PHYSICAL REVIEW RESEARCH 8§, 023024 (2023)

Learning by non-interfering feedback chemical signaling in physical networks

Vidyesh Rao Anisetti 1" B. Scellier®,? and J. M. Schwarz!3
'Physics Department, Syracuse University, Syracuse, New York 13244, USA
2Departmemf of Mathematics, ETH Ziirich, Ziirich, Switzerland
3Indian Creek Farm, Ithaca, New York 14850, USA

® (Received 23 June 2022; accepted 1 April 2023; published 13 April 2023)

Both non-neural and neural biological systems can learn. So rather than focusing on purely brain-like learning,
efforts are underway to study learning in physical systems. Such efforts include equilibrium propagation (EP)
and coupled learning (CL), which require storage of two different states—the free state and the perturbed state—
during the learning process to retain information about gradients. Here, we propose a learning algorithm rooted
in chemical signaling that does not require storage of two different states. Rather, the output error information
is encoded in a chemical signal that diffuses into the network in a similar way as the activation/feedforward
signal. The steady-state feedback chemical concentration, along with the activation signal, stores the required
gradient information locally. We apply our algorithm using a physical, linear flow network and test it using the
Iris data set with 93% accuracy. We also prove that our algorithm performs gradient descent. Finally, in addition
to comparing our algorithm directly with EP and CL, we address the biological plausibility of the algorithm.

DOI: 10.1103/PhysRevResearch.5.023024

I. INTRODUCTION

What basic ingredients constitute a biological learning
system, such as slime mold or higher-order organisms? Bi-
ological learning systems adapt to the external environment
by tailoring specific responses for given external conditions.
As the system continues to experience external conditions
of a similar kind, it develops functionality to respond to the
stimulus in such a way to increase its chances of survival.
Intriguingly, this functionality is an emergent phenomenon
as a result of interactions between the various components
[1]. For example, when birds come together in a flock, they
increase their chances of survival [2]. This happens not be-
cause of a “supervisor” that commands each bird to fly in a
particular way, but because birds, such as starlings, interact
with a fixed number of neighbors independent of their density
to give rise to emergent functionality [3]. Similarly, in the
presence of rising waters, fire ants cooperate to form floating
rafts consisting of a structural base and freely-moving ants on
top of the base with treadmilling between the two roles [4,5].
Local, ant interaction rules, including an effective repulsive
force between the freely-moving ants and the water repli-
cate the types of observed shapes of rafts [6]. These special
interactions between components, responsible for emergent
functionality in nature, have themselves emerged out of the
long process of evolution.

“yvaniset@syr.edu

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

2643-1564/2023/5(2)/023024(10) 023024-1

Given the intricacies of biological learning systems, neural
networks are in silico brain-like learning systems, resembling
the visual cortex, in particular [7-10], that can recognize
patterns and solve problems [11,12]. More specifically, neu-
ral networks achieve functionality by modifying weights and
biases to minimise a particular cost function. Of the many
ways to do so, the algorithm of choice in neural networks
with multiple layers (deep learning) is the backpropagation
algorithm [13]. Backpropagation updates the network such
that its weights (and biases) perform gradient descent in the
cost function landscape. The complex nature of the tasks
that neural networks are capable of hints at the possibility
that biological learning systems also achieve functionality by
optimizing cost functions by gradient descent [14]. In other
words, the long process of evolution may have optimised the
“learning algorithm” in such biological systems to update its
components via gradient descent. The success of backprop-
agation has, therefore, encouraged a search for biologically
plausible learning rules analogous to it [14-20]. For complete-
ness, here are properties one should ensure while constructing
such a biologically plausible learning system:

(1) local learning algorithms [21],

(2) the implementation of such algorithms is constrained
by the laws of physics, and

(3) the algorithms minimize a cost function via gradient
descent or stochastic gradient descent.

Indeed, there have been attempts to construct learning al-
gorithms within purely physical systems [22-28]. Here, we
will focus on “equilibrium propagation” [25,29] and “cou-
pled learning’[26]. In these approaches, the error information
corresponding to each component is encoded in terms of dif-
ferences of local physical quantities measured between two
learning phases. At each step of training, the outputs of the
network are nudged towards the target output by applying
additional boundary conditions at the output nodes. Next, the

Published by the American Physical Society

https://orcid.org/0000-0002-2769-4773
https://orcid.org/0000-0002-2407-7470
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.5.023024&domain=pdf&date_stamp=2023-04-13
https://doi.org/10.1103/PhysRevResearch.5.023024
https://creativecommons.org/licenses/by/4.0/

ANISETTIL SCELLIER, AND SCHWARZ

PHYSICAL REVIEW RESEARCH §, 023024 (2023)

system is allowed to settle to a new steady state called the
“nudged state” (or the “clamped state”), which is closer to the
desired target than the initial “free state”. In the limit where
the nudge amplitude goes to zero, the difference of local,
physical quantities between these two learning phases encodes
the gradient of the cost function [29]. Unlike backpropagation,
these algorithms achieve gradient descent without an explicit
layer-by-layer transfer of error information. Nevertheless, one
caveat of these approaches is the requirement to store the free
state. In other words, the learning rule requires information
about the free state, which is no longer physically available at
the end of the second phase when the parameters are updated.
One way around this requirement is to build two copies of
the same physical network [30], although biology does not
necessarily have such a luxury.

In this paper, we present an algorithm and a learning rule
that overcomes the above requirement in equilibrium propa-
gation and coupled learning. Our learning rule computes the
gradients using local information for each weight without the
need to store the free state. We demonstrate that the func-
tionality of the nudged state can be realized in physical and
biophysical, learning systems using chemical signaling. We
show that steady-state chemical concentrations can be used in
the second phase to encode the required gradient information.
Chemical signaling is ubiquitous in biology. For example,
consider the structurally simple, yet functionally complex
organism, named Physarum polycephalum, otherwise known
as slime mold. Slime mold is a unicellular, multinucleated
organism that is neither a plant nor an animal nor a fungus.
This unicellular organism can span up to the meter scale and
consists of a network of tubes whose underlying structure is
driven by cytoskeletal reorganization [31]. Despite its sim-
plicity, in the sense that it is non-neuronal, this organism
is capable of myriad complex tasks—precisely coordinating
flows in its body [32], navigating mazes [33], and connecting
food sources with optimal paths [34,35]. Work by K. Alim and
others showed that much of this complex phenomenon can be
explained by a mechanism of signal propagation [36]. Specif-
ically, slime mold uses a chemical signal to send information
regarding the location of food sources across its body, which
triggers a change in its tubular structure due to a softening
agent to optimize the connection between food sources [37].

In light of an example, we construct a physical learning
network of tubes/pipes that uses chemical signals to send error
information across the system. Our system is a flow network,
with activation pressures at nodes v and pipe conductance
described by weights w. The information from the external
environment is input into the system by fixing the boundary
conditions I at input nodes. Node activation pressures v are
the nontrainable variables (or “state variables”) of the system
that are determined by Laplace’s equation and input boundary
conditions. Our physical system is, therefore, a linear one. The
functionality we seek is to obtain desired pressures (“target
pressures”) at output nodes for a given input I. To achieve
this, a feedback chemical is released into the flow network
by fixing the chemical currents at output nodes. The value
€ of these chemical currents is proportional to the difference
between target pressures and output pressures. The chemical
concentrations u at internal nodes are determined by the same
Laplace equation, but with feedback boundary conditions e.

FIG. 1. The flow network. Schematic of the flow network with
blue points representing the input node pair and red points represent-
ing the output node pair. The weights of the flow network are denoted
by w,, between neighboring nodes x and y. These weights are varied
during the training-testing process. Input to the network /; is given
as applied boundary currents across pairs of input nodes (bj, b>).
Output of the network is measured as pressure drop across output
node pairs v(o) — v(0;) as the response to the applied currents.
Feedback is applied by fixing chemical currents €; across pairs of
output nodes (o}, 0;).

We show that this chemical concentration u along with the
node pressures v locally encode the weight gradients of the
cost function that we want to optimize. We propose a learning
rule that updates the trainable weights w such that it does
gradient descent with respect to the cost function.

II. THEORY

We consider a flow network of nodes interconnected by
weighted edges (see Fig. 1). We denote wy, the weight (i.e.,
conductance) of the edge between node x and node y. A
subset of the nodes are boundary node pairs (or “input”
node pairs), denoted {(b],b7), (b],b3), ..., (b}, b;)}. For
each pair (b7, b)), an input current /; flows into the net-
work through the node b;“ and flows out of the network

through the node b;. The state of the system is defined by
the node pressures, denoted v(x) and governed by Laplace’s
equation at steady state. Another subset of the nodes are
output node pairs {(of, 07), (0§, 03), ..., (0}, 0,)}. The out-
put of the network is defined as the set of pressure drops
across output nodes {v(of,07),v(03,05),...,v(0},0,)}
where v(of, 0;) = v(0]) — v(0;). We note that v(o], 0]) is
a function of input currents {/;} and all the weights of the
network {w,,}. Training the network consists in modifying
the weights {wy,} such that, given the input currents {/;}, we
get desired pressure drops {vy (of, 0;)} across the output node
pairs. We define the cost function

14

C= %;(v(oﬁr,oi_)—vd(of,oi_))z. (1)

Now we present a physical procedure and a learning rule for
the weights that performs gradient descent with respect to the

023024-2

LEARNING BY NON-INTERFERING FEEDBACK ...

PHYSICAL REVIEW RESEARCH §, 023024 (2023)

cost function. To achieve this, we release a feedback chemical
into the network through the pairs of output nodes {(o], 0;)},
by fixing chemical currents across these nodes (see Fig. 1).
Specifically, for each pair of output nodes (o, 0;), a current

& = n(va (0], 0;) — v(0f, 07)) @

flows into the network through node o] and flows out of the
network through node o;, where 7 is a constant (“nudging”).
A steady-state chemical concentration develops at every node,
governed again by Laplace’s equation. We denote u(x) the
steady-state concentration at node x, and u(x, y) the drop in
chemical concentration between nodes x and y. We regard
quantities v and u as givens for now. The precise equa-
tions governing them will be stated later. Finally, we update
each weight w,, according to

way = _au(xv y)v(xv y)v (3)

where « is a constant. We show below that this learning rule
performs gradient descent on the cost function with step size
(“learning rate”) an, i.e.,

oC

0w,y

Awyy, = —an “4)
for every weight wy,. The above learning rule for the weights
is local. The final error term depends upon two quantities; the
pressure drop due to flow and the concentration drop of the
feedback chemical. If they have the same sign, then the weight
gets a positive update and vice versa. Here, we assume that the
relaxation time scale of the system is much faster than the time
scale of weight updates so that the system is in steady state as
the weights are updated.

Note that the two quantities in the weight update are in-
dependent of each other, therefore, we assume that diffusion
is fast enough that it is independent of the flow. In an exper-
imental setting, one can realize this by using very small flow
rate, leading to very small pressure drops across weights and
using a signaling chemical with very high diffusion rate via,
perhaps, some catalytic process. We understand that such a
construction is not necessarily realized in nature; therefore,
we also propose a purely flow version of the model where the
chemical signals are carried by the fluid flow and not by dif-
fusion (see Appendix A). While this chemical flow algorithm
is presumably more physically plausible, it is not yet clear
that the algorithm performs gradient descent. In any event,
what we present here is an idealization. Obviously, nature
may be using a complex combination of flow and diffusion
for signaling.

Considering v as a pressure and u as a chemical concentra-
tion is just a certain packaging of the theory. The central idea
of this paper is to use two independent physical quantities,
which leads to non-interference of the input signal and the
feedback signal, in other words one can use any two non-
interfering modalities to conduct learning [38]. For example,
one can use two chemicals v and u diffusing in a static fluid,
with distinct chemical signatures to encode input and error
signal. In this case, there is no need for an additional assump-
tion on the relationship between flow rate and diffusion rate.

Our result holds for any cost function C, not just the
squared error [Eq. (1)]. In general, in the second phase,
the chemical current flowing in through o/ and flowing out

through o; must be ¢; = —n%. Our result also holds if
we reverse the sign of n (2) and the sign of « in the learn-
ing rule (3). In other words, the algorithm performs gradient
descent so long as an > 0.

Now we prove our claim that the learning rule (3) performs
gradient descent (4). Let us number the nodes of the network
1,2,...,n. Let I, be the input current at node x (with I, =
0 by convention if node x is not an input node) and v, the
pressure at node x. For each node x, the steady-state condition
at node x in the first phase yields

Z wxy(vx - Uy) =1, (%)

which is the current conservation equation. The summation
here and subsequent ones are taken over all y that are neigh-
bors of x, and there are no self connections (w,, = 0). We,
thus, arrive at a system of n linear equations. This system
rewrites with matrix-vector notations as

L-v=1, (6)

where v is the vector of node pressures, [is the vector of input
currents, and L is the matrix

Y Wik —wp —wi3 —Wiy,
—Wwyj Zx Wiy —W»23 — W2y
L= —Ww3y —Wws3 Zx W3y —Wsn |, (7)
—Wn —Wp2 —Wp3 Zx Wy

Note that the matrix L is symmetric because wy, = wy, for
every pair of nodes (x, y). Next, we denote E, = —ng—ﬁ the
chemical current at node x in the second phase (with E; = 0
by convention if node x is not an output node), and u, the
concentration of the chemical at node x. Assuming that the
diffusion constant of the chemical is equal to the flow con-
ductivity (up to a constant of proportionality), the chemical
concentration at steady state satisfies the same system of linear
equations, with different boundary conditions, i.e.,

L-u=E, ®)
where u is the vector of node concentrations, and E is the

vector of chemical currents. Now we compute the gradient of
the cost function: for every weight w,, we have

aC ac\" 9
- <_> . 3 ‘ (9)
0Wyy ov 0w,y
Multiplying by —n on both sides, we get, by definition of E,
aC 0
—n —gT. v (10)
0w,y 0w,y

Using the steady-state condition of the second phase (8) and
the fact that L is symmetric, we get

0C _ g,

=u

— . 11
g W,y 0w,y (an

Next, we differentiate the steady-state condition of the first
phase (6) with respect to w,,. We get

JL ov
v+ L

—=0. (12)

0w,y ow,y

023024-3

ANISETTIL SCELLIER, AND SCHWARZ

PHYSICAL REVIEW RESEARCH §, 023024 (2023)

Rearranging the terms and injecting this in (11), we get

ac .+ oL

=u - V. 13
"awxy ! 0Wyy (13

Looking at the form of the matrix L (7), the matrix % has ex-
actly four nonzero coefficients: those at positions (x, x), (x,),
(v, x), and (y, y), equal to +1, —1, —1, and +1, respectively.
Therefore

L oL
u - v = u(@)v(x) — u(x)vy) — u(y)v(x) + u(y)v(y)

0wy,
(14)
= (u(x) —u)) - (v(x) —v(y) 5)
= u(x,y) - v(x,y). 16)
Combining this with (13), we conclude that
Awyy, = —au(x,y) - v(x,y) = —an oc . 17)

OWyy

Hence, the learning rule corresponds to one step of gradient
descent with step size 7. This concludes the proof.

Summing up the training mechanism:

(1) A flow network is generated where chemicals can
spread via a diffusion process.

(2) Input to the network is given by fixing currents
{I;} across input node pairs {(b*,blf)}, leading to steady-
state pressures v. Outputs are measured as pressure drops
{v(0], 0;)} across output node pairs {(o;, 0;)}.

(3) Outputs are compared to the desired outputs
{vd(oj, 0;)}, and a feedback chemical is released
in the network by fixing the chemical currents
€ =n(va(0f, 0;) — v(0],0;)) across the output node
pairs {(0], 0;)}. The chemical concentration reaches steady
state u.

(4) The concentration drop u(x,y) and pressure drop
v(x, y) are measured across each weight wy,, and the weights
are updated according to Aw,, = —au(x, y)v(x, y).

(5) This procedure, which corresponds to one step of gra-
dient descent, is repeated iteratively until convergence of the
weights is achieved.

III. THE IRIS DATA SET

We train the flow network on a standard machine learning
task: classifying Iris flowers. The Iris data set [39] con-
tains 150 examples of Iris flowers belonging to three species
(setosa, virginica, and versicolor), and, therefore, 50 exam-
ples for each category. Each example is of the form X =
(X1, X5, X3, X4), composed of four features of the flower (petal
width, petal length, sepal width and sepal length, all mea-
sured in cm), and comes with its assigned Iris category,
denoted Y. So an example would look something like X =
(5.1,3.5,1.4,0.2) and Y = “setosa”. Given the four features
of the flower as input, the trained network should be able to
tell which species it belongs to.

We now detail how we do this. A flow network is con-
structed as follows:

(1) Generate a square lattice,

(2) Perturb the positions of the lattice with a step of length
4 in any random direction,

(3) Every node is connected to its d nearest neighbors
[40]. We choose d = 4 for all our simulations unless specified.

(4) Every edge of the network is assigned a conductance
from a truncated normal distribution.

(5) Four pairs of input nodes are chosen from this flow
network, where the input data (the normalized features of the
Iris) is given as external currents across these four pairs of
boundary nodes. Three pairs of nodes are chosen as the output
nodes such that every pair is composed of two neighboring
nodes. For pairs of output nodes that are not neighboring
nodes, the training error decreased less smoothly. Once the
network is trained, for a given input, the set of potential drops
across these node pairs should tell the category of Iris the input
data corresponds to.

The network architecture remains fixed throughout the
training-testing process. Only the conductances of these
weights are modified.

As for how the flow network interfaces with the Iris data
set,

(1) The data set is divided into two subsets: one training
set (used for training) and one test set (used for testing).
Each of these sets have 75 examples of Irises, 25 from each
category.

(2) The data set is normalized. That is, for each exam-
ple X in the data set, and for each feature X; of X; we set
Xinorm = A- % ,
and maximum values for that feature X; in the training set. We
choose A = 5 for all simulations.

While choosing the desired outputs we must keep in mind
the fact that this linear system may not be able to find a set of
weights that give out the desired output (see Appendix B). In
other words, we must choose desired outputs that are physi-
cally attainable. We, therefore, implement the same technique
as described in Ref. [30] to choose the desired output voltages
for each of the three Iris categories. For each category, the
desired voltage is the average, normalized input data. That
is, each Iris category has 25 examples of four input features,
each input feature is averaged out over 25 examples. Finally,
we obtain a four tuple of averaged input features for each Iris
category. When this is given as input to the initial network,
we aim to arrive at an output voltage that corresponds to the
average behavior of the input, which is the desired voltage.

We also implement the conventional one-hot encoding
technique commonly utilized in machine learning (refer to
Appendix B). However, due to physical constraints, we
observe that this set of desired outputs exhibits subpar per-
formance in comparison to the aforementioned method.

To conduct the training process, first the input data is given
to the network and the output is observed. If the output is
not equal to the desired output for that Iris category, feed-
back chemical is released at the output node pairs. This is
done by applying a constant chemical current. The weights
of the network are modified using the learning rule mentioned
above. This process is repeated consecutively for all examples.
Next, once the entire data set is exhausted, we say “one epoch”
has passed. We train the network for multiple epochs. At the
beginning of each epoch, because the network has changed
significantly, new desired voltages are calculated. Therefore,
each epoch has its own set of desired voltages.

where X" and X;™" are the minimum

023024-4

LEARNING BY NON-INTERFERING FEEDBACK ...

PHYSICAL REVIEW RESEARCH §, 023024 (2023)

—}— Average over one epoch

0.94-
0.92-
$0.904
©
30.88-
O
<
0.86-
0.84-
0 50 100 150 200 250
Epoch
~—x
/ } X
x [
X Lo
X
X T~

FIG. 2. Training and testing using the Iris data set. The Iris data set is trained on a network with 122 nodes and learning rate n = 10~*. The
weights are sampled from a truncated normal distribution with mean of 0.1, standard deviation of 0.01 with a lower cutoff of 0.01 and upper
cutoff of 0.19. We use the standard mean squared error (L2 norm) as the cost function. (Top left) At each training step, the network is shown an
example and the mean squared error is calculated between the network’s output and desired output, shown as a blue dot. (Top right) Accuracy
is defined as the fraction of correct predictions out of total testing examples. (Bottom left) The initial state of the network, with thickness of
blue edges representing the conductance. Red crosses denote input nodes; green crosses denote output nodes. (Bottom right) The change in
weights between the initial state and the final trained state of the network. Red denotes negative change, while blue denotes positive change

with thickness showing the magnitude of change.

To conduct the testing process, after the network is trained
for multiple epochs, we record how well it classifies unseen
data from the test set. To be specific, the test set has 25
examples per Iris category. The Iris features from these test ex-
amples are given as input and the output voltage is compared
with the desired voltage. The desired voltage is calculated
using the testing data set. An example is then classified into
that Iris category, for which the output voltage is closest to the
desired output.

The aforementioned training-testing procedure is imple-
mented on a biophysical network. Figure 2 shows the training
error and testing accuracy for training using the Iris data set.
This training procedure is also implemented on the Wine data
set [41] (refer to Appendix C).

IV. LINK WITH EQUILIBRIUM PROPAGATION
AND COUPLED LEARNING

To readily see the link with our algorithm and EP, suppose
that, in the second phase, instead of injecting the chemical, we
inject more of the main substance at output nodes [through
the currents €; = n(va(o], 0;) — v(o}, 07))]. We can adapt

the analysis of Sec. II to show that, instead of the chemical
concentration, u now represents the pressure difference be-
tween the second phase and the first phase (after and before
injecting the currents ¢; at output nodes). Indeed, denoting
vi™® and v™92ed the node pressures at equilibrium in the first
phase and second phase, respectively, we have

L-v™e =1, (18)

L-y™ed — 7 _F, (19)

where we recall that E is the vector of currents at output
nodes. Equation (18) is the same Laplace equation as (6),
therefore v = v. Moreover, subtracting (19) from (18), we
see that y™dzed — yfiee gatisfies the same equation (8) as the
chemical concentration u, that is L - (v™deed — pffeey — _F,
We conclude that u = v™92¢d — pfree We thus recover the set-
ting of equilibrium propagation [24] with “free state” v/™® =
v and “nudged state” v™4¢°d = v + u. Coupled learning [26]
is also very closely related, with the difference that nudged
states are realized by imposing boundary conditions on the
pressures of output nodes, rather than on the currents.

023024-5

ANISETTIL SCELLIER, AND SCHWARZ

PHYSICAL REVIEW RESEARCH §, 023024 (2023)

Without loss of generality, let us assume for convenience

that « = —1. Our learning rule rewritten in terms of the free
and nudged states is
wa}' = _U(x, y)u(-x’)’) (20)
= 000, 3)° + qux,) = 3 (W, y) +ulx, y)?
ey

= 1™ (x, y)? — 0™,) + 0D, (22)

where 7 is the nudge amplitude, i.e., the factor that scales the
amplitude of the currents injected in the second phase. Here
we have used that u is proportional to the nudge amplitude,
i.e., u(x,y) = O(n). We have thus recovered the learning rule
of equilibrium propagation [24] and coupled learning [26],
which, at order 1 in 7, is

Aw T = k(™ (x, 1)) = @™). (23)

In equilibrium propagation and coupled learning, the mul-
tiplicative factor in front of the learning rule is k =

learning rate | . . _
Fnudge amplide > 1N OUr setting here, since @ = —1, the nudge

amplitude is the same as the learning rate, therefore k = %

To understand the discrepancy of O(n?) between our learn-
ing rule and the learning rule of EP and CL, let us rewrite
v"deed a5 7 to explicitly show the dependence of the nudged
state on the nudge amplitude 7. In particular, v° = v =
v. In our linear flow network, u is a linear response of 7
[specifically u = —pL~! % [42], see Eq. (8)]. Combined with
the relationship u = v” — v° shown above, this implies that
u= n%lnzo. Therefore

Awyy = —v(x, y)u(x,y) (24)
= 7 v Y 25)
n n=0
_ _Qi n 2
= 2 n:o[v (x, »]°. (26)

We recover the learning rule Aw}” CL of Eq. (23) as a finite

difference approximation of Eq. (26)—hence the term O(5?).

The advantage of our method over EP and CL is that, by
using chemical signaling, the system components can now dif-
ferentiate between “activation” and “feedback” signals based
on their distinct chemical signatures. This happens because
the chemical u encodes the same information as %—“ﬂ' Not only
this eliminates the need to store information about two sepa-
rate learning phases, but also gives a way for exact gradient
computation.

On the other hand, one of the strengths of equilibrium
propagation and coupled learning is that they can be used for
arbitrary physical systems driven by physical equilibration:
their learning rule can be written in terms of derivatives of
energy with respect to the trainable parameters [25,26,29], as
follows:

3gfree agnudged
AwWEP/CL = 2k< — —> 27

ow ow
where £ is the energy of the system in the free phase

and £™9¢°4 g the energy in the nudged phase. For example,
Eq. (23) can be obtained from Eq. (27) by taking £ as power

dissipation function [24,26]. While the present paper focuses
on linear physical systems, we will leave the study of our
algorithm in nonlinear systems for future work.

V. DISCUSSION

We present a simple model of a physical learning system
that learns via chemical signaling. In our system, the error
between the desired behavior and observed behavior at the
output nodes is encoded in the form of a feedback chemical
signal. These signals travel across the network via diffusion
with the weights of the network updating in response to
the concentration of the feedback chemical and there is no
need for two states, as there is in equilibrium propagation
and coupled learning. We also show that this learning rule
minimizes a cost function via gradient descent even beyond
the infinitesimal nudge amplitude or learning rate limit. Our
simple model allows a physical system to learn complex tasks.
However, is not yet optimized for computational efficiency to
able to compete with current benchmark results, as evidenced
in Ref. [39]. While computational efficiency is not yet a cur-
rent goal of our paper, such efficiency may be feasible in a
nonlinear adaption in the near future.

Given the prevalence of backpropagation, we also com-
pare our algorithm to backpropagation. While there are
many explicit differences between backpropagation and our
algorithm—mostly because artificial neural networks are very
different from physical flow networks—we can compare the
basic ideas between these algorithms. In our model the weight
update rule is proportional to two quantities: the “error term”
u(x,y), which tells how much the pressure drop across the
weight w,, must change, and the “activation term” v(x, y),
which tells the existing pressure drop due to input. This is
similar to backpropagation where the weight update is pro-
portional to the presynaptic input and error in the postsynaptic
output [11]. This “activation” times “error” term in the learn-
ing rule is reminiscent of Hebbian learning [43]. However,
the difference between these algorithms is seen in the way
error information is communicated. In backpropagation, the
error at the output layer and the weights projecting onto this
output layer determines the error at the penultimate layer
and so on [11]. Therefore, the relationship between the error
values of two layers only depends on the local weight values
connecting them. In our model, once the error at output is
known, the error at the neighboring nodes is determined by
the steady state of the system, which means that the relation-
ship between their error depends on all the weights of the
network.

While our paper here is mostly concerned with linear flow
networks in the absence of advection (see Appendix A for
an exception to this), one can explore how our algorithm can
be extended to include it. Moreover, our physical procedure
(Sec. II) may also be applied to nonlinear systems, i.e., Sys-
tems whose components have nonlinear characteristics. We
will leave the mathematical analysis and experimentation of
these settings for future work. We also must explore going
beyond the quasistatic limit as time scales also constrain
biological learning systems. Efforts towards this goal have
recently been made in silico and in experiments using coupled

023024-6

LEARNING BY NON-INTERFERING FEEDBACK ...

PHYSICAL REVIEW RESEARCH §, 023024 (2023)

learning [44]. Similar extensions can be implemented using
our algorithm.

Nature may indeed be using similar signaling mechanisms
that we have elaborated on here. Cells use biochemical signals
to structure themselves in response to external conditions to
optimize their functionality and, thus, identity [45]. Slime
mold, a tubular network-like single cell organism, uses chem-
ical signals to modify its tube radii in response to food as
the external stimuli [36]. While the particular chemical still
remains unknown, a recently proposed candidate is ATP [37].
ATP is crucial for the activity of myosin and, hence, the
contractility of the actin cytoskeleton. An increase in ATP
would presumably enhance contractility. One might conclude
that enhanced contractility leads to stiffer cells as is found in
cells adherent to a substrate. However, for cells in suspension,
inhibition of myosin leads to stiffer cells due to accelerated
depolymerization of actin filaments [46]. Perhaps suspended
cell behavior is more relevant for the tubular structures in
slime model than adherent cells behavior. On the other hand,
given such understanding, we expect similar artificial versions
of this signaling mechanism could be used for experimental
realizations of our model with its aforementioned extensions.
For instance, an experimental system that makes use of dif-
ferent mechanisms, such as different catalytic reactions on a
flexible sheet to drive shape changes in the presence of flows
(see Appendix A), is a distinct possibility [47]. Alternatively,
perhaps one may implement similar catalytic reactions in
stiff sheets that fold. Incidentally, supervised learning in stiff
sheets, i.e., origami, has been explored [48].

As for multicellular organisms, the brain presumably fine
tunes the synaptic strengths of billions of neurons to generate
an optimal behavior. For this to happen, feedback signals
should not only carry precise credit information to individual
neurons but while doing so, they must not interfere with the
activation/feedforward signals [14]. How the brain does this
is still unknown and many models have been developed to
explain this phenomenon. For instance, some models invoke
the use of error neurons [49], while others assume a temporal
segregation of activation and feedback learning phases [26].
Others propose a compartmentalization of individual neurons
to spatially separate information as opposed to temporal seg-
regation [50]. Our learning mechanism is similar to this last
one. It avoids multiple learning phases by modifying a node
to store two kinds of information—an activation signal and a
feedback signal. The reason they do not interfere is because
the system components can identify them by their chemical
signatures—a ubiquitous phenomenon in nature. We have
shown how the same network structure used to send an activa-
tion signal, can be used to send precise gradient information
to individual weights. Therefore, our model optimizes a cost
function via gradient descent, something that deep neural net-
works already do to achieve human like functionality [51-54].
In light of the reasons stated above, we think our model may
ultimately help neuroscientists understand credit assignment
mechanisms in the brain.

ACKNOWLEDGMENTS

The authors thank Sid Mishra, Sam Dillavou, Doug Durian,
Andrea Liu, and Nachi Stern for discussion. J.M.S. acknowl-

edges funding support from Grant No. NSF-DMR-1832002
and an Isaac Newton Award from the DoD.

APPENDIX A: FLOW VERSION OF THE CHEMICAL
SIGNALING ALGORITHM

Here we present a model where the chemical signal spreads
not via diffusion but via advection. To begin, the pressure
at a node depends on the resistance to flow downstream.
Therefore, to alter the pressure at a node, we must change the
conductance of pipes downstream. Let us say that there is an
output node pressure we wish to decrease. We will simply re-
lease a chemical at that node, which gets carried by the current
downstream. This chemical is such that, when it is flowing
through a pipe, it increases the conductance of the pipe (e.g.,
making it thicker). This increase in conductance decreases
the resistance to flow, which in turn decreases the pressure
at the output node. Similarly, when we wish to increase the
output node pressure, we must release a different kind of
chemical, which decreases the conductance of the pipes (e.g.,
making it thinner). Using this we can tune the network to out-
put desired voltages. In fact, we observe numerically system
optimizes a cost function—but not necessarily via gradient
descent.

To implement the above idea as a tuning process, consider

(1) The input pressures {p;} is applied at output nodes. A
supervisor checks the output pressures {v} at output nodes and
compares them to desired output pressures {v,}.

(2) There are two kinds of chemicals, sy and s_. s, in-
creases the conductance of the pipe when it passes through
it, and vice versa for s_. We assume that the output nodes
release a chemical whose amount is proportional to the differ-
ence between the present output pressures and desired output
pressures. At t = 0 for some output node a, v(a) # vqs(a),
then

ifv(a) > vg(a) = sy(a) = A(v(a) —vg(a)) at =0,
(A1)

elifv(a) < vy(a) = s_(a) = AMvg(a) —v(a)) at t =0,
(A2)

Where A is the factor that controls the chemical response
given by the node to the difference in pressures. Moreover,
s+ (a) denotes amount of chemical (e.g., no of molecules) at
node“a”.

(3) This chemical is carried by the current in the network.
Therefore, in the next time step the chemical flows to the
neighboring nodes of a that are downstream to a [55]. We
call all such downstream neighbors of a as D(a). Then for
all b € D(a),

i(b,a)
erD(a) i(x, a)
+ (incoming chemical from other nodes),
(A3)

si(b,t +1)=s,(a,t) x

where i(x, a) represents the current from a to x. Note that all
the chemical initially present at a flows downstream after one
time step.

023024-7

ANISETTIL SCELLIER, AND SCHWARZ

PHYSICAL REVIEW RESEARCH §, 023024 (2023)

(4) Using the above equation, an N x N array S is gen-
erated, where each entry i, j denotes the amount of chemical
passing through the pipe {i, j} at step t — -+ 1. Let W
denote the conductance matrix of the graph, where each entry
{i, j} denotes the conductance of that pipe. Then

We+1)=We)+&S8, —35), (Ad)

& controls the response of the pipe to the passing chemical.

(5) The new potentials are calculated on the interior ver-
tices using W (r + 1). Again, the supervisor checks if v(a) =
vg(a). The chemical takes some time to reach the boundary
nodes, where it drains out of the network [56]. Therefore,
the total change in potential due to the chemical released
at the output nodes is observed after some amount of time.
Therefore, we introduce a time delay T before releasing the
chemical once again [57].

(6) This process is repeated iteratively.

Iris learning with one hot encoding.([0.1,0,0],[0,0.1,0],[0,0,0.1])

—f— Average over one epoch

=
N
1

10+

[e) o]
1 1

Training Error
N
Il

2000 3000 4000 5000

Epoch

1000

o

—f— Average over one epoch

S
o
(@)]
C
=
©
'_
—0.1-
0 1000 2000 3000 4000 5000
Epoch

FIG. 3. Training error using the Iris data set with one hot encod-
ing. The Iris data set is trained on a network with 122 nodes and
learning rate n = 10~*. The weights are sampled from a truncated
normal distribution with mean of 0.1, standard deviation of 0.01 with
a lower cutoff of 0.01 and upper cutoff of 0.19. We use the standard
mean squared error (L2 norm) as the cost function. The target pres-
sure drops for each Iris category is [0.1, 0, 0], [0, 0.1, 0], [0, 0, 0.1],
respectively. (Top) At each training step, the network is shown an
example and the mean squared error is calculated between the net-
work’s output and desired output, shown as a blue dot. (Bottom)
Zoomed version of the above plot. Note that the training error slightly
goes below 0.1 (see Fig. 4 for accuracy on testing data).

0.85+
0.804
0.75+1
&0.70-
o
>50.65+
o
< 0.60+
0.554
0.504
0.45

0 1000 2000 3000 4000 5000
Epoch

FIG. 4. Testing accuracy using the Iris data set with one hot
encoding (for Fig. 3). Accuracy is defined as the fraction of correct
predictions out of total testing examples.

APPENDIX B: PHYSICAL CONSTRAINTS AND
TRAINING USING ONE HOT ENCODING

Here, we train a linear physical system to approximate
a function that maps Iris features to the species it belongs

Learning using Wine dataset

== Average over one epoch

O O H
(o)} oo o
1 1 1

©
N
L

Training Error

200 400 600 800 1000
Epoch

o=

0.90

0.89+

0.88+

Accuracy

o ©
0])
(@)] ~
1 1

0.85+ ,

0.841 i
0 600
Epoch

FIG. 5. Training using Wine data set. Trained on a network with
122 nodes and learning rate n = 10~*. The weights are sampled from
a truncated normal distribution with mean of 0.1, standard deviation
of 0.01 with a lower cutoff of 0.01 and upper cutoff of 0.19. We use
the standard mean squared error (L2 norm) as the cost function. (Top)
Training error vs epoch. (Bottom) Accuracy vs epoch.

023024-8

LEARNING BY NON-INTERFERING FEEDBACK ...

PHYSICAL REVIEW RESEARCH §, 023024 (2023)

to. Unlike artificial neural networks, these physical systems
are restricted by physical constraints, due to which the set
of attainable states of the system is limited. Therefore, it is
not necessary that any choice of target is physically plausible.
For example; if {v;(0;)} is the set of desired target pressures
at the output nodes, and {v(b;)} is the set of input pressure
applied at the boundary nodes, then min{v(b;)} < v4(0;) <
max{v(b;)} for all boundary nodes o; (and is also known as
min-max theorem). Such a constraint arises because Laplace’s
equation ensures that V>v = 0 at all interior nodes and only
at boundary nodes V?v # 0. In other words, the potential
landscape has peaks and minima only at the boundary nodes,
and all other interior pressures must lie on the slopes of
this landscape. Such a property leads to strong constraints,
which is not just limited to min-max theorem stated above.
Therefore, the best way to ensure that the desired pressures
are physically attainable is to set the target pressure as the
class mean output. This method was first incorporated in work
done by Ref. [30] to implement coupled learning in physical
systems.

We explored the training performance with one hot encod-
ing using the Iris data set (see Figs. 3 and 4). The system still

decreases training error and increases accuracy significantly,
but because of physical constraints it no longer achieves a high
classification accuracy. One can see in Fig. 3 that the system
slows down reducing the training error after the 0.1 mark,
which corresponds to the one hot encoded target pressure
drop. This slowing down means that on an average the output
pressure drops are close to [0,0,0], therefore we see a satu-
rating mean squared error close to 0.1. This happens because
the system cannot find a set of weights that brings the class
output closer to the target pressure corresponding to that class.
The one hot encoded targets are not physically favourable
and on an average the system’s output remains close to
[0,0,0].

APPENDIX C: TRAINING USING WINE DATASET

The network is now also trained on Wine dataset [41]
(see Fig. 5). The Wine dataset has 13 attributes and three
output classes. With 178 total data points, 90 were used for
training and rest for testing. Due to the large number of
attributes, the network does not perform as well as the Iris
dataset.

[1] D. J. Sumpter, The principles of collective animal behaviour,
Philos. Trans. R. Soc. B 361, 5 (2006).

[2] G. Beauchamp, Flocking in birds increases annual adult sur-
vival in a global analysis, Oecologia 197, 387 (2021).

[3] M. Ballerini et al., Interaction ruling animal collective behavior
depends on topological rather than metric distance: Evidence
from a field study, Proc. Natl. Acad. Sci. USA 105, 1232
(2008).

[4] N. J. Mlot, C. A. Tovey, and D. L. Hu, Fire ants self-assemble
into waterproof rafts to survive floods, Proc. Natl. Acad. Sci.
USA 108, 7669 (2011).

[5] B. J. Adams, L. M. Hooper-Bui, R. M. Strecker, and D. M.
O’Brien, Raft formation by the red imported fire ant Solenopsis
invicta, J. Insect. Sci. 11, 171 (2011).

[6] R. J. Wagner and F. J. Vernerey, Computational exploration of
treadmilling and protrusion growth observed in fire ant rafts,
PLoS Comput. Biol. 18, €1009869 (2022).

[7] E. B. Issa, C. F. Cadieu, and J. J. Dicarlo, Neural dynamics at
successive stages of the ventral visual stream are consistent with
hierarchical error signals, eLife 7, e42870 (2018).

[8] N. Kriegeskorte, Deep neural networks: A new framework for
modeling biological vision and brain information processing,
Annu. Rev. Vision Sci. 1, 417 (2015).

[9] D. Zipser and R. Andersen, A back-propagation programmed
network that simulates response properties of a subset of poste-
rior parietal neurons, Nature (London) 331, 679 (1988).

[10] P. R. Roelfsema and A. Holtmaat, Control of synaptic plas-
ticity in deep cortical networks, Nat. Rev. Neurosci. 19, 166
(2018).

[11] M. A. Nielsen, “Neural networks and deep learning,” (2018).

[12] G. R. Yang and X. J. Wang, Artificial neural networks for
neuroscientists: A primer, Neuron 107, 1048 (2020).

[13] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning
representations by back-propagating errors, Nature (London)
323, 533 (1986).

[14] T. P. Lillicrap, A. Santoro, L. Marris, C. J. Akerman, and G.
Hinton, Backpropagation and the brain, Nat. Rev. Neurosci. 21,
335 (2020).

[15] J. Sacramento, R. Ponte Costa, Y. Bengio, and W. Senn, Den-
dritic cortical microcircuits approximate the backpropagation
algorithm, in Advances in Neural Information Processing Sys-
tems, Vol. 31 (2018).

[16] 1. Pozzi, S. Bohté, and P. Roelfsema, A biologically plausible
learning rule for deep learning in the brain, arXiv:1811.01768.

[17] B. A. Richards and T. P. Lillicrap, Dendritic solutions to
the credit assignment problem, Curr. Opin. Neurobiol. 54, 28
(2019).

[18] J. C. Whittington and R. Bogacz, Theories of error back-
propagation in the brain, Trends Cognit. Sci. 23, 235 (2019).

[19] A. Payeur, J. Guerguiev, F. Zenke, B. A. Richards, and R. Naud,
Burst-dependent synaptic plasticity can coordinate learning in
hierarchical circuits, Nat. Neurosci. 24, 1010 (2021).

[20] S. Kan, K. Nakajima, T. Asai, and M. Akai-Kasaya, Physical
implementation of reservoir computing through electrochemi-
cal reaction, Adv. Sci. 9, 2104076 (2021).

[21] By local we not only mean in terms of metric distance.

[22] J. J. Hopfield, Neurons with graded response have collective
computational properties like those of two-state neurons, Proc.
Nat. Acad. Sci. USA 81, 3088 (1984).

[23] D. Markovi¢, A. Mizrahi, D. Querlioz, and J. Grollier, Physics
for neuromorphic computing, Nat. Rev. Phys. 2, 499 (2020).

[24] J. D. Kendall, R. D. Pantone, K. Manickavasagam, Y. Bengio,
and B. Scellier, Training end-to-end analog neural networks
with equilibrium propagation, arXiv:2006.01981.

[25] B. Scellier, A deep learning theory for neural networks
grounded in physics, PhD. thesis, Université de Montréal, 2021.

[26] M. Stern, D. Hexner, J. W. Rocks, and A. J. Liu, Su-
pervised Learning in Physical Networks: From Machine
Learning to Learning Machines, Phys. Rev. X 11, 021045
(2021).

023024-9

https://doi.org/10.1098/rstb.2005.1733
https://doi.org/10.1007/s00442-021-05023-5
https://doi.org/10.1073/pnas.0711437105
https://doi.org/10.1073/pnas.1016658108
https://doi.org/10.1673/031.011.17101
https://doi.org/10.1371/journal.pcbi.1009869
https://doi.org/10.7554/eLife.42870
https://doi.org/10.1146/annurev-vision-082114-035447
https://doi.org/10.1038/331679a0
https://doi.org/10.1038/nrn.2018.6
https://doi.org/10.1016/j.neuron.2020.09.005
https://doi.org/10.1038/323533a0
https://doi.org/10.1038/s41583-020-0277-3
http://arxiv.org/abs/arXiv:1811.01768
https://doi.org/10.1016/j.conb.2018.08.003
https://doi.org/10.1016/j.tics.2018.12.005
https://doi.org/10.1038/s41593-021-00857-x
https://doi.org/10.1002/advs.202104076
https://doi.org/10.1073/pnas.81.10.3088
https://doi.org/10.1038/s42254-020-0208-2
http://arxiv.org/abs/arXiv:2006.01981
https://doi.org/10.1103/PhysRevX.11.021045

ANISETTIL SCELLIER, AND SCHWARZ

PHYSICAL REVIEW RESEARCH §, 023024 (2023)

[27] L. G. Wright, T. Onodera, M. M. Stein, T. Wang, D. T.
Schachter, Z. Hu, and P. L. McMahon, Deep physical neural
networks trained with backpropagation, Nature (London) 601,
549 (2022).

[28] G. Tanaka, T. Yamane, J. B. Héroux, R. Nakane, N. Kanazawa,
S. Takeda, H. Numata, D. Nakano, and A. Hirose, Recent ad-
vances in physical reservoir computing: A review, Neural Netw.
115, 100 (2019).

[29] B. Scellier and Y. Bengio, Equilibrium propagation: Bridging
the gap between energy-based models and backpropagation,
Front. Comput. Neurosci. 11, 24 (2017).

[30] S. Dillavou, M. Stern, A. J. Liu, and D. J. Durian, Demon-
stration of Decentralized, Physics-Driven Learning, Phys. Rev.
Appl. 18, 014040 (2022).

[31] F. Patino-Ramirez, A. Boussard, C. Arson, and A. Dussutour,
Substrate composition directs slime molds behaviour, Sci. Rep.
9, 15444 (2019).

[32] A. Boussard, A. Fessel, C. Oettmeier, L. Briard, H. G.
Dobereiner, and A. Dussutour, Adaptive behaviour and learning
in slime moulds: The role of oscillations, Philos. Trans. R. Soc.
B 376, 20190757 (2021).

[33] H. Yamada, A. Toth, and T. Nakagaki, Intelligence: Maze-
solving by an amoeboid organism, Nature (London) 407, 470
(2000).

[34] A. Tero, S. Takagi, T. Saigusa, K. Ito, D. P. Bebber, M. D.
Fricker, K. Yumiki, R. Kobayashi, and T. Nakagaki, Rules for
biologically inspired adaptive network design, Science 327, 439
(2010).

[35] A. Tero, K. Yumiki, R. Kobayashi, T. Saigusa, and T. Nakagaki,
Flow-network adaptation in Physarum amoebae, Theory Biosci.
127, 89 (2008).

[36] K. Alim, N. Andrew, A. Pringle, and M. P. Brenner, Mechanism
of signal propagation in Physarum polycephalum, Proc. Nat.
Acad. Sci. USA 114, 5136 (2017).

[37] M. Kramar and K. Alim, Encoding memory in tube diameter
hierarchy of living flow network, Proc. Natl. Acad. Sci. USA
118, 2007815118 (2021).

[38] We acknowledge Nachi Stern for suggesting the use of the word
modality.

[39] R. A. Fisher, Iris. UCI Machine Learning Repository, 1988.
DOI: 10.24432/C56C76.

[40] Note that d may not be equal to degree of the node: given two
neighboring nodes A and B, it is possible that B is in the d
nearest neighbors of A, while A is not in the d nearest neighbors
of B.

[41] Wine, UCI Machine Learning Repository, https://archive.ics.
uci.edu/ml/datasets/wine, 1991.

[42] Here L™! is the Moore Penrose pseudoinverse of L. Note that L
is not invertible.

[43] P. Dayan and L. F. Abbott, Theoretical Neuroscience: Compu-
tational and Mathematical Modeling of nNeural System, Ch. 8
(MIT Press, Cambridge, MA, 2005).

[44] M. Stern, S. Dillavou, M. Z. Misken, D. J. Durian, and A. J. Liu,
Physical learning beyond the quasistatic limit, Phys. Rev. Res.
4, 1022037 (2022).

[45] A. Koseska and P. I. Bastiaens, Cell signaling as a cognitive
process, EMBO J. 36, 568 (2017).

[46] C. J. Chan, A. E. Ekpenyong, S. Golfier, W. Li, K. J. Chalut,
O. Otto, J. Elgeti, J. Guck, and F. Lautenschliger, Myosin
II activity softens cells in suspension, Biophys. J. 108, 1856
(2015).

[47] A. Laskar, R. K. Manna, O. E. Shklyaev, and A. C. Balazs,
Computer modeling reveals modalities to actuate mutable, ac-
tive matter, Nat. Commun. 13, 2689 (2022).

[48] M. Stern, C. Arinze, L. Perez, S. E. Palmer, and A. Murugan,
Supervised learning through physical changes in a mechanical
system, Proc. Natl. Acad. Sci. USA 117, 14843 (2020).

[49] E. L. Schwartz, Computational Neuroscience (MIT Press, Cam-
bridge, MA, 1993).

[50] K. P. Kording and P. Konig, Supervised and unsupervised learn-
ing with two sites of synaptic integration, J. Comput. Neurosci.
11, 207 (2001).

[51] K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning
for image recognition, in 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 770-778, 2016.

[52] D. Silver, J. Schrittwieser, K. Simonyan, 1. Antonoglou, A.
Huang, A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton et al.,
Mastering the game of go without human knowledge, Nature
(London) 550, 354 (2017).

[53] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, L. U. Kaiser, and I. Polosukhin, Attention is all
you need, in Adv. Neural Inf. Process. Syst. (I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett, eds.), Vol. 30, (Curran Associates, Inc., New
York, 2017).

[54] A. Y. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos,
E. Elsen, R. Prenger, S. Satheesh, S. Sengupta, A. Coates, and
A. Y. Ng, Deep speech: Scaling up end-to-end speech recogni-
tion, arXiv:1412.5567.

[55] For simplicity we assume that the chemical has negligible diffu-
sion and the only way it can spread is via the network currents.

[56] The current flows into and out of the network through boundary
nodes.

[57] This helps the potentials at the output node to converge nicely at
the desired potentials. If this delay is not introduced, the output
potential oscillates about the desired potential. Moreover, the
delay helps in avoiding the buildup of excess chemical in the
network.

023024-10

https://doi.org/10.1038/s41586-021-04223-6
https://doi.org/10.1016/j.neunet.2019.03.005
https://doi.org/10.3389/fncom.2017.00024
https://doi.org/10.1103/PhysRevApplied.18.014040
https://doi.org/10.1038/s41598-019-50872-z
https://doi.org/10.1098/rstb.2019.0757
https://doi.org/10.1038/35035159
https://doi.org/10.1126/science.1177894
https://doi.org/10.1007/s12064-008-0037-9
https://doi.org/10.1073/pnas.1618114114
https://doi.org/10.1073/pnas.2007815118
https://dx.doi.org/10.24432/C56C76
https://archive.ics.uci.edu/ml/datasets/wine
https://doi.org/10.1103/PhysRevResearch.4.L022037
https://doi.org/10.15252/embj.201695383
https://doi.org/10.1016/j.bpj.2015.03.009
https://doi.org/10.1038/s41467-022-30445-x
https://doi.org/10.1073/pnas.2000807117
https://doi.org/10.1023/A:1013776130161
https://doi.org/10.1038/nature24270
http://arxiv.org/abs/arXiv:1412.5567

