defined by taking
the elements of S which have zero support on Ā. This is obvi-
ously a subgroup of S since it is closed under multiplication
and inversion. Without loss of generality, we can write

σA =
⎛
⎝ 1

2|A|
∑
g∈SA

g

⎞
⎠ ⊗

(
12

2

)⊗(N−|A|)
. (C4)

It is obvious that the expectation Tr(OσA) = 0 when
supp(O) � A. Moreover, the only scenario when Tr(OσA) is
nonzero is ±O ∈ SA. Therefore, we have

Tr (OσA) =
{

0, ±O /∈ SA

Tr(OσA) = Tr(Oσ ), ±O ∈ SA.
(C5)

From the above equation, it is clear that for any Pauli observ-
able O, oA = Tr(OσA) can be represented as a trivial MPS
with bond dimension D = 1:

oA = Tr(σO) Tr
(
o(a1 )

1 o(a2 )
2 . . . o(aN )

N

)
= Tr(σO)o(a1 )

1 o(a2 )
2 . . . o(aN )

N , (C6)

where we drop the second trace since the internal bond dimen-
sion is one, and each tensor o(ai )

i on site i with binary physical
index (ai = 0 or 1) is

oi =

⎧⎪⎪⎨
⎪⎪⎩

(
1
1

)
, i /∈ supp(O)(

0
1

)
, i ∈ supp(O).

(C7)

This concludes that even the vector �o = {oA|oA = Tr(OσA)}
contains exponentially many elements, it has an efficient MPS
representation with bond dimension D = 1. This MPS repre-
sentation can be easily constructed: given Pauli observable O,
first calculate Tr(Oσ ), then construct the MPS using Eq. (C7).
Tr(Oσ ) can computed in O(N2) time because O is a Pauli
observable and σ is a stabilizer state. The remaining MPS
tensors can be constructed in O(N ) time by traversing through
the Pauli string.

3. Encoding reconstruction coefficient rA with variational MPS
method

In the main text, we argued that the vector rA can be
represented as a MPS. Here, we illustrate how to find such a
MPS using variational method. First of all, we have shown that
the reconstruction coefficient rA satisfies the linear equation∑

A,C∈2�N

rA fA,B,CW (2)
C = δB,�N , (C8)

=

MPS-base algorithm

FIG. 15. A cartoon illustration of variational solving MPS repre-
sentation of rA.

where W (2)
C is the second entanglement feature vector cre-

ated by the unitary ensemble. In Ref. [47], the authors show
entanglement feature vector W (2)

C can be efficiently encoded
using MPS representation. The physical intuition behind this
efficient representation is that if one views W (2)

C as a weight of
a quantum state, i.e., |ψ〉 = ∑

C∈2�N W (2)
C |C〉, then this state

will possess low entanglement Ref. [61]. Therefore, it can be
represented as a MPS with low bond dimension. In Fig. 15,
the blue nodes indicate the MPS representation of W (2)

C . For
translation-invariant circuit structure (such as the brick-wall
circuit), the time complexity to construct the MPS represen-
tation for W (2)

C is O(1) (independent of the system size). For
general circuit structure, the time complexity is at most O(N ).

In Eq. (C8), the fusion coefficient fA,B,C is

fA,B,C =
(

d3

d2 − 1

)N ∑
D∈2�N

δB,A∩Dd−|D|
(

− 1

d

)|C
D|
. (C9)

Note that this fusion factor fA,B,C can be factorized to each site
as fA,B,C = ∏

i fai,bi,ci where

fai,bi,ci =

⎛
⎜⎜⎜⎜⎝

(
d
0

) (
0
0

)

d2

d2−1

(
d

−1

)
d

d2−1

(−1
d

)
⎞
⎟⎟⎟⎟⎠, (C10)

as the tensor subscripts ai, bi, ci = 0, 1 enumerate over
Boolean variables. Therefore, the fusion factor fA,B,C can be
represented as the gray tensors in Fig. 15.

To find the MPS representation of vector rA, we use the
variational method. We can write an MPS ansatz for rA and
try to find the best parameters in the MPS by doing vari-
ational optimization. The same idea has been explored in
machine-learning tensor network optimization [62–64], and
differential programming of tensor networks [65–67]. With
differential programming, we can find the best parameters in

FIG. 16. Fidelity estimation between mix state and target state.
5000 experimental classical snapshots are prepared for both random
Pauli measurement (L = 0) and shallow random unitary circuit (L =
3). Error bar indicates 3 standard deviation.
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FIG. 17. Eigenvalues of reconstructed density matrix ρ̃ of seven-
qubit GHZ state using mismatched channels. The unitary ensemble
is single instance of DQIM ensemble with J = 1, and T/TTh = 1.38.
Under this condition, the unitary ensemble is not locally scrambled.

the MPS ansatz for rA by minimizing the L1 or L2 loss of
the left-hand side tensor and right-hand side tensor of Fig. 15.
With a fixed bond dimension, the algorithm complexity is
O(N ). In addition, we can utilize the symmetry of the unitary
ensemble to minimize the training parameters in the MPS

ansatz. In practice, we find that rA can be represented as a
MPS with a low bond dimension using the variational method.
A detailed discussion of this new computational method will
be in another paper.

In addition, we would like to point out that our proposal has
caught much attention from both theoretical and experimental
sides. Especially, the formal solution of Eq. (C8) can be solved
[68]

rA = (−1)−|A|

2N

∑
A⊆S

3|S|∑
B⊆S (−2)|B|W (2)

B

. (C11)

It would be also interesting to directly encode Eq. (C11) with
a MPS without the help of variational optimization. And we
leave this to a future study.

APPENDIX D: FIDELITY ESTIMATION
FOR MIXED STATE

Our method is not restricted to pure state. In variational
quantum state preparation, even the target state is some pure

FIG. 18. Unbiased reconstruction of a seven-qubit GHZ density matrix, using a single instance of Hamiltonian in the DQIM ensemble at
T/TTh = 25.3 (after the local scrambling condition is achieved).
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FIG. 19. Biased reconstruction of a seven-qubit GHZ density matrix, using a single instance of Hamiltonian in the DQIM ensemble at
T/TTh = 1.95 (before the local scrambling condition is achieved).

state, noise in the preparation circuit could make the final state
in experiments a mixed state. We can use the shallow circuit
classical shadow tomography to efficiently estimate the quan-
tum fidelity between final prepared quantum state ρP and the
target quantum state ρT . Fast access to this quantity is crucial
for variational quantum state preparation, error mitigation,
etc. As an example, we consider the noisy preparation of a
perfect GHZ state with Z errors occurs at probability p. The
prepared state can be expressed as

ρP = (1 − p)|ψ+
GHZ〉〈ψ+

GHZ| + p|ψ−
GHZ〉〈ψ−

GHZ|, (D1)

where |ψ±
GHZ〉 = 1√

2
(|0⊗N 〉 ± |1⊗N 〉). We compare the per-

formance between random Pauli measurement and shallow
circuit shadow tomography with three layers of local random
unitaries. Experiments are performed on a nine-qubit system
and 5000 classical snapshots are collected for both random
Pauli shadow tomography and shallow circuits shadow to-
mography. The result is shown in Fig. 16. As we can see,
for 5000 experiments, the quantum fidelity estimated using
random Pauli measurement has huge error bar, indicated by

the blue shaded region. However, the same amount of data
collected after shallow circuit evolution can give accurate
estimation of quantum fidelity, and the error bar is almost
four times smaller. Practically, this makes the usage of shallow
circuits more appealing.

APPENDIX E: APPROXIMATED UNITARY ENSEMBLE
AND PURIFICATION

In the main text, we have seen when the measurement
channel M in data acquisition and the reconstruction channel
M−1 in classical postprocessing mismatch, the reconstructed
density matrix 1

M

∑
σ̂∈Eσ |ρ M

−1[σ̂ ] may not be positive defi-
nite. And it results in biased prediction of physical quantities.
In Figs. 5(a) and 11, we have seen the biased prediction of
fidelity that is larger than one. In Fig. 17, we plot the eigen-
values of reconstructed density matrix of seven-qubit GHZ
state using DQIM ensemble with T/TTh = 1.38. In the main
text, we have seen the DQIM ensemble with one period of
evolutional time or T/TTh = 1.38 is not sufficient to achieve
the local scrambling assumption, such that there is mismatch
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FIG. 20. Fidelity estimation of approximated unitary ensemble
after purification. After around T ∼ 10TTh, the fidelity is around
0.99. Same data are used as Fig. 11.

between data acquisition channel M and reconstruction chan-
nel M−1. We see the spectrum of density matrix contains
some negative eigenvalues.

In addition, the approximate shadow tomography based on
locally scrambling Hamiltonian evolution, such as DQIM en-
semble or GUE2 ensemble, is approximately unbiased when
local scrambling is approximately satisfied or frame potential
gap is vanishingly small. In Fig. 11, we have seen they all
can give unbiased prediction of quantum fidelity when T �
10TTh. We directly visualize the reconstructed density matrix
using approximated DQIM ensemble in Figs. 18 and 19. As
we see in Fig. 19, at T/TTh = 1.95, the locally scrambling

assumption is not satisfied, and reconstructed density ma-
trix is biased. In contrast, at T/TTh = 25.3 (Fig. 18), the
reconstructed density matrix using a single instance of DQIM
Hamiltonian is perfect, justifying the validity of our approach
when the locally scrambling assumption is approximated sat-
isfied.

Furthermore, for biased reconstruction, in order to make it
positive definite, we can nonlinear project the reconstructed ρ

to the convex set of physical states C = {ρ|ρ � 1, Tr(ρ) = 1}
by minimizing

�C (σ ) = arg min
ρ∈C

Tr[(ρ − σ )2], (E1)

which is the method mentioned in Ref. [30]. If we have
more prior knowledge about the quantum state, such as it
is a pure state, then we can further impose those assump-
tions into the projection. Here, as an illustration, we utilize
the knowledge that the target quantum state is pure, and we
project the reconstructed ρ to a pure state ρ̃ in C by choosing
the eigenstate of ρ with the largest eigenvalue. As shown
in Fig. 20, for the approximated ensembles, the GUE2 and
DQIM are biased in the short-time region, and projected state
ρ̃ has a fidelity less than one. And when locally scrambling
assumption is approximately satisfied, the projected ρ̃ will
have fidelity that is approximately 0.99. With these checks,

(i) unbiased prediction of physical quantities (see Fig. 11),
(ii) high fidelity of reconstructed density matrix projected

back to physical space (see Fig. 20)
we confirm the approximated shadow tomography can per-
form unbiased reconstruction.
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