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Statistical physics of deep neural networks: Initialization toward optimal channels
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In deep learning, neural networks serve as noisy channels between input data and its latent representa-
tion. This perspective naturally relates deep learning with the pursuit of constructing channels with optimal
performance in information transmission and representation. While considerable efforts are concentrated on
realizing optimal channel properties during network optimization, we study a frequently overlooked possibility
that neural networks can be initialized toward optimal channels. Our theory, consistent with experimental
validation, identifies primary mechanics underlying this unknown possibility and suggests intrinsic connec-
tions between statistical physics and deep learning. Unlike the conventional theories that characterize neural
networks applying the classic mean-field approximation, we offer analytic proof that this extensively applied
simplification scheme is not appropriate in studying neural networks as information channels. To fill this gap, we
develop a restricted mean-field framework applicable for characterizing the limiting behaviors of information
propagation in neural networks without strong assumptions on inputs. Based on it, we propose an analytic
theory to prove that mutual information maximization is realized between inputs and propagated signals when
neural networks are initialized at dynamic isometry, a case where information transmits via norm-preserving
mappings. These theoretical predictions are validated by experiments on real neural networks, suggesting the
robustness of our theory against finite-size effects. Finally, we analyze our findings with information bottleneck
theory to confirm the precise relations among dynamic isometry, mutual information maximization, and optimal
channel properties in deep learning. Our work may lay a cornerstone for promoting deep learning in terms
of network initialization and suggest general statistical physics mechanisms underlying diverse deep learning

techniques.
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I. INTRODUCTION
A. Neural networks are information channels

In deep learning, neural networks attempt to identify an
optimal latent representation (e.g., a low-dimensional feature
space) of the data such that subsequent learning tasks can be
solved more efficiently [1]. Below, we first review the latest
advances in deep learning theories and then suggest a general
perspective to unify them.
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Let us consider a sample set X and an associated learning
target set Y = y(X) (e.g., labels), where y is a mapping
defined by the learning task. A neural network parameter-
ized by ¢ is expected to optimize a representation ¢(X)
with dim(¢ (X)) < dim(X) (here dim(-) measures the dimen-
sionality) such that an ideal mapping y, : ¢(X) — Y can be
readily learned to solve the task. This objective requires an
appropriate evaluation of the optimality of neural network
representation ¢ (X).

Although the optimality of ¢(X) can be evaluated by di-
verse metrics according to task demands (e.g., see instances
in reinforcement [2], graph [3], and causal [4] representa-
tion learning frameworks), a mainstream idea is to consider
the neural network as a noisy channel between X and its
representation ¢(X). This perspective naturally leads to the
consideration of two cases:

(1) In unsupervised learning, the information of learning
target Y is not known to the neural network [5]. To make
the learning task resolvable, mapping y is assumed as a
bijective function from sample X to target Y such that the
neural network can learn the distribution of Y by representing
the distribution of X (e.g., the target distribution is exactly
an optimal representation of sample distribution in clustering
tasks [6,7] and unsupervised representation learning [8,9]). If
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FIG. 1. Conceptual illustrations of research objectives. (a) The learning target Y (e.g., a distribution of different classes of objects) is
represented by a sample set X, where different classes of samples (denoted by nodes with different colors) are promiscuously distributed in
the original sample space. A neural network is expected to learn an appropriate neural representation ¢(-) such that all classes are distributed
following clear patterns in ¢(X) to optimally capture the information of Y. During this process, a joint channel consisting of two subchannels is
defined between Y and ¢ (X). The fist subchannel, bridging between Y and X, determines how two Shannon entropies, H(Y) and H(X), share
a common part of information measured by Z(X;Y) given the information loss measured by conditional entropies, H(Y | X) and H(X | Y).
The second subchannel, bridging between Y and ¢(X), is optimizable for neural networks. These subchannels jointly define the upper-bound of
Z(¢(X); Y) shown in Eq. (2). (b) Because Z(¢(X); Y) is unmodifiable for neural networks, deep learning studies primarily explore maximizing
Z(¢(X); X). This objective is partly related with, not directly equivalent to, maximizing Z(¢(X); Y). While previous works mainly focus on
maximizing Z(¢(X); X) during optimization (e.g., training), we shall suggest a possibility to realize this objective during neural network
initialization by proposing a statistical physics theory of neural networks.

samples and targets have distinct or irrelevant distributions,
then the unsupervised learning of Y based on X is ill-posed.

(2) In supervised learning, the information of learning tar-
get Y is known to the neural network as supervision [10]. In
an ideal situation where y is a well-defined bijective mapping
from X to Y (i.e., samples and targets are perfectly paired),
learning the distribution of Y is principally equivalent to
learning the distribution of X (e.g., consider the separable
case where X can be subdivided into disjoint convex sets
in Euclidean space according to the label information in Y
[11,12]). In realistic situations where samples and targets are
not perfectly paired, learning the distribution of Y is nontrivial
and not necessarily consistent with representing the distribu-
tion of X (e.g., consider the case where noisy labels exist
[13,14]).

B. How can neural networks become optimal channels

How can neural networks become optimal channels fa-
vorable for deep learning tasks? This is the central question
concerned in our research.

Mathematically, learning tasks are unified by a Markov
chain of data processing in information theory [15] (see Fig. 1
for illustration)

Y2 X 4 gx). )

Note that the above Markov chain is different from X -
d(X) e Y, the Markov chain of hidden variable mod-
els [16]. This is because the joint distribution between
samples and targets is given as a priori rather than an ad-
justable setting in deep learning (e.g., neural networks cannot
modify task designs). The Markov property in Eq. (1) implies
zero conditional mutual information values Z(Y; ¢(X)|X) =

Z(¢(X); Y|X) = 0 [15], leading to a generalized version of
the data processing inequality [15,17,18]

Z(¢(X); Y) < min {Z(X; Y), Z(¢(X); XD}, @

which can be readily derived from Z(¢(X);Y)+ Z(Y;
X[p(X)) =Z(X;Y) and Z(¢(X);Y)+Z(¢(X):; X]Y) =
I(X;¢(X)) because conditional mutual information is
nonnegative.

Equation (2) suggests a clear direction to evaluate the op-
timality of neural network representation ¢(X). Because the
mutual information between samples and targets, denoted by
Z(X;Y), is unoptimizable for the neural network, the opti-
mality of ¢(X) is, at least partly, determined by maximizing
Z(¢(X); X), the mutual information between samples and
their represented counterparts.

C. Previous studies on neural networks as optimal channels

Given the possible direction for neural networks to become
optimal channels, we review previous efforts that devote to
realize this condition during optimization (e.g., training).

In unsupervised learning, mutual information maximiza-
tion has been demonstrated as a promising approach in recent
works [19-22]. Although this approach arises from the idea
of maximizing Z(¢(X);X) in Eq. (2), it differs from the
direct maximization because estimating the mutual informa-
tion between the entire sample set and its neural network
representation is statistically deficient [23] (i.e., distribution-
free estimators (e.g., statistical bounds) of entropy-related
quantities have high sample complexity [24]). In general,
what mutual information maximization approach follows is
a kind of multiview formulation [25]. Given each canoni-
cal sample X of X (e.g., an image) and its two different
and potentially overlapping observations (e.g., two views
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of the image), X' and X/, neural networks are optimized
for maxy Z(¢(X');p(X/)). Such an idea can date back to
Refs. [26,27] and is valid for optimizing neural networks
because Z(p(X'); p(X7)) < Z(X;p(X'), ¢(X/)) [25], which
can be generally used as a lower bound of the mutual infor-
mation maximization objective Z(¢(X); X) [25,27].

In supervised learning, although mutual information is
not explicitly used as an optimization objective, it has been
discovered as intrinsically related to deep metric learning
[25,28]. Let us consider (X,Y, Z), a triplet where X is an
anchor, Y is a positive sample (e.g., belongs to the same
class as X), and Z is a negative sample (e.g., belongs to a
different class compared with X). In deep metric learning,
neural networks are optimized to learn a representation ¢
such that d(¢(X), ¢(Y)) < d(¢(X), ¢(Z)) for any (X, Y, Z),
where d(-, -) denotes a distance measure [28,29]. Meanwhile,
InfoNCE, an extensively applied lower bound of mutual
information [19], can be derived to support maximizing
Z(¢(X); X) in Eq. (2) if all negative samples are drawn from
the true marginal distribution [23]. As proven by Ref. [25],
InfoNCE can be equivalently reformulated as an expectation
of the multiclass n-pair loss [30], which is a standard triplet
loss in deep metric learning. In the case where negative sam-
ples are not independently drawn, InfoNCE is not valid in
estimating mutual information [25].

In sum, existing deep learning approaches, irrespective of
being unsupervised or supervised, primarily focus on driving
neural networks toward optimal channels during optimization.
Maximizing Z(¢(X); X) is used as, or at least coincides with,
a part of the optimization objectives of mainstream frame-
works.

D. Open questions on neural networks as optimal channels

Given the review and unified formalization presented
above, one may expect that the properties of neural networks
as optimal channels have been completely confirmed. How-
ever, this is generally not true because the studies on neural
networks as optimal channels still remain at their early stages.
Below, we summarize three critical open questions in this
direction:

(D Is it possible to maximize Z(¢(X); X) during neural
network initialization such that the subsequent training pro-
cess can be improved or at least be accelerated?

(II) If the properties of neural networks as optimal
channels are determined by the dynamics of information prop-
agation within neural networks, then is it possible to bridge
between the static framework of Shannon theory [15] and
the dynamic characterization of information propagation via
existing statistical physics theories of neural networks (e.g.,
mean-field approximation [31,32] and neural tangent kernel
[32-34] theories)? If it is not possible, then what are the main
limitations of existing theories and how to resolve them?

(IIT) What is the precise relation between maximizing
Z(¢(X); X) during initialization and driving neural networks
toward optimal channels? Can we further relate this relation
with other deep learning theories (e.g., information bottleneck
[35-37]) to explore a unified view?

E. Our framework and contribution

Motivated by these open questions, we attempt to develop
general theories to verify the possibility of initializing neural
networks at optimal states for maximizing Z(¢(X); X), based
on which, we aim at exploring the underlying connections
between information theory and statistical physics in deep
learning. Specifically, our framework and contributions are
summarized as the following.

In Sec. II, we review and unify existing works about char-
acterizing neural networks as information channels and ana-
lyzing information propagation within them [see Fig. 2(a)].
To make analytic derivations possible, our work primar-
ily focuses on infinite-width neural networks, whose formal
definitions are presented in Sec. IT A. Infinite-width neural
networks, irrespective of being optimized in a Bayesian man-
ner [38—40] or by gradient descent approaches [33,41,42],
are favorable in analytic formulations because they become
Gaussian processes defined with specific kernels (e.g., neural
tangent kernel [32-34]) at the limits. This property holds
across different network architectures (e.g., fully connected
layers [38], convolutional layers [40,43], residual connections
[40], and recurrent networks [44]), enabling our theory to
analyze mainstream deep learning models. Given an infinite-
width neural network, we unify previous studies to formalize
how information propagates within the network and analyti-
cally measure diverse properties of propagated signals (e.g.,
the second moment) on each layer in Secs. Il A and II B.
This formalization relates our analysis with the studies on
edge of chaos and dynamic isometry in deep neural networks
[45-51], whose formal definitions are presented in Sec. II C.
The unified framework lays the foundation of our subsequent
analysis.

Given the fundamental definitions in Sec. II, we do not
limit ourselves to adapting classic theories completely. On
the contrary, we show that the independent and identical
assumption held by the classic mean-field approximation of
infinite-width neural networks is invalid in analyzing neural
networks as information channels in Sec. III [see Fig. 2(a)].
Specifically, the independent and identical assumption is
proven to imply an Gaussian distribution of the correlation
between propagated signal and its original form in inputs in
Sec. IITA. In other words, the classic mean-field approxi-
mation creates a nonzero probability for the correlation to
be larger than 1 or smaller than —1, which contradicts the
definition of correlation (i.e., a correlation must belongs to
the interval of [—1, 1]). Although a correlation quantity can
be empirically treated as a constant and may still be valid
(e.g., when the constant is located within [—1, 1]) if it fol-
lows a Gaussian distribution with an infinitesimal variance
approaching to 0 or a strictly zero variance, we prove that
the correlation measured under the classic mean-field frame-
work dissatisfies these two conditions in Sec. III B. Therefore,
the classic mean-field approximation is invalid in correlation
measurement even from an empirical perspective.

To resolve the limitation of classic mean-field approxima-
tion suggested in Sec. III, we develop a new mean-field-like
theory with restricted independent and identical assumption
in Sec. IV A [see Fig. 2(b)]. Different from the classic one,
our restricted mean-field approximation does not imply a
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FIG. 2. Summary of our main contributions. (a) In Sec. II, we review and unify classic mean-field theories of neural networks, measure
signal moments and correlation, construct the phase space of information propagation, and define edge of chaos (EOC) as well as dynamic
isometry (DI). Based on this framework, we indicate the limitation of class mean-field approximation in characterizing neural networks as
information channels in Sec. III. This limitation arises from the independent and identical assumption held by class mean-field approximation,
which enables the correlation between propagated signal and its original form to be larger than 1 or smaller than —1. (b) In Secs. IV and V,
we overcome the limitation of existing framework by proposing a restricted mean-field approximation theory of neural networks. We relate
our analysis with Gaussian information bottleneck, based on which, we can derive an important lower bound of mutual information that is
analytically proven as maximized at dynamic isometry. Apart from analytic proofs, our theory is also computationally validated on real neural
networks. In Sec. VI, we suggest the relation between our objective of maximizing Z(¢(X); X) and driving neural networks toward optimal
channels from the perspective of information bottleneck theory, revealing the insights of our theory on deep learning.

Gaussian distribution of correlation with nonzero constant
variance because it excludes the independent and identical
assumption on input X. Certainly, the loose constraints held
by the restricted mean-field approximation propose challenges
to analytic characterization of information channel proper-
ties. To overcome these challenges, we introduce Gaussian
information bottleneck into our analysis to relate optimizing
Z(¢(X); X) with maximizing a certain lower bound of mutual
information in Sec. IV B. In the phase space of information
propagation, the lower bound is analytically proven as max-
imized at dynamic isometry point, a case where each layer
serves as a random mapping with norm-preserving property
during information transmission, in Secs. IVB and IV C. In
other situations where dynamic isometry is absent, neural
networks become highly noisy channels with high information
dissipation rates. In Sec. V, our theory is computationally val-
idated on real neural networks. Although our theory is initially
developed on infinite-width neural networks, we demonstrate
its general applicability on real deep learning models by
showing consistency between our theoretical predictions and
empirical observations on finite-width neural networks with
diverse settings (e.g., different layer widths, layer quantities,
and activation functions).

In Sec. V, we relate our theories with information bottle-
neck theory [35-37], a special case of rate distortion theory
[52] and sufficient statistics theory [53], to present a unified
discussion on the role of maximizing Z(¢(X); X) in driving
neural networks toward optimal channels in deep learning [see
Fig. 2(b)]. We show that supervised learning and unsuper-
vised learning share similar optimization objectives in terms
of information bottleneck. When neural networks are trained
with random data shuffling tricks [54,55], we theoretically
suggests the possibility that maximizing Z(¢(X); X) in Eq. (2)
serves as a conditional mechanism for neural networks to
become optimal in both supervised learning and unsupervised
learning. Finally, we discuss the potential insights of our work
on deep learning and statistical physics.

II. INFINITE-WIDTH NEURAL NETWORKS
AS INFORMATION CHANNELS

In this section, we introduce a framework to character-
ize infinite-width neural networks as information channels
by summarizing and reformulating existing studies on mean-
field behaviors and dynamic isometry of neural networks
[46,47,49-51,56-58].

A. Mean-field behaviors of infinite-width neural networks

Let us consider an arbitrary deep neural network with
multiple layers. The dynamics of cross-layer information
propagation (i.e., a signal propagates from the /th layer to the
(I + 1)th layer) is characterized as

X(1+1) — W(l+1)1lf(X(l)) + £(l+l)’ (3)
where X = (Xil), ey Xxl)) € RM denotes the vector of pre-

activation signals in the /th layer, parameter N; € N denotes
the width of the /th layer, mapping ¥ (-) denotes a nonlin-
ear activation function, matrix WU+D e RN+t x RV defines
the weights of all connections between the /th layer and the
(I + Dth layer, and ¢/ = (si”l), e 81(\5[:1)) e RN+t de-
notes the associated residuals. In common cases, each residual
e§l+1) is frequently assumed as a Gaussian variable [56,57].
Please see Fig. 3(a) for illustrations.

To offer a clear vision, we begin with formalizing the
classic mean-field approximation of the above neural network
before we analyze its limitations in Sec. III A. Under the
independent and identical assumption of W+D and X (e.g.,
each element W/t in W(+D is independently and identi-
cally distributed); we can derive

Xfl“) _ (W§l+1)’ ’ﬁ(X(l)))-i-EfH) i) J\/'(Miﬁ,-z) 4)
as Nj1 — oo, where Xgl“) and WI(IH), respectively, denote
the ith rows of X“*1 and WU+D for any i € {1,..., Ni41},
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FIG. 3. Conceptual illustrations of the classic mean-field approximation of neural networks. (a) Key settings of classic mean-field
approximation, such as infinite-width condition as well as independent and identical assumption, are summarized. (b, c) Illustrations of the
scalar and vector metrics used in characterizing information propagation processes are presented. (d) Main steps of the derivation processes of
edge of chaos (EOC) and dynamic isometry (ID) in the phase space of information propagation are shown.

notion (-, -) defines the inner product, and A (u;, o;) defines a
specific Gaussian variable.

In general, Eq. (4) approximates each signal propagating
in the infinite-width neural network as a certain Gaussian
variable under the central limit theorem, enabling us to study
an ensemble of random neural networks associated with the
original neural network [58] [see Fig. 3(a)]. This idea has
been demonstrated as effective in characterizing the mean-
field behaviors of two-layer [56] and multilayer [57] neural
networks.

B. Information propagation in infinite-width neural networks

As we have explained above, our motivation to consider
infinite-width neural networks is to analytically study infor-
mation propagation dynamics within them. Because the signal
propagating across layers in an infinite-width neural network
has become a Gaussian variable, we can capture most of its
dynamics by studying the first two moments of it. In our
research, we primarily focus on the second moment since it
has been demonstrated as relevant with the expressivity of
neural networks (i.e., the second moment of a signal coincides
with the length of its internal Riemannian manifold in down-
stream layers) [58], enabling us to analyze the order-to-chaos
expressivity phase transition [58].

For convenience, we consider the case studied by Ref. [58],

where each Wfﬁ) iid. ~ N(0,
N(0,07) (note that “i.i.d> stands for being 1ndependently

and identically distributed). In the infinite-width limit (i.e.,
N; — 00), the second moment (i.e., variance) of signals in the

Diid. ~

[-layer, denoted by (6 D)2, can be calculated as

N

1
@ =13 ("), 5)
i=1
—E(W v (X) e ©

where E(-) denotes the expectation [see Fig. 3(b)]. Note that
the second moment in Eq. (5) reduces to the second origin
moment because [E (XE”) = 0 holds for each XEI). Equation (6)
can be further reformulated as

Ni-

@) =E ZW% X +e | @)

Ni-1

ZE (W) JE[w (XY T+E[E")]. ®

= ali / V¥ (e"Vx)’Dx + obz, ®
R

where Eq. (8) is derived from the fact that IE(W(I)W(I)) =
]E(WE?)E(WE,? ) for any j# k under the independent
and identical assumption. Equation (9) is derived using

E[Y Y WP = S0 E(WD ] = N 2 = 02 (e,
welghts are 1ndependent1y and 1dentically distributed). In
Eq. (9), notion Dx = dx —%2) is a standard Gaussian

Jos SXP
measure, where x € R. In general, Eq. (9) defines an iterative
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dynamic process of the second moment of signals in each
layer [58], whose initial condition is

2
My _ %w 2
(o) = N, (X, X) + oy, (10)

where X is the input vector to the neural network, which
is assumed to obey the independent and identical assump-
tion, i.e., each X, i.i.d. ~ a certain distribution, to ensure that

J

Xgl) ii.d. ~ acertain distribution in Eq. (4). One can see
Ref. [58] for more analyses of Eq. (9).

Apart from the second moment of a single signal, we can
also consider the relation between two propagating signals.
For two input signals, X? and X9, correlated with each other
because they propagate within the same neural network, we
can mark their representations in the /-layer as X)» and
X®-4 to measure their second moment as [see Fig. 3(b) for
illustration]

N
o ra — ]%legl),pxl@,q’ an
i=1
N[,] M—l
=IE{ ZWS)IP(XEZ_I)’F) _i_glgl) ng)w(xﬁl—l),q) _I_glgz) }’ (12)
j=1 j=1
“ 2 -1 -1 2
= D E[(W) B[y (X7 "7)y (X7 ]+ E[ (") ] (13)
j=1
= aj/Rth/f(a““'f'x)w{a”“vq [c;,’ql)x+ 1 (c;,’ql))zy“DnyJro,?, (14)

where o~ and ¢ =19 denotes the standard deviations of
X? and X7 in the (/ — 1)-layer defined following Eq. (9). Vari-
ables x and y are independent standard Gaussian variables.
Notion C{L~") denotes the correlation between X? and X4 in
the (I — 1) layer. Please note that subscript i in Eqs. (11)—
(13) can be eventually dropped in Eq. (14) because there is
independent and identical assumption on the components of
X? and X4.

C. Phase space of information propagation

Let us contextualize the above mathematical definitions
with physics backgrounds. While studying information prop-
agation, we expect to understand how the global extrinsic

J

chO — 1
P o (0, op)*

whose fixed point can be readily found as C¥ =1 after di-
rect calculation. The stability of this fixed point, however,
cannot be directly confirmed. Therefore, we need to analyze
¢ (o, 0p), the Qslope of C,(fq) around C;q =1 given a setting
(ow, op) [see Fig. 3(d)],

@)
Cpq

aCH "

$(ow, 0p) = (16)

ch=1
= 0@/ V' (0 (0w, 0)x)*Dx, (17)
R

1
=FIE{tr[(D(”W(”)TD(”W(”]}. (18)
1

(

curvature of latent Riemannian geometry in inputs (i.e., the
relation between two input signals X” and X?), a key factor
underlying the expressivity of neural networks [58], evolves
across layers.

We wonder if the difference between X? and X¢ will be
principally maintained, enlarged, or reduced during informa-
tion propagation. To answer this question, we first explore the
stable fixed point of ¢ in Eq. (9) as a function of (o,,, 03) €
R x (0, 00) because the length of each propagating signal
in the downstream layer will rapidly converge to this stable
fixed point. After confirming the stable fixed point, denoted
by o* (0, 03), we set 0 VP = ¢4 = 6*(,,, 03,) in Eq. (14)
and divide Eq. (14) by *(oy, o)) to obtain the iterative dy-
namics of the correlation between X? and X7 [see Fig. 3(b)],

<03;//w[a*(ﬁw,ﬁb)x]w{G*(Ow,ab)[C;Z_l)X—I- 1—(C,()lq_1))2y:|}Dny+o§>, (15)
R JR

(

In Eq. (17), notion ¥'(-) denotes the derivative function of
¥ (). In Eq. (18), notion D) is a diagonal matrix D) =
diag([y'(X{"), ... ¥/ (X{)D) such that J© = DOW® can
be understood as the input-output Jacobian matrix of the
Ith layer [46,47]. Notion tr(-) denotes matrix trace. The
expectation is calculated by averaging across all possible
configurations of DOW® in Eq. (18). As suggested by
Eq. (18), parameter ¢ (o, 0p) can be understood as a stretch
factor because any random perturbation 7 in the (I — 1)th
layer, X + v, implies a subsequent perturbation in the /th
layer, X*+D 4 J¢=Dy with a stretch effect measured by
¢ (0w, 0p) = E(IJDv]13/llv]I3) [58]. The effect corresponds
to growth if ¢ (o, 0p) > 1 and corresponds to shrinkage if
¢ (0w, 0p) < 1 [see Fig. 3(d)].
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The fixed point C;q = 1 is stable when ¢ (0, 05) < 1 while
it is unstable when ¢(oy,0,) > 1 [46,47,58]. In the case
where C;q =1 is stable, all possible relations between X”

and X¢ eventually converge to a strong correlation (i.e., X7
and X7 become increasingly similar as / increases). In the
case where C,, = 1 is not stable, X” and X7 become increas-
ingly separable as they propagate. Consequently, the condition
with ¢(oy,0p) = 1 naturally defines a boundary separat-
ing between two phases on the plane of (o, 0p). The first
phase, corresponding to the case where signals become sep-
arable during information propagation (i.e., ¢ (o, 0p) > 1),
is referred to as the disordered phase. The second phase,
corresponding to the case where signals converge to correlated
states [i.e., { (o, 0p) < 1], is the ordered phase. Please see
Fig. 3(d) for illustrations of the phase space. As suggested by
Refs. [46,49], the ordered and disordered phases correspond
to vanishing and exploding gradient problems, respectively.

Apart from defining a phase transition boundary between
ordered and disordered phases, we can further consider the
dynamic isometry condition, a special point on this boundary
[see Fig. 3(d)]. Specifically, we can understand ¢ (o, 03) in
Eq. (18) as the second moment of the singular values of
JO =DDOWO or, equivalently, the first moment of the sin-
gular values of H") = (J)T J©,

1 1
L(ow 0p) =D 07 =—> ki (19)
Ni ; NI
where [0y, ...,6y] and [, ..., Ay,] are the singular values

of J) and H?, respectively. Dynamic isometry is defined as
a case where the singular values of H”) not only have a first
moment of 1 but also satisfy A; = 1 foreach i € {1,...,N;}.
To reach the dynamic isometry condition, we can consider
a situation where the second moment of the singular val-
ues of H® approaches to 0 while the first moment equals
1. As suggested by Ref. [49], free probability theory [59]
can be applied to derive the probability distribution of the
singular values of H?) to realize this objective. Detailed cal-
culations of dynamic isometry point (o, ;') across different
activation functions ¥ (-) or network architectures have been
provided by Refs. [47,49-51] and we summarize the general
method in Appendix A. Based on the method, it has been

J

E{[X{ - E(X")]IX; - EX)]}

(l P (0) ’

0 _
¢ =

Ni—y

0 N
(l) o) Z{W / / |:Cik X +
l

N

J

where oi(o) denotes the second moment of X;, the ith compo-
nent of input signal X, and O’;Z) denotes the second moment

demonstrated that orthogonal weights, i.e., (W®)TW® =1
for each / (notion I denotes the identity matrix), and a non-
ReLU-type activation function ¥ (-), i.e., ¥ (r) # max(0, r)
for each r € R, can achieve dynamical isometry in neural
networks [47,49].

Till now, we have reviewed and unified existing studies
on mean-field behaviors and dynamic isometry of neural net-
works [46,47,49-51,56-58] to present a general framework
for analyzing information propagation in infinite-width neural
networks. This framework supports us to rethink the limitation
of existing theories and explore undiscovered laws governing
neural networks.

III. ON THE LIMITATION OF CLASSIC
MEAN-FIELD APPROXIMATION

In this section, we point out the limitation of classic
mean-field approximation in characterizing neural networks
as information channels.

A. Rethinking the classic mean-field approximation:
A strict perspective

Let us rethink the validity of the classic mean-field ap-
proximation summarized in Sec. II in defining the channel
capacity of neural networks. At the first glance, the rethinking
seems to be unnecessary because Sec. II has suggested how
neural networks serve as channels where information propa-
gates across layers in a mean-field manner. However, as we
suggested below, the independent and identical assumption
in classic mean-field theory may imply unexpected errors in
correlation measurements.

Correlation C, irrespective of being measured between any
pair of variables, should be located within the interval of
[—1, 1] [see Fig. 4(a)]. An approximation framework is in-
valid if it enables a correlation to be larger than 1 or smaller
than —1 with a nonzero probability [see Fig. 4(a)]. Different
from the correlation between two inputs, X” and X9, in the /th
layer defined by Eq. (15), here we consider C[(j(.)’l), the correla-
tion between the ith component of an input signal, X;, and the
jth component of propagated signal in the /th layer, X;l), in
Eq. (20). Please see Fig. 3(b) for illustration. This correlation
reflects how an input evolves during its propagation from the
1-st layer to the /th layer. Specifically, we have

(20)

_ 2
1— (") yk]kaDyk}, 1)

= (I)ZW(”C(OI “[/Rw(o,f’“zk)szzk], (22)

(

of Xy), the jth component of propagated signal X [see
Fig. 3(b) for illustration]. In Eq. (21), every Dx; and Dy
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(a) Real situation Classic mean-field approximation

0@~ b 20N, Y isa Chi- iabl
i~ e, X (Nie) is a Chi-square variable

whose variance approaches to 0 in the

infinite-width neural network. Therefore, ij

can be treated as a constant.
e e -11
11 €[-11]

c(lt;l) €[-11] C’EJO'D~L,HN(;L, o) is a certain scaled
o
() j
653 e [-11] Gaussian random variable
0,1
el e [-11] |
— o
o o
= =
— a
] al I 1

—1 Correlation 1

—1 Correlation 1

Two possibilities where classic mean-

field approximation empirically holds
Case 1: the variance of C oD ,N(y, o) is

an infinitesimal approaching to O

Both possibilities do not hold as
proven by our analysis

The variance of CE?’”must be a constant
number rather than an infinitesimal

because it is the product of constant terms

el

2 |

=

a " ne on
Being a constant, the variance of C’ an

—1 Correlation 1 not be 0 because all factors are non-zero

Case 2: the variance of Cf‘,”l)N %.N‘(u, o)is o)
% Cfi’ has non—zerolconstant variance
strictly 0
Q
o
2 £
a
| 1

—1 Correlation 1 —1 Correlation 1

FIG. 4. Conceptual illustrations of the limitation of classic mean-field approximation in correlation measurement. (a) In real cases, the ith

component of an input signal, X;, and the jth component of propagated signal in the /th layer, X;

") should always be located within [—1, 1].

However, the independent and identical assumption held by classic mean-field assumption 1mphes a nonzero probability for the measured
correlation, ij(?‘[), to be larger than 1 or small than —1 because Ci(/(.)'” follows a specific Gaussian distribution. (b) Although a Gaussian variable
with an infinitesimal variance approaching to O or a strictly zero variance can be empirically treated as a constant and may be valid to serve
as a correlation (e.g., when the constant is located within [—1, 1]), the measured correlation C(O D s proven to dissatisfy both cases and has a
constant nonzero variance. Consequently, it is invalid even from an empirical perspective.

are standard Gaussian measures. Because these measures are
identically and independently distributed, their integration
over R can be uniformly represented by the integration of a
standard Gaussian measure, Dz, over R in Eq. (22).

To verify the possibility for Ci(]o‘l ) to be larger than 1 or
smaller than —1, we can analyze its support set (i.e., if [—1, 1]
is a proper subset of the support of Cl.(;)’l), then Cl.(](.)’l) has
a nonzero probability to reach an invalid value). As shown
below, our analysis is implemented based on two main steps.

First, the second moment term in Eq. (22) is formally
measured as [see Fig. 3(b) for illustration]

- 2
N1
(o) = | o wiw ) e
k=1
_Nl 1 2
—E ZW(” X))+ @3
which can be reformulated as
N
(o) = ) o VL) - )
(24
Ni- s 5
=D (W) E[v(x{")]. (25)
k=1

The reformulation holds because of E[w(X,(f_l))] = 0 (hint:
all common non-ReLU-type activation functions in deep
learning are odd functions while the probability density of
X" is an even function) and E[y (X¢~D)y (X )] = 8,
where §.. denotes the Kronecker é function (hint: the inde-
pendent and identical assumption). It is trivial that Eq. (25) is

equivalent to
2
(o) =a Y~ (W) ~
k=1

where we define o = ]E[w(X,(f*”)z] for each k under the
independent and identical assumption (i.e., « is same for every

Ni—1

o2
X 2(Ni—1),

N, (26)

k in the (I — 1)th layer), notion x>(-) denotes the Chi-square
random variable [see Fig. 4(a)]. Equation (26) is derived from
the independent and identical assumption that WYk) iid. ~

2
N0, %). In the infinite-width limit, we discover that the
variance of such a Chi-square variable vanishes

4
lim 2N, 2 =0
N2

Nj_j—o00 -1

27

In other words, this Chi-square variable can be reasonably
treated as a constant in an infinite-width neural network
[Fig. 4(a)].

Second, we can define 8 = fR 1//(0,(([ 71)zk)szzk for each
k under the independent and identical assumption [i.e., 8 is
same for every k in the (I — 1)th layer], which supports us to
rewrite Eq. (22) as

Ni—i

HO1-1) 4 B
@ZW Ci

.0y _
C oW
9j

N, o), (28)

9j
where the right part is derived based on the central limit
N’ | W(Z)C(OI D 4 N(u, 0)). As suggested
by Eq. (28), Ci(f l) is a Gauss1an random variable. Therefore,
interval [—1, 1] is always a proper subset of the support of
Ci(j(.)’l), suggesting the limitation of the independent and identi-

cal assumption held by classic mean-field approximation [see
Fig. 4(a) for illustration].

theorem (i.e.,

B. Rethinking the classic mean-field approximation:
An empirical perspective

Certainly, one can still treat the independent and identical
assumption as reasonably valid if the variance of Ci(;”) equals
0 or becomes an infinitesimal approaching to 0. In these cases,
correlation C O can be generally analyzed as a constant from
an empirical perspectlve [see Fig. 4(b)].

However, as we suggest below, correlation Cl.(;)’l) in-
trinsically features a nonzero and finite (i.e., not being
infinitesimal) variance in deep neural networks. Before our
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formal explanations, we first note that any input X (e.g., data)
of deep neural networks should have a finite dimension even
though we apply classic mean-field approximation to consider
infinite-width neural networks. This is because the dimen-
sionality of X is determined by the learning task itself as a
priori and should not be tampered. Given this property, let us
consider a case where each component of X is independently
and identically distributed (i.e., uncorrelated),

CX;. X)) :=C" =6 . (29)

By simple calculation based on Eqgs. (20)—(22) and Eq. (29),
we can derive the correlation between the ith component of an
input signal, X;, and the jth component of propagated signal
in the 1th layer,

it = o0 “{/wmeDﬁ, (30)
where o j ) can be further calculated following Eq. (25)
W fg ¥(0i2)zDzi
C[}(J(')A,l) — ij [f]R ] ' (31)

21 (W) ELy (X0))

Notion Ny measures the dimension of input X. Based on
Eq. (31) and Egs. (20)—(22), it is trivial to derive the following
variance items:

M
vier") = Ew&ﬁ ! %ﬁ%wz
e1 (Wi
X [/R W(UiZi)ZiDZiT (32)
and
v (cony = Zulle Vowubal ), (33

()2
(Gj )
where we momentarily use V(-) to denote the variance to
avoid confusions on mathematical symbols.

Let us primarily prove that V(Ci(](.)‘l )y in Eq. (33) cannot
be an infinitesimal approaching to O (i.e., V(Ci(j(.)’l)) is a finite
real number). Because Ny € N7 is finite, we know that each

2
Wf!) ii.d. ~ N(O, J—W) has a finite variance, which further im-
w(l) (w(l))z

(W“) )_ ([ka\’ w<1>)2]»

the remaining part of the terms in Eq. (32) equal certain finite
(1)
0,1
(W(I))Z) makes C( )

intrinsically have a finite variance. Accordlng to Eq. (33), this
property further makes V(Ci(j(.)’l)) finite for any / € N*. Please
see Fig. 4(b) for a summary.

Given that V(Cf;)‘l)) in Eq. (33) is a finite number, we turn

to proving V(Cl.(](?’[)) # 0. The proof can be readily derived

plies that V( ) is finite. Because

real numbers, a finite value of V(

from the following facts. First, term W in Eq. (32)
cannot be 0 because the squared output of an appropriate
nonlinear activation function ¥ (-) cannot be infinite (other-
wise deep neural networks inevitably involve with numerical
issues). Second, term fR ¥ (0;z;)z;Dz; cannot be 0 because

the integral of the product of () and z;, two odd functions,
( D

over R must be nonzero. Third, term cannot have

W(U)z
a zero variance otherwise all Welghts 1n the 1-st layer be-
come the same and immutable. Taken together, we know that
V(C(O Dy #£0 always holds in Eq. (32). Based on the iterative
dynamlcs defined in Eq. (33), it is not difficult to see that
V(C(O’l)) # 0 holds for any [ € NT because the coefficient

term of V(C(0 =Dy can be trivially proven as nonzero follow-
ing a similar 1dea For more details, one can see Fig. 4(b) for
a summary.

In sum, even from an empirical perspective, the inde-
pendent and identical assumption is invalid in correlation
measurement because CI.(;)‘I) is a Gaussian variable with
nonzero and finite variance, whose support may include il-
logical values (i.e., smaller than —1 or larger than 1).

IV. MUTUAL INFORMATION MAXIMIZATION
AT DYNAMIC ISOMETRY

In this section, we present our theory on the possibility
for neural networks to be initialized toward optimal in-
formation channels. To overcome the limitation of classic
mean-field approximation, we propose a restricted mean-field
approximation framework that does not imply a Gaussian
distribution of correlation with nonzero and finite variance.
Then, we introduce Gaussian information bottleneck [60,61]
into our analysis, which relates our objective of optimiz-
ing Z(¢(X); X) with maximizing a lower bound of mutual
information and supports analytic derivations. Finally, we an-
alytically prove that mutual information between input and
propagated signals is maximized at dynamic isometry.

A. Restricted mean-field approximation
and Gaussian information bottleneck

As suggested in Sec. IIT A, the key limitation of clas-
sic mean-field approximation arises from the independent
and identical assumption applied on all variables with-
out constraints. Although some variables, such as weight
and bias, can be assumed as independently and identi-

cally distributed [i.e., each W(l) iid. ~ N(O,

l(l) iid. ~ N(O, obz)], it is less reasonable to apply indepen-
dent and identical assumption on the components of input X
(i.e., each X i.i.d. ~ a certain distribution). This is because
the joint distribution of the components of X has been defined
by the learning task as a priori and should not be modi-
fied. Meanwhile, this unreasonable independent and identical
assumption also makes Xf” i.i.d. ~ a certain distribution for
each | € N*, which eventually leads to the central limit
theorem in Eq. (28) and implies a Gaussian distribution of
correlation C;; o.n

Given the above analysis, a natural idea for develop-
ing a restricted mean-field approximation is to exclude the
independent and identical assumption on the components
of X [see Fig. 5(a)]. In the restricted approximation, there
is no constraint on the joint distribution of X;. Therefore,
Xgl) in the propagated signal may not be independently and
identically distributed as well. A direct consequence of this
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(a) Classic mean-field approximation Restricted mean-field approximation

Restricted independent and identical
assumption:

Object Definition

Independent and identical assumption:

Object Definition

Welght' wi i.i.d.~v (0,75) WeIBNt WD i.i.d.~ (0,74

Bias ¢ iid.~N(0,02) Bias &0 iid.~N(0,02)
Input  X; i.i.d. ~a distribution Input  No requirement for X;
©b _ weon & ﬁ b _ 0e0b & /”
Cij o) Z i € >~ N (w0) Cij (z) Wm i 2 —pNwo)
=1 9 k=1 J
Does not hold
Ne] -8 Unknown
E & but valid
| distrlbutlon‘l

—1 Correlation 1 —1 Correlation 1

(b) Lower bound on mutual information Maximization of the lower bound

1. det(Z@)det(z®)
det(Z(OD)

det(C©9)
JeH(COD — COD (CTh) 1 (COD)Ty

log(

det(1 - p2 1L,
MI between random
variables with a same

Xis the Zisa

original Gaussian

Disordered phase
input variable

covariance as Z and Z®

Gaussian information bottleneck
DI EOC

related

IXXD)——3(Z;20) = 3

T is analytically proven
as maximized at DI
Ordered phase

Lower bound of 7 3

FIG. 5. Conceptual illustrations of the restricted mean-field approximation and the maximization of a lower bound of mutual information
in the phase space of information propagation. (a) The restricted mean-field approximation differs from the classic one by excluding the
independent and identical assumption on the components of input signal X. This difference makes central limit theorem do not hold and
imply a non-Gaussian distribution of correlation ij(.)‘”. (b) Although the restricted mean-field approximation overcomes the limitation of
the classic one, its loose constraints make the analytic characterization of information channel properties nearly impossible. To create the
possibility of analytic derivations, Gaussian information bottleneck is introduced into our analysis to relate the arbitrarily distributed input
signal X with a multivariate Gaussian variable Z. Maximizing Ty, the lower bound of Z(Z; Z"), is closely related to optimizing Z(X; X")
according to Gaussian information bottleneck. Our theory analytically proves that Z», is maximized at dynamic isometry, which is validated

by computational experiments on real neural networks as well.

correction lies in that the central limit theorem in Eq. (28)
no longer holds and the empirical distribution of Ci((.)’l) does
not converges to a Gaussian distribution [see Fig. 5(a) for
illustration]. Consequently, the restricted mean-field approx-
imation does not suffer from the limitation of the classic one
while characterizing neural networks as information channels.
Certainly, this correction also proposes critical challenges
to analytic derivations because the distributions of X(Z) nd

C(O D= ff,) Q’I 4 W(Z)C(,? =1 Jack close-form expressions in

most general cases.

To create a possibility for analytic derivations, we suggest
to include Gaussian information bottleneck [60,61] into our
analysis. In general, we can consider a transform that maps
X to an arbitrary Gaussian variable Z (there is no constraint
on the first and second moments of Z). With an appropriate
transform, we can principally treat Z as the “Gaussian part”
of X. As suggested by Ref. [60], optimizing the information
bottleneck or mutual information associated with Z will also
reflect the corresponding optimization associated with X [see
Fig. 5(b)]. The benefit of such a connection lies in that Gaus-
sian information bottleneck and Gaussian mutual information
have analytic expressions and clear mathematical properties
to support our analysis [60,61]. Following the idea of Gaus-
sian information bottleneck [60,61], we suggest to empirically
consider a Gaussian counterpart Z of a given X where Z is
derived following the approach introduced in Ref. [60]. The
algorithm proposed by Ref. [60] ensures that the derived Z is
a “Gaussian part” of X with Z(¢(Z); Z) < Z(¢(X); X). There
is no other constraint on Z. Meanwhile, signal Z) is not re-
quired to maintain its Gaussian properties during information
propagation in a neural network [i.e., ¢(Z), the output of a
neural network, can be an arbitrary variable].

In our work, we do not need to explicitly consider the
actual form of Z derived following Ref. [60]. This is because
the following inequality holds irrespective of what detailed
properties that Z features as long as Z is a Gaussian variable

[see Fig. 5(b)],

L(Z;Z2") > T (Z; ), (34)
1 det(T©) det(TD)

= -1 35

2° [ det (£0D) ] (33)

where £© and =@ denote the covariance matrix of Z and
7D, respectively (i.e., each element in the matrix denotes the
covariance between a pair of components of signals). Matrix
%D is the covariance matrix measured between the compo-
nents of Z and Z"), which is a direct generalization of £® and
%@, Please see Fig. 3(c) for illustrations. Notion Znr(Z; Z")
denotes a special case of mutual information where Z and
Z" are jointly Gaussian while they maintain the original
moment properties (i.e., expectation and covariance remain
the same). Please see detailed proofs of Egs. (34) and (35) in
Appendix A. Meanwhile, one can find an equivalent version
of Egs. (34) and (35) in Ref. [62].

Let us think about the above process reversely. We can
analyze the case where Z is an arbitrary Gaussian variable to
measure mutual information Z(¢(Z); Z). There always exists
a certain input X that satisfies Z(¢(Z);Z) < Z(¢(X); X) if
we reversely solve the transform problem in Ref. [60]. As
suggested by Eqgs. (34) and (35), we can primarily focus on
In(Z;ZD), alower bound of Z(¢(Z); Z) in analysis because
it has a closed-form expression. Once Z(¢(Z);Z) is max-
imized under specific condition, mutual information terms
L($p(Z);Z) and Z(¢(X); X) are both maximized because of
their lower bound relations [see Fig. 5(b) for illustration].

B. Simultaneous maximization of mutual information and 8

Given the importance of the lower bound of mutual infor-
mation defined in Egs. (34) and (35), we begin our formal
analysis on it at first. To relate our calculations of Eq. (35) with
the phase space of information propagation, we can first con-
sider the mathematical connection between covariance matrix
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and correlation matrix. In the limit of infinite-width, we can
treat the variance of each component ZEI ) of the propagated
signal Z( as generally similar (i.e., the fluctuation of variance
is sufficiently small compared with network width such that
ok(l) principally maintains the same across different k in the
[th layer). This simplification supports us to follow the idea
underlying Eq. (22) to derive a correlation matrix,

V= =P W/a,)7, (36)

where the (7, j)th element in the matrix measures the correla-
tion between Z; and Zy) [see Fig. 3(c)]. Term B remains the
same as its definition in Sec IIT A,

w (l 1)
—a | m o ) 37

— 0, Ylo* (Gw,ob)z)]ZDZ’ (38)

R O'*(O—w,()'b)

where Eq. (38) is derived by replacing o}l) and ak(l_l) with
the stable fixed point o*(oy, 0p) mentioned in Sec. IIC.
As suggested later in Sec. V, this replacement is rea-
sonable because the convergence rates of o) and Gk(l_l)
to o*(oy,0p) are high. Please note that the subscript k
in Eq. (37) can be eventually dropped in Eq. (38), be-
cause B is same across different k£ in the (I — 1)th layer.
Based on Egs. (36) and (38), we can derive the recursion
equation of CcoD,

!
CcOh — glcO0 l—[ WD /5,7 (39)
i=1

Our next step is to relate Eq. (39) with the lower bound
of mutual information in Eq. (35). Applying the property of

J

IN(X; X(l)) P

the determinant of block matrix, we can reformulate term
det(2©D) in Eq. (35) as

det (@) = det () det [2@ — DO COD

% D(l)(Za))—lD(l)(C«),l))TD(m], (40)

where D) = diag(£?)? and D© = diag(X®)2, i.e., their
diagonal elements are the standard deviations of signals.
Please note that Z and Z") are jointly Gaussian while calcu-
lating Zxr(Z; Z"). Therefore, their covariance matrices, X
and X, are invertible in Eq. (40). Then, we can notice that
O = pOCOOPO gpd 3O = pOCEODD, Therefore, we
can reformulate the lower bound of mutual information as

IN(Z;ZD)

1 det(Z@) det(Z?
)
L do2) )

2 det[Z© — DOCODH(CEDY (O DO )

(42)

1 det(CO®

=3l <det[C(°~°) - c<0,(l>(c<l,l)>)1(c<0-fl>)T])' )

In Eq. (42), we have replaced D (X")~'D® with (C?-D)~!
for simplification. Equation (43) is obtained by dividing the
numerator and denominator of Eq. (42) by [det(D®)]? simul-
taneously. In Eq. (43), matrix C-!) is a constant matrix across
different layers when signals arrive at their stable states shown
in Eq. (38). Matrix C®? is fully determined by input Z [see
Fig. 6(a)].

After substituting Eq. (39) into Eq. (43) and dividing the
numerator and denominator of the derived result by C*?), we
can obtain the following equation:

1
log
2 (det IEEhil

Please note that we have replaced (C*9)" with CO9 to
improve the readability of Eq. (44) because C*? is a sym-
metric matrix. In Eq. (44), term ]_[ﬁzl W@ /g, is completely
determined by the type of weight distribution used in neural
network initialization. Meanwhile, matrices C©? and C¢-D
have been suggested as fully deterministic. Therefore, term
B = B(oy, 0p) is the only one nontrivial variable in Eq. (44)
remaining for analysis.

The above analysis hints us to focus on the possibility that
Tnr(Z;Z) can monotonically increase with 8 = B(oy, 03)
in Eq. (44) [see Fig. 6(a) for illustration]. Below, we present
our detailed derivations. For convenience, we define

M = 1‘[<W<’>/o ety ! HW”)/ow (45)

i=l

as a shorthand. We notice that we can equivalently verify
whether det(I — /SZIMC(0 0) monotonically decreases with

1
(W0 /0,)" (€D) [T WO/0, €O ) | .

(

B since Zn(X;X?) monotonically decreases with det(I —
BEMCO0). Because CO0 is a positive definite matrix, we
can apply Cholesky factorization on it, i.e., CO9 =LLT
where L is a lower triangular matrix whose diagonal elements
are positive. Then, we have

det(I — B¥MC )
= det(I — B¥MLLT), (46)
= det(LT (L)' = BALTMLLT (LT)™"),  (47)
= det(I — BYL"ML). (48)

Given that M is a positive semi-definite matrix, we know
that LTML is also positive semi-definite. Let {w;|i =
1,. d1m(M) w; > 0} be a set of eigenvalues of matrix
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FIG. 6. Conceptual illustrations of the maximization of the lower bound of mutual information at dynamic isometry. (a) Because
Ta(Z; ZD), the lower bound of mutual information, monotonically increases with 8 < 1, maximizing Zy-(Z; Z") is equivalent to maximizing
B < 1, whose condition is analytically derived as 0* — 0. Meanwhile, the condition of dynamic isometry can also be proven as o* — 0 based
on the free probability theory. (b) Consequently, there are equivalent relations among dynamic isometry, lower bound maximization, and
B = 1. As shown in the analytically calculated plane of B(o,, 0,) (the edge of chaos is represented by a purple line while dynamic isometry
point is marked by a star), there is 8 = 1 at dynamic isometry (DI), suggesting the maximization of Zy-(Z; Z"’). Here the plane of (o, 03)
is calculated based on a commonly used nonlinear activation function, tanh(-), in deep learning.

LTML, we have

dim (M)
det@ — p*MC*) = [T (1 - p o).
i=1

(49)

Let us assume that the range of ,32 is [O,Bz), where 0
stands for zero correlation. To ensure the nonnegativity of
Ta(X; XD) (i.e., mutual information cannot be negative), we
know that det(I — BZMC©), a continuous function with
respect to 8%, should be in an interval of (0, 1]. According
to Eq. (49), this nonnegativity requires_that w; € (0, 7).
Meanwhile, to ensure that det(I — BZMC©®) can mono-
tonlcally decreases with 8 = B(oy, 0), we can derive w; €
(0, B~2') based on the continuity and nonnegativity. We can
immediately find that these two requirements of w; are consis-
tent with each other. Therefore, we can prove that Zy-(Z; Z"))
monotonically increases with B(oy, 0,) [see Fig. 6(a) for a
summary].

Given a specific weight distribution and a certain network
depth defined for neural network initialization, terms CcO.0,
1., W®/o,, and C*" are principally fixed. Therefore,
initializing neural networks for mutual information maximiza-
tion essentially requires us to maximize B(oy, 0p), Whose
condition is analyzed in Sec. IV C.

C. Mutual information maximization at dynamic isometry

As we have proved in Sec. IV B, the maximization of
the lower bound of mutual information is equivalent to the
maximization of (o, 05). Below, we prove that §(o,, 0p)
is maximized at dynamic isometry. For convenience, we use
B, ¢, and o* as the shorthands of (o, 03), {(0y, 0p), and
o*(oy, 0p) in our derivations.

Reformulating the one-dimensional integral as two-
dimensional integral by Cauchy—Schwarz inequality, we can

derive

2
[/ w(o*z)zDz] =/ / Y(o*x)¥ (o*y)xyDxDy, (50)
R R JR

< / / ¥(o*x)y*DaDy,
RJR

where equality holds only if 1/ (o*x)* o x%. Because o* satis-
fies

(G

(c*)Y =02 / ¥(0%2)’Dz + o, (52)
R

we can combine Eq. (52) with Egs. (38) and (51) to prove

B < 1wheno* #0,

2
[ / I/f(a’“z)zDz} < / / ¥ (o*x)*y’DaDy, (53)
R R JR
2
aj[/ w(a*z)zDz} < (0",
R

B < 1.

As for the situation where o* — 0, we can prove that
T (X;X?) is maximized at dynamic isometry by proving
B = 1 under the corresponding condition. As a priori knowl-
edge, we can know lim,_, ;- ¥ (z) = ¢ € R (i.e., the integral
result is a constant) and |¢'(0)] > |¥/(z)| because ¥ (-), an
activation function of neural networks, is usually an odd func-
tion that is convex in [0, co] and satisfies lim,_, .o, ¥ (2) =
¢ € R. These properties support us to derive the following
proof. First, based on the convex property of ¥/ (-) and 1 =
fR 72Dz (i.e., Dz is a Gaussian measure), we can derive

(@) = / (@")2’Dz >
R

(54

(35)

ai / ¥ (oPz)*Dz (56)
R

when o, < W Here the equality holds only if o® = 0.
Based on Eq. (56), we can see that any (U(”)2 will decrease
until it arrives at (6*)?> = 0 when o,, < 7O (0) and o, = 0. In
other words, point 0* — 0 is a stable fixed point only if o, <
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m and o5, = 0. Second, given the condition for 6* — 0 to
become a stable fixed point, we can further prove that g = 1
may emerge under this condition. Our derivation utilizes an

equality obtained in Appendix B,

Y'(0) = lim / W(Z*Z)ZDZ. (57)
o*=0 Jr

Substituting Eq. (57) into Eq. (38), we can see the desired
combination of (o, 05) for 8 = 1 when * — 0,

B 1
Oy = = * = 5
limg«_q f]R alp(g,f“jr)b)zDz w/(o)

op =0. (59)

(58)

To this point, we have derived Eqs. (58) and (59) as the
sufficient and necessary condition for g to take its maximum,
ie., T (X; XD) takes its maximum, which will be shown as
exactly the condition of dynamical isometry in our subsequent
analysis.

Although previous studies have addressed the condition
of dynamical isometry in linear [63] and nonlinear neural
networks [47,49] as suggested in Sec. II C, it remains unclear
if it is possible to relate the condition of dynamical isometry
with our theory. Below, we present our detailed derivations
of dynamic isometry point (o, o)) based on free probability
theory [59] to suggest such a possibility.

The key idea in our derviations is to take advantage of
the property of S-transform concerning matrix multiplication
[64,65]

Syv (2) = Sy (2)Sy (2), (60)

where U and V are two freely independent random matrices.
Because the Jacobian matrix of the neural network can be
defined as

ax®
T X

l
=[[p“wW®, (61)
i=1

we can derive the S-transform of the Jacobian matrix

Syt (2) = S Sty pwo @: (62)
where D® is a diagonal matrix whose diagonal elements are
D(j’; = W(X;’) ) (please note that the definition is different
from the matrix D) analyzed before). In the derivation of
Eq. (62), we have applied that D = D® and W@ = W®
for any pair of (a, b). This property holds because every layer
in the neural network shares the same network initialization
settings and signals in every layer share the same marginal
distribution if they are at the stable fixed point.

Following the idea in Ref. [49], we can derive an implicit
equation for eigenvalue spectrum of H® = (J?¥) J® based
on Eq. (62),

1 1 17%
MH(/)(Z) — Mf) {ZISwTW[MH(I)(Z)]I:l + MH(“(Z)] }9
(63)

where M is a moment generating function. After expanding
Eq. (63) in the powers of z!, the expression of the first two

moments of the eigenvalue spectrum of H) can be obtained
as

my = (Giﬂl)l, (64)
my = (03);11)2’(’:‘—2 I s1>l, (65)
231 l

where we define fiy = [ ¥'(0*z)*Dz. Meanwhile, one can
notice that m; is exactly equivalent to ¢ defined in Egs. (16)
and (17). For scaled orthogonal initialization (i.e., weight
matrices are initialized as orthogonal random matrices), we
have s; = 0. For scaled Gaussian initialization (i.e., weight
matrices are initialized as Gaussian random matrices), we
have s; = —1. More calculation details of s; can be seen in
Ref. [49].

As suggested in Sec. II C, dynamic isometry requires that
the first moment of the eigenvalue spectrum of H) equals
1 while the second moment approaches to 0. In deep neural
networks, we reasonably relax the restriction on the sec-
ond moment and require that the second moment does not
increases with network depth [ significantly. Applying the
Cauchy-Schwarz inequality, we can derive

2
1y = (/ 1/f/(cf*z)zDz> < /w/(o*z)4Dz =[l2, (66)
where the equality holds (i.e., /1% = fip) if

V' (0%2) « ¥ (072) & o* — 0. (67)

In the case where m; = 1 and ;1% = flp, we can readily ob-
tain mp, = 1 (i.e., the second moment is a small constant)
for orthogonal initialization and m; =1+ 1 (i.e., the sec-
ond moment increases with network depth linearly instead
of exhibiting explosive growth) for Gaussian initialization.
Moreover, we can know that o* — O enables m; = 1 (or
equivalently ¢ = 1) to imply o, = m, which is exactly the
condition of the maximization of 8 (or the maximization of
the lower bound of mutual information) defined in Eqs. (58)
and (59) [see Fig. 6(a) for a summary].

In sum, we have proven that the maximization of the lower
bound of mutual information and dynamic isometry shares the
same condition [i.e., Egs. (58) and (59)]. In other words, mu-
tual information Z(Z;Z®) and its lower bound Z (Z; Z")
are maximized at dynamic isometry [see Fig. 6(b)]. Because
Z is a “Gaussian part” of X with Z(Z";Z) < Z(X?V; X)
(or equivalently Z(¢(Z);Z) < Z(¢(X); X)) as suggested in
Sec. IV A, we know that Z(X®; X) is maximized at dynamic
isometry in more general cases.

V. EXPERIMENTAL VALIDATIONS

In the previous sections, we have presented our main theory
on the equivalence of dynamic isometry and mutual infor-
mation maximization, which is developed on infinite-width
neural networks. It is reasonable to question whether our
theory is valid on real finite-width neural networks in deep
learning or not. Below, we validate our theory on real neural
networks with various settings (e.g., different widths, depths,
inputs, and initialization conditions).
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FIG. 7. The plane of the lower bound of mutual information computationally derived on real neural networks. Experiment settings, such
as width, depth, input type, and initialization type, are presented along corresponding planes. Same as Fig. 6(b), the edge of chaos (EOC) is

marked by a purple line while dynamic isometry is marked by a star.

In Fig. 7, we implement our experiments on finite-width
neural networks with a widely applied nonlinear activation
function, tanh(-). To comprehensively verify the robustness of
our theory against finite size effects, we design these neural
networks with different widths and depths. To suggest the
applicability of our theory on more general cases where input
Z may not necessarily propagate at its stable state, we dis-
tinguish between stable inputs (i.e., propagating at the stable
state as our theoretical derivations require) and unit variance
inputs (i.e., with a unit covariance matrix that have not been
considered in our previous derivations). To show the capacity
of our theory to characterize orthogonal and Gaussian ini-
tialization, we conduct experiments under both initialization
conditions. In our experiments, we measure the lower bound
of mutual information between input Z and output ¢(Z) (i.e.,
ZD when [ stands for the last layer of the neural network)
based on Eq. (35), in which £©@, £®_ and X are com-
putationally estimated from the data. Given a combination of
width, depth, input type, and initialization type, we repeat
our measurement under each condition of (o, 0;) to obtain
a plane of the lower bound of mutual information. To offer a
clear vision, we also illustrate the measured lower bound of
mutual information along the edge of chaos given orthogonal
or Gaussian initialization and stable inputs as two instances
(see Fig. 8). As shown in Figs. 7 and 8, our experiment results
are consistent with theoretical prediction that the lower bound

of mutual information is maximized at the dynamic isometry
point (o, 0,) = (1, 0) (note that this point is confirmed by
whether o* — 0). Moreover, the distribution of the lower
bound of mutual information corroborates the distribution of
B analytically calculated in Fig. 6(b), where both 8 and the
lower bound of mutual information on the edge of chaos
increase as the condition moves toward dynamic isometry.

In sum, we have observed consistency between our theory
and experiments, which suggests the applicability of our the-
ory on real neural networks in deep learning.

VI. ANALYSIS WITH INFORMATION BOTTLENECK

To this point, we have analytically developed and com-
putationally validated our theory about mutual information
maximization at dynamic isometry. As an interdisciplinary
attempt, our work not only focuses on the statistical
physics of neural networks but also aims at offering in-
sights on deep learning techniques. When Zn/(Z;Z®), the
lower bound of mutual information Z(Z;Z") is maxi-
mized because the neural network is initialized at dynamic
isometry, we can know Z(X; X®) is also maximized ac-
cording to Z(Z";Z) < Z(X;X) in Sec. IV A. However,
we have suggested that maximizing Z(X; X)) is not equiv-
alent to making the neural network an optimal channel in
deep learning. Below, we attempt to present a comprehen-
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FIG. 8. Two instances of the computationally measured lower bound of mutual information on the edge of chaos. Experiment settings, such
as width, depth, input type, and initialization type, are presented. One can see that Z,,, the lower bound of mutual information, is maximized

near o, = 0, which corresponds to the dynamic isometry point.

sive analysis on the precise relation between maximizing
Z(X;X®?) and driving neural networks toward optimal
channels.

Given the difference between unsupervised and supervised
learning, we subdivide our analysis into two cases:

(1) In supervised learning, both sample, X, and target, Y,
are accessible for the neural network. Therefore, the optimiza-
tion objective reduces to the classic information bottleneck
[35-37], which is actually a special case of rate distortion
theory [52] and sufficient statistics theory [53]

max Li(@) :=T(¢(X);Y) —1L(p(X); X).  (68)

Encoding

Compression

In general, Eq. (68) defines an objective that the neural net-
work maximizes Z(¢(X);Y), the capacity to learn Y, during
encoding and minimizes the complexity of representation,
Z(¢(X); X), during compression. During initialization, we
suggest to maximize Z(¢(X);X) by initializing the neural
network at dynamic isometry because we know Z(¢(X); Y) <
Z(¢(X); X) according to the Markov chain in Eq. (1). This
approach can avoid that Z(¢(X);Y) is bounded by a small
value of Z(¢(X); X) and cannot be thoroughly optimized dur-
ing encoding. During compression, we suggest to minimize
Z(¢(X); X) while controlling the loss of Z(¢(X);Y) G.e.,
ensuring A|Z(¢(X);Y)| < k where k — 0) to avoid neural
network overfitting.

(2) In unsupervised learning, the only information ac-
cessible to the neural network is sample X. Therefore, the
optimization of neural network toward optimal channel can
be implemented following

max Ly(¢) = L(¢(X); X) —1Z(¢(X); A), (69)

Encoding

Compression

where A C N denotes the index set of samples. Parameter
7 € (0, 00) denotes a Lagrange multiplier. The objective in
Eq. (69) requires the neural network to maximize the en-
coded information in its representation, Z(¢(X); X), during
encoding and reduce the dependence of neural network repre-

sentation on sample index, Z(¢(X); A), during compression.
This optimization enables the neural network to learn Y =
y (X) under the assumption that sample distribution matches
target distribution [e.g., mapping y is invertible such that
Z(¢(X); Y) can be indirectly optimized through maximizing
Z(¢(X); X)]. An intrinsic difference between Eq. (69) and
classic information bottleneck [35-37] lies that there is no
strict Markov chain among A, X, ¢(X), and Y because the
definition of index set A is rather flexible in practice. During
initialization, we suggest to maximize Z(¢(X); X) by initializ-
ing the neural network at dynamic isometry. During encoding,
we suggest to continue to maximize Z(¢(X); X) and apply
random data shuffling, a standard trick in real training pro-
cesses [54,55], to make the neural network learn samples
rather than overfit sample index. During compression, we sug-
gest to minimize Z(¢(X); A) and ensure A|Z(¢(X); X)| < k
for k — 0.

In sum, although neural network initialization cannot com-
pletely determine the performance in subsequent learning
tasks, maximizing Z(¢(X); X) based on initialization at dy-
namic isometry is beneficial for neural network optimization
during the encoding phase. The above analysis may be closely
related to the empirically observed benefits of dynamic isom-
etry for neural network training (e.g., for convolutional neural
networks [51], feed-forward neural networks [46], and recur-
rent neural networks [66]).

VII. CONCLUSION

In this research, we have explored a frequently neglected
possibility that neural networks can be initialized toward op-
timal information channels in deep learning.

Compared with prior studies on related topics (e.g., studies
on mean-field dynamics [46,47,49-51,56-58] and mutual in-
formation maximization [62] in neural networks), our work
may contribute to both physics and deep learning in the
following aspects (see a summary in Fig. 2). First, we
present a unified framework to summarize existing works
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concerning the classic mean-field approximation of infor-
mation propagation in neural networks. Second, we indicate
the limitation of classic mean-field approximation in char-
acterizing neural networks as information channels (i.e., the
implied unreasonable distribution of the correlation measured
between inputs and propagated signals). Third, we propose
a restricted mean-field approximation of infinite-width neu-
ral networks to overcome the limitation of the classic one.
Based on the proposed approximation framework and the
mechanism underlying Gaussian information bottleneck, we
analytically prove that neural networks can realize mutual
information maximization between inputs and outputs when
they are initialized at dynamic isometry, a case where neural
networks serve as norm-preserving random mappings dur-
ing information propagation. Although initially proposed for
infinite-width neural networks, our theory is successfully val-
idated on real finite-width neural networks. Fourth, we have
explored an in-depth analysis on the relation between the mu-
tual information maximization emerged at dynamic isometry
and driving neural networks toward optimal channels in deep
learning tasks. These contributions may help researchers to
study the dynamics (i.e., dynamic isometry and information
propagation dynamics) and information (i.e., mutual informa-
tion and channel optimality) of neural networks jointly rather
than separately.

As a preliminary research, there are diverse intriguing de-
tails in our work remained for future exploration. Below, we
suggest two potential directions.

First, our presented analyses are limited to non-ReLU-type
activation functions (e.g., tanh(-) or the sigmoidal func-
tion) while ReLU function and its variants are provisionally
excluded from our framework. This is because the ReLU func-
tion family has been empirically demonstrated as incapable of
dynamic isometry, irrespective of being equipped with Gaus-
sian or orthogonal initialization [47]. However, there exist
numerous influential neural network applications built on the
ReLU function family (e.g., see instances in Refs. [67-71]),
which are nonnegligible for theoretical analyses. Therefore,
an important direction for improving our theory is to study
the statistical physics underlying the optimal initialization of
ReLU neural networks given that they cannot be driven toward
dynamic isometry [47] and may not become optimal channels
following our present theory.

Second, it may be important to accurately quantify finite-
size effects on our results under more general conditions. In
our present experiment, we demonstrate the robustness of
our theory against finite-size effects by verifying it on real
finite-width neural networks with different widths, depths,
inputs, and initialization conditions. Among these experiment
settings, inputs are chosen as the synthetic signals that ei-

J

ther propagate at the stable state (as required by theoretical
derivations) or are unstable and defined with unit variances.
The reason why we do not use real deep learning data sets
(e.g., the ImageNet [72] and the MNIST [73] data sets) as
inputs lies in the difficulties of high-dimensional covariance
[74-76] and mutual information [77-79] estimations. Esti-
mating probability densities and every concept built on them
in high-dimensional spaces can be extremely nontrivial and
error-prone [80,81]. Therefore, a direct verification of our
theory on the real deep learning data sets whose probability
spaces are high-dimensional and sparse may inevitably suffer
from the distractions caused by inaccurate estimators (e.g.,
it is difficult to tell whether the deviations between observed
results and theoretical predictions arise from finite size effects,
error-prone estimations, or the invalidation of our theory). In
the future, developing reliable covariance or mutual infor-
mation estimators and verifying our theory during real deep
learning tasks serve as necessary steps to generalize our the-
ory. We are positive for such a direction because numerous
deep learning experiments have offered indirect verification of
our theory [46,51,66]. Specifically, on real deep learning data
sets (e.g., the MNIST [73] and the CIFAR-10 [71] data sets),
the convolutional neural networks [51], feed-forward neural
networks [46], and recurrent neural networks [66] initialized
at dynamic isometry generally outperform the alternatives
initialized under other conditions in image classification and
sequence classification tasks (i.e., achieve higher accuracy).
Although these empirical studies have not estimated covari-
ance and mutual information due to the same difficulty met by
us, their results suggest that initialization at dynamic isometry
does help neural networks become optimal during subsequent
learning processes.

To conclude, the suggested connection between statistical
physics and deep learning in this work may be considered
as a starting point for more comprehensive interdisciplinary
studies bridging between these two fields.
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APPENDIX A: CALCULATION OF DYNAMIC ISOMETRY

In this section, we present our proof of Egs. (34) and (35). One can also see similar derivations in Ref. [62].
Let us consider f(Z), the probability density function of an arbitrary variable, and g(Z), the probability density function of a

multivariate Gaussian variable

1
8D = g P {

—%[Z —E@)"=V[Z - ]E(Z)]},

(AD)
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where X and [E(Z) denote the variance matrix and the mean vector shared by f(Z) and g(Z). Then, we derive

/f(Z)IOg (¢(Z)1dZ = —% log [(27)" det (X)] — % ff(Z) log{[Z — E(Z)" 7 '[Z - E(Z)1}dZ, (A2)
1 . tr(X-!'X%)
= ——log[(2n)"det ()] — ———, (A3)
2 2
= / g(Z)log [¢(X)]dZ. (A4)

After replacing g(Z) and f(Z) by g(Z;Z") and f(Z;Z"), constraining the marginal distribution as fz(Z) = gz(Z), and using
f(Z;Z") as the joint distribution of (Z; Z")), we can obtain

Z;2) 8(Z;Z)
T(Z,2V) — T (Z; 29 =/ 7,71 [ S :|dZdZ(’)—/ 7;7")1 [ }dZdZ”). A5
@27) —INE2T) = [ JEZ08 | ) b @®) L8| @ ) (A

Using fz(Z) = gz(Z), we can further derive

I(Z; 2V — I (2, 20) = — / Fao (Z ) 1og] fro (ZO)dZD + / gz (Z) log[gz0 (ZH)dZD

+ f f(Z; 2 og[ f(Z; ZD)dZdZD — / g(Z; 2 log[g(Z; Z)dZdZ" . (A6)
Based on Eq. (A4), we can reformulate Eq. (A6) as
yAS) 8(Z;Z2")
T(Z: 2D — Tpr(Z: 2D =/ Z0y10g | 822 F ) | yz00 f Z;ZD)log | =222 \aZdzZ® A7
(Z;Z2"7) — I ( ) Sz (Z')log T @) f( ) 770 , (A7)
ZO)f(Z;Z0)
— | 12 2)10g | 820 ’ dZdz?, A8
/ 7 )Og[fw(Z(’))g(Z; z0) (A%
= / FzoZO)Dir(frizolgzzn)dZ?, (A9)
> 0. (A10)

Based on Eq. (A10), Egs. (34) and (35) in the main text can be proven.
[

APPENDIX B: NECESSARY DERIVATIONS OF EQ. (57) [¥/(0)] > |¥'(2)| for any z # 0. Then, we have

In this section, we present our derivations of Eq. (57). Let . Yo )—Y(0) ,
us reformulate the right side of Eq. (57) as al*lgo 0%z 7Dz =y(0). (B2)
Based on the dominated convergence theorem [82], we can

btain
wa 2) Y(072) = Y(0) ©
/ Dz = @Dz (Bl [ YD)~ YO , : 2 :
o0*z lim | ————z"Dz=v¢'(0) | z°Dz = ¢'(0)
o =0 Jr o*z R

(B3)
where we have used the fact that ¢ (0) = 0. Because ()

based on Eq. (B2), which finishes our derivations on Eq. (57
is a odd function that is convex in [0, +00], we can know a- (B2) d- 57

in the main text.
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