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Hierarchical Bayesian inference is an essential tool for studying the population properties of compact binaries
with gravitational waves. The basic premise is to infer the unknown prior distribution of binary black hole
and/or neutron star parameters such component masses, spin vectors, and redshift. These distributions shed light
on the fate of massive stars, how and where binaries are assembled, and the evolution of the Universe over
cosmic time. Hierarchical analyses model the binary black hole population using a prior distribution conditioned
on hyperparameters, which are inferred from the data. However, a misspecified model can lead to faulty
astrophysical inferences. In this paper we answer the question: given some data, which prior distribution—from
the set of all possible prior distributions—produces the largest possible population likelihood? This distribution
(which is not a true prior) is −π (pronounced “pi stroke”), and the associated maximum population likelihood
is −L (pronounced “L stroke”). The structure of −π is a linear superposition of delta functions, a result which
follows from Carathéodory’s theorem. We show how −π and −L can be used for model exploration/criticism.
We apply this −L formalism to study the population of binary black hole mergers observed in the LIGO-Virgo-
KAGRA Collaboration’s third gravitational-wave transient catalog. Based on our results, we discuss possible
improvements for gravitational-wave population models.
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I. MOTIVATION

Bayesian inference has become a mainstay of modern
scientific data analysis as a means of analyzing signals in
noisy observations. This procedure determines the posterior
distributions for parameters given one or more model. In
order to study the population properties of a set of uncer-
tain observations, a hierarchical Bayesian framework can be
employed. The basic idea is to model the population using
a conditional prior π (θ |�, M ), which describes, for example,
the distribution of black hole masses {m1, m2} ∈ θ given some
hyperparameters �, which determine the shape of the prior
distribution. Here, M denotes the choice of model. One then
carries out Bayesian inference using a “population likelihood”

L(d|�, M ) =
N∏
i

1

ξ (�)

∫
dθi L(di|θi )π (θi|�, M ), (1)

where L(di|θi ) is the likelihood for data associated with event
i given parameters θi, and ξ (�) is the detected fraction for a
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choice of hyperparameters. Meanwhile, N is the total number
of observations. For an overview of hierarchical modeling in
gravitational-wave astronomy including selection effects, see
Refs. [1–3].

The LIGO-Virgo-KAGRA (LVK) Collaboration’s third
gravitational-wave transient catalog (GWTC-3) [4] contains
the cumulative set of observations of N = 69 confident binary
black-hole mergers [5] detected by the LVK [6–8]. Additional
detection candidates have been put forward by independent
groups [9–13]. Hierarchical inference is employed to study the
population properties these merging binary black holes; see,
e.g., Refs. [14–32]. These analyses have revealed a number of
exciting results, such as the surprising excess rate of mergers
with a primary black hole mass of ∼35M� [15], and the
evolution of the binary merger rate with redshift [16], to name
just two.

However, Bayesian inference has its limitations. One can
use Eq. (1) in order to infer the distribution of binary black
hole parameters, given some model; and one can compare the
marginal likelihoods of two models to see which one better
describes the data. However, Bayesian inference does not tell
us if any of the models we are using are suitable descriptions
of the data. While all models for the distribution of binary
black hole parameters are likely to be imperfect, some may
be adequate for describing our current dataset [33]. When
a model fails to capture some salient feature of the data, it
is said to be “misspecified” [34,35]. Some effort has been
made to assess the suitability of gravitational-wave models,
both qualitatively and quantitatively; see, e.g., [15,16,34,36].
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However, the idea of “model criticism”—testing the suit-
ability of Bayesian models—is still being developed
within the context of gravitational-wave astronomy and
beyond.

Hierarchical Bayesian inference studies often depend upon
parametric models. Modelers design parametrizations in order
to capture the key features of the astrophysical distributions.
However, one must still worry about “unknown unknowns”:
features which do not occur to the modeler to add. For exam-
ple, recent studies [15,16,37,38] find that a sub-population of
binary black holes merge with spin vectors that are misaligned
with respect to the orbital angular momentum axis. However,
the degree to which the spins are misaligned might be model
dependent. In Refs. [15,16,37], the inferred minimum spin
tilt is confidently �90◦. In contrast, Refs. [17,28,38] argue
this signature could be due to a lack of flexibility in LVK
models to account for a subpopulation of black holes with
negligible spin magnitude, finding support for misalignment
at smaller minimum tilt angles. The inferred population dis-
tribution of spin misalignment has important consequences
for understanding the formation channels of binary black-hole
channels. This debate highlights how astrophysical inferences
can be affected by model design.

In order to help alleviate some of the issues arising from
model misspecification in Bayesian inference, we present
a framework for assessing the suitability of a model. This
framework is built around the concept of the maximum pop-
ulation likelihood −L (pronounced “L stroke”): the largest
possible value of L(d|�) in Eq. (1), maximized over all
possible choices of population model π (θ |�) independent of
the choice of parametrization. The “prior” distribution, which
yields this maximum is −π (θ ) (pronounced “pi stroke”). It is
not a true prior because it is determined by the data. The
theory behind the maximization of population likelihoods has
been studied previously in optimization and statistics litera-
ture [39–44]. This work is underpinned by Carathéodory’s
theorem [45] and the mathematics of convex hulls [43].
However, its application to observational science has been
somewhat limited as far as we can tell.

The −L framework is useful for several reasons. First, the
numerical value of −L is an upper bound on the population
likelihood. We can compare the maximum likelihood for a
specific model,

Lmax(M ) = max
�∼p(�|d )

L(d|�, M ), (2)

to −L. Often in Bayesian model selection, the Bayesian evi-
dence values (Zi) of two hypotheses can be used to determine
the extent to which one model is preferred over the other.
A typical threshold chosen to rule out one model in favor
of another is that ln(Z1/Z2) > 8 [46]. In a similar vein, if
ln(−L/Lmax(M )) � 8, we can be sure the model M is not badly
misspecified since there is no second model M ′ that can be
written down with that will yield a statistically significant
improvement. We emphasize that a model which does not
satisfy this condition is not necessarily misspecified.

Second, the −L framework can be used to quantitatively
assess if a model M is misspecified. By generating synthetic
data from M, one can generate the expected distribution of
(−L,Lmax(M )). In this paper, we show how one can com-

pare the observed values of (−L,Lmax(M )) to the expected
distribution in order to determine the extent to which M is
misspecified, and the way in which it is misspecified.

Third, the −L framework can be used for “model ex-
ploration,” providing clues of where in parameter space
unmodeled features might be lurking. By comparing −π (θ )
with the prior from our phenomenological model π (θ |M ),
one can see if the phenomenological model is capturing key
structure present in −π and use the comparison to design new
models to test on forthcoming datasets.

The remainder of this paper is organized as follows. In
Sec. II, we introduce the −L formalism, illustrating key features
with a simple toy model. In Sec. III, we show how the formal-
ism can be used for model criticism. In Sec. IV, we apply
the formalism to study the population properties of merging
binary black holes observed by the LVK. Our concluding
remarks are presented in Sec. V.

II. THE MAXIMUM POPULATION LIKELIHOOD −L
A. Preliminaries

We begin with a brief review of Bayesian hierarchical
inference with a parametric model. Our starting point is the
population likelihood [copied here from Eq. (1):

L(d|�, M ) =
N∏
i

1

ξ (�)

∫
dθi L(di|θi )π (θi|�, M ). (3)

Here, L(di|θi ) is the likelihood of event-i data di given param-
eters θi. The quantity π (θi|�, M ) is a conditional prior for θi

given hyperparameters for some population model M, which
describes the shape of the prior distribution. The term ξ (�)
accounts for selection effects; for example, high-mass systems
are typically easier to detect than low-mass systems. It is the
detectable fraction of the population given the model given
hyperparameters �:

ξ (�) =
∫

dθ pdet(θ )π (θ |�, M ). (4)

Here, pdet(θ ) is the detection probability of an observation
with parameters θ .

B. The maximum population likelihood −L
The maximum population likelihood −L is obtained by

taking Eq. (3) and maximizing over all possible prior distri-
butions π (θ ). Thus, −L is an upper bound (or supremum) on
the set of likelihoods from all possible choices of models for
π (θ ) such that

−L ≡ L(d|−M ) � L(d|�, M ), (5)

for all models M. The “prior” distribution that yields −L is
denoted

−π (θ ) (6)

(pronounced “pi stroke”). It is not a true prior because the dis-
tribution which maximizes the population likelihood in Eq. (3)
depends on the data. One should therefore refer to −π as a
pseudoprior. The associated model is denoted −M (pronounced
“M stroke”). Combining this notation into a single equation,
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we have

−L ≡
N∏

i=1

1

ξ (−M )

∫
dθi L(di|θi )−π (θi ). (7)

C. Calculating −π: special cases

Having introduced the concept of −L and −π , the natural
next question is, given data d , how does one calculate these
quantities? Before answering this question, we study three
special cases where we can work out −π from intuition. This
discussion will help sharpen our instincts for the more general
solution that follows. Readers looking to skip to the answer
may wish to skip this subsection.

1. A single measurement

For the first case, we consider a single measurement (N =
1) with a unimodal likelihood function L(d|θ ), which is maxi-
mal when the parameter θ is equal to the maximum likelihood
value θ̂ . For the sake of simplicity, we ignore selection effects
so that ξ (−M ) = 1. In this case, −L in Eq. (7) is clearly maxi-
mized if the prior support is entirely concentrated at θ̂ . Thus,
−π is a delta function,

−π (θ ) = δ(θ − θ̂ ), (8)

which yields

−L =
∫

dθ L(d|θ ) δ(θ − θ̂ )

=L(d |̂θ ). (9)

This result is intuitive: the prior that maximizes the population
likelihood is the one that concentrates all its support at the
maximum-likelihood value of θ .

2. N signals in the high-SNR limit

For the second case, we consider a scenario in which the
data consists of N observations carried out in the limit of high
signal-to-noise ratio. In this limit, the likelihood of the data
for each measurement di given some parameter θ approaches
a delta function,

L(di|θi ) = δ(θi − θ̂i ), (10)

located at the maximum-likelihood value θ̂i. We assume that
each measurement is distinct so that no two maximum-
likelihood values θ̂i are exactly the same. Again, for the sake
of simplicity, we ignore selection effects so that ξ (−M ) = 1,
though, the argument here holds even if we relax this assump-
tion. Equation (7) becomes

−L =
N∏

i=1

∫
dθi δ(θi − θ̂i )−π (θi ). (11)

The population likelihood is maximized when −π is a sum of
delta functions peaking at the set of {̂θi}:

−π (θ ) =
N∑

k=1

wk δ(θ − θ̂k ) (12)

wk = 1/N. (13)

This solution for −π ensures that there is maximal prior support
at every likelihood peak. Obviously, the population likelihood
is not maximized if any prior probability density is wasted
to values of θ where all the likelihood functions are zero.
Choosing an equal weight for each delta function wi = 1/N
produces the largest possible population likelihood [47].

We illustrate this case in Fig. 1(a) using high-SNR, toy-
model data drawn from a mean-zero, unit-variance Gaussian
distribution. In the top panel, we plot the set of N = 10
maximum likelihood points {̂θi} and the position of the delta
functions (blue). In the lower panel, we “plot” the −π (θ ) for
these ten data points. We put the word “plot” in quotation
marks because, technically, we are not plotting −π (θ ), which
goes to infinity, but rather we are plotting the weights wk

[Eq. (13)], which allows us to see the relative weight given to
each delta function, something that will prove useful below.
Throughout the paper, when we refer to plots of −π (θ ), it
should be understood that we are actually plotting represen-
tations of −π (θ ) using the weights wk . Finally, note that each
peak in the distribution of −π (θ ) matches up with one of the
maximum likelihood points in the upper panel.

3. N identical measurements

For the third case, we consider a set of N observations. This
time, we do not assume the high-SNR limit, but we assume
that every measurement has the same maximum-likelihood
value of θ̂ . This case is highly contrived—one does not typ-
ically work with multiple identical measurements—but the
example is nonetheless helpful for illustrative purposes. In this
case, the integral in Eq. (7) is maximized when the prior sup-
port is entirely concentrated at θ̂ (where all of the likelihood
functions peak), so that −π is a single delta function:

−π (θ ) = δ(θ − θ̂ ), (14)

while

−L =
N∏

i=1

L(di |̂θ ). (15)

This scenario is demonstrated in Fig. 1(b). The top panel
shows the set of N = 10 maximum-likelihood points {̂θi}, all
with the same value. The horizontal lines represent the error
bars for each measurement, which we draw from a uniform
distribution on the interval (0.01,1). In the lower panel, we
plot −π (θ ) for these ten data points. This time, since every mea-
surement is identical, −π (θ ) is a single delta function peaking
at θ = 0.

From these three examples, we observe a pattern: in each
case, −π (θ ) can be written as a weighted sum of delta functions.
Indeed, it has been proven that this is in fact the case [39–44].
We refer readers interested in an explanation of the delta
function structure of −π to the Appendix, where we summarize
the key concepts surrounding the proof outlined in Ref. [43]
using the mathematics of convex hulls. We do not reproduce
the proof in its entirety, but rather we use visualisations to
explain how it works with N = 2 observations, before provid-
ing a qualitative explanation for how it generalizes to arbitrary
values of N . We explore this general structure and the conse-
quences thereof in the next subsection.
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FIG. 1. Examples of the distribution −π (θ ) described in Secs. II B–II D. Each column represents a different dataset. The top-panel dots show
the set of N = 10 maximum-likelihood estimates {̂θi}. The top-panel horizontal lines represent error bars (in the first column they are too small
to see), and the vertical lines (blue) indicate the inferred delta function locations. The bottom panels show the distribution of −π (θ ) associated
with each data set. The left-hand column (a) represents data in the high-SNR limit so that the likelihood functions for each measurement
approach delta functions (this is why the error bars are not visible). In this case, −π (θ ) consists of N delta functions, each associated with one
of the maximum likelihood points θ̂i. In the middle column (b), we are no longer in the high-SNR limit, but the maximum likelihood points
are all assumed to be identical with θ̂i = 0. In this case, −π (θ ) consists of one delta function peaking at θ = 0. In the right-hand column (c), the
data are not in the high-SNR limit, and each θ̂i is random. In this case, −π (θ ) consists of n = 3 delta functions, each with different heights.

D. The general form of −π
We proceed with the knowledge that Eq. (7) is true in

general, regardless of the form of the likelihood L(d|θ ) and
the selection effect term pdet(θ ). For any set of observations,
−π (θ ) is always of the form

−π (θ ) =
n∑

k=1

wk δ(θ − θk ), (16)

where wk are weights which sum to unity,

n∑
k=1

wk = 1. (17)

The number of delta functions is always less than or equal to
the number of measurements, and the solution is unique in all
but the most pathological of cases (e.g., multimodal distribu-
tions with regions of equivalent maximum likelihoods) so that

n � N. (18)

The ratio

I ≡ n/N (19)

is a measure of the “informativeness” of the data. It compares
the typical likelihood width to the scatter in the astrophysical
distribution. In the high-SNR limit, I = 1, since a delta func-
tion is required for every data point [see Fig. 1(a)]. The other
limiting case is I = 1/N , which happens when the likelihood
for each measurement completely overlaps [see Fig. 1(b)].

Using this insight into the structure of −π (θ ), we now
consider a variation on the toy-model problems discussed in
the earlier subsections. In particular, we consider finite-SNR
data drawn from our Gaussian, toy-model distribution. Using
Eqs. (16) and (17) as an ansatz, we calculate −π (θ ) for N = 10
random data points. The maximum likelihood values θ̂i are
drawn from a mean-zero, unit-variance Gaussian and the error
bars are drawn from a uniform distribution on the interval

(0.01, 1). The results of this calculation are shown in Fig. 1(c).
The top panel shows the data, represented by the maximum-
likelihood values {̂θi}, which are arranged from bottom to top
in increasing order. The horizontal lines show the uncertainty
for each measurement and the vertical blue lines indicate the
positions of the delta functions. In the bottom panel, we show
−π (θ ) for this dataset. It consists of just n = 3 delta functions
of varying heights (I = 0.3). The exact weights, locations,
and number of delta functions are not obvious; we obtain
them numerically by maximizing Eq. (16) subject to Eq. (17)
using the “combined” method described below in Sec. II E.
Comparing the red data points with error bars to the turquoise
representation of −π (θ ), one can see that every data point can
be plausibly associated with at least one of the delta functions.

Given the form of −π (θ ) described by Eq. (16), we can write
down a general expression for −L:

−L =
N∏

i=1

1

ξ (−M )

n∑
k=1

wk L(di|θk ), (20)

where

ξ (−M ) =
n∑

k=1

wk pdet(θk ). (21)

Given Eqs. (20) and (21), the problem of calculating −L,−π
reduces to the problem of simply finding the locations and
weights of n delta functions. In Sec. II E, we explore three
different approaches to this problem.

E. Computing −π
In this subsection, we consider three techniques that can

be applied to compute −L,−π : optimization, iterative grid, and
stochastic methods. We show that a combined approach,
which uses a grid-based approach to guess a solution that
is subsequently refined through optimization, performs the
best out of the algorithms we tried. Meanwhile, the stochastic
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approach allows us to illustrate the existence of the delta
function structure proven in Ref. [43], but with minimal as-
sumptions.

1. Optimization

The first approach we consider is to use an optimiza-
tion algorithm subject to the constraint in Eq. (17) [48].
We use SCIPY’s trust-constr optimization implementation
[49,50]. We find this approach fails to find the correct global
maximum of Eq. (20) once the number of peaks n becomes
large. However, this issue can be resolved if a sufficiently
close guess to the true shape of −π (θ ) can be made. Fortunately,
the iterative-grid approach can be used to supply this initial
guess.

2. Iterative grid

The second approach we consider is to iteratively place
delta functions on a fixed grid. There are two steps: the greedy
addition of many delta functions, and the removal of no-
longer-useful delta functions. In the first step, we first attempt
to place a delta function with a fixed height at each grid
point and evaluate Eq. (20) (with appropriate normalization
of the distribution). We determine which of all possible delta
function additions produces the highest population likelihood.
We then vary the height of this delta function between zero
and twice the initial height in order to obtain an updated guess
for −π (θ ). The addition of delta functions is repeated, reducing
the initial height by a factor at each iteration. After many
iterations, we then attempt to remove no-longer-useful delta
functions to further increase the population likelihood. We
repeat this procedure five times, iteratively adding 30 delta
functions with varying heights at each iteration. After these
iterations, −L is usually well-converged for the problems we
are studying. In some iterations, this procedure adds support
to preexisting delta functions. This is how the approach “cor-
rects” under-supported delta functions.

This method has a significant advantage over generic con-
strained optimization techniques as the procedure does not
require the optimization of individual parameters governing
the delta functions through the {θk,wk} space. However, we
find that this method is improved by pairing it with opti-
mization. The most accurate optimization of the maximum
population likelihood and structure of the distribution oc-
curs when we utilize grid-based approximation to inform the
starting location and weights for the constrained optimiza-
tion. This allows for the grid-based approximation to find
the region of parameter space where −L is nearly maximal.
The constrained optimization then purifies the delta function
structure and slightly increases the maximum population like-
lihood. The combined method is used for all the maximum
population likelihood computations in Sec. IV.

3. Stochastic construction

Our final approach is to stochastically generate samples
for −π (θ ), which are accepted/rejected depending on whether
the new samples increases the population likelihood. This is a
form of importance sampling in which an arbitrary “proposal
distribution” is used to generate proposal samples. When a
proposal sample is generated, we add it to a list of previously

accepted points and evaluate −L as a Monte Carlo integral,

−L =
N∏

i=1

1

ξ (−M )
〈L(di|θi )〉θi∼−π (θi ), (22)

where

ξ (−M ) = 〈pdet(θ )〉θ∼−π (θ ). (23)

Here, the angle brackets indicate averaging over the samples.
If the addition of the new sample increases −L, we retain
the sample in the list of samples from −π . As the process
is repeated, the set of samples produces an ever-improving
representation of −π .

This method can be extended to employ an additional
burn-in phase and/or a thinning phase to ensure more
rapid convergence by removing unfavorable samples that
sometimes get accepted early on before the distribution is
well-converged. While this approach converges more slowly
than the other two methods, it does not employ any assump-
tions about the structure of the distribution. Thus, this method
can be used to validate the structure put forward in Eqs. (20)
and (21), that −π (θ ) is a sum of delta functions.

4. Numerical study

We demonstrate each method using our Gaussian, toy-
model distribution described in the last subsection: true
maximum likelihood values θ̂i drawn from a zero-mean, unit-
variance Gaussian with error bars drawn from a uniform
distribution on the interval (0.01, 1). The observed maximum
likelihood values are then shifted from the true value by
an offset generated from each individual observation’s un-
certainty. The results of this demonstration are compiled in
Fig. 2. The three panels of Fig. 2 represent tests performed
with N = 10, 100, and 1000 observations. In each panel, the
black curve represents the true distribution π (θ ). The colored
spikes illustrate different numerical solutions for −π (θ ): cyan
is the “combined” approach, which uses the iterative grid
to obtain an initial guess that is subsequently refined using
the optimization method. Meanwhile, orange represents the
iterative grid approach by itself. For the grid-based approach
we run 30 iterations of adding peaks with variable but decreas-
ing weights, before repeating this process an additional ten
times. Finally, gray represents the stochastic approach. For
the stochastic method, we generate 3000 samples with 1000
samples for burn-in.

We see that the combined approach better estimates −L rel-
ative to the other techniques considered [51]. We observe that,
as N increases, −π (θ ) increasingly resembles the true Gaussian
distribution π (θ ) (shown in Fig. 2 as a black curve). To il-
lustrate this more clearly, we take the inferred delta function
locations from the N = 1000 “combined” result in Fig. 2(c)
and compute the weighted histogram. This result is directly
compared to the true distribution in Fig. 3, from which we
see that indeed the inferred distribution is (albeit slowly) ap-
proaching the true distribution. We conjecture that, in general,
−π (θ ) approaches the true distribution in the infinite-data limit:

lim
N→∞−π (θ ) → πtrue(θ ). (24)
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(c)Combined: ln –L = −1582.98
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FIG. 2. Demonstration of different methods for calculating −π,−L.
Each panel shows the results for a different number of measurements
with (a) N = 10, (b) N = 100, and (c) N = 1000. The black distri-
bution is the true distribution π (θ ) used to generate the data. The
colored spikes show the reconstructed distribution −π (θ ) as deter-
mined by different methods. Cyan is for the “combined” technique,
which uses the iterative grid to obtain a first guess that is refined with
the optimization method. Meanwhile, orange is for the grid-based
technique by itself and gray is for the stochastic method.

5. Computational challenges

Before continuing, we discuss two computational chal-
lenges. First, we note that the examples illustrative above
are all one-dimensional. The discussion above generalizes to
�2 dimensions; −π (θ ) is still a sum of delta functions in �2
dimensions. However, it becomes increasingly challenging to
determine the location and height of these peaks in higher
dimensions. Furthermore, by increasing the dimensionality
of the problem, constructing continuous representations of
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FIG. 3. Comparison between a binned representation of −π as
computed for the toy model data set with N = 1000 observations
and the true underlying population distribution. This representation
more clearly shows that −π is approaching the true distribution in the
limit of many observations.

the individual-event likelihoods and the detection probability
pdet(θ ) becomes increasing difficult. Recent developments in
using Gaussian mixture models to produce continuous repre-
sentations of these distributions might alleviate these concerns
[52,53]. Second, even if we stay in one dimension, the com-
putational cost of calculating −π,−L grows with N [54].

III. MODEL CRITICISM WITH −L
In this section, we show how the −L formalism can be used

to determine if a model M is an adequate description of data.
The first step is to generate synthetic datasets based on the
posterior distribution for the model hyperparameters p(�|d ).
For each data set, we calculate the maximum population like-
lihood −L [Eq. (7)] as well as the maximum likelihood for M,
which we denote

Lmax(M ) = max
�∼p(�|d )

L(d|�, M ), (25)

where L(d|�, M ) is the population likelihood defined in
Eq. (3). In this way we can estimate

p(−L,Lmax(M )), (26)

the joint distribution for −L and Lmax(M ) given model M.
By comparing the measured values of (−L,Lmax(M )) to this
distribution of expected values, one can see if the dataset
is typical of what one would expect given M. If the mea-
sured values of (−L,Lmax(M )) are atypical, one can conclude
that M is misspecified. Moreover, one may determine the
nature of the misspecification by noting the location of the
observed value of (−L,Lmax(M )) relative to the typical values
of (−L,Lmax(M )). This is best illustrated with an example.

In our example, we imagine that an observer measures
N = 100 values of some parameter θ . Their model M for the
distribution of θ consists of a Gaussian distribution with mean
μ = 0 and width σ = 1:

π (θ |M ) ∼ N (μ = 0, σ = 1). (27)
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FIG. 4. An illustration of model criticism with the −L formalism. In the left-hand panel, we plot (−L,Lmax(M )) for five different underlying
populations (each with ten different realizations), analyzing a toy-model with a mean of μ = 0 and standard deviation σ = 1. Each population
is represented by a different color. The gray contours show the one-, two-, and three-sigma credible intervals for the expected distribution
of p(−L,Lmax(M )) from the toy model. By comparing the measured values of (−L,Lmax(M )) from an observed population to the expected
distribution from our choice of model, one may determine if the dataset is typical of what one would expect given the model. If the measured
values of (−L,Lmax(M )) fall outside these intervals, one may conclude that the toy model is misspecified (does not accurately model the data).
Moreover, the location of a point on this plot relative to the expected distribution conveys information about the way in which a model is
misspecified. The right-hand panel shows the toy model (grey), the true population distribution for the starred and labeled data point (a)–(d),
and the respective −π for the observed data (turquoise). This demonstrates that shifts away from the expected distribution (left-hand panel; grey)
in (−L,Lmax(M )) can be visually identifiable to the reconstruction of −π .

However, their model may be misspecified so that θ is not
really distributed according to M. We consider five “possible
worlds” [55], one in which the observer’s model is correctly
specified and four in which it is not. Each world is assigned a
color:

Black: model is correctly specified (μ = 0, σ = 1).
Purple: model is too wide because the true distribution is

(μ = 0, σ = 0.6).
Blue: model is too narrow because the true distribution is

(μ = 0, σ = 1.4).
Salmon: model is shifted to one side because the true

distribution is (μ = 1, σ = 1).
Yellow: model is too wide and shifted to one side because

the true distribution is (μ = 0.8, σ = 0.6).
We create ten mock datasets for each of the five possible

worlds (black, purple, blue, salmon, and yellow) and 5000
mock datasets from the model M (grey contours). For each
dataset, we compute (−L,Lmax(M )), always using model M
[Eq. (27)] even if the data are generated according to, say, the
blue-world distribution. This is because we are studying the
case where our observer might apply a misspecified model.

The results are shown in Fig. 4. The vertical axis is ln−L
while the horizontal axis is lnLmax(M ). The dark-grey region
in the bottom-right corner is forbidden since −L � Lmax(M )
by construction. The grey contours show the one-, two-, and
three-sigma contours for the expected distribution from the
model. Only the black world datasets are consistent with
the expected distribution, as the model is correctly specified
in the black world. The colored dots, meanwhile, show ten

random realizations of ( ln−L, lnLmax(M )) in colored worlds
where the model is misspecified in various ways. This is
fundamentally different from a typical Bayesian inference
plot where the data are fixed and the model is varied. Here,
the model is fixed to M (Eq. 27), and we consider different
datasets, which may or may not be misspecified depending on
the world of our observer.

When the model M is sufficiently misspecified with respect
to the true distribution, it becomes unlikely for our observer to
obtain values of (−L,Lmax(M )) that reside within the expected
three-sigma interval, a sign of misspecification. Interestingly,
the different colored dots cluster in different regions. For
example, in the world where the model M is too broad (pur-
ple), the dots cluster above right of the gray contours. In the
world where the model M is shifted away from the true peak
(salmon), the dots cluster to the left of the gray contours. By
studying where one’s observed values of (−L,Lmax(M )) fall
on this diagram, one can gain some insight into the way in
which one’s model is misspecified. This example focuses on
relatively simple forms of misspecification involving the mean
and variance. Other forms of misspecification (e.g., involving
skewness and kurtosis) are, of course possible as well. Given
all the ways that a model can be misspecified, the “shifting
model” and “narrowing model” arrows on Fig. 4 should be
taken as rule-of-thumb signposts.

In practice, it is computationally challenging to create plots
like Fig. 4 for population studies in gravitational-wave as-
tronomy. While it is easy to create mock datasets, it is time
consuming to calculate individual-event likelihoods for one
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dataset, let alone thousands. There may be workarounds. We
discuss this possibility in greater detail below.

IV. APPLICATION TO GRAVITATIONAL-WAVE
ASTRONOMY

In this section, we apply the −L formalism to results from
gravitational-wave astronomy to stress test models for the
population of merging binary black holes. We analyze data
from the second gravitational-wave transient catalog (GWTC-
3) [4,56], which includes 69 confidently detected binary black
hole mergers with false alarm rates <1 yr−1. To ensure sim-
ilarity to the GWTC-3 LVK population analysis [16,57],
we utilize the same individual-event posterior samples, con-
structed from equally weighted samples generated from
effective-one-body (SEOBNRV3 [58,59], SEOBNRV4PHM
[60,61]) and phenomenological (IMRPHENOMPV2 [62], IM-
RPHENOMXPHM [63]) waveform results (see [16] for more
details). To construct the lower-dimensional individual-event
likelihoods, we utilize the same samples while marginaliz-
ing over all other “nuisance” parameters. For these nuisance
parameters, we chose the distributions associated with the
maximum a posteriori hyperparameters from the LVK’s
GWTC-3 population analysis with the POWER LAW + PEAK–
DEFAULT–POWER LAW model [16].

We divide out the sampling prior to convert the one-
dimensional posterior to a likelihood. The likelihood nor-
malization is computed using the Bayesian evidence of each
event. The normalization is not important for the calculation
of −π , but it affects the misspecification tests demonstrated in
Sec. IV C. We calculate the hyperparmeter distributions and
Lmax(M ) using GWPOPULATION [64], which employs BILBY

[65,66] and DYNESTY [67]. We utilize the combined injection
set from Ref. [68] to compute the estimated detectable fraction
of binary black-hole mergers over the first three observing
runs.

A. Model inspiration through visual inspection

One straightforward application of the −L formalism is to
visually compare the reconstructed population distribution
(obtained using a phenomenological model) with −π (θ ). By
comparing these two distributions, it is possible to see which
features in the phenomenological model reconstruction are
due to prior assumptions, which features are due to real trends
in the data, and which features might be missing from the
phenomenological model. Formally, we compare −π (θ ) to the
population predictive distribution (PPD)

PPD(θ |d, M ) =
∫

d� p(�|d )π (θ |�, M ), (28)

which describes the astrophysical distribution of θ given a
phenomenological model M with hyperparameters �.

In Fig. 5, we present −π (θ ) with the PPDs from the LVK
analysis of GWTC-3 [16,57] for source-frame primary mass
m1 (top), the effective inspiral spin parameter χeff (middle),
and redshift z (bottom). Each row contains two subpanels; the
small upper panel shows the maximum-likelihood estimate for
each gravitational-wave event and the 90% confidence interval
while the larger lower panel compares −π with the PPD. The
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FIG. 5. Population predictive distributions (90% credibility) and
−π for (a) the primary black-hole mass (m1), (b) effective inspiral
parameter (χeff), and (c) redshift (z) distributions. For the redshift,
we divide by the evolution of the comoving volume and time delay
as a function of redshift to plot the merger rate, R(z). Comparison of
the different models with −π highlights which features are present in
the data and which are due to assumptions in the model.

PPD is plotted as a thick band to show the 90% credibility
region at each value of θ .

We first turn our attention to the primary mass distribution
in the top row. There are M = 10 delta function peaks, im-
plying an informativeness of I = 0.15 [see Eq. (19)]. This
result is computed in 169.3 seconds. The gray band is the
POWER LAW + PEAK model from [19] while the orange band
is a (more flexible) semiparametric power-law-spline model
denoted SPLINE from [30]. The agreement between −π and
the two PPDs is striking, with cyan spikes closely matching
several of the features in both models including the turnover at
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low masses near ≈12M� and the bump at 30M�. Furthermore,
we see that −π also recovers some of the finer detail features
found only by the SPLINE model. In particular, the shift in the
low-mass peak and the dips in posterior support at ∼16M�
and ∼25M� are present in the structure of −π . Based on our
visual inspection, it appears that current models are capturing
much if not all of the structure present in −π .

Turning our attention to the middle row, we study the
distribution of effective inspiral spin parameter [69],

χeff ≡ χ1 cos θ1 + qχ2 cos θ2

1 + q
, (29)

which measures the mass-weighted black hole spin projected
along the orbital angular momentum [70]. This time, only
n = 4 delta function spikes are required to fit the data (I =
0.06), showing how much harder it is to measure χeff than
m1. Computing −π (χeff ) requires 71.3 seconds. The quicker
computation time is likely a result of the lower number of
delta functions required. In gray, we plot the PPD for the
DEFAULT model from Refs. [15,16], which draws on work
from Refs. [20,71]. In orange we plot the PPD for the EX-
TENDED model from Refs. [28,38], which only analyze 68
binary black-hole events in the population due to data quality
concerns regarding one event [72]. To plot the EXTENDED

model results, which incorporate a delta function at χeff = 0,
we plot the 90% interval for the delta function height, δ,
multiplied by the same scale factor as −π . The continuous
contribution to the EXTENDED model is then scaled by the
ratio of the PPD evaluated at only the nonzero χeff −π delta
functions to the previously computed scaling.

The data-driven −π includes a delta function at χeff ≈ 0
and three smaller peaks in the χeff > 0 region, but no peaks
with χeff < 0. The lack of support for χeff < 0 is in contrast
to Refs. [15,16], which find support for a subpopulation of
binary black holes with χeff < 0. The strong delta function
at χeff = 0 lends support to the argument put forward in
Refs. [17,27,28] that the data can be well modeled with a
sub-population of “nonspinning” χeff = 0 binaries, even if
there is not strong statistical support for the existence of such
a peak [37,38,73]. However, our visual comparison suggests
that the EXTENDED model may overpredict the abundance of
binaries with χeff ≈ 0.3. Moreover, we note that the distribu-
tion of χeff = 0 appears to also be consistent with a smooth,
one-sided distribution, maximal at χeff = 0, and slowly de-
caying at larger positive values of χeff = 0; that is, a single
population.

Turning our attention to the bottom row of Fig. 5, we
consider the case of redshift. For this parameter, n = 6 (I =
0.09), and takes 116 seconds to compute. Here we plot the
merger rate as a function of redshift, R(z), by dividing the
posterior predictive distribution by the PPD by the evolu-
tion of the comoving volume and time delay with respect
to redshift. The merger rate is more commonly utilized for
interpreting the redshift evolution. The −π distribution fits
a decrease in the merger rate at a redshift of z ∼ 0.13.
While we caution that −π is purely data informed, and such
a feature might diminish with additional observations, the
POWER LAW model utilized in Refs. [15,16] lacks the flex-
ibility to resolve such a feature. Comparing our results to
Ref. [31], we observe that −π is qualitatively different from the

“nonparametric” model [74] used in that paper. Our best guess
is that the reconstruction from Ref. [31] is reasonable, and that
the different features in −π are due to noise fluctuations, though
it is possible that the smooth spline structure imposed by the
[31] model is misspecified or that the prior on “knot location”
is somehow subtly influencing the fit. As more gravitational-
wave observations are made, finer structure may emerge in the
redshift evolution of the binary merger rate. These differences
between the parametric reconstructions and −π might present
the first hints of such structure. We suggest that future redshift
models include additional flexibility to study the possibility of
a deficit of mergers in the nearby Universe.

By using the iterative “grid-based” method (without further
constrained optimization), we also demonstrate the compu-
tation of a two-dimensional −π distribution. In particular, we
study the joint distribution of mass ratio q and effective
spin inspiral parameter χeff. Recent studies have explored the
possibility of astrophysical correlations between q and χeff

[16,21,75], finding an anticorrelation, i.e., more unequal mass
systems typically possess a effective spin inspiral parameter.
The presence of an anticorrelation in the q-χeff distribution
has implications for the formation environments of binary
black holes. Ref. [76], for example, propose that such an
anticorrelation could be due to assembly of binary black holes
in active galactic nuclei.

In Fig. 6 we plot −π (q, χeff ) as eight colored pixels. It is
easier to digest this −π plot than the superposition of single-
event, 90% credible intervals for all 69 events (gray). In
order to compare −π to recent models, we plot the 90% con-
tours of maximum a posteriori distribution estimates for the
DEFAULT model in Ref. [16] which assumes no correlation
(black curve), the CORRELATED model from Ref. [21] (blue
curve) and the COPULA model from Ref. [75]. From visual
examination of −π , it is clear that the anticorrelation identified
in Ref. [21] is based on actual features in the data: the pixels
corresponding to the delta functions −π are consistent with an-
ticorrelation between (q, χeff ). However, −π is also consistent
with they hypothesis that there are separate subpopulations
located at different regions in the q-χeff space (an instance of
Simpson’s reversal [77]).

B. Upper bounds on population model likelihoods

In Table I we report the difference in natural-log likelihood
comparing the various population models to the maximum
population likelihood −L:

ln−B ≡ ln−L − lnLmax(M ). (30)

The ln−B values in Table I measure the fit of population mod-
els relative to the best possible fit. Motivated by the typical
threshold for model selection in terms of Bayes factors [46], a
value of ln−B � 8 indicates that the population model is very
close to the maximum population likelihood [1], which would
imply that the fit cannot be dramatically improved. A large
value of ln−B by itself does not imply that a model is “wrong”
or unsuitable to describe the data, but it does quantify the
extent to which an alternative model can in principle improve
over the current offerings.

Returning to Table I, the POWER LAW + PEAK model for
m1 shows the most potential room for improvement. This
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FIG. 6. The joint distribution −π (q, χeff ) represented by eight colored pixels. The pixel color is related to the delta-function weight. The
purely data-derived −π can be compared to the 90% contours of maximum a posteriori distribution estimates for three specific models. The
black curve shows the reconstructed population given the DEFAULT model from Ref. [16] (which does not allow for correlation) while the blue
and orange curves show the reconstructed population given by the CORRELATED model from Ref. [21] and the COPULA model from Ref. [75],
respectively. The grey contours correspond to the 90% credible intervals of the 69 events in GWTC-3 [4,16].

may be due to structure identified using the SPLINE model,
which is missing from the less flexible POWER LAW + PEAK.
However, the m1 measurements are also the most informative
in Table I (with the largest value of I). With more information,
it is probably easier to concoct an a posteriori model with a
large population likelihood that explains various features in
the distribution of m1 through overfitting. The DEFAULT and
EXTENDED spin models both exhibit ln−B < 8, which implies
that neither model can be unequivocally ruled out, though
the EXTENDED model provides a somewhat better fit with a
natural-log likelihood difference of 4.17. We also note that
the χeff and z observations are noticeably less informative, and
simultaneously the associated values of Lmax(M ) are closer to
−L. This might indicate that, while there are features present
in −π that are present in the data, they are not statistically
significant.

C. Model criticism in gravitational-wave astronomy

It would be interesting to make a version of the left-
hand panel of Fig. 4 using the population models from
gravitational-wave astronomy discussed in the previous

TABLE I. The performance of different population models rela-
tive to −M. The quantity −B [Eq. (30)] is a measure of the population
likelihood of each model relative the maximum possible population
likelihood −L. The “informativeness” I [Eq. (19)] is a measure of the
information available about the distribution of each parameter.

Parameter I Model ln−B
m1 0.15 POWER LAW + PEAK 14.89

SPLINE 6.66
χeff 0.06 DEFAULT 7.70

EXTENDED 3.53
z 0.09 POWER LAW 8.93

SPLINE 6.59

subsection. Unfortunately, this is quite computationally dif-
ficult. First, we would need to run single-event parameter
estimation of N ≈ 69 events drawn from a random realiza-
tion of the population fit to the observed gravitational-wave
events. This needs to be repeated O(1000) times to produce
the refined contours as those shown in the toy-model example
(Fig. 4). However, as an initial demonstration, we generate
three simulated catalogs of 69 events using three draws from
the POWER LAW + PEAK–DEFAULT–POWER LAW hyperpos-
terior informed by observations from GWTC-3 [16]. These
simulated observations were produced with injections of the
IMRPHENOMXPHM [63] waveform into simulated Gaussian
noise colored by the power spectral density from the first half
of the third LVK observing run.

We then run Bayesian hierarchical inference to determine
the posterior predictive distributions from the parameter-
ized model. Using the posterior predictive distributions,
following the calculation undertaken for the collection of
real gravitational-wave observations, we produce the one-
dimensional marginal likelihoods which are then used to
compute −L and Lmax(M ). Unlike in Fig. 4, where enough
simulated catalogs are produced to construct an expected dis-
tribution in the (−L,Lmax(M )) plane, here we are required to
model and fit the distribution. We employ Bayesian inference
and a simple multivariate Gaussian distribution model to esti-
mate the structure in the expected (−L,Lmax(M )) distribution.
We use a Wishart prior on the covariance matrix [78]. We use
the posterior predictive distribution of fitted Gaussian distri-
butions to estimate whether the models utilized in Ref. [16]
are inadequate for the observations.

The results are shown in Fig. 7 for the primary black-
hole mass, effective inspiral parameter, and redshift. The blue
dots correspond to the three simulated gravitational-wave cat-
alogs, whereas the black star corresponds to the observed
values from GWTC-3. The gray ellipses are 3σ intervals for
(−L,Lmax(M )), each associated with a different realisation of
our Gaussian fit. (The large amount of scatter is due to the
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FIG. 7. Demonstration of the (−L,Lmax(M )) model misspecification test for three parametrized models used in Ref. [16]: (a) the POWER

LAW + PEAK model for the primary black-hole mass distribution, (b) the DEFAULT for the χeff distribution, and (c) the POWER LAW redshift
distribution. Due to the limited number of simulated gravitational-wave catalogs, we model the expected distribution p(−L,Lmax(M )) as a
multivariate Gaussian distribution and infer the possible mean and covariance matrix from the three simulated values (blue). The grey ellipses
correspond to the 3σ confidence intervals for 100 different realizations of the possible distribution. The dashed blue ellipses correspond to
the maximum a posteriori (MAP) predictive distributions. The inferred values of (−L,Lmax(M )) from the 69 events in GWTC-3 are shown by
the black stars. The likelihoods are normalized by the maximum likelihood inferred from the GWTC-3 model. From the inferred ellipses, we
can conclude that there is a possibility that some or all models used are inadequate for the observations. Further studies with larger simulated
catalogs are required to truly determine whether these models are misspecified.

fact that we are attempting to fit a Gaussian to just three
points.) The dashed blue curve corresponds to the maximum a
posteriori (MAP) estimate. The value of Lmax(M ) has been
normalized to the value found for GWTC-3. The inferred
points in (−L,Lmax(M )) for GWTC-3 typically reside beyond
the 3σ confidence interval, which we use as our criteria for
misspecification.

We calculate a p value for each panel, which quanti-
fies the probability of observing the GWTC-3 values for
(−L,Lmax(M )) given our fit; small p values are indicative of
misspecification. For the POWER LAW + PEAK primary black-
hole mass model is misspecified we find p = 47%, for the
DEFAULT χeff model we find p = 44%, and for the redshift
POWER LAW model we find p = 10%. None of the models we
consider are clearly ruled out as misspecified, as the sensitivity
of this test is somewhat weakened by the small number of sim-
ulated catalogs. It would not surprise us if a more aggressive
followup study O(1000) simulations identified one or more
models as more obviously misspecified.

One important caveat to these results is that the overall
normalization of the likelihood depends on the computation
of the individual observation Bayesian evidences. With stark
differences between the analyses made in Refs. [4,16], it is
difficult to accurately emulate the correct overall normaliza-
tion of the likelihood. This globally impacts in the scale of
Lmax(M ) for the simulated catalog, potentially shifting the dis-
tributions closer or further from the inferred GWTC-3 result.
In addition, the robustness of the evidence computed within
Ref. [4] is not guaranteed (see, e.g., Ref. [37]).

There are a number of solutions to address the compu-
tational cost of this analysis. While probably not realistic
in the near future, it may be possible to represent the like-
lihood functions of simulated events using a Fisher matrix

approximation, which would speed up the calculation signifi-
cantly. However, verifying that this approximation produces
adequately estimates for −L,Lmax(M ) could remain a chal-
lenge. Another possibility worthy of investigation is the
idea that the distribution of −L,Lmax(M ) might have some
quasi-universal properties. If it can be shown that a large
class of problems produce a similarly shaped distribution of
−L,Lmax(M ), perhaps a relatively small number of simulations
can be used to work out the shape of p(−L,Lmax(M )). We leave
this for future work. Perhaps most promising are efforts to
speed up inference with various machine learning schemes;
see, e.g., Ref. [79]. As these tools become more reliable, it
may become possible to estimate (−L,Lmax(M )) in a matter
of seconds, which would in turn enable precision tests of
misspecification.

V. CONCLUSION

The −L formalism provides a useful lens through which to
view population studies in gravitational-wave astronomy. It
provides an upper bound on the Bayesian evidence for popu-
lation models, −L. The associated pseudo-prior distribution −π
is a sum of delta functions. The −π distribution can be used to
see which features in a reconstructed distribution are model
dependent and which are genuinely present in the data. The −π
distribution can also draw attention to features in the data that
are not fit by current models, providing a tool for the design
of new models. Finally, the −L formalism can be used to deter-
mine if a model is misspecified, by comparing the values of
(−L,Lmax(M )) to the expected distribution of these quantities
given the model M. This comparison can be made quanti-
tatively with a p value. And, by comparing the measured
values of (−L,Lmax(M )) to the distribution expected given the
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model, it is possible to see the way in which the model is
misspecified. Constructing a distribution of −L,Lmax(M ) may
be computationally prohibitive in gravitational-wave astron-
omy, and future work is required to investigate simplifying
assumptions that might bring down the cost.

While we have introduced the −L formalism within the
context of gravitational-wave astronomy, the framework is
general, and we expect it can be applied to a broad range of
problems in astronomy and beyond where one seeks to infer
the distribution of parameters θ with potentially unreliable
hierarchical models.

ACKNOWLEDGMENTS

We thank Katerina Chatziioannou, Colm Talbot, Isaac
Legred, Isobel Romero-Shaw, and Paul Lasky for insightful
discussions about the −L formalism. We thank Rory Smith,
Gael Martin, David Frazier, and Andy Casey for input on
early discussions regarding using −L for model misspecifica-
tion tests. We are grateful to Jacob Golomb for discussions
focused on computing a continuous representation of the de-
tection probability for gravitational-wave astronomy. We are
indebted to Bernard Whiting for important discussions regard-
ing the convex hull formulation of population distributions.
We thank Tom Callister for comments on an early version of
the manuscript. This material is based upon work supported
by NSF’s LIGO Laboratory which is a major facility fully
funded by the National Science Foundation. This research has
made use of data, software and/or web tools obtained from
the Gravitational Wave Open Science Center [80], a service
of LIGO Laboratory, the LIGO Scientific Collaboration and
the Virgo Collaboration. Virgo is funded by the French Centre
National de Recherche Scientifique (CNRS), the Italian Isti-
tuto Nazionale della Fisica Nucleare (INFN) and the Dutch
Nikhef, with contributions by Polish and Hungarian institutes.
The authors are grateful for computational resources provided
by the LIGO Laboratory and supported by National Science
Foundation Grants No. PHY-0757058 and No. PHY-0823459.
This paper carries LIGO Document No. P2200309. E.T. is
supported through Australian Research Council (ARC) Cen-
tre of Excellence Grants No. CE170100004 and No. ARC
DP230103088.

APPENDIX: OUTLINE OF −π STRUCTURE PROOF

1. Overview

In this Appendix we outline the basic ideas underpinning
the proof from Ref. [43] by Lindsay that −π consists of a sum
of � N delta functions:

−π (θ ) =
n∑

k=1

wk δ(θ − θk ). (A1)

Our aim is to provide readers with a qualitative understanding.
To this end, we consider a simple example of N = 2 measure-
ments, each characterized by a Gaussian likelihood functions.
Our example measurements are depicted in the right-hand
column of Fig. 8, which shows two single-event likelihoods
(one in purple, the other in red), both conditioned on some
parameter θ . In each row of Fig. 8, we vary the separation
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FIG. 8. Visual illustrations of the proof in Ref. [43]. The left-
hand column panels show the atomic likelihood vectors (red), the
convex hull produced from the red curve (grey with black outline),
and the cyan point on the convex-hull boundary with the maximum
population likelihood −L. The black points correspond to the points
from the set of atomic likelihood vectors which generate the max-
imum population likelihood. The right-hand column panels show
three examples of N = 2 single-event likelihood functions (purple
and red). The distribution of −π is indicated with one or more cyan
spikes. These spikes correspond to the −L solution (cyan dot) in the
corresponding left-hand panel. In (a), the two single-event likeli-
hoods are mostly disjoint and so two delta functions are required
to maximize the population likelihood (cf. Fig. 1 in Ref. [43]).
As the two single-event likelihoods begin to overlap further, these
two delta functions move closer together as shown in (b). Moving
the single-event likelihoods closer still, the set of atomic likelihood
vectors becomes the boundary of the convex hull, at which point only
one delta function is required to maximize the likelihood as shown
in (c).

of these two single-event likelihood functions relative to their
width: far apart in the top row, becoming closer together in
the two subsequent rows. We show below how −π consists of
either one or two delta functions, depending on this relative
separation and explain how this generalizes to N > 2.

Lindsay’s proof relies on the mathematics of convex hulls,
geometric shapes which can be defined in arbitrarily high
dimensions. If one draws a line between any two points on a
convex hull, all the points on that line are also part of the hull.
(The gray shaded regions in the left-hand column of Fig. 8 are
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all examples of convex hulls.) Convex hulls are often used in
optimization problems with constraints where the optimal so-
lution occurs on the boundary of the hull, which is determined
by the constraints. In Lindsay’s proof, the relevant constraint
equation is the unitarity of the −π (θ ):∫

dθ −π (θ ) = 1. (A2)

The unitarity constraint means that the form of −π (θ ) that
maximizes the population likelihood exists on the boundary
of a complex hull.

2. A geometric picture

For the sake of simplicity, we ignore the impact of the
selection function [81]. We represent the observations using
what Lindsay refers to as an atomic likelihood vector,

L(̂θ ) ≡ {L(d1 |̂θ ),L(d2 |̂θ ), . . . ,L(dN |̂θ )}. (A3)

Each element of this vector is a single-event likelihood
marginalized over a delta-function prior peaking at θ̂ :

L(di |̂θ ) =
∫

dθi L(di|θi ) δ(θ − θ̂ ). (A4)

This allows us to represent the problem in an abstract N-
dimensional likelihood space. The left-hand column of Fig. 8
provides a visualization of such a two-dimensional atomic
likelihood vector space. Scanning over all possible values of θ̂

traces out the red curve in the atomic likelihood vector space,
which represents all possible values of the atomic likelihood
vector L(θ ). By varying θ̂ , we can make an individual element
of the atomic likelihood vector large, but doing so may make
other elements of the vector small, as we see in the top row
with widely separated single-event likelihood functions.

The weighted sum of atomic likelihood vectors,

L( w) =
∑

k

wk L(̂θk ), (A5)

yields a vector of likelihoods with elements

L(di| w) =
∑

k

wk L(di |̂θk ), (A6)

corresponding to the marginal likelihood given a prior of delta
functions,

π (θ ) =
∑

k

wk δ(θ − θ̂k ), (A7)

where ∑
k

wk = 1. (A8)

This means we can construct more general marginal likeli-
hood vectors with a linear combination of atomic vectors.
Furthermore, in the continuum limit, any prior can be used
to marginalize over the atomic likelihood vectors. Elements
of the marginal likelihood vector in the continuum limit take
the form

L(di|M ) =
∫

d θ̂i L(di |̂θi ) π (̂θi|M ). (A9)

Let us consider again the N = 2 example illustrated in
Fig. 8. If we pick any two points on the red curve, each
corresponding to some value of θ̂ , which we denote A and
B, we can define two basis vectors: êA and êB. The linear
combinations of these two basis vectors forms a line con-
necting A and B. All of the points along this line represent
likelihood vectors constructed from N = 2 delta functions.
By connecting together every possible pair of points on the
red atomic likelihood points, we map out the gray region: the
convex hull. Every possible marginal likelihood vector (for
any choice of prior) is part of the hull. That is, the set of all
possible summations is the convex hull and is a representation
of all possible probability distributions in the likelihood space.
This result is profound: our original problem is reduced from
an infinite set of possible population distributions to a closed
region in an N-dimensional likelihood space. The construction
of the convex hull is unique [43], except in pathological cases
further discussed in Sec. 3 of this Appendix.

Now that we have studied the geometry of the atomic
likelihood vector space, we ask the question, what point in
our convex hull corresponds to the maximum population like-
lihood? The population likelihood can be written as a product
of the marginal likelihood vector elements:

Lpop( d|M ) =
N∏

i=1

L(di|M ). (A10)

In N = 2 dimensions, we can fix Lpop( d ) and identify hyper-
bolic curves of the form

L(d2) = L( d )/L(d1), (A11)

represented in the left-hand column of Fig. 8 by gray curves.
All the points on one of these curves have the same population
likelihood. If we jump up and to the right from one gray
curve to another, the population likelihood increases. These
constant-population-likelihood, hyperbolic curves do not de-
pend on any population model. The population likelihood is
then maximized by finding the point on the boundary of the
hull tangent to the gray curve with the largest population
likelihood (the topmost and rightmost gray curve). In general,
the maximum population likelihood point lies on the boundary
of the hull [43,82]. Our maximization problem can therefore
be rewritten as a geometry problem.

We now turn our attention to the different rows of Fig. 8.
In the top row, the two single-event likelihoods (right) are
widely separated. The cyan dot on the left-hand plot shows
the maximum population likelihood point on the surface of
the hull. This is where the population likelihood has a value
of −L. It falls on a straight black surface of the hull, but not
on the red atomic likelihood vector curve. This means that the
cyan point is a linear combination of two atomic likelihood
vectors, which are indicated by the two black points (cf.
Fig. 1 in Ref. [43]). Thus, the maximum population likelihood
solution consists of two delta functions, each corresponding
to a different atomic vector. This linear combination of delta
functions is shown in the right-hand panel with cyan spikes.
Unsurprisingly, they coincide with the two single-event likeli-
hood function peaks.

Moving down to the second row, the single-event likeli-
hood functions (right) are now closer together. The shape of
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the hull changes accordingly (left). The hull boundary point
that maximizes the population likelihood still does not fall on
the red curve of atomic vectors. Again, it is a linear combi-
nation of two black points. However, since the shape of the
hull has changed, the black points have moved relative to
the top row. The corresponding delta function spikes (right)
therefore shift toward θ = 0 and no longer correspond to the
maximimum likelihood points of the single-event likelihoods.

In the bottom row, the single-event likelihood functions
(right) are closer still. The hull (left) has now changed shape
so that the cyan point marking the maximum population like-
lihood falls on the red curve denoting the set of atomic vectors
(left). This means that the likelihood can be maximized with
a single delta function at θ = 0 (right). In each case (and
almost all scenarios; see Sec. 3 in this Appendix) the convex
hull is unique, and so the cyan point of maximum population
likelihood is unique as well. In all but the most pathological
cases, Carathéodory’s theorem [45,83] states that all points
on the boundary of a convex hull can be constructed by, at
most, N points that were used to initially construct the hull
(in our problem these are the atomic likelihood vectors). The
relative weight of each delta function corresponds to the posi-
tion along the boundary of the hull [43]. Thus, the population
prior corresponding to the maximum population likelihood is
a construction of a finite set of, at most, N delta functions.

The transition from two delta functions to one delta func-
tion occurs when the red curve passes through the black one
(when the set of atomic likelihood vectors becomes convex).
During this transition, the cyan point changes from residing on
a straight line connecting two atomic vectors to residing on a
single atomic vector point. This picture generalizes to higher
dimensions. Solutions with three delta functions (which can
only exist when N � 3) reside on two-dimensional planes.
Solutions with four delta functions (which can only exist when
N � 4) reside on three-dimensional hyperplanes, and so on.

3. Pathological cases

While we see that the maximum population likelihood
almost always corresponds to a finite, unique set of N or fewer
delta functions, there are pathological cases (not likely to
come up in real-world data analysis) where this is not the case.
Such cases stem from the maximum population likelihood
point not being unique. So while the maximum population
likelihood point is still found, multiple distributions can map
to the same point in likelihood space. This requires artificial
degeneracies in the measurements. In Fig. 9, we demonstrate
one such example with two likelihood functions perfectly
symmetric about θ = 0 and one of which is bimodal. In the
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FIG. 9. Demonstration of a pathological failure of the uniqueness
of −π . This occurs when multiple distributions map to exactly the
same point on the convex hull. In (a), a perfectly symmetric, bimodal
single-event likelihood has two delta functions with produce the
same population likelihood. Therefore, any combination of the two is
a valid −π . However, such perfectly symmetric multi-modal distribu-
tions do not typically occur in gravitational-wave data analysis. We
see here we can break this degeneracy by only slightly breaking the
symmetry, shown in (b).

likelihood space, the −L point corresponds to two possible
positions of the delta function. However, unlike in Fig. 8(a)
where the two possible delta function positions are separated,
here they correspond to same point in likelihood space. There-
fore, any normalized combination of the two delta functions
produces the maximum population likelihood. This is empha-
sized by the dashed blue lines in the right column of Fig. 9(a),
indicating that any combination of the two delta functions
here is a permissible solution. However, we emphasize that
this pathology arises from an artificial degeneracy, which is
immediately broken if the likelihood functions are not pre-
cisely symmetric as demonstrated in Fig. 9(b). Other, even
more pathological, situations can be constructed where in-
finitely many atomic likelihood vectors reside at the maximum
population likelihood point, allowing for arbitrarily structured
−π distributions. However, all such situations require regions
of perfectly uniform likelihood functions, which we do not
expect in realistic observations, at least not in gravitational-
wave astronomy.
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