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Dynamically generated quadrupole polarization using Floquet adiabatic evolution
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We investigate the nonequilibrium dynamics of the S = 1 quantum spin chain subjected to a time-dependent
external drive, where the driving frequency is adiabatically decreased as a function of time (Floquet adiabatic
evolution). We show that, when driving the rhombic anisotropy term (known as the two-axis countertwisting
in the context of squeezed spin states) of a Néel antiferromagnet, we can induce an overall enhancement in
the quadrupole polarization, while at the same time suppressing the staggered magnetization order. The system
evolves into a new state with a net quadrupole moment and antiferroquadrupolar correlations. This state remains
stable at long times once the driving frequency is kept constant. On the other hand, we find that we cannot
achieve a quadrupole polarization for the symmetry-protected Haldane phase, which remains robust against such
driving.

DOI: 10.1103/PhysRevResearch.5.023015

I. INTRODUCTION

To find quantum states with desired properties, we can look
in various spaces: In the chemical space, we can investigate
the multitude of natural compounds. This space can be further
extended by synthesis, metamaterials, or the replacement of
chemical bonds by magneto-optical traps in ultracold quan-
tum gases. Another possibility is to exploit the additional
dimension of time and engineer new states in nonequilibrium
conditions.

A particularly simple way to create a nonequilibrium state
is a quantum quench, where the system is suddenly evolved
with a new Hamiltonian. This can be used to observe the
melting of equilibrium order parameters, such as string order
[1,2], and can lead to quasisteady prethermalized states [3]
before heating sets in but does not offer optimal control and is
not easily implementable beyond ultracold-atom systems.

Alternatively, one can drive the system out of equilib-
rium by a periodic external force, e.g., a continuous laser
beam with frequency � = 2π/T and period T . In practical
terms, this setup is well controlled in the high-frequency limit,
where one can find the effective Floquet Hamiltonian [4,5]
by means of a Magnus expansion of the original Schrödinger
equation. In leading order, this results in renormalized sys-
tem parameters, so that the problem can be analyzed using
equilibrium techniques (Floquet engineering). Heating to an
infinite-temperature state should take place eventually but is
shown to happen on exponentially long time scales for large
frequencies, leading to a stable prethermalized state similar to
the case of quenches [6,7].
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Floquet engineering has been applied very extensively
[7–10], and a comprehensive listing of all results is near
impossible. For noninteracting systems, the electronic band
structure is modified, which becomes interesting if the
topological character is changed [11–14]. For interacting
systems, a lot of attention has been devoted to the en-
hancement of superconducting correlations [15–18] (often
using intense pulses rather than continuous beams) and the
photo-inducement of superconducting orders absent from
equilibrium phases, such as η pairing [19–21]. Apart from
that, there have been efforts to control the Kondo effect [22],
exchange interactions [23], the Dzyaloshinskii-Moriya inter-
action [24], the magnetization [25], or many-body localization
[26].

In equilibrium physics, the concept of adiabaticity is fun-
damental. In practical terms, it can be used to define and
traverse phase diagrams or prepare complex ground states by
adiabatically changing the couplings of a Hamiltonian, e.g.,
using quantum annealing. Extending this concept to Floquet
engineering, one can attempt to adiabatically change the drive
parameters to further improve the degree of dynamic control
of the system [27,28].

In this paper, we adopt the specific protocol of initiating
the system by driving a term with � = ∞, followed by an
adiabatic decrease of � [29,30]. This adiabatically propagated
state is called the Floquet ground state [30], and � is freed
up as an additional control parameter in the procedure. This
has been first studied for the integrable transverse-field Ising
model, in which case the state was seen to undergo topologi-
cal phase transitions and Kibble-Zurek scaling was observed
[29,30].

Fortunately, in the case of one-dimensional (1D) chains,
this adiabatic Floquet protocol lends itself to an efficient sim-
ulation even for nonintegrable systems using matrix-product
states (MPSs). The initial state is guaranteed to have low
entanglement for the class of gapped chains in accordance
with the area law. This is a key property that is exploited by the
MPS formalism [31]. Furthermore, if the change of frequency
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is slow enough, the entanglement is expected to only grow
slowly, and long propagation times may be reached. This
stands in contrast to quench dynamics, where the entangle-
ment entropy increases linearly with time [32], while the MPS
bond dimension (i.e., the number of variational parameters to
represent the state) must increase exponentially.

In this paper, we show that the adiabatic Floquet protocol
can be used to convert a conventional Néel antiferromagnetic
(AFM) state into an unconventional antiferroquadrupolar
(AFQ) state. More specifically, we apply the protocol to the
nonintegrable S = 1 spin chain, a system which is mainly
interesting for its symmetry-protected topological Haldane
phase and the potential for spin-nematic (quadrupolar) order.
The latter is a state with nonvanishing anisotropic second-
order expectation values of the type 〈Sα

j Sβ
j 〉 �= 0, while having

a vanishing first-order expectation 〈Sα
j 〉 = 0 (where Sα=x,y,z

j is
a spin operator). Thus, it is an interesting quantum state that
carries no magnetic moment but still breaks the spin-rotational
symmetry via a more complicated order parameter. A spin
nematic can be regarded as something between a ferromagnet
and a spin liquid: While it lacks magnetic order like the latter,
it still breaks the rotational symmetry like the former and has a
preferred axis. The name derives from the physics of nematic
liquid crystals, which in a similar sense constitute a phase
between a liquid and a solid [33]. While quadrupolar order is
in principle possible in the S = 1 chain, in the following sec-
tion, we discuss that it is not easily achievable in equilibrium,
motivating an extension to driven systems.

Starting from the ground state of an initial Hamiltonian
with � = ∞, we slowly drive the system from the high-
frequency to the midfrequency region, representing the wave
function as a MPS. We find that, if the initial state is in the
symmetry-protected Haldane phase, it still remains remark-
ably robust against the drive, and no new phase transition is
found. On the other hand, if the initial state is in a trivial
ordered phase, then we can induce an overall quadrupolar
moment and enhanced correlations, eventually reaching a sta-
ble phase with long-range AFQ order, where the staggered
magnetization is suppressed.

II. MODEL

A. Initial Hamiltonians

We consider a 1D chain of localized spins with S = 1 at
zero temperature. The real system under consideration might
in fact be a two-dimensional (2D) or three-dimensional array
of such chains, where the interchain coupling is captured on
the mean-field level by a staggered magnetic field h [34–37].
Experimentally, such systems are realized in various Ni- and
V-based compounds [38–56] (see also Fig. 1).

The Hamiltonian is an extended variant of the Heisenberg
spin chain:

HHeis = J
∑

j

�S j · �S j+1 + D
∑

j

(
Sz

j

)2 − h
∑

j

(−1) jSz
j, (1)

where J is the exchange interaction parameter, and �S j =
(Sx

j , Sy
j , Sz

j ) represents the spin-1 operator at the jth site, with
Sα=x,y,z

j representing the different spin projections. As the
local basis |σ 〉, we take the eigenbasis of Sz

j and denote the

NC-Ni(CN)2-CN
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N
C
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z

FIG. 1. The compound Ni(C2H8N2)2Ni(CN)4 (NENC) under the
action of a periodic driving in the x2-y2 orbital of the Ni(II) atoms.
The figure is inspired by fig. 1 in Ref. [57], but we have added
a possible experimental driving setup. The structure of the chain
repeats in the horizontal direction. Molecular orbitals from the Ni
and N atoms have been represented in the x, y, z geometry by the
lobes (see legend). Each Ni(II) is attached to the next one by a
NC–Ni(CN)2–CN configuration. The magnetic properties of such Ni
compounds have been studied experimentally. A theoretical descrip-
tion of these compounds is proposed by effective Hamiltonians in
the form of Eq. (1) representing the S = 1 chain of the Ni(II). The
experimental realization sketched in this figure corresponds to the
driving protocol given by Eq. (12) of this paper, where the drive in
the xy plane (represented as a sinusoidal wave) continuously changes
the probability distribution of electronic x2-y2 orbital in the Ni(II)
atoms.

eigenvectors as |σ 〉 = | + 〉, |0〉, | − 〉 with the eigenvalues of
+1, 0, and −1, respectively. Finally, h is the staggered mag-
netic field, while D is the anisotropy in the z direction (easy
axis for D < 0 and easy plane for D > 0). We set h̄ = 1 and
J = 1, thereby measuring all energies in units of J and times
in units of h̄/J .

For D = h = 0, there exists a gapped phase (the Haldane
phase), which (for periodic boundary conditions) has a unique
symmetry-protected ground state with exponentially decreas-
ing spin-spin correlations. The robustness of the Haldane
phase has been a focal point of previous studies in equilibrium
[58–64], where it was found that it can be characterized by a
nonlocal string order parameter [65–67]:

Oα=x,y,z
string = lim

| j−k|→∞

〈
Sα

j exp

⎛
⎝iπ

k−1∑
l= j+1

Sα
l

⎞
⎠Sα

k

〉
, (2)

and by a global twofold degeneracy in the entanglement spec-
trum. It is protected by a combination of inversion symmetry,
time-reversal (in the sense Sx,y,z → −Sx,y,z) and combined
rotations of π about a pair of axes [63]. Since a finite h breaks
all these symmetries at once, even a small value destroys
the Haldane phase [35]. However, it remains robust against
the anisotropy term, which does not break any of the above
symmetries [62–64]. In this case, the Haldane phase is a
thermodynamic phase, which is stable in an extended region
of the phase diagram, eventually losing in competition to
strong-D phases (see below) once D exceeds a critical value.
An interesting question is thus how this robustness extends
into nonequilibrium.
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The other limiting cases of Eq. (1) are as follows: For D →
+∞, the ground state is given by a product state of local |0〉
projections. In the D → −∞ limit, the ground state is twofold
degenerate, given by the Néel state . . . | + 〉| − 〉| + 〉| − 〉 . . .

and the Néel state shifted by one lattice site: . . . | − 〉| + 〉| −
〉| + 〉 . . .. For h → ±∞, the ground state is given by a unique
Néel state.

The S = 1 chain is also arguably the simplest system that
allows for quadrupolar exchange. The quadrupole operator is
defined as the traceless tensor:

Qαβ
j = Sα

j Sβ
j + Sβ

j Sα
j − 2

3 S(S + 1)δαβ. (3)

It has five linearly independent components that can be
grouped into a vector:

�Qj =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Qx2-y2

j

Q3z2-r2

j

Qxy
j

Qyz
j

Qxz
j

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
Sx

j

)2 − (
Sy

j

)2

1√
3

[
3
(
Sz

j

)2 − S(S + 1)
]

Sx
j S

y
j + Sy

j S
x
j

Sy
j S

z
j + Sz

jS
y
j

Sx
j S

z
j + Sz

jS
x
j

,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4)

so that
∑

αβ Qαβ
j Qαβ

j = 2 �Qj · �Qj . Quadrupolar exchange thus
requires a product of four spin operators and is usually dis-
cussed within the bilinear-biquadratic model [68,69], given by

Hblbq = J
∑

j

�S j · �S j+1 + Jq

∑
j

(�S j · �S j+1)2. (5)

Because of the identity:

�Qi · �Qj = 2(�Si · �S j )
2 + �Si · �S j − 2

3 [S(S + 1)]2, (6)

the Hamiltonian in Eq. (5) boils down to a competition of
ordinary exchange interaction and quadrupolar exchange. In
1D, quantum fluctuations generally prevent spontaneous or-
dering unless the order parameter is conserved. In this case,
a quadrupolar state may rather be defined via quadrupolar
correlations that dominate over spin-spin correlations. Such
correlations are found with a three-site period for J, Jq > 0
and Jq/J > 1 [70]. For J < 0, a ferroquadrupolar order was
initially predicted close to the ferromagnetic phase [71], but
highly accurate MPS calculations demonstrate that it either
does not exist (with a dimerized phase found instead) or only
exists in a very narrow parameter regime [70,72]. In 2D,
quadrupolar phases are better defined, and a finite quadrupole
moment generally arises for |Jq|/|J| > 1 [73,74].

We note that the choice:

HAKLT =
∑

j

�S j · �S j+1 + 1

3

∑
j

(�S j · �S j+1)2, (7)

yields the famous Affleck-Kennedy-Lieb-Tasaki (AKLT)
ground state [60,61], which belongs to the Haldane phase,
but is exactly representable by an MPS with very low en-
tanglement. From a technical point of view, it is thus a more
convenient representative member of the Haldane phase than
Eq. (1) with h = D = 0.

A possibility to generate finite quadrupolar moments in 1D
is the explicit breaking of the spin-SU(2) symmetry via the

so-called rhombic single-ion anisotropy [75–77]:

δHE = E
∑

j

[(
Sx

j

)2 − (
Sy

j

)2]

= E
∑

j

Qx2-y2

j = E

2

∑
j

[(S+
j )2 + (S−

j )2], (8)

where we have introduced the standard spin-flip operators
S±

j = Sx
j ± iSy

j . A more general coupling to the square of
the spin operator is also possible [77,78]. In the context of
squeezed spin states, the term in Eq. (8) is known as the
two-axis countertwisting (TACT) [79], and there are several
proposals of how to implement it [80]. In equilibrium, a strong
value of E will induce a finite quadrupole moment in the
direction of 〈Qx2-y2〉, similar to how an external field induces
a finite magnetization [75]. However, this requires finding a
material with large E and small D at the same time.

Recently, attention has shifted to a different regime, where
bond-nematic rather than local order might be found. For
an S = 1

2 system in a strong magnetic field close to satura-
tion, deviations in magnetization are given by magnons. If
the effective interaction between these magnons is attractive,
they may form pairs and condense, with nonzero quadrupo-
lar correlations 〈S+

i S+
j 〉 playing the same role as anomalous

expectation values of fermion-pair creation operators 〈c†
i c†

j 〉
in a superconductor [81]. The best-documented experimental
example where this may occur is LiCuVO4 [82,83]. The cor-
responding experiments are quite challenging and need to be
performed in magnetic fields of 45–50 T.

Summarizing, a spin-nematic state is an exotic nonmag-
netic state with a higher-level order parameter. The minimal
spin value to observe it locally is S = 1. A stabilization of
this state requires strong biquadratic exchange or a strong
anisotropy. However, both are expected to be weak in real
materials or require finding a fine-tuned point [84–86], so
that the part of the phase diagram where spin-nematic phases
are predicted could not be explored in practice. Attention has
therefore shifted to the different physical regime of magnon
pairing in high magnetic fields for S = 1

2 materials, which
has its own challenges. Here, we pursue an alternative idea,
namely, the purposeful enhancement of quadrupolar interac-
tions using nonequilibrium driving, starting from an ordinary
S = 1 system (Haldane chain or Néel antiferromagnet).

B. Floquet adiabatic protocol

We evolve a system in the presence of a time-dependent
term A f [t,�(t )]V :

H (t ) = H0 + A f [t,�(t )]V, (9)

where H0 is the unperturbed Hamiltonian, f [t,�(t )] is the
periodic envelope function of the drive, �(t ) is the drive
frequency, A is its amplitude, and V is the operator of the
drive.

It is convenient to choose an envelope function that aver-
ages to zero over one cycle:

1

T

∫ T

0
dτ f (τ,�) = 0. (10)
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Specifically, we set

f [t,�(t )] = sin[�(t )t]. (11)

This means that, for �(t = 0) = ∞, the state at t = 0 can be
obtained as the ground state of H0 and is a legitimate Floquet
state.

To observe quadrupolar order in our setup, we choose to
drive the rhombic anisotropy Eq. (8), which is quadratic in the
spin operators (cf. Fig. 1):

A f [t,�(t )]V = A f [t,�(t )]
∑

j

[(
Sx

j

)2 − (
Sy

j

)2]
. (12)

For t > 0, we start with a frequency of �0 that is large
enough to be connected with the infinite-frequency state at
t = 0. We then adiabatically decrease the frequency in the
range �(t ) ∈ [� f ,�0] (�0 > � f ) on a time window of length
t f (see Appendix A for more details). After that, we assess
whether a steady state has been reached by evolving the
state with constant � f for another multiple of t f , i.e., until
the end time tend = αt f , where α > 1 is a scaling factor. In
other words, the steady state is observed on a time scale of
(α − 1)t f .

The meaning of these control parameters is as follows: (1)
The target time t f controls adiabaticity, whereby larger values
make the process more adiabatic, so that we would like to
choose t f as large as possible. (2) For the final frequency � f ,
the most interesting regime is on the energy scale of the sys-
tem or below it, i.e., O(100) − O(10−1) in units of J . However,
if � becomes so small that �−1 ∼ t f , the system cannot be
considered locally periodic at any time, and the Floquet theo-
rem loses its validity. Therefore, one should choose a range of
� for which all values satisfy �t f � 2π ∀� ∈ [� f ,�0] [29],
which means that smaller � f must be offset by larger t f .

Considering all these tradeoffs, we set �0 = 100.0, � f �
10.0, t f = 62.82, and α = 1.5, 2.5.

III. METHODS

A. Time-evolving block decimation

We use the infinite time-evolving block decimation
(iTEBD) with a fourth-order Suzuki-Trotter decomposition
[31,87] to compute time evolution of a given MPS directly
in the thermodynamic limit. The main control parameter is
the bond dimension χ , which encodes the amount of entan-
glement.

The MPS |ψ〉 has a unit cell of Lcell = 2 for a finite stag-
gered field in Eq. (1). We represent it in the standard �-

notation [88]:

|ψ〉 =
∑
{σi}

. . . �Aσi
AB�Bσi+1
BA . . . | . . . σiσi+1 . . .〉, (13)

with A and B denoting the sublattices, and σi = {+, 0,−}.
The AKLT state (Sec. IV A) can be expressed analytically as a
MPS with a bond dimension of χ = 2. The Néel ground state
(Sec. IV B) is computed from an imaginary time evolution
with a fixed bond dimension of χ = 200 and a decreasing
Trotter step size until convergence has been reached; we
have checked that using χ = 120 or Lcell = 4, 6 does not
change the results and also cross-checked with the Variational

FIG. 2. The drive envelope function f (t ), Eq. (11), with � f =
0.3. We use an intermittent measurement process, where the red
circles correspond to the measurement times of the observables. On
the top axis, we have represented the corresponding values of the
driving frequency �, which is kept constant at � = � f for t/t f > 1.

Uniform MPS (VUMPS) algorithm [89] as an independent
benchmark.

During the real-time evolution, it is convenient to choose
a variable Trotter step size �t that depends on the current
period. We do not let it exceed the maximum value of �t =
0.01. Furthermore, we set an initially fixed bond dimension
of χ = 200 (for the quench starting from the AKLT state,
the initial bond dimension χ = 2 is increased such that the
state is encoded exactly until χ = 200 is reached). This is
sufficient for an upper bound of the discarded weight (defined
as the sum of discarded weights on each Trotter substep) of
ε = 10−5. In other words, fixing ε = 10−5 does not lead to
an increase of the bond dimension beyond χ = 200, which
seems reasonable due to the adiabatic nature of the quench.
Further comments on this issue as well as a comparison with
exact diagonalization (ED) data can be found in Appendix B.

B. Measurement events and the steady-state limit

When we keep track of all observables in a continuous
fashion, the micromotion of the Hamiltonian dynamics leads
to the appearance of oscillations as a consequence of the drive
given by Eq. (11). We ignore this micromotion by an intermit-
tent measuring at some of the zeros of the drive, as indicated
in Fig. 2. This subset of N measuring points is defined by

t∗ = {t∗
j } ⊂ [0, αt f ] | f (t∗

j ) = 0, ∀ j = 1, . . . , N. (14)

Furthermore, we define the steady-state limit (SSL) value
of an observable O in the Heisenberg picture by averaging
over the last NSSL measurement times:

〈O〉SSL =
∑NSSL

k=1 〈O(t∗
k )〉

NSSL
, t∗

k > 2t f . (15)

Due to computational limitations, the above definition is
strictly speaking a quasisteady state, in the sense that the
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FIG. 3. Time evolution of the string order parameter Eq. (2)
in the x, y, z directions during the drive starting from the Haldane
phase (see Sec. IV A) for � f = 10.0, A = 0.5, 2.5. The drive fails
to suppress the string order, with the transverse z direction being
the most affected. The initial AKLT value of 4

9 is marked by the
horizontal dashed line. The Haldane phase is therefore robust against
the drive Eq. (12).

reachable times are finite but long on the intrinsic time scale:
αt f � h̄/J = 1 (α = 1.5, 2.5).

IV. RESULTS

A. Driving from the Haldane phase

We apply the protocol given by Eqs. (9) and (12) to the
AKLT state, which is the ground state of the Hamiltonian
Eq. (7) (H0 = HAKLT) and an ideal representative of the Hal-
dane phase.

Since the drive does not break the protective symmetries
of the Haldane phase, we expect the phase to be robust at
least against small amplitudes. Numerically, we can go up
to A = 2.5 and find that the drive is still unable to destroy
the Haldane phase because it cannot destroy the string order.
For the initial AKLT state, the string order is isotropic with
a value of Oα=x,y,z

string = 4
9 . Figure 3 shows its evolution, and

we find that it remains finite in all directions. (Note that this
stands in contrast with a sudden quench, which can destroy
the order [1,2].) Furthermore, we find no noticeable increase
of a quadrupole polarization or correlations (not shown).

Our conclusion is that the robustness of the Haldane phase
is difficult to overcome in our setup, and one needs to start
from an initial ground state which should already incorporate
the breaking of its protective symmetries. To this end, we
explore the driving protocol of Eq. (12) and apply it to the
initial Hamiltonian given by Eq. (1) with nonzero h and D.

B. Driving from a trivial phase

1. Choice of parameters

Relatively small anisotropies and interchain couplings are
enough to induce an ordered phase for the S = 1 chain. Still,

in a lot of Ni-based compounds, both are weak enough to keep
them in the Haldane phase or at the edge of the phase transi-
tion line [36]. An exception is CsNiCl3, which shows Néel
order below a critical temperature, and for which h = 0.051,
D = −0.038 have been deduced [34,39] (though not without
uncertainty [38]). A very large anisotropy of D ∼ −1.5 was
recently proposed for BaMo(PO4)2 [90].

To demonstrate the general principle, we set H0 = HHeis

[Eq. (1)], D = −0.2, and h = +0.1, which puts the initial
system firmly into the ordered Néel phase: The ground state
has a finite staggered spin polarization of (−1) j〈Sz

j〉 ≈ 0.74
in the z direction. Spin-spin correlations of the z projection
show AFM long-range order, while quadrupolar correlations
are short ranged [see Fig. 4(b) for t = 0].

2. Suppression of AFM Neél order and emergence
of quadrupole polarization

The time evolution of the staggered magnetization
(−1) j〈Sz

j〉 and the quadrupole component (−1) j〈Qxy
j 〉 are pre-

sented in Fig. 5. The initial staggered magnetization of the
Néel state is always reduced by the drive and is completely
suppressed for A ≈ 8. This coincides with the emergence of a
staggered net quadrupole moment in the Qxy direction, which
becomes finite and survives in the SSL, where � f = 10.0
is kept constant. There is an optimal value of A where the
quadrupole polarization is highest, i.e., it tends to be smaller
for both very small and very large A.

We note that the polarization is obtained in the third com-
ponent Qxy of the quadrupolar operator Eq. (4), while the
driving term only couples to the first component Qx2-y2

. This
axial enhancement is somewhat analogous to the behavior
observed in Ref. [25], where switching on a rotating magnetic
field in the xy plane induces a finite polarization of the z
component of the spin, i.e., perpendicular to the plane of the
driving.

3. The AFQ correlations

The above result suggests the dynamical emergence of a
spin-nematic state due to application of the drive, where the
quadrupole polarization dominates over the magnetization. To
further investigate this state, we fix A = 6.0 and show the
quadrupole correlations 〈Qxy

j Qxy
j+r〉 in Fig. 4. The appearance

of an AFQ state is characterized by negative (positive) cor-
relations at odd (even) sites r that remain stable for times
t/t f > 1 in the SSL. Note that there is a sign switch as a
function of time for r = 1. In Fig. 4(b), we show the profile of
the quadrupole correlation characteristic of the AFQ state in
the SSL compared with their initial values at t = 0.

We point out that our resulting state is distinct from the
large-E phases reported in Ref. [75], where the polarization is
in the direction of Qx2-y2

, i.e., along the applied field E . If the
ground state can be chosen to be real valued, then 〈Qxy

j 〉 = 0
must necessarily hold in equilibrium. A polarization in the
direction of Qxy therefore results from the time propagation
during the drive, which gives an imaginary part to the wave
function. Thus, our resulting state generally has no equilib-
rium analog for systems described by Eqs. (1) and (5), even if
the rhombic anisotropy term in Eq. (8) is also present, unless
spontaneous breaking of time-reversal symmetry results in a
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FIG. 4. (a) Time evolution for the quadrupole correlations 〈Qxy
j Qxy

j+r〉 [see Eq. (4)] for the setup as in Fig. 5 and an amplitude of the drive
A = 6.0 [Eq. (12)]. We observe the development of an antiferroquadrupolar (AFQ) state, in which odd (even) values of r become negative
(positive). (b) The corresponding AFQ profile measured at specific time points t/t f � 1, compared with the initial value at t = 0; straight lines
between data points are included as a guide to the eye. The overlap of profiles at constant � = � f for times t/t f � 1 indicates the survival of
the AFQ state in the steady-state limit.

FIG. 5. Time evolution after a quench starting from the trivial
Néel phase (� f = 10) of (a) the staggered magnetization (−1) j〈Sz

j〉,
decaying as a function of time for strong values of the drive ampli-
tude A [Eq. (12)], and (b) the net quadrupole moment |(−1) j〈Qxy

j 〉| �=
0 [see Eq. (4)] induced by the drive. Both observables remain steady
for times t > t f .

complex-valued ground state. We discuss this in some more
detail in Sec. IV B 5.

4. Phase diagram in the SSL

To better characterize the dynamically obtained AFQ state
and explore its stability at longer times, we study the phase
diagram in the SSL for the two order parameters of the
staggered magnetization (−1) j〈Sz

j〉 and the quadrupole po-
larization (−1) j〈Qxy

j 〉, as a function of the target frequencies
and driving amplitudes (� f , A). The spin-nematic regime is
reached when (−1) j〈Sz

j〉SSL ≈ 0 and (−1) j〈Qxy
j 〉SSL �= 0 for

an average over the steady-state regime Eq. (15). We define
the crossover parameter between the two regimes as

rSSL = arctan

(∣∣∣∣∣
〈
Qxy

j

〉
SSL〈

Sz
j

〉
SSL

∣∣∣∣∣
)

∈
[

0,
π

2

]
. (16)

Figure 6(a) shows the phase diagram for rSSL. We distin-
guish three well-differentiated regions: There is a magnetized
region rSSL ≈ 0, where the staggered magnetization domi-
nates, as in the initial ground state. The black dashed line is an
orientative contour line for rSSL = π/4, which separates the
magnetized region from a region where the two polarizations
are of approximately equal strength, which we call the hybrid
region. Finally, the straight lines delineate the spin-nematic
region rSSL ≈ π/2, where 〈Sz

j〉 → 0.
The effect of reducing the target frequency � f on both

the staggered magnetization and the quadrupolar moment is
shown in Figs. 6(b) and 6(c). In the small-A region, the sys-
tematics of the AFM order and AFQ order are opposite, so that
decreasing the frequency leads to weaker AFM polarization
and stronger AFQ polarization. In the large-A region, the
systematics is the same, and decreasing the frequency leads
to a weakening in both.
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FIG. 6. (a) Phase diagram in the steady-state limit (SSL) following a quench from the trivial Néel phase for the crossover parameter rSSL

defined in Eq. (16). The three regimes are (1) magnetized: rSSL < π/4, (2) hybrid: rSSL � π/4, and (3) spin-nematic: rSSL ≈ π/2. (b) The SSL
values of the emerging quadrupole moment for different � f as a function of the driving amplitude A. Reaching smaller � f enhances the net
quadrupole moment requiring smaller amplitudes A. Strong values of A tend to suppress the overall enhancement of the quadrupole moment,
cf. Fig. 5. (c) The SSL value for the staggered magnetization at different � f as a function of the driving amplitude A. A smaller � f requires
smaller A to suppress the Neél order. Straight lines between data points in (b) and (c) are a guide to the eye.

5. The AFQ wave function

Despite the apparent simplicity of the final xy-AFQ state,
we find that it is entangled and cannot be written down as
a simple analytical wave function. However, we can heuris-
tically attempt to write it down as a simplified MPS by
restricting ourselves to the three largest eigenvalues of the
entanglement spectrum 
AB and 
BA (for the sublattices A
and B) in Eq. (13).

Analyzing the numerical result for the ground state, we find
that it approximately has the following MPS structure:

�A,+ =
⎛
⎝−a+

11 0 0
0 0 0
0 0 0

⎞
⎠, (17)

�A,0 =

⎛
⎜⎜⎝

0 a0
12 0

−a0
12 0 0

0 0 0

⎞
⎟⎟⎠, (18)

�A,− =

⎛
⎜⎝ 0 0 −a−

13

0 a−
22 0

a−
13 0 0

⎞
⎟⎠, (19)

�B,+ = −�A,− (20)

�B,0 = −�A,0, (21)

�B,− = −�A,+, (22)

where aσ
i j = (�A,σ )i j denotes the nonzero matrix entries.

After switching on the drive, we keep monitoring the pat-
tern of nonzero entries and find that the xy-AFQ state shows
the following structure:

�A,+[a+
i j (t )] ≈

⎡
⎢⎣a+

11(t ) 0 a+
13(t )

0 a+
22(t ) 0

a+
31(t ) 0 a+

33(t )

⎤
⎥⎦, (23)

�A,0[a0
i j (t )] ≈

⎡
⎢⎣ 0 a0

12(t ) 0

a0
21(t ) 0 a0

23(t )

0 a0
32(t ) a33(t )

⎤
⎥⎦, (24)

�A,−[a−
i j (t )] ≈

⎡
⎢⎣a−

11(t ) 0 a−
13(t )

0 a−
22(t ) 0

a−
31(t ) 0 a−

33(t )

⎤
⎥⎦, (25)

�B,σ (t ) = �A,σ
[
aσ

i j (t ) → bσ
i j (t )

]
, σ ∈ {+, 0,−}, (26)


AB(t ) = diag
[

AB

0 (t ),
AB
1 (t ),
AB

2 (t )
]
, (27)


BA(t ) = 
AB(t ). (28)

Moreover, we also observe:

|a±
i j (t )| ≈ |b∓

i j (t )|, ∣∣a0
i j (t )

∣∣ ≈ ∣∣b0
i j (t )

∣∣. (29)

As a technical detail, note that the reduced MPS also needs to
be renormalized.

Figure 7 compares 〈Qxy
s=A,B〉 obtained with the full and with

the heuristically reduced wave function, with overall good
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FIG. 7. Comparison between the net quadrupole moment
[Eq. (4)] in the Qxy direction obtained from the full matrix-product
states (MPS) and the reduced MPS obtained by truncating to the three
dominant eigenvalues of the reduced density matrix (see Sec. IV B 5).
The qualitative behavior is reliably captured by the smaller MPS.

agreement. To derive an analytic expression for 〈Qxy
s=A,B〉, we

note that Qxy
s can be written using Q±

s = (S±
s )2, S±

s = Sx
s ± iSy

s

as follows:

Qxy
s = i

2
(Q−

s − Q+
s ), (30)

〈
Qxy

s

〉 = Im(〈Q+
s 〉 − 〈Q−

s 〉)

2
. (31)

We find

〈Q±
s 〉 = 1

2

∑
i, j

[

AB

i 
BA
j

]2(
�s,±

ji

)∗
�s,∓

i j . (32)

Equation (32) shows that, for the initial MPS in Eq. (17),
〈Q±

s 〉 = 0, as the matrices �s,± do not share common ma-
trix elements at equal row and column indices. Conversely,
the driven state given by Eq. (23) contains nonzero products
between the matrix elements and yields a net quadrupole
moment 〈Qxy

j 〉.
Furthermore, we see that any contribution to 〈Qxy

s 〉 must
come from the imaginary part of 〈Q±

s 〉. This implies that
the matrix elements of �s,± must contain imaginary parts,
which are acquired in the course of the unitary time evolution
(beyond a trivial global phase). This shows that the obtained
xy-AFQ state cannot be engineered from an equilibrium con-
figuration by means of an arbitrary variation of the parameters
of the model, provided that time-reversal symmetry holds (i.e.,
the ground-state wave function can be chosen real valued).

V. SUMMARY

We have demonstrated that it is possible to convert a con-
ventional Néel AFM state on the S = 1 quantum spin chain
into an unconventional AFQ state by applying the adiabatic
Floquet protocol (starting with an � = ∞ initial state and
adiabatically decreasing �). We chose to drive the rhombic
anisotropy in Eq. (12), as it contains squares of the spin
operators. Up to the time scales considered, the engineered
state remains stable when the final frequency is kept fixed.

The range of amplitudes A and final frequencies � f where
such an AFQ state is observed is shown in the phase diagram
of Fig. 6. While we are limited to relatively large � f in terms
of numerics, we surmise that the spin-nematic region extends
to smaller � f (and therefore smaller A according to Fig. 6).

In contrast to this, we find that an initial state belonging to
the symmetry-protected Haldane phase is robust against such
driving, as evidenced by the preserved string order parameter.
Thus, while a lot of the previous interest in S = 1 chains was
motivated by an experimental realization of Haldane physics,
we find that its robustness limits the possibilities for nonequi-
librium engineering. We therefore propose that conventional
Néel-ordered compounds are more useful in this regard. We
see that the easy-axis anisotropy is crucial in stabilizing a net
quadrupole moment.

Overall, the adiabatic Floquet protocol presents a con-
trolled approach to driven systems to manipulate and engineer
valuable quantum states. Due to the adiabatic changes, we can
achieve much longer numerical propagation times than in the
case of sudden quenches.

From a technical perspective, we have employed MPSs in
combination with the iTEBD algorithm; we have also used
ED (see Appendix B) to back up our claims. Due to the
adiabatic nature of the quench, a bond dimension of χ = 200
is sufficient to bound the discarded weight from above. In
fact, we provided analytical arguments that the drive from the
Néel state can essentially be encoded with χ = 3. For small
discarded weights shown in Appendix B, however, we observe
a fast increase of the bond dimension and thus, in principle,
an uncontrolled error on this scale. This might be attributed
to nongeneric features of the micromotion, though we lack a
clear understanding of this issue, which is beyond the scope
of this paper.

An experimental realization for the driven S = 1 spin chain
considered here can be either using lasers with real materials
[25,56,78] (cf. Fig. 1) or in cold-atom systems [91].
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APPENDIX A: DETAILS OF THE TIME DISCRETIZATION

To perform an adiabatic variation of the driving frequency
�, we proceed as follows: We logarithmically discretize[92]
the interval [� f ,�0] into Ncycles + 1 points {� j} j=0,...,Ncycles ,
where Ncycles determines the total number of cycles completed
by the drive in the time window [0, t f ]; thus, t f is completely
determined by the Ncycles parameter.

The adiabatic limit is realized with Ncycles → ∞ (equiv-
alently t f → ∞). Numerically, we fix Ncycles = 300. After a
single cycle is performed with period Tj from times [t j, t j+1] ∈
[0, t f ], we decrease the frequency by δ� j from � j → � j −
δ� j , with the corresponding increment in the period Tj →
Tj + δTj . For times t > t f , we keep the frequency constant
and equal to � f , evolving the state to a final time tend = αt f .
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FIG. 8. The same as Fig. 5(b) with A = 6 but for different
discarded weights ε and maximum Trotter steps �t . Inset: The corre-
sponding matrix-product state (MPS) bond dimension as a function
of time. Horizontal axis ticks and labels correspond to those of the
main panel.

APPENDIX B: NUMERICAL TESTS

In Fig. 8, we show the quadrupole polarization (−1) j〈Qxy
j 〉

following a quench from the Néel phase for different values
of the discarded weight ε and maximum Trotter steps �t [the
setup is analogous to Fig. 5(b) which was obtained using ε =
10−5 and �t = 0.01]. The corresponding bond dimension is
shown in the inset. Once a maximum value of χ = 900 has
been reached, the bond dimension is no longer increased due
to computational limitations, and the time evolution is carried
out using a fixed χ . We note that the error is no longer strictly
controlled in this regime.

At a maximum �t = 0.01, the bond dimension does not
increase for ε = 10−5, but it increases mildly for ε = 10−6

and rapidly for ε = 10−7, where its maximum value of χ =
900 is reached quickly and the error is no longer controlled.
This issue persists even if the quench is made more adiabatic
(Ncycles = 500). Physical quantities, such as the quadrupole
polarization, however, seem converged. It is reasonable to
assume that our adiabatic protocol can be modeled accurately
using a small χ (in fact, χ = 3 seems sufficient, see the
analytic discussion in Sec. IV B 5). A possible explanation is
that the blowup of the bond dimension at small ε is related to
features of the micromotion.

We add supportive evidence by comparing with ED data
obtained system sizes of L � 12 with periodic boundary con-
ditions. The results are shown in Fig. 9. One can see that
both approaches agree qualitatively and even quantitatively
unless � f is small or A is large. The ED data indicate a finite
steady-state value of the quadrupole polarization (or a trend in
this direction as L is increased).

Finally, since time propagation using ED poses no entan-
glement problem, we check the robustness of the quasisteady
state for very long propagation times, using Ncycles = 1000, so
that t f ≈ 190, tend = 2.5t f ≈ 475, and finite systems of up to
L = 10. The result is shown in Fig. 10. We observe that the
quasisteady state remains robust in this parameter range.

FIG. 9. Comparison of infinite time-evolving block decimation
(iTEBD) and exact diagonalization (ED) results for the time evo-
lution of the net quadrupole moment following a quench starting
from the Néel phase for (a) � f = 12.0 and (b) � f = 10.0 (the latter
corresponds to Figs. 5 and 8).

FIG. 10. Study of the stability of the quasisteady state for A =
4, � f = 12 and very long propagation times (Ncycles = 1000) using
exact diagonalization in a small system of L = 4, 6, 8, 10.
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APPENDIX C: FLOQUET HAMILTONIAN IN ADIABATIC
EVOLUTION

In this section, we present general expressions for the Flo-
quet adiabatic evolution that can be used as a starting point
for methods beyond the direct time propagation used in this
paper.

Given a purely periodic Hamiltonian H (t + T ) = H (t )
with period T , the Floquet Hamiltonian HF is formally defined
by the unitary operator over a single cycle in the time interval
[t0, t0 + T ]:

U (t0 + T, t0) = T̂ exp

[
− i

∫ t0+T

t0

dsH (s)

]

≡ exp(−iHF T ), (C1)

where T̂ is the time-ordering operator. Note that, in general,
the Floquet Hamiltonian is dependent upon both t0 and T ,
i.e., HF ≡ HF (t0, T ). In most cases, determining HF in an
exact way is not possible due to the complex time ordering
appearing on the right-hand side. A common approach to ap-
proximate HF for a fixed frequency � = 2π/T is to truncate
the Magnus expansion to a given order or to employ an effec-
tive Hamiltonian; however, the validity of these approaches is
normally restricted to the region of high � values.

In the adiabatic Floquet approach described in Sec. II B, we
start with the initial frequency �0 = ∞, where HF is known
exactly. Due to the slow decrease in �, HF undergoes in-
finitesimal changes [and so does the unitary evolution operator
in Eq. (C1)]. To determine the adiabatic variation of HF , we
look at two neighboring cycles with the drive period differing
by an infinitesimal amount δT and employ in their respective
intervals the definition given by Eq. (C1). This way, one does
not need to solve any of the Floquet Hamiltonian problems
individually, as only the difference between the series expan-
sions of Eq. (C1) needs to be considered.

We discretize the time interval [t0, t f ] as a set of points
tk=0,...,N= f . The values of tk will be called the switching times,
representing the times where an infinitesimal variation of the
driving period δT takes place. In each interval [tk−1, tk−1 +
Tk], the value of the drive frequency is fixed and given by
�k = 2π/Tk , and the drive function f (t ) satisfies

f (t + Tk ) = f (t ), ∀t ∈ [tk−1, tk−1 + Tk]. (C2)

We consider a time-dependent Hamiltonian of the form:

H (t ) = H0 + V (t ),

V (t ) = f (t )
∑

j

Xj = f (t )X, (C3)

where H0 is the time-independent part, and Xj are generic
local operators. To simplify calculations, we further impose
the following restriction on the drive function within each
finite interval:

f (0) = f (T ) = 0,

∫ tk−1+Tk

tk−1

ds f (s) = 0,∀k. (C4)

Since the initial Hamiltonian H0 is known, one can choose
to start from an eigenstate of H0. In that case, it is more
convenient to work in the interaction representation, where the

time evolution operator is explicitly given by

U (t f , t0) = T̂ exp

[
− i

∫ t f

t0

ds exp(iH0s)V (s) exp(−iH0s)

]
.

(C5)

On each time interval [tk−1, tk−1 + Tk], we associate a Her-
mitian operator H (k)

F defining the Floquet Hamiltonian in that
interval:

U (tk−1 + Tk, tk−1) ≡ exp
[−iH (k)

F Tk
] = U (k)

F ,

U (t f , t0) =
N∏

k=1

U (k)
F . (C6)

The last identity follows from the connection property of the
evolution operator. Within a given time interval of fixed period
Tk , the series expansion for the unitary operator is

U (k)
F =

∞∑
n=0

(−i)n

n!

∫ tk−1+Tk

tk−1

n∏
j=1

dt j T̂ [V̂k (t j )], (C7)

where the carets indicate that the operators are in the interac-
tion representation, i.e., V̂k (s) = exp(iH0s)Vk (s) exp(−iH0s),
and we define Vk (s) ≡ f (s, Tk )X [see Eq. (C3)] for a fixed
value of the period Tk . The term in brackets contains a product
of the operators V̂k (t j ) whose order is irrelevant due to the
time-ordering operator acting over the bracket.

We consider now two adjacent unitary operators:

U (k)
F = exp

[−iH (k)
F Tk

]
,

U (k+1)
F = exp

[−iH (k)
F (Tk + δT ) − iδVk (Tk + δT )

]
,

(C8)

with δT ∼ 0 an infinitesimal variation of the period, and δVk

representing an infinitesimal change of the Floquet operator
when a decrease in the driving frequency from �k to �k+1

takes place. The first interval of the evolution is [tk−1, tk−1 +
Tk], and the second is [tk−1 + Tk, tk−1 + 2Tk + δT ].

The initial form of the Floquet Hamiltonian is known in the
� → ∞ limit:

H (k=0)
F = H0. (C9)

The variation with respect to the period is given by

lim
δT →0

U (k+1)
F − U (k)

F

δT
≡ ∂T UF (T ). (C10)

The two neighboring terms are explicitly written in their
series expansion:

U (k)
F =

∞∑
n=0

(−i)n

n!

∫ tk−1+Tk

tk−1

n∏
j=1

dt j T̂ [V̂k (t j )],

U (k+1)
F =

∞∑
n=0

(−i)n

n!

∫ tk−1+2Tk+δT

tk−1+Tk

n∏
j=1

dt j T̂ [V̂k+1(t j )]. (C11)

By changing the variables of integration in the U k+1
F to t̃n =

tn − Tk , we obtain two different contributions when subtract-
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ing both series �U (k)
F = U (k+1)

F − U (k)
F :

�U (k)
F =

∞∑
n=1

(−i)n

n!

∫ tk−1+Tk

tk−1

n∏
j=1

dt j T̂ [�Ôk ({t j})]

+
∞∑

n=1

(−i)n

n!

∫ tk−1+Tk+δT

tk−1+Tk

n∏
j=1

dt j T̂ [Ôk+1({t j})],

(C12)

where we have defined

Ôk ({t j}) = V̂k (t1) . . . V̂k (tn),

�Ôk ({t j}) = Ôk+1({t j}) − Ôk ({t j}). (C13)

Note that all summed up terms start at n = 1 since the iden-
tities appearing on the right-hand side have canceled out. For
the k + 1 term, we make use of the following expansion:

Ôk+1({t j}) ≈ V̂k (t1) . . . V̂k (tn)︸ ︷︷ ︸
=Ôk ({t j})

+δT
n∑

j=1

∂V̂k (t j )

∂T

∏
l �= j

V̂k (tl ).

(C14)
We stress that the order of products inside the brackets is
irrelevant due to the action of the time-ordering operator. The
second term in the right-hand side of Eq. (C12) is identically
zero when Eq. (C4) is satisfied over the infinitesimal interval
of integration. For the first series, the term in brackets at a
given order n is given by

(δT )T̂

⎧⎨
⎩

n∑
j=1

1

f (t j, Tk )

[
∂ f (t j, T )

∂T

]∣∣∣∣
T =Tk

Ôk ({t j})

⎫⎬
⎭. (C15)

Due to the time ordering, each summand will give exactly the
same contribution to the propagator. Then we can select one of

the intermediate times (say t1), sweep it around the full string
of operators, and write

αn

∫ b

a
dt1w(t1, Tk )V̂k (t1)

∫ b

a
dt2· · ·

∫ b

a
dtnT̂ Ôk ({t j}),

αn = (−i)n

n!
(δT )n, (C16)

where we have abbreviated a = tk−1 and b = tk−1 + Tk , and
defined

w(t1, Tk ) =
[
∂ f (t1, T )

∂T

]∣∣∣∣
T =Tk

1

f (t1, Tk )
. (C17)

We can arrange t1 a total of n times, with the remaining n − 1
operators still subjected to time ordering. Proceeding to all
orders, Eq. (C12) becomes

�U (k)
F ≈ −iδT

∫ b

a
dt1w(t1, Tk )V̂k (t1, Tk )U k

F . (C18)

Equation (C18) gives a differential equation for the Floquet
unitary operator. The initial condition is given by

UF (T = 0) = lim
T →0

exp(−iH0T ) = 1. (C19)

The corresponding Floquet Hamiltonian is then identified by
the relation:

UF (T ) = exp[−iHF (T )T ],

HF (T ) = 1

T

∫ t0(T )+T

t0(T )
ds exp(iH0s)V (s, T ) exp(−iH0s).

(C20)

Note that the exact form of increments in the period T is what
determines the functional form of the switching times t0(T ).
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