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Dynamical phase transitions in periodically driven Bardeen-Cooper-Schrieffer systems
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We present a systematic study of the dynamical phase diagram of a periodically driven BCS system as a
function of drive strength and frequency. Three different driving mechanisms are considered and compared:
oscillating density of states, oscillating pairing interaction, and oscillating external paring field. We identify the
locus in parameter space of parametric resonances and four dynamical phases: Rabi-Higgs, gapless, synchro-
nized Higgs, and time-crystal phases. We demonstrate that the main features of the phase diagram are quite
robust to different driving protocols and discuss the order of the transitions. By mapping the BCS problem to
a collection of nonlinear and interacting classical oscillators, we shed light on the origin of time-crystal phases
and parametric resonances appearing for subgap excitations.
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I. INTRODUCTION

The manipulation of many-body systems by periodic
drives, usually referred to as “Floquet engineering,” has
become a powerful tool to control properties of materials
[1–4]. Floquet engineering has benefited from the tremendous
advances in laser technologies and the advent of highly con-
trollable systems [5] like ultracold atomic gases in optical
traps [6–8] or cavities [9–11], ion chains [12], and nuclear
spins. Some experimental demonstrations include quantum
control of magnetism [13], topology [14], electron-phonon
interactions [15], and broken symmetry phases such as super-
conductivity [16,17].

Superconductors are also one of the most popular plat-
forms for quantum technologies. Quantum devices require the
manipulation of the out-of-equilibrium system for as long as
possible without losing coherence because of coupling to the
environment. Thus, in the past years a large effort has been
made to improve materials and devices to increase the energy
relaxation time and the coherent dynamics [18–20].

Superconducting and ultracold atomic superfluid con-
densates present a unique opportunity to study many-body
Floquet effects [21–29]. Because of a gap in the excitation
spectrum, these systems tend to have long relaxation times. In
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addition, in weak coupling, the dynamics can be described by
a mean-field-like Hamiltonian with effective all-to-all inter-
actions. Both effects contribute to provide a large window of
time where energy relaxation processes are suppressed and the
out-of-equilibrium dynamics can be studied. Furthermore, all-
to-all interacting systems have aroused interest in the context
of mean-field time crystals [27,30–33].

Notwithstanding all this growing interest, Floquet engi-
neering in superconducting or superfluid condensates has
not been addressed until recently [21,23,24,27,34–40]. For
periodically driven BCS systems, Rabi-Higgs oscillations
[21], parametric resonances, and Floquet time-crystal phases
[24,27] have been demonstrated by considering a periodic
time-dependent pairing interaction λ(t ).

Despite this progress, several questions remain open. Dif-
ferent dynamical phases have been identified [21,23,24,36]
and a partial dynamical phase diagram has been presented for
the driven BCS system in Ref. [27]. On the other hand, the
order of the transition has not been discussed. Also, so far
studies have concentrated on a driving mechanism in which
the interaction parameter λ is time dependent (λ driving).
However, it is also possible to envisage that the density of
states (DOS) could be time dependent (DOS driving).

Here we present a systematic study of the dynamical
phase diagram of a driven BCS system including driving
frequencies such that h̄ω lies below and above the gap and
a large range of drive amplitudes and both λ- and DOS-
driving mechanisms. The DOS-driving protocol is relevant for
ultracold-atom setups as well as in condensed-matter systems
where the electrons can couple to an electromagnetic field in
the terahertz regime. In addition, a systematic comparison of
driving mechanisms allows to separate universal features from
mechanism-dependent details.
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We show that the phase diagram is, in general, surprisingly
rich with at least four dynamical phases (Rabi-Higgs, gapless,
synchronized Higgs, and time-crystal phases) ubiquitously
appearing for both driving protocols. Dynamical phase tran-
sitions (DPTs) are analyzed in detail and we demonstrate the
existence of first- and second-order-like phase transitions. We
analyze the parametric resonances discovered before [27] and
discuss their origin in the context of the mapping to a classical
dynamical system. In order to clarify the essential ingredi-
ents leading to parametric resonances, we compare the phase
diagram for λ and DOS driving with the one corresponding
to an external pairing field (third driving mechanism). Also,
to highlight the relevance of the many-body interactions in
the emergence of parametric resonances, we compare these
phase diagrams to the one obtained in the case that the self-
consistency of the BCS order parameter is neglected.

The paper is organized as follows: Section II introduces
the model and the methods used. Section III presents the
dynamical phase diagrams. Section IV discusses the dynamics
in each phase. Section V analyzes the order of the transitions.
In Sec. VI we present the mapping to a classical system
of nonlinear oscillators. Finally, in Sec. VII we present our
conclusions.

II. PERIODICALLY DRIVEN BCS MODEL

A. The pseudospin model

We consider the following time-dependent BCS Hamilto-
nian written in terms of Anderson pseudospins [41]:

ĤBCS = −2
∑

k

ξk(t )Ŝz
k − λ(t )

∑
k,k′

Ŝ+
k Ŝ−

k′ . (1)

Here, ξk = εk − μ measures the energy of the fermions (εk)
from the Fermi level μ and λ is the pairing interaction. Either
ξk(t ) or λ(t ) is taken as time dependent. In the first case, for a
uniform rescaling of the fermionic band, we can consider the
DOS itself, ν, to be time dependent (DOS driving) while the
second case defines λ driving. More details of the protocols
will be given in the next section.

The 1
2 -pseudospin operators are given in terms of fermionic

operators as

Ŝx
k = 1

2 (ĉ†
k↑ĉ†

−k↓ + ĉ−k↓ĉk↑),

Ŝy
k = 1

2i (ĉ
†
k↑ĉ†

−k↓ − ĉ−k↓ĉk↑), (2)

Ŝz
k = 1

2 (1 − ĉ†
k↑ĉk↑ − ĉ†

−k↓ĉ−k↓),

and ĉ†
kσ

(ĉkσ ) is the usual creation (annihilation) operator for
fermions with momentum k and spin σ . The operator Ŝ±

k ≡
Ŝx

k ± iŜy
k creates or annihilates a Cooper pair (k,−k).

Due to the all-to-all interaction, assumed in the second
term of Eq. (1), one can use a time-dependent mean-field
treatment [42–54] which yields the exact dynamics in the
thermodynamic limit. The BCS mean-field Hamiltonian can
be written as

ĤMF = −
∑

k

Ŝk · bk, (3)

where bk(t ) = (2�(t ), 0, 2ξk) is the mean field acting
on the 1

2 -pseudospin operator Ŝk = (Ŝx
k, Ŝy

k, Ŝz
k ). The

pseudomagnetic field bk has to be obtained in a self-consistent
manner during the dynamics.

Without loss of generality, we consider that the equilibrium
superconducting order parameter �0 is real. We will assume
this remains valid over time and show below that this is indeed
the case because of the electron-hole symmetry.

The real part of the instantaneous BCS order parameter is
given by

�(t ) = λ(t )
∑

k

Sx
k, (4)

where Sx
k, without hat, denotes the expectation value of the

operator Ŝx
k in the time-dependent BCS state. From here on,

we will use this notation for all pseudospin components.
In practice, since the pseudomagnetic field depends on k

only through ξk, rather than solving the equations for each k
we solve the equations for a generic DOS converting the sums
into integrals over the fermionic energy ξ ,

�(t ) = λ(t )
∫

dξν(ξ )Sx(ξ ), (5)

with Sx(ξk) ≡ Sx
k and similar for the other components—we

use Sx
k and Sx(ξk) interchangeably, keeping in mind that in

actual computations the ξ -dependent form was used.
At equilibrium, in the absence of periodic perturba-

tions, the 1
2 -pseudospins align in the direction of their local

fields b0
k = (2�0, 0, 2ξk) in order to minimize the system’s

energy [described by Eq. (3)]. This corresponds to the zero-
temperature paired ground state in which the pseudospin
texture (the expectation value of pseudospin operators as a
function of momentum k) is given by

Sx,0
k = �0

2
√

ξ 2
k + �2

0

, Sy,0
k = 0, Sz,0

k = ξk

2
√

ξ 2
k + �2

0

. (6)

Such pseudospin texture is used as an initial condition and,
once the pairing interaction or the DOS is modulated in time,
the expectation values of the pseudospins evolve obeying a
Bloch-like equation of motion,

dSk

dt
= −bk(t ) × Sk, (7)

where we set h̄ ≡ 1.
We assume that the time-dependent solutions do not

spontaneously break particle-hole symmetry. From the equa-
tions of motion one can check that if by(ξ ) = �′′ = 0 (with
�′′ the imaginary part of the order parameter) then since
bx(ξ ) = bx(−ξ ) = 2� and bz(ξ ) = bz(−ξ ) the self-consistent
solution preserves the following symmetries:

Sx(ξ ) = Sx(−ξ ),

Sy(ξ ) = −Sy(−ξ ), (8)

Sz(ξ ) = −Sz(−ξ ).

Indeed, the imaginary part of the order parameter is given by

�′′(t ) = λ(t )
∫

dξ ν(ξ ) Sy(ξ ), (9)
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which vanishes if Eq. (8) holds [and ν(ξ ) = ν(−ξ ) as as-
sumed]. Now, by considering �′′ at a time t + dt ,

�′′(t + dt ) − �′′(t )

= dtλ(t )
∫

dξ ν(ξ )[bx(ξ )Sz(ξ ) − bz(ξ )Sx(ξ )]

= 0. (10)

This shows that the �′′(t ) = 0 is preserved at all times. Thus,
our initial assumption and also Eqs. (8) are self-consistently
satisfied at all times.

B. Numerical implementation

In our computations, we consider typically N = 104 pseu-
dospins associated to equally spaced discrete energy states ξk

within an energy range of W = 40�0 around μ with an en-
ergy constant density of states, ν. The N coupled differential
equations arising from Eq. (7) are solved using a standard
Runge-Kutta fourth-order method with a small enough dt
ensuring the convergence of dynamics. Some selected points
in the phase diagram were also checked using an adaptive
step-size Runge-Kutta method (Fehlberg method).

C. Driving protocols

In the following, we consider two different driving pro-
tocols. In the λ-driving case, the pairing interaction is taken
periodic in time, as

λ(t ) = λ0 [1 + α sin(ωdt )], (11)

while ξk does not depend on time. Here, λ0 is the equilibrium
coupling constant, α is the driving strength, and ωd is the drive
frequency.

In DOS driving, we consider a time-periodic DOS with a
time-independent pairing interaction λ0. This can be achieved
with a periodic modulation of the Fermi velocity which corre-
sponds to a change in the band structure as

ξk(t ) = ξ 0
k [1 + β sin (ωdt )], (12)

yielding a time-dependent DOS given by

ν(t ) = ν0

1 + β sin (ωdt )
, (13)

where ν0 is the constant DOS at equilibrium. The equi-
librium Tc and order parameter depend on the product λν

so an adiabatic change in either parameter is equivalent. In
contrast, the two protocols are rather different when the sys-
tem is out of equilibrium and produce different dynamics.
DOS driving implies that there is a momentum- and time-
dependent pseudomagnetic field along z [through ξk(t )] which
acquires x components once � becomes time dependent. On
the other hand, λ drive means a time-dependent pseudomag-
netic field only along the x direction. Possible experimental
implementations of both protocols in ultracold atoms and
condensed-matter systems have been discussed in detail in
Ref. [21].

FIG. 1. (a) Temporal average of superconducting order param-
eter �̄ as a function of amplitude and frequency of the drive,
considering a λ-driving protocol. We have computed �̄ using the
time window t�0 ∈ [0, 200]. Dashed orange lines indicate cuts to
be shown later (see Figs. 10 and 11). The orange dots indicate the
parameters where the detailed dynamics is displayed (Fig. 2). They
correspond to the different dynamical phases found: synchronized
Higgs (circle), time crystal (triangle), Rabi-Higgs (square), and gap-
less (rhombus). (b) Schematic representation of the phase diagram
showing the dominant phases in each region. Dashed curves repre-
sent continuous phase transitions with fractal-like boundaries while
solid lines represent first-order DPTs as shown below.

III. DYNAMICAL PHASE DIAGRAMS

In this section, we present the dynamical phase diagram
with both driving methods and in a wide range of frequency
and driving strengths. Previous studies focused on λ driving
and the subgap regime [27] or specific frequencies [21,23].

A first screening of the phase diagram can be obtained [27]
using the time-averaged superconducting order parameter �̄

as a dynamical order parameter. In Fig. 1 we show a false color
map of �̄ as a function of the amplitude and frequency of the
drive for the λ-driving protocol. At first look, there are two
main regions that can be easily distinguished: in the light blue
regions the average of the superconducting order parameter
is near the equilibrium value (�̄ ≈ �0) while regions with
zero order parameter average (ZOPA) appear in dark blue. We
identify four different dynamical phases within these regions,
which are schematized and labeled in Fig. 1(b). However,
these need a more refined analysis to be distinguished, as
explained below.

Two dynamical phases appear for subgap excitations, and
two when the system is driven above the gap ωd > 2�0. This
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FIG. 2. Representative dynamical phases for the highlighted pa-
rameters (solid dots) of Fig. 1(a). In the left column we show the
dynamics (transient in blue and steady state in black) and the FT in
the corresponding right panel. For the Fourier analysis, we consider
a long time window t�0 ∈ [200, 2500] to obtain better resolution.
[(a), (b)] Synchronized Higgs mode phase in which the system re-
sponds with the Higgs frequency ωH = 2�̄. [(c), (d)] Time-crystal
phase as a consequence of a time-translational symmetry breaking
in which the order parameter shows period-doubling oscillations.
[(e), (f)] Rabi-Higgs mode phase, in which the superconducting order
parameter oscillates with a low fundamental frequency ωRH . Also in
this regime, the Higgs mode ωH appears as a very low peak in the FT
which is not appreciable in the present scale but in the logarithmic
scale used in Fig. 10. [(g), (h)] Gapless regime where �(t ) goes
very rapidly to zero and remains zero over time without exhibiting
appreciable oscillations.

rather strong distinction could be anticipated as in one case it
is not possible to directly excite quasiparticles in the system
(for subgap excitations in an off-resonant regime) while for
ωd > 2�0 it is possible.

For ωd < 2�0, dark indentations or “Arnold tongues” ap-
pear at ωd = 2�0/n, with n a natural number. These are
the parametric resonances reported in Ref. [27]. The phase
outside the Arnold tongues, labeled “synchronized Higgs,” is
characterized by an order parameter quite close to equilibrium
(light blue regions). In contrast, for ωd > 2�0 the non-ZOPA
phases are characterized by a smaller average order parameter.
Indeed, the light blue regions are darker when ωd > 2�0 than
in the opposite case, indicating more quasiparticle excitations
in the steady state.

In some regions the phase diagram has a marbled aspect in-
dicating that, in general, different dynamical phases intermix.
However, regions with predominance of a given phase can be
identified as schematized in the lower panel.

An example of the time evolution and its Fourier transform
(FT) for each one of the dynamical phases is shown in Fig. 2.
The orange dots allow to associate the parameters of each row
with their location in the phase diagram.

In the presence of a bath [23,36] the system can reach
thermodynamic equilibrium and linear-response theory can be

applied. In the linear regime [21,55,56] the time-dependent
gap parameter responds with the same frequency of the drive,
so the time-translation-symmetry properties of the drive are
preserved. Here, without a bath, for all four dynamical phases,
this time-translation-symmetry preservation does not hold, so
these are exquisitely nonlinear effects which can occur as
prethermal phenomena [27].

In the synchronized Higgs phase, illustrated in Figs. 2(a)
and 2(b), the superconducting order parameter oscillates not
only with the drive frequency ωd (and high harmonics) but
also with a different and incommensurate fundamental fre-
quency given by ωH = 2�̄ (fundamental Higgs frequency).
In the time-crystal phase [Figs. 2(c) and 2(d)], after a transient
dynamics, period-doubling oscillations are stabilized, indicat-
ing a subharmonic response. This is the typical behavior of
discrete time-translational-symmetry breaking displayed by
Floquet time crystals [32,57–63]. Notice that the drive fre-
quency ωd does not appear in the FT but the subharmonic
response remains locked at ωd/2. This behavior persists under
changes in the drive amplitude or frequency [27] which is the
hallmark of time-crystal behavior [32,58].

For ωd > 2�0 and relatively small perturbation amplitudes
α, the dynamics shows a slow modulation amplitude on top
of the fast oscillations at frequency ωd [see Fig. 2(e)]. This
low-frequency mode has been denoted as ωRH in the FT
[Fig. 2(f)] and corresponds to the Rabi-Higgs mode reported
in Ref. [21]. In this regime, a subset of pseudospins gets
synchronized and performs Rabi oscillations with a frequency
proportional to the amplitude of the drive. This corresponds
again to a time-translation-symmetry-breaking subharmonic
response. However, the frequency of the mode can be tuned
with the external drive, which means that the response lacks
“rigidity” and therefore does not qualify as a time-crystal
phase according to the standard definitions [32,58].

Finally, by exciting above the gap with large drive ampli-
tude, the system enters into a gapless regime in which the
superconducting order parameter goes to zero very rapidly in
time and then remains constant [Fig. 2(g)]. As we demonstrate
in the following, the fact that �(t ) = 0 does not mean the
absence of pairing in the system but a “perfect” dephasing
between quasiparticles. Also in this case the response does
not have the same periodicity of the drive. However, instead
of symmetry breaking in this case there is symmetry restoring
(since the response is more symmetric in time) although in a
rather trivial way.

The real time evolution shows that for all dynamical phases
there are lapses of time in which the superconducting order
parameter is larger than the equilibrium value �0. This is
more evident for the gapless regime [Fig. 2(g)] in which �(t )
surpasses 2�0 at very short times before getting down to zero.
However, this value is still below the increase we could expect
by considering an adiabatic evolution [53] where we use the
instantaneous DOS or pairing interaction in the equilibrium
gap equation. So this effect is rather trivial and should not be
confused with dynamically induced superconductivity.

We present the same phase diagram [Fig. 3(a)] and the
corresponding sketch [Fig. 3(b)] but now by considering the
DOS-driving protocol. There are many common character-
istics by comparing with Fig. 1. In particular, one sees that
parametric resonances for ωd < 2�0 are robust features that
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FIG. 3. (a) Temporal average of superconducting order param-
eter �̄ as a function of amplitude and frequency of the drive
considering a DOS-driving protocol. We have computed �̄ using the
time window t�0 ∈ [0, 200]. The red dots indicate the parameters
used to illustrate the more prominent dynamical phases appearing in
the phase diagram: synchronized Higgs phase (circle), time-crystal
phase (triangle), Rabi-Higgs phase (square), and gapless phase
(rhombus) (see Fig. 4). (b) Schematic representation of the phase
diagram showing the dominant phases in each region. Dashed curves
represent continuous phase transitions with fractal-like boundaries
while solid lines represent first-order DPTs. In the rightmost part of
the phase diagram, dynamical phases intermix in very small regions,
forming a chaotic structure.

naturally emerge independently of the protocol details. In-
deed, they appear both for periodic drive acting only along the
pseudomagnetic field x direction (λ driving) or acting along
the x and z axes at the same time (DOS-driving case). On the
other hand, we show that the same dynamical phases appear
with some difference in the details of the regions of stability.
In contrast to the phase diagram for the λ-driving case, here,
for large perturbation amplitudes (β � 0.15), the dynamical
phase diagram becomes more chaotic where all dynamical
phases practically coexist in small regions.

For completeness, we show the different dynamics at the
red points in Fig. 4.

The crucial role of interactions

The classical parametric oscillator with one degree of
freedom [64] is the simplest mechanical system to show a sub-
harmonic response, a key ingredient of time-crystal behavior.
However, time crystals are defined also by their many-body

FIG. 4. The same as Fig. 2 for the parameters indicated in
Fig. 3(a).

nature. Thus, a successful way to build time crystals is by
making several parametric oscillators interact [65,66].

The dynamics of a single pseudospin in an external mag-
netic field is governed by Bloch equations, which can describe
nontrivial phenomena such as Rabi oscillations. In analogy
with the above systems, one can wonder if the subharmonic
response is already built before interactions are switched on.
To check for this, we solve the equation of motion (EOM)
[Eq. (7)] with a non-self-consistent pseudomagnetic field,

bk(t ) = 2(�0[1 + α sin (ωdt )], 0, ξk ), (14)

starting with the equilibrium initial condition [pseudospins
texture of Eq. (6)].

In this case, the phase diagram becomes trivial without any
visible Arnold tongues as shown in Fig. 5 where we report a
false color plot of the temporal average of the order parameter,
defined here as

�̄ = λ0

∑
k

S̄x
k. (15)

It shows that differently from Refs. [65,66] the subharmonic
response is not built in the elementary constituents but it is an
emergent phenomenon which appears only after fully taking
into account the quasiparticle interactions in the system. We
will come back to this problem in Sec. VI where we will
show how the system can be mapped to a collection of highly
nonlinear oscillators.

IV. TYPICAL PSEUDOSPIN TRAJECTORIES FOR EACH
DYNAMICAL PHASE

A more refined characterization of the dynamical phases
can be obtained by studying the response resolved for each
individual pseudospin. Here we show results for the λ-driving
case but DOS driving yields similar results.

In some cases, the dynamics is more easily analyzed in
terms of longitudinal and transverse components with re-
spect to the direction of each pseudospin at equilibrium
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FIG. 5. Dynamical phase diagram for noninteracting pseu-
dospins. We show the temporal average of the superconducting order
parameter in the α − ωd plane for noninteracting pseudospins sub-
ject to an oscillating (non-self-consistent) pseudomagnetic field. In
this case, parametric resonances are absent and only a weak feature
appears for subgap excitation at ωd ≈ �0 and large driving ampli-
tude. This feature becomes visible by zooming the intensity scale to
a small window around �0 (notice the different color bar scale with
respect to the other figures).

(i.e., without drive). Thus, we define a pseudospin-dependent
reference frame, hereafter the equilibrium Larmor frame
(ELF), introducing the unit vector along the equilibrium
direction,

ê‖
k = 2S0

k = 2

ωk
(�0, 0, ξk), (16)

and two transverse directions,

ŷ = (0, 1, 0), (17)

ê⊥
k = ŷ × ê‖

k = 2

ωk
(ξk, 0,−�0). (18)

With these definitions the pseudospin deviations from equilib-
rium, δSk ≡ Sk − S0

k, can be decomposed in longitudinal (‖)
and transverse (⊥, y) components:

δSk = δS‖
k ê‖

k + δS⊥
k ê⊥

k + δSy
kŷ. (19)

Notice that since the pseudospins are normalized to length
1/2, giving two components specifies the vector up to a sign
of the third component.

A. Synchronized Higgs phase

Figure 6 shows snapshots of the steady-state dynamics for
the synchronized Higgs phase in the ELF during a driving
period, Td = 2π/ωd . The color encodes the fermionic energy
ξk. Notice that because of particle-hole symmetry [Eqs. (8)] it
is enough to show the pseudospins for ξk > 0 to specify the
full texture. In this dynamical phase, the pseudospins precess
very close to their equilibrium position represented by the
origin. Pseudospins with quasiparticle energy ξk 
 �0 (purple
dots) oscillate with the drive frequency in such a way that
they perform a full anticlockwise turn in a drive period Td .
In contrast, the low-energy pseudospins (black dots) precess
more rapidly, so that by t = 3Td/8 they have performed more
than a full turn. Their frequency 2�̄ corresponds to the Higgs
mode. Notice that the loop shape formed by the low-energy
pseudospins (in black) preserves its form during the evolution,
indicating that there is no significant dephasing. Indeed, syn-
chronization of these pseudospins yields the main contribution
to the Higgs mode. Because of particle-hole symmetry, the
pseudospin at the Fermi level cannot be excited by the drive.
In general one can show that the deviation from the equi-
librium position should decrease for low-energy pseudospins
(black dots) as indeed observed.

FIG. 6. We show snapshots, during a time window Td , of pseudospin dynamics in the synchronized Higgs mode phase [α = 0.05 and
ωd = 0.8�0 corresponding with the parameters used in Figs. 2(a) and 2(b)]. At the top of the panels, we indicate the time. A pseudospin
trajectory for ξk 
 3�0 is shown in green. See also the Supplemental Material [67] for a video of the dynamics.
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FIG. 7. Dynamics in the time-crystal phase. We show snapshots, during a time window 2Td , of pseudospin dynamics in the time-crystal
phase. Here, α = 0.05 and ωd = 1.64�0 corresponding with the parameters used in Figs. 2(c) and 2(d). At the top of the panels we indicate
the time. The green loop points out a typical trajectory of pseudospins (orange dots). Those pseudospins with Sz

k > 0 (Sz
k < 0) are indicated

with solid (open) dots. See also the Supplemental Material [67] for a video of the dynamics.

B. Discrete time-crystal phase

We now turn to the discrete time-crystal phase. Because
�̄ = 0 is very far from the equilibrium value �0, it is con-
venient to use a Cartesian frame instead of the ELF. Figure 7
shows the dynamics during a 2Td time window. Solid (open)
symbols indicate Sz

k > 0 (Sz
k < 0). The high-energy pseu-

dospins (red-yellow dots) precess around the instantaneous
pseudomagnetic field describing a loop (green line) and con-
tributing self-consistently to build the time-dependent order
parameter. Very-low-energy pseudospins have a nearly max-
imal component in the xy plane in the first frame, indicating
strong pairing correlations but with incoherent phases. This
initial circular feature becomes an ellipse at subsequent times,
corresponding to a ring that rotates nearly rigidly along the
x axis of the Bloch sphere. Spins at intermediate energies
(violet-orange dots) interpolate between these two behaviors,
contributing significantly to the time-dependent �(t ). Indeed,
the red and violet cloud is on the right-hand side of the frame
at t = 0 contributing to a positive � [cf. Eq. (4)] and after
one drive period has shifted to the left, yielding the sign
alternation of � in one drive period as shown in Fig. 2(c).
After two drive periods, the pattern goes approximately back
to the original distribution, consistently with the behavior of
the order parameter.

C. Rabi-Higgs phase

Turning now to the Rabi-Higgs phase, since the order
parameter is close to equilibrium, it is convenient to use the
ELF once again. In Fig. 8 we show several texture snapshots
during the first Rabi-Higgs period TRH . At t = 0 (equilibrium)
the pseudospin texture corresponds to all pseudospins at the
origin by definition. For t = TRH/2 we have the inversion
phenomenon in which a subset of pseudospins (open dots)
get inverted with respect to its fermionic energy. In other

words, they have an instantaneous negative Sz
k while ξk > 0.

Since the z component of the pseudospin encodes the charge,
this corresponds to an inversion of the quasiparticle popula-
tion. The pseudospins that get inverted satisfy the resonance
condition ωd = ωL(ξ ∗

k ) with ωL(ξk) = 2
√

ξ 2
k + �2

0, the natu-
ral Larmor frequency. We indicate this fermionic energy ξ ∗

k
with a cross in the color bar. After one full Rabi period, this
inversion gets largely diminished. In the steady state one ob-
serves a periodic oscillation of the population as discussed in
Ref. [21].

D. Gapless phase

Finally, for the gapless phase it is convenient to go back to
the Cartesian frame. In Fig. 9 we show texture snapshots at
short times. We see that after a fast transient, the pseudospins
start to roll up around the coordinate origin with the shape of
a spiral. This unveils that the gapless phase consists in strong
pairing correlations, i.e., for several pseudospins Sx

k = 0, but
with Cooper pairs which are not phase coherent. So the sum
of the x components yields a zero gap. This is not, however,
a chaotic state, but the ZOPA is a consequence of a very
orderly movement of pseudospins consistent with the unitary
evolution of the state.

V. DYNAMICAL PHASE TRANSITIONS

In order to characterize the order of the different DPTs, we
analyze the behavior of the system along the dashed vertical
line in Fig. 1(a) corresponding to α = 0.05. Figure 10(a)
shows the FT of the time-dependent superconducting order
parameter as a function of ωd while Fig. 10(b) shows its
long-term average in the steady state, �̄.

In the adiabatic limit (ωd � 2�0), the FT shows a clear
peak at ωd resulting in the strong linear orange feature
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FIG. 8. Dynamics in the Rabi-Higgs phase. We show snapshots, during the first Rabi period TRH , of pseudospin dynamics in the Rabi-Higgs
regime [α = 0.12 and ωd = 3.5�0 corresponding with the parameters used in Figs. 2(e) and 2(f)]. At the top of the panels, we indicate the
time. Those pseudospins with Sz

k > 0 (Sz
k < 0) are indicated with solid (open) dots. The cross in the color bar indicates the ξ ∗

k satisfying the
resonance condition ωL (ξ ∗

k ) = ωd . See also the Supplemental Material [67] for a video of the dynamics.

in Fig. 10(a) as expected from linear response. A weaker
feature appears at 2ωd corresponding to the allowed [23]
second harmonic generation. Increasing ωd , the dynamical
order parameter �̄ [Fig. 10(b)] shows discontinuities near
ωd/(2�0) = 1/2 and ωd/(2�0) = 1/3 corresponding to first-
order DPTs associated to low-α precursors of the Arnold
tongues [cf. Fig. 1(a)]. Inside the dynamical phases with finite
�̄, well-defined peaks appear at ωH and ωH ± ωd associ-
ated with the synchronized Higgs mode. The dotted lines in
Fig. 10(a) are 2�̄ (large dots) and 2�̄ ± ωd (small dots),

showing that the frequency of the Higgs mode is locked at 2�̄.
This can be seen as incommensurate time-crystal behavior
similar to Ref. [24].

For 2ωd higher than the minimum of the effective contin-
uum 2�̄, the second harmonic of the drive is resonant with
the quasiparticles. This produces a proliferation of excitations
resulting in a suppression of the average gap as shown in
Fig. 10(b) for ωd/2�0 ≈ 1/2. As ωd decreases, the 2ωd reso-
nance approaches the quasiparticle minimum and the range of
resonant quasiparticles gets cut off. At some point, there are

FIG. 9. Dynamics in the gapless regime. We show snapshots, during the transient to the gapless behavior, of pseudospin dynamics in the
gapless phase [α = 0.27 and ωd = 3.5�0 corresponding with the parameters used in Figs. 2(g) and 2(h)]. At the top of the panels, we indicate
the time. See also the Supplemental Material [67] for a video of the dynamics.
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FIG. 10. (a) Characterization of DPTs thought a false color plot
of the superconducting response in the frequency domain vs driving
frequency, ωd for α = 0.05. We used t�0 ∈ [1500, 2500] for high-
frequency resolution. Large and small dots represent 2�̄ [shown also
in (b)] and 2�̄ ± ωd , respectively. These values are taken from the
real time gap dynamics �(t ). Notice that they match peaks in the
FT. Vertical lines indicate equal symmetry (dashed) and different
symmetry (solid) first-order DPTs. (b) Average of superconducting
order parameter vs drive frequency.

not enough quasiparticles with 2
√

ξ 2
k + �̄2 ≈ 2ωd to suppress

the gap and a new steady state is found, in which the Higgs
mode frequency increases discontinuously with ωH > 2ωd .
Thus, the line ω = 2ωd intersects the jump of ωH in Fig. 10(a).
A similar mechanism applies to the weaker transition at lower
frequency, with the third harmonic resonance and the line
ω = 3ωd intercepting the jump of ωH .

While the previous two DPTs are among phases with the
same symmetry, the third discontinuity at ωd/2�0 
 0.8 rep-
resents a DPT between qualitatively distinct phases: gapped
on the left and ZOPA on the right. The ZOPA phase corre-
sponds to the n = 1 Arnold tongue and is bounded by the
solid vertical lines in Fig. 11(a). Inside this region (0.8 �
ωd/2�0 � 0.9), a commensurate time crystal appears with
a doubling of the period of the drive. The persistence of the
order parameter oscillation at ωd/2 in this finite region indi-
cates that the period doubling is not accidental. As discussed
in Ref. [27] this is also true changing α in a finite range. Thus,
we confirm again that this state satisfies the rigidity criteria
[58] for time-crystal behavior.

Both transitions bounding the time-crystal phase are first
order. The upper edge of the tongue has a fractal-like ap-
pearance [27] which has been noticed also in related models
[62]. Even inside the tongue, as already mentioned, marbled
textures appear where �̄ becomes nonzero. In these cases,
as illustrated in the rightmost part of Fig. 10(a), the time
crystal is lost and the system switches to a phase in which
time-translational symmetry is recovered at ωd/2�0 ∼ 0.9
(marked with a second vertical line in the figure). For higher
frequencies, the system enters a complex regime in which
our numerical calculations show instabilities. In general, we

FIG. 11. (a) The superconducting response in the frequency do-
main vs the amplitude of the drive α for ωd = 3.5�0. We used t�0 ∈
[10, 200] to compute the average and the FT. Small dots represent
2�̄ [shown also in (b)]. These values are taken from the real time
gap dynamics �(t ) and match peaks in the FT. The dashed vertical
line indicates the α value for which the Rabi-Higgs mode start to
soften. The solid vertical line instead points out the second-order
DPTs to a gapless regime. The blue region on the right corresponds
to � = 0. (b) Average of superconducting order parameter vs drive
amplitude.

find that when �̄ 
 0 (for ωd < 2�0) a time-crystal phase
emerges.

Now we discuss the DPTs along the horizontal dashed
line ωd = 3.5�0 shown in Fig. 1(a). Figure 11(a) shows the
FT map of �(t ) for different values of the drive amplitude
α. For extremely weak perturbation amplitudes, the system
essentially responds with the drive frequency and the Higgs
mode ωH = 2�̄ as occurs for drive frequencies below the
gap. As soon as we increase the drive amplitude α, the Rabi-
Higgs mode ωRH appears in the spectrum, whose frequency
increases linearly by increasing α. At the same time, satellites
at frequencies ωd ± nωRH with n = 1, 2 appear in the FT.
Slightly less prominent, but still appreciable, are peaks at
ωH ± ωRH witnessed by white branches near ωH that linearly
grow with α.

Increasing even more the amplitude, it is clear from
Fig. 11(a) that there is a critical value α (marked by the verti-
cal dashed line) in which the Rabi-Higgs mode starts to soften.
It is more clearly seen in the satellite peaks ωd ± ωRH . This
is an anomalous behavior, taking into account that a conven-
tional Rabi frequency increases by increasing the amplitude of
the drive. Increasing even more the drive, the Rabi-Higgs and
Higgs modes disappear and the system enters into a gapless
regime [blue area in Fig. 11(a)]. In this case, not only �̄ = 0
but also � = 0 (i.e., the superconducting order parameter is
zero over time without exhibiting oscillations). This DPT is
indicated by a solid vertical line. In contrast to the first-order
DPTs described in Fig. 10, here both the dynamics and the
order parameter �̄, shown in Fig. 11(b), point to a second-
order DPT with the characteristic “critical slowing down” near
the transition point.
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VI. MAPPING TO CLASSICAL DYNAMICS

In order to investigate the origin of the parametric res-
onances found numerically in Fig. 1 it is useful to map
the BCS dynamics to classical anharmonic oscillators [68].
This can be done because the dynamics of pseudospins
can be mapped to the dynamics of a collection of classi-
cal spins Sk. Such a dynamic is governed by the Hamilton
equations ∂t Sk = {H, Sk} using the usual Poisson brackets
{Sμ

k , Sν
k′ } = −εμνηδk,k′Sη

k for angular momenta where μ, ν, η

represents the x, y, z component and εμνη is the Levi-Cività
tensor.

Alternatively one can derive the BCS time-dependent
equations from a variational principle, requiring that the wave
function has a BCS form at each instant of time and using the
elements of the generalized one-particle density matrix as dy-
namical variables [53,68–71]. For each pair (k ↑, −k ↓), four
expectation values of the one-particle density matrix need to
be considered, corresponding to the four operators appearing
on the right-hand side of Eqs. (2).

One can show that the density matrix derives from a BCS
state if and only if the generalized matrix is idempotent [69].
It is easy to show that this is equivalent to the following
constraints:

(
Sx

k

)2 + (
Sy

k

)2 + (
Sz

k

)2 = 1/4, (20)

〈ĉ†
k↑ĉk↑〉 = 〈ĉ†

−k↓ĉ−k↓〉. (21)

We can use Eq. (21) to reduce the dynamical variables for a
pair (k ↑, −k ↓) to three variables which can then be taken
as the pseudospin expectation values Sx

k, Sy
k, Sz

k with the con-
straint in Eq. (20).

In this formalism, the time-dependent expectation value of
the quantum Hamiltonian plays the role of a classical Hamil-
tonian and can be obtained from Eq. (1) replacing operators
by their expectation values in the instantaneous BCS wave
function. Adding the constraint in Eq. (20) with Lagrange
multipliers ωk, the classical Hamiltonian reads

H = −
∑

k

2Sz
kξk − λ

∑
k,k′

(
Sx

kSx
k′ + Sy

kSy
k′
)

− 2 f
∑

k

Sx
k +

∑
k

ωk

[(
Sx

k

)2 + (
Sy

k

)2 + (Sz
k)2 − 1

4

]
.

(22)

The third term is an additional external pairing field which
couples linearly with the order parameter and which we added
for later use. As before, driving will be introduced by making
ξk, λ, or f time dependent. Here we concentrate on the λ driv-
ing and discuss briefly f driving. The DOS-driving protocol
can be treated similarly.

It is useful to use as dynamical variables the deviation (not
necessarily small) δSμ

k defined as Sμ

k ≡ Sμ,0
k + δSμ

k , with Sμ,0
k

the equilibrium BCS state. We also write the time depen-
dence of the pairing interaction as an average value λ0 plus
a fluctuation, λ = λ0 + δλ. The Hamiltonian can be written
as H = E0 + δH with E0 the equilibrium BCS ground-state

energy and with the fluctuating part,

δH = −2
∑

k

δSz
kξk − δλ

∑
k,k′

(
Sx,0

k Sx,0
k′ + Sy,0

k Sy,0
k′

)

− 2(λ0 + δλ)
∑
k,k′

(
δSx

kSx,0
k′ + δSy

kSy,0
k′

)

− (λ0 + δλ)
∑
k,k′

(
δSx

kδSx
k′ + δSy

kδSy
k′
)

+
∑

k

ωk
[
2Sx,0

k δSx
k + 2Sy,0

k δSy
k + 2Sz,0δSz

k

+ (δSx
k )2 + (

δSy
k

)2 + (
δSz

k

)2] − 2 f
∑

k

δSx
k. (23)

The saddle-point condition requires that linear variations
vanish, which, by setting f = δλ = 0, yields the equilibrium
mean-field equations

−�x
0 + ωkSx,0

k = 0, (24)

−�
y
0 + ωkSy,0

k = 0, (25)

−ξk + ωkSz,0
k = 0, (26)

with �
μ
0 = λ0

∑
k Sμ,0

k which can be readily solved for Sμ,0
k .

Without loss of generality, we take �x
0 = �0 and �

y
0 = 0.

Applying the constraint to the stationary state, one finds that
the Lagrange multiplier is given by the equilibrium Larmor

frequency, ωk = ωL(ξk) = 2
√

ξ 2
k + �2

0. The negative root can

be discarded as it yields the unphysical sign of Sz,0
k . Solving

for the spin components yields Eq. (6).
Using the saddle-point condition, the Hamiltonian has

terms up to cubic in fluctuations and is given by

δH = −(λ0 + δλ)
∑
k,k′

(
δSx

kδSx
k′ + δSy

kδSy
k′
)

+
∑

k

ωk
[(

δSx
k

)2 + (
δSy

k

)2 + (
δSz

k

)2]

− 2

(
δλ

λ0
�0 + f

) ∑
k

δSx
k, (27)

where we dropped terms linear in δλ which do not affect the
EOM. It is useful to transform the Hamiltonian to the ELF of
Eq. (19) to obtain

δH =
∑

k

ωk
[(

δSy
k

)2 + (δS⊥
k )2 + (δS‖)2

]

− (λ0 + δλ)
∑
k,k′

(
4

ξkξk′

ωkωk′
δS⊥

k δS⊥
k′ + δSy

kδSy
k′

)

− 4

(
δλ

λ0
�0 + f

) ∑
k

ξk

ωk
δS⊥

k . (28)

A. Harmonic approximation

So far, the treatment is exact. We now proceed by introduc-
ing some approximations. First, one can use the constraint to
show that longitudinal fluctuations are higher order compared
to transverse ones (which can be also seen from a geometric
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FIG. 12. Dynamical phase diagram for periodic driving by an
external pairing field. We show the temporal average of the super-
conducting order parameter in the f0 − ωd plane for the case of an
external paring field drive.

argument). Thus, we neglect δS‖
k in the first term of Eq. (28).

Defining canonical variables as pk = √
2δSy

k and qk = √
2δS⊥

k
the energy reads

δH = 1

2

∑
k

ωk
(
p2

k + q2
k

)

− (λ0 + δλ)
∑
k,k′

(
2

ξkξk′

ωkωk′
qkqk′ + 1

2
pk pk′

)

− 2
√

2

(
δλ

λ0
�0 + f

) ∑
k

ξk

ωk
qk, (29)

which maps the problem to a set of harmonic oscillators with
long-range interactions depending on the quasiparticle energy
ξk. The Larmor frequency ωL(ξk) plays the role of natural fre-
quencies of the oscillators, giving rise to a DOS in frequency
space peaking at 2�0, consistent with the identification of
ω0 = 2�0 as the “natural frequency” of oscillation of the
superconducting system [27].

Setting f = 0, one can check that the Hamilton EOM,

q̇k = ∂H
∂ pk

, ṗk = − ∂H
∂qk

, (30)

reproduce the linearized version of Eq. (7).
Fluctuations in λ couple linearly with the canonical vari-

ables [last term in Eq. (29)] and with quadratic fluctuations
of canonical variables (second term). In analogy with a single
classical parametric oscillator [64], it is tempting to attribute
parametric resonances to the coupling with quadratic fluctua-
tions. However, this can be excluded in the following way. We
set δλ = 0 and consider periodic driving in f = f0 sin(ωdt ).
From Eq. (29), we see that this driving is equivalent to the
linear coupling with δλ (for that term). Figure 12 shows
the phase diagram computed with the original Hamiltonian,
Eq. (22), but with f as the only time-dependent perturbation.
In this case, one obtains similar Arnold tongues which reveals
that the coupling of δλ with quadratic fluctuations is not es-
sential to obtain the parametric resonances. This result could
be anticipated from the following argument. Since quadratic

fluctuations of canonical variables couple linearly with δλ

[cf. Eq. (29)], the analogy with a single parametric oscillator
would yield parametric resonances at ωd = 2ω0/n = 4�0/n
which is not consistent with the resonances obtained numeri-
cally [Fig. 1(a)], which satisfy instead ωd = ω0/n = 2�0/n.

We will see that the linear coupling of δλ with canonical
variables [last term in Eq. (29)] plays a fundamental role in the
emergence of the parametric resonances. This does not occur
through the direct coupling with the pseudospin fluctuations
but indirectly through the effect of higher-order nonlinearities.

B. Higher orders

Writing the constraint on the pseudospin length as 2S0
k ·

δSk + |δSk|2 = δS‖
k + |δSk|2 = 0, we can eliminate longitudi-

nal fluctuations in favor of transverse ones,

1

2
+ δS‖

k = ±1

2

√
1 − 4

(
δSy

k

)2 + (
δS⊥

k

)2
, (31)

where the left-hand side is nothing but S‖
k . We see that for the

solution to be real (δSy
k)2 + (δS⊥

k )2 < 1/4 and two solutions
are possible, one in which S‖

k > 0 (ferroalignment) and one in
which S‖

k < 0 (antiferroalignment). Although both solutions
are needed for the full dynamics, for the time being we restrict
to ferroalignment which is the relevant solution for not too
large deviations.

Considering only the λ driving and using canonical vari-
ables qk and pk, the Hamiltonian reads

δH =
∑

k

ωk

2

(
1 −

√
1 − 2

(
p2

k + q2
k

))

− (λ0 + δλ)
∑
k,k′

(
2

ξkξk′

ωkωk′
qkqk′ + 1

2
pk pk′

)

− 2
√

2
δλ

λ0
�0

∑
k

ξk

ωk
qk, (32)

where again one can check that Hamilton equations yield the
correct EOM.

Expanding the square root in a Taylor series, the first
term in Eq. (32) can be written as a collection of anhar-
monic oscillators,

∑
k

�k
2 (p2

k + q2
k ), with a time-dependent

self-consistently determined natural frequency,

�k(t ) = ωk
[
1 + 1

2

(
p2

k + q2
k

) + 1
2

(
p2

k + q2
k

)2

+ 5
8

(
p2

k + q2
k

)3 + · · · ]. (33)

Following Ref. [64] we can analyze nonlinearities iteratively.
Treating the last term in Eq. (32) in linear response [21] one
obtains that for a drive frequency ωd , the quadratic terms
respond as (p2

k + q2
k ) ∝ cos 2ωdt which implies that the nat-

ural frequency �k is “pumped” with frequency ωp = 2ωd .
Thus, using the fact that a classical oscillator has parametric
resonances at ωd = 2ω0/n, one expects resonances at ωd =
2�0/n in the BCS system, as indeed found. The identification
of the pump mechanism and the explanation of the factor of
2 in the resonance series is the main result of this section. We
remark that this ingredient alone is not enough to explain the
parametric resonances. Indeed, the nonlinear effects described
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arise from the constraint while in Sec. III we showed that
interactions, represented here by the second line in Eq. (32),
are essential to stabilize parametric resonances. Furthermore,
restricting to the “ferro” alignment root in Eq. (32) is not
enough in the parametric resonance regime as numerically
we find that the dynamics explore both roots (see Fig. 7).
On the other hand, these considerations do not affect the
conclusion that the leading pump frequency for the oscillators
is at ωp = 2ωd instead of ωd as adding more nonlinearities
can only produce higher multiples of ωd .

VII. SUMMARY AND CONCLUSIONS

We have presented a comprehensive dynamical phase
diagram for a periodically driven BCS condensate using dif-
ferent driving protocols. We concentrated on superconducting
and/or superfluid phases but our results are valid for any phase
for which a BCS description is valid in the time regime before
energy relaxation processes take place in the system. This
includes weak-coupling spin and charge density waves which
can also be mapped to the BCS model.

We numerically demonstrated that the existence of four
dynamical phases and parametric resonances are quite robust
to changes in the protocol. To a large extent, the phase diagram
can be said to be universal. We expect the main features to
remain, also, for more complicated drives, which for example
may be anisotropic on the Fermi surface and depend on light
polarization acting as the drive.

A detailed analysis of the evolution of the pseudospin
textures (Figs. 6–9) allowed to visualize how the many-body
system spontaneously self-organizes in momentum space in
sectors with different dynamics. For the gapless phase, our
analysis revealed a remarkable degree of order and symmetry
in this, apparently, unbroken symmetry phase.

Our study allowed to identify the order of the phase tran-
sitions. Roughly speaking, parametric resonances at 2�0/n
can be seen as multiphoton process with n photons reaching
the gap. Continuous excitation produces a depletion of the
gap which lowers the threshold for excitation. This provides
a feedback loop that explains the first-order transitions in
the lower edge of the Arnold tongues. Second-order phase
transitions also arise by increasing the intensity of the drive
from the Rabi-Higgs to the gapless phase. This is accompa-

nied by a critical slowing down of the dynamics. Thus, the
Rabi-Higgs frequency first follows the common expectation
for a Rabi mode; its frequency increases with dive strength.
For large driving strength it switches to an anomalous regime
in which its frequency decreases with strength.

For subgap excitations, by combining different driving
protocols and mapping to a system of nonlinear oscillators,
we showed that the mechanism of the parametric pump can
be traced back to the nonlinearity in the system due to
the constraint on the length of pseudospins. Furthermore,
we demonstrated that to take into account interactions self-
consistently is an essential ingredient to obtain parametric
resonances. In other words, they constitute an emergent phe-
nomenon of the many-body system.

Regarding experimental realizations, while the present
model neglects the presence of a bath, we have previously
shown that parametric resonances and time-crystal behavior
appear at very early times in the dynamics [27]. In the pres-
ence of a finite decoherence time, they may be observed as
a prethermal transient in the dynamics. Proposed realizations
in the solid state include terahertz excitations and a phonon-
assisted λ-driving mechanism [21]. Ultracold atoms are also
very interesting platforms which are inherently much less af-
fected by the environment (lattice vibrations are not present).
Furthermore, they offer a large degree of parameter manipula-
tion, making them ideal candidates to study the driven BCS
system [6]. Yet another promising platform to observe the
present phenomena is a cavity-QED simulator, where Ander-
son’s pseudospin model can be directly studied [10]. Our work
is an invitation to exploit these platforms to experimentally
explore the fascinating time-translational-symmetry-breaking
phases of periodically driven BCS systems.
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