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Generic optimization by fast chaotic exploration and slow feedback fixation
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Living systems adapt to various environmental conditions by changing their internal states through processes
such as gene expression and epigenetic modification. In this paper, we propose a generic mechanism for
optimization that combines fast oscillatory dynamics with a slower feedback fixation process. Through extensive
model simulations, we demonstrate that the fast chaotic dynamics serve as a global search for optimal states,
which are then fixed by the slower dynamics. This mechanism becomes more effective as the number of elements
is increased. We also discuss the potential relevance of this optimization mechanism to problems in artificial
neural networks.
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Biological systems can generally adapt to various en-
vironmental conditions by adjusting their internal states in
response to changing environmental conditions in order to op-
timize survival. The most well-known and studied mechanism
for adaptation is the alteration of gene expression patterns
through signal transduction networks in cells, which respond
to external signals. These networks have evolved over gener-
ations to adapt to specific environmental conditions.

Even though such a signal transduction mechanism has
been thoroughly investigated [1], it is not fully understood
whether these networks can explain all forms of cellular adap-
tation [2–5]. Braun’s research on yeasts, for example, has
demonstrated that they can spontaneously adapt to different
conditions, including de novo conditions that their ancestors
have not experienced [2]. These adaptations have been ob-
served in artificially embedded networks, even in the absence
of environmental information [3]. This suggests the existence
of potentially generic mechanisms for adaptation that have
yet to be uncovered. In this paper, we aim to explore such
mechanisms, drawing inspiration from the biological process
of adaptation. If we are able to uncover a generic mechanism,
it can be abstracted and applied to search for an optimized
state in complex systems with many degrees of freedom.

We begin by reviewing the background of theoretical stud-
ies on the search for a generic mechanism for adaptation. One
such proposed mechanism is the attractor selection, which
involves the selection of a state with a higher growth rate
by taking advantage of noise and growth dilution [3,6,7].
While this mechanism was widely applicable [8,9], it was
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still not clear whether attractors exist in gene expression dy-
namics that are fitted to the environment. To address this gap
in understanding, an introduction of an abstract epigenetic
modification process was proposed as a means of generating
stable states that differ from the original gene expression
dynamics [7]. While this process has the potential to enhance
the applicability of the mechanism, an evolutionary process to
optimize the network itself, along with the introduction of an
appropriate level of noise, is needed [7,10].

Here, epigenetic modifications, such as DNA methylation
or histone modification, are biomolecular mechanisms [11,12]
that play an important role in stabilizing cell differentiation
[13–16]. Although their detailed mechanisms vary among
cells [12,16,17], the modification levels generally change the
feasibility of gene expression and progress more slowly than
expression levels [18].

By abstracting these observations, we proposed a theory,
in which the interplay between oscillatory gene expression
dynamics and slower epigenetic modification generates and
stabilizes novel cell types. This theory offers a potential ex-
planation for robust cell differentiation and reprogramming
[19,20], supported in part by experimental reports of temporal
gene expression oscillation in pluripotent cells [21–23] and
the oscillation of epigenetic modification levels [24].

Inspired by these studies on cell differentiation based on
oscillatory dynamics [19,20], we propose a generic adaptation
mechanism. Instead of making detailed connections with cell
biology, this mechanism is abstract and general, to search
for an optimal state that gives a requested output pattern
under a given condition. The mechanism combines chaotic
oscillatory dynamics with slower feedback fixation inspired
by an epigenetic modification process. This interplay allows
for the adaptation of gene expression in response to changing
conditions.

In this paper, we explore whether this interplay can be used
to achieve optimization in a general sense, rather than making
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detailed connections with cell biology. Possible states are ex-
plored through oscillatory dynamics and, when a desired state
is approached, the slower fixation works efficiently to stabilize
it. We present a simple model of regulatory networks with
oscillatory dynamics and conduct extensive simulations to test
the ability of the model, in order to optimize its state under a
variety of external conditions, if the original dynamics show
sufficiently complex (chaotic) oscillation. Our results show
that the model can achieve generic optimization as long as the
degrees of freedom are large enough to allow for complex dy-
namics, without the need for evolutionary selection of specific
networks, in contrast to the previous studies that adopt noise-
induced transitions among fixed-point attractors [3,6,7]. We
also identify the conditions necessary for successful optimiza-
tion and demonstrate that the fraction of networks satisfying
these condition increases with the number of units. In ad-
dition, we explore the generality and potential applications
of this optimization mechanism in the context of machine
learning, specifically in neural and artificial networks.

We consider a model consisting of N units with a
regulatory network and slower modification. Each unit is rep-
resented by two variables: the fast variable xi and the slow
variable θi (i = 1, 2, . . . , N). As a cell model, xi represents
the expression level of the ith gene and θi corresponds to the
epigenetic modification level. In the present model, xi serves
as the state variable for the unit and θi acts as a slower modi-
fication variable that serves as a threshold for the activation of
the ith unit. The units activate or suppress each other accord-
ing to the regulatory matrix Ji j . If Ji j is positive (negative), the
jth unit activates (suppresses) the ith unit [25–27] as given by

dxi

dt
= F

⎛
⎝ 1√

N

∑
j

Ji jx j + θi

⎞
⎠ − xi, (1)

where F (z) is a monotonic function exhibiting an on-off
switch, as F (z) = tanh(βz). We set β = 40, so F (z) is close
to a step function. The value of xi = 1 or −1 represent full
or nonexpression of the ith unit. In Eq. (1), −θi acts as a
threshold for the expression of the ith unit. In other words, the
slower modification level θi determines the feasibility of the
ith unit expression. As θi increases (decreases), less (more)
input from other units is required for expression. For slower
modification dynamics, we adopt the simplest form of rein-
forcement [7,19,20,28,29],

dθi

dt
= vk (t )(xi − θi ), (2)

where vk (t ) is positive and indicates a positive feedback
between fast expression dynamics and slower modification
dynamics. If the ith unit is expressed, it is more feasible to
be expressed following the increase in θi. This positive feed-
back is based on the previous experimental results [17,30–32].
Here, vk (t ) is the timescale of the slower modification process
depending on the fast x state. It is always set to be smaller than
unity, meaning that the change in θi is slower than that in xi.
Within this range, vk (t ) is increased when the state is more
optimal for the kth environmental condition.

The degree of optimality is given by the expression pattern
of output units xm (m = 1, 2, . . . , M < N ). By introducing
X k

m as the target (desired) expression pattern under the kth

environment, the distance between xm and X k
m is calculated by

Distancek ≡
√√√√ M∑

m

[
xm(t ) − X k

m

]2
/M. (3)

Then, as the distance approaches 0, the state is optimized.
Now, vk (t ) is determined as

vk (t ) = vmax exp(−b × Distancek ), (4)

where vmax = 10−1 and b = 4, unless otherwise noted [33].
Note that vk (t ) takes the maximum value vmax when xm is
equal to X k

m, in which case the state is completely optimized
to the kth environment.

We herein adopt M = 5. Then, the total number of
possible M-bit target patterns with −1 or 1, described as
{1, 1, 1, 1, 1}, {−1, 1, 1, 1, 1, 1}, . . . , {−1,−1,−1,−1,−1},
is 2M = 32. However, the present model notably has a
symmetry x ↔ −x. Considering this symmetry as X k and
−X k , there are 2M/2 = 16 independent M-bit patterns {X k}.
Each environmental condition k = 1, 2, . . . , 16 has the
corresponding target expression pattern Xk; the optimization
to each of these M-bit patterns is examined.

We adopt random regulatory networks, whose elements
{Ji j} are randomly assigned either ±1, 0, with equal proba-
bility. Each of optimization trials is started from the θi = 0
state and a randomly chosen xi. Each of the targets X k (k =
1, 2, . . . , 16) is assigned for each trial, and we run the dynam-
ics of Eqs. (1)–(4) until they reach the final stationary state.
If the final xm is equal (or sufficiently close) to X k

m, the model
can optimize its state to the kth external condition.

Figure 1 shows the time series of xi, θi, and vk in a success-
ful optimization to a certain external condition. In Fig. 1(a),
the fast expression dynamics xi first converge to an irregularly
oscillating state. Then, the oscillatory dynamics are fixed by
the slower modification θi when xm approaches X k

m and the
timescale vk (t ) is increased [Fig. 1(b)]. Finally, throughout
these transient dynamics, the state is optimized to the desired
target state when xm reaches X k

m. The value of v(t ) varies
in time at first [Fig. 1(c)], reflecting the transient dynamics
of xi, until a desired state is selected. Figure 1(d) shows the
optimization dynamics in x space using the principal compo-
nent analysis (PCA) obtained from oscillatory dynamics with
θi = 0. Next, we investigate the optimization capacity of the
model. The number of environments to which optimization
is achieved among 16 environmental conditions determines
the capacity. Figure 2 shows the distribution of the capacity
over 500 random networks with N = 100. Here, the criterion
for optimization to the kth environment is that the trial in the
kth environment finishes with |xm − X k

m|2 < 10−2. We define
the capacity as the fraction of external conditions that can be
optimized at least once out of three trials [34]. For most of the
random regulatory networks {Ji j}, the model can optimize its
state to more than half of the 16 conditions.

Next, we examine the optimization to multiple conditions.
Figure 3(a) shows the dynamics in x for three different envi-
ronmental conditions starting from the same initial condition,
using the PCA obtained from oscillatory dynamics with θi=0.
In Fig. 3(a), the gray curve corresponds to the trajectory
with θi = 0, which shows chaotic dynamics. With the slower
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FIG. 1. Optimization process of our model with N = 100. Time
series of (a-i), (a-ii) xi (i = 1, 2, . . . , N ), (b) θi, and (c) vk . Start-
ing from the initial condition with random xi and θi = 0, the state
converges to an oscillatory state. With gradually developed θi, the
state reaches the desired expression pattern X k

m. That is, vk takes
the maximum value vmax (=10−1). (a-ii) Time series of xi only for
i = 1, 2, . . . , 5 for t ∼ 10–20. (d) Optimization dynamics in x space.
We adopt PCA obtained from oscillatory dynamics with θi = 0. The
state starting from a random initial condition (red point) reaches
the target gene expression pattern (blue point) throughout transient
oscillatory dynamics.

θ dynamics of Eq. (2), the optimal state is reached and fixed
after transient (chaotic) oscillation, depending on each target
condition k. In Fig. 3(b), we study how {xi(t )} with θi = 0
and each of target patterns {Xk} comes closer by introducing
the inner product of x and Xk given by (1/M )

∑M
m xmX k

m
to characterize the distance between x and the kth target
pattern. As shown in Fig. 3(b), the time series with θi = 0
globally explores the phase space and approaches the target
optimal patterns (k = 1, 12, 14 in this example); however, it
cannot approach target pattern (k = 9) where the inner prod-
uct remains around 0. The distribution for inner products is
extended globally over [−1, 1] for the former case, but is
centered around zero for the failure case [Fig. 3(c)].

We next focus on how the capacity depends on x dynamics
with θi = 0. Figure 4(i) shows the dynamics for small [(a)
score = 3] and large [(b) score = 13] capacities. Comparing

FIG. 2. Distribution of capacity computed from 500 random net-
work models with N = 100.

FIG. 3. (a) Optimization process against three different condi-
tions (targets) plotted in x space using the PCA space for oscillatory
dynamics with θi = 0 (gray trajectory). The colored trajectories show
optimization in three different environments (k = 1, 12, 14) starting
from identical initial condition (x). Each optimization is completed at
the colored circle. (b) Time series (left) and histogram (right) of the
overlap of {xm(t )} with θi = 0 and target patterns (1/M )

∑M
m xmX k

m.
Black time series and histogram represent the case of nonachieved
environments (k = 9). The trajectory with fixed θ = 0 is not influ-
enced by the target and maintains chaotic dynamics.

these trajectories, x dynamics with small capacity travel small
portions of phase space, whereas those with large capacity
travel large portions of phase space [Fig. 4(ii)]. In Fig. 4(i), the
former has a limit cycle attractor [Fig. 4(i)(a)], while the latter
has a chaotic attractor with two positive Lyapunov exponents
[Fig. 4(i)(b)].

To examine if the global traveling of the orbit at θi = 0
is relevant to optimization, we computed the globalness of
trajectory against the target patterns {X k

m}, defined as

G ≡ 1

K

K∑
k

⎧⎨
⎩<

(
1

M

M∑
m

xmX k
m

)2

> − <
1

M

M∑
m

xmX k
m >2

⎫⎬
⎭.

(5)

In Fig. 5(a), we plot the capacity against the globalness by
sampling with a 0.1 bin size and averaging the capacity for
each bin. As shown in Fig. 5(a), the averaged capacity mono-
tonically increases with the globalness of the trajectory.

As shown in Figs. 3 and 4, such global traveling is sup-
ported by chaotic dynamics. We computed the Lyapunov
spectra of dynamics with fixed θi = 0 and examined how
they correlate with the capacity of the system. Figure 5(b)
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FIG. 4. Comparison of the dynamics with fixed θi = 0 for
(a) small and (b) large capacity with N = 60. (i) Dynamics plotted
in the PCA space of x. (ii) Time series of (1/M )

∑M
m xmX k

m and
the overlap of {xi(t )} with θi = 0 and target patterns {X k}. Left:
Capacity = 3, globalness = 0.16, and no positive Lyapunov expo-
nents. Right: Capacity = 13, globalness = 0.35, and two positive
Lyapunov exponents, 0.51 and 0.16.

shows the correlation in the capacity against the number of
positive Lyapunov exponents, sampled over 500 randomly
chosen networks for N = 60. The number of positive Lya-
punov exponents indicates the number of directions in which
tiny perturbations can expand. Figure 5(b) suggests that the
capacity increases with it.

As the fraction of the network that exhibits oscillatory and
(higher-dimensional) chaotic dynamics increases with the sys-
tem size N , the capacity is expected to increase as well [35].
In Fig. 6(a), we plot the average capacity of networks with and
without oscillatory dynamics for θi = 0. Note that for N > 70,
it becomes difficult to sample networks without oscillatory
dynamics sufficiently. As N increases, more networks can be
optimized to perform well under almost all (=2M/2) environ-
mental conditions. However, the present definition of capacity,
which requires at least one successful optimization for three
trials, may be too lenient. We also calculate the success
rate of optimization across all trials. Figure 6(b) shows the

FIG. 5. Capacity vs the characteristics of the dynamics for fixed
θi = 0. (a) Capacity as a function of the globalness of trajectories,
as defined in Eq. (5). (b) Capacity as a function of the number of
positive Lyapunov exponents, N = 60.

FIG. 6. (a), (b) N dependency of (a) capacity and (b) success rate
in the randomly generated matrix Ji j for N = 10, 20, . . . , 300. For
each N , we prepared 500 random gene regulatory matrix Ji j and av-
eraged the score among them. (b) The success rate’s dependency on
N is shown, with three trials conducted for each environment using
different initial conditions. In the computation of (a) and (b), for all
N , we adopt b = 6, following the result shown in (c). (c) Success
rate as a function of b in N = 100. Each trial is finished until 103,
regardless of the success or failure of the trial.

dependency of the fraction of successful optimization rate on
N . The fraction also increases with N .

In the computation of these N dependencies, we choose
b = 6, following the result of b dependency of success rate in
N = 100 as shown in Fig. 6(c). In Eq. (4), b is a parameter
that gives resolution to examine the distance from the target
state. If b is close to 0, there is no distinction between the
optimal and nonoptimal states. If b is larger, fixation works
only when the state is very close to the target state so that the
optimization have been completed within the simulation steps
(here 103). Hence, there exists optimal b (∼6), as shown in
Fig. 6(c).

In this paper, we present an optimization mechanism based
on fast oscillatory gene expression dynamics coupled with
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a slower epigenetic fixation process. The chaotic oscillatory
dynamics are relevant to the search for optimal states depend-
ing on the input, and once optimal states are approached, a
slower modification process fixes those states. As long as the
search using oscillatory (chaotic) dynamics adequately covers
the state space, this optimization mechanism works efficiently.
The degree of chaos or the region of the phase space traveled
by orbits is correlated with the capacity of environments to
which the cell can optimize. As the number of units (degrees
of freedom) increases, the fraction of networks allowing for
such dynamics also increases, supporting the generality of the
proposed mechanism.

We have previously reported that the interplay between
gene expression oscillation and slow epigenetic feedback
allows for robust cell differentiation, which is necessary
for multicellular organisms [19,20]. The demonstration that
chaotic oscillatory dynamics and slower fixation can allow for
optimization in multiple environments may provide insight
into a coherent understanding of both multicellular differen-
tiation and unicellular adaptation. Of note, the use of chaotic
exploration for optimization here is distinguishable from the
earlier adaptation model in Ref. [7], where the switching
among fixed-point attractors by noise is adopted. In that case,
the capacity of adaptation to a variety of conditions is rather
limited even after the evolution of networks under given fit-
ness. In contrast, the exploration of chaotic dynamics here
allows for optimization (adaptation) to almost all conditions,
without tuning the network, as long as the system is suffi-
ciently high dimensional.

Our optimization mechanism can be depicted as Wadding-
ton’s epigenetic landscape, which is often used by develop-
mental biologists [36]. The initial state in a shallow valley,
in the epigenetic landscape, travels over a large portion of
phase space, similar to the chaotic dynamics in our model.
As the slow variables change, deep valleys are generated
to which the state is attracted, leading to optimization or
adaptation.

The scheme proposed in this paper does not require attrac-
tors that achieves optimization in advance or the evolutionary
optimization of networks. In this sense, it would also support
the generic and spontaneous adaptation of cells to unfore-
seen environmental conditions. While there is some support
for oscillatory expression dynamics in stem cells in multi-
cellular organisms [21–23,37,38] and theoretical verifications
[39–41], there is currently no direct evidence for oscillatory
expression dynamics in unicellular organisms. Expression dy-
namics are typically noisy and it is challenging to extract
oscillatory components experimentally. Notably, our mecha-
nism works robustly under strong stochasticity.

Our model adopts a simple setup for oscillatory dynamics
with on-off type dynamics and a slower fixation process. On-
off dynamics are widely used in biological and artificial neural
networks. The present scheme uses an autonomous search for
the desired state through chaotic dynamics and slower fixation
can be generally applied to learning or optimization processes.
Compared to random sampling used in simulated annealing
[42], chaotic dynamics do not need to sample the entire space,
making the search more efficient [43–45]. We also note that
the relevance of chaos or chaotic itinerancy to neural infor-
mation processing has been discussed [46–49], whereas θi in
our model can be regarded as inputs [50]. In contrast to the
Hebbian learning, which requires changes to Ji j (i.e., N × N
elements), our scheme requires changes only to θi (i.e., N
elements), which would be useful for low-rank changes in
reservoir computation or echo-state networks [51,52].
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