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Engineering Higgs dynamics by spectral singularities
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We generalize the dynamical phase diagram of a Bardeen-Cooper-Schrieffer condensate, considering attractive
to repulsive, i.e., critical quenches (CQs) and a nonconstant density of states (DOS). We show that different
synchronized Higgs dynamical phases can be stabilized, associated with singularities in the DOS and different
quench protocols. In particular, the CQ can stabilize an overlooked high-frequency Higgs dynamical phase
related to the upper edge of the fermionic band. For a compensated Dirac system we find a Dirac-Higgs mode
associated with the cusp singularity at the Fermi level, and we show that synchronized phases become more
pervasive across the phase diagram. The relevance of these remarkable phenomena and their realization in
ensembles of fermionic cold atoms confined in optical lattices is also discussed.
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I. INTRODUCTION

Many-body systems are characterized by the occurrence
of correlated phenomena, which have no counterpart in the
few-body realm. In this perspective, the spontaneous sym-
metry breaking (SSB) of any Hamiltonian symmetry by the
establishment of a finite order parameter represents one of the
fundamental examples [1–4]. Consequences of SSB include
the appearance of superfluid and superconducting phases in
condensed matter systems, as well as the occurrence of a finite
mass of the intermediate vector bosons, the carrier particles of
the weak force in the Standard Model [5–8].

The excitations on top of the SSB ground state, in systems
with continuous (gauge) symmetries, consists of Nambu-
Goldstone (phase) modes and massive Higgs (amplitude)
modes. In the Standard Model, the latter manifest themselves
as the Higgs boson, whose experimental observation led to the
2013 Nobel Prize in physics [9,10].

The historical tight relationship between condensed mat-
ter and high-energy physics is rooted in the universality of
continuous SSB transitions, whose appearance in fermionic
systems has been first described by the paradigmatic BCS
theory [11,12]. Thus, it shall not surprise that Higgs mode
dynamics has been observed across multiple systems in con-
densed matter, including superconductors with charge order
[13–17], quantum antiferromagnets [18], and He3 superflu-
ids [19]. Its observation in superconducting systems [20–25]
has been strongly debated [14–16,26–35].
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Given the relevance and ubiquity of the Higgs mech-
anism, its observation was also the focus of quantum
simulations in the superfluid/Mott-insulator transition of lat-
tice bosons [36,37], in spinor Bose-Einstein condensates
(BEC) [38] and in cavity-QED experiments [39]. A com-
prehensive picture of the Higgs mode features across the
BEC-BCS crossover has recently been obtained in a fermionic
cold atom ensemble [40], reinvigorating the interest of the
cold atom’s community in the signatures of SSB and Higgs
mechanism also in the few-body limit [41,42].

Upon temporal variation of a control parameter, many-
body dynamics may display several peculiar features, which
are reminiscent of the behavior of thermodynamic functions
at transition points [43]. In particular, theoretical investiga-
tions uncovered the appearance of dynamical phase transitions
following interaction quenches in strongly correlated sys-
tems [44–49]. These dynamical transitions occur both as order
parameter modulations and as singularities in the Löschmidt
echo dynamics [50,51], which have been observed in quantum
optics experiments [52,53]. These two phenomena have been
shown to be deeply intertwined both between each other and
with the existing equilibrium transitions [54,55], except for
few examples [56–58].

Following the current perspective, we consider a critical
quench (CQ) of the BCS model, i.e., an attractive to re-
pulsive interaction quench where the sign of the coupling
constant is flipped. Then, the system, which is prepared in the
superconducting equilibrium state for attractive interaction,
evolves according to a repulsive Hamiltonian, whose equilib-
rium ground state would be a normal (nonsuperconducting)
gas. Due to the flexibility of our approach, we can target
a wide range of different models parametrized by diverse
density of states (DOS).

We find the distinctive features of the Higgs mode dynam-
ics found in pioneering works [59,60], including synchronized
oscillations of the order parameter. However, contrary to com-
mon belief, there is no a unique synchronized Higgs phase
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(SHP) but different SHPs can be stabilized depending on the
model and the protocol. The oscillation frequency can be
determined by any spectral singularity. This includes those
singularities not connected with the SSB but present in the
bare DOS. Thus, a combination of protocol and the optical
lattice in a cold atom system allows engineering generalized
synchronized Higgs phases on demand.

II. MODEL

We consider a weak-coupling fermionic condensate with
s-wave pairing described by the BCS model and subject to
a sudden quench of the pairing interaction. The Hamiltonian
can be written as

HBCS =
∑
k,σ

ξkĉ†
kσ

ĉkσ − λ(t )
∑
k,k′

ĉ†
k↑ĉ†

−k↓ĉ−k′↓ĉk′↑, (1)

where ξk = εk − μ measures the energy from the Fermi level
μ and the pairing interaction λ(t ) = λiθ (−t ) + λ f θ (t ) with
θ the Heaviside step function. Here ĉ†

kσ
(ĉkσ ) is the usual

creation (annihilation) operator for fermions with momentum
k and spin σ .

Due to the all-to-all interaction, a mean-field approach
becomes exact in the thermodynamic limit. Thus, we shall
consider the BCS mean-field Hamiltonian which can be writ-
ten, using the Anderson pseudospin formulation [61] as

ĤMF = −
∑

k

Ŝk · bk. (2)

Here bk(t ) = (2�(t ), 0, 2ξk) represents an effective magnetic
field vector for the 1

2 -pseudospin operator Ŝk = (Ŝx
k, Ŝy

k, Ŝz
k )

where

Ŝx
k = 1

2
(ĉ†

k↑ĉ†
−k↓ + ĉ−k↓ĉk↑),

Ŝy
k = 1

2i
(ĉ†

k↑ĉ†
−k↓ − ĉ−k↓ĉk↑),

Ŝz
k = 1

2
(1 − ĉ†

k↑ĉk↑ − ĉ†
−k↓ĉ−k↓). (3)

Without loss of generality, we have assumed that the equilib-
rium BCS order parameter � is real, which remain true over
time due to electron-hole symmetry. The instantaneous BCS
order parameter is given by

�(t ) = λ(t )
∑

k

Sx
k, (4)

where symbols without a hat denote expectation value in the
time-dependent BCS state. At equilibrium, the 1

2 -pseudospins
align in the direction of their local fields bi

k = (2�i, 0, 2ξk ) in
order to minimize the system’s energy.

The system is prepared with an initial interaction λi and a
gap parameter satisfying the equilibrium gap equation,

1 = λi

∫ +W/2

−W/2
dξρ(ξ )/

(
2
√

ξ 2 + �2
i

)
, (5)

where ρ(ξ ) is the DOS and the bandwidth satisfies, W � �i

ensuring the system is in the weak-coupling regime. The
interaction is then suddenly changed to the final value, λ f
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FIG. 1. Dynamical phase diagrams for the constant DOS (left)
and the graphene-like DOS model (right) as schematized in the white
background insets. The lower scale shows the control parameter δ.
The vertical dashed line separates critical from noncritical quenches,
while the upper scale is nonlinear and shows λ f /λi for the particular
case, W = 40�i. Panels (a) and (b) show extreme values of the order
parameter characterizing the dynamics, while the lower panel shows
the frequency of the Higgs oscillations labeled by the corresponding
singularities in the quasiparticle DOS (see text). The background
color indicates the different dynamical regimes: synchronized (ma-
genta), damped oscillations (yellow), and overdamped (red). Full
lines are obtained from the Lax root analysis, while circles are from
numerical simulations (full circles correspond to dynamics shown in
detail in other figures). The dashed line fitting the ωl frequency is 2�̄

from the simulations, which in panel (c) it converges to 2�∞ from
the Lax root analysis. The dashed line fitting ωV indicates 2ξV

k . Both
ωl and ωV correspond to the right scale, as indicated by the arrows.
The colored background insets are zoomed to the indicated regions.
Arrows in (c) and (d) indicate data represented on the right-hand-side
scale [62].

and the gap parameter is studied as a function of time. The
pseudospins evolve according to

dSk

dt
= −bk(t ) × Sk (6)

(h̄ ≡ 1) with the self-consistent order parameter �(t ). We
take N = 104 and 105 pseudospins within an energy range of
W = 40�i, 60�i and 80�i around μ. We consider both a con-
stant DOS and the DOS of a Dirac semimetal like graphene
(see white background insets of Fig. 1). It is convenient to
parametrize the quench by the variable

δ ≡ W

λ f
− W

λi
, (7)

whose value is closely related to the one already used to
parametrize noncritical quenches [60,63].

The out-of-equilibrium dynamics shows collective effects
and single-particle (pseudospin) excitations. Similar to the
case of periodic driving [64–68], we find that the latter are
dominated by self-consistent pseudospin Larmor precessions
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FIG. 2. Representative dynamics (left column) and their FT
(right column) for the constant DOS case with W = 40�i. (a) Several
traces of the superconducting order parameter, �(t ), for quenches
in the attractive side λ f /λ f > 0. The magenta curves correspond
to a synchronized dynamics, while the orange and red ones corre-
spond to a typical damped and overdamped dynamics, respectively.
The FTs are shown in panel (b) where Higgs mode 2�̄ and the
second harmonic appear. The 2�∞ peak corresponds to a damped
mode. (c) Two traces for CQ (λ f /λi < 0) and their respective FTs
in (d) showing a well-defined mode ωu close to W . The quench
parameters δ used in each case have been pointed out in Fig. 1 with
colored dots. The FTs were computed considering a time window
t�i ∈ [5, 50].

encoding charge and pairing fluctuations. Their frequencies
are given by �L(k) = 2E (k) where

E (k) =
√

ξ 2
k + �̄2 (8)

is the quasiparticle dispersion defined in terms of an average
order parameter �̄ computed on a large time window after
the quench. The familiar edge singularities in the quasiparticle
DOS leads to analogous singularities in the DOS for Larmor
fluctuations located at 2�̄ and W (� � W ).

III. RESULTS

A. Dynamical phase diagram

Figure 1 shows the dynamical phase diagram for three
different bandwidths and a constant DOS (left) and for the
graphene-like DOS (right). Figures 1(a) and 1(b) show key
values of the order parameter characterizing the dynamics,
while Figs. 1(c) and 1(d) show the generalized SHP oscil-
lation frequencies. Full lines were obtained exploiting the
integrability of the model through a Lax roots analysis (see
the Appendix for details) and were checked by numerical
simulations (circles). The frequencies of Higgs modes are
labeled according to a singularity of the quasiparticle DOS,
namely, lower edge (l), upper edge (u), Van Hove (V), and
Dirac point (D).

Figure 2 shows representative dynamics �(t ) and their
Fourier transform (FT) for the flat DOS case in each regime
shown in the Fig. 1(a). The color of each curve matches the

colored dots in Fig. 1(a) encoding the simulation parame-
ters. Figures 2(a) and 2(b) correspond to noncritical quenches
λ f /λi > 0, while Figs. 2(c) and 2(d) correspond to the CQ.

The curves to the right of the vertical dashed line in
Figs. 1(a) and 1(c) reproduce the results of Ref. [60] where
three dynamical phases were found for noncritical quenches
λ f /λi > 0. In the top panels of Fig. 2, we can see examples of
these behaviors: persistent oscillations (blue), damped oscil-
lations (orange) and overdamped dynamics (red). The former
corresponds to the lower-edge Higgs mode with frequency
ωl = 2�̄ as can be seen in Fig. 2(b) where also a second
harmonic peak at 4�̄ appears. In the damped regime, a peak at
frequency 2�∞ is also resolved due to the finite time window
we consider computing the FT.

Coming back to the dynamical phase diagram in Figs. 1(a)
and 1(c) for a small increase or decrease of the attractive
interaction (small |δ|), the superconducting order parameter
shows damped oscillations with a Higgs frequency associated
with the lower edge of the quasiparticle DOS, ωl = 2�∞.
Then it saturates to a constant value �∞ at long times, which
therefore coincides with �̄ (yellow shading in Fig. 1). For
large quenches, there are two possible outcomes. Decreasing
the pairing constant beyond a critical point (δ > δc+ = π/2),
the system goes to the gapless regime (�∞ = 0) with an over-
damped dynamics (red region). Increasing the pairing above
a critical point (δ < δc− = −π/2), the system synchronizes
and the order parameter oscillates between the values �+ and
�− with a fundamental Higgs frequency equal to twice the
average order parameter [69], ωl = 2�̄ (magenta area). We
will refer to this well known phenomena [59,60,63] as the
“lower-edge SHP.”

Using δ as the control parameter has the advantage that
for large enough bandwidth, the results for λ f /λi > 0 become
independent of the bandwidth, so the curves for different W
fall almost on top of each other.

The region to the left of the vertical dashed line shows
the result of the CQ. A different synchronized regime is
found where the order parameter oscillates with symmetric
amplitudes �+ and �− around zero instead of having a fi-
nite average �̄. Two representative dynamics of this phase
and their FTs are shown in Figs. 2(c) and 2(d). This zero-
order-parameter average (ZOPA) behavior is reminiscent of
the time-crystal phases found with periodic driving [65,66].
In contrast to the purely attractive interaction quench, the
amplitudes and the Higgs frequency are strongly dependent
on the bandwidth (compare the left part of Figs. 1(a) and 1(c)
with the right part). In this case, the SHP frequency converges
to the upper edge of the fluctuation DOS (ωu → W ), when the
final interaction is repulsive and small (large negative δ) [see
Fig. 1(c) and Fig. 2(d)]. For δ < −8 (small repulsive λ f ) the
amplitude becomes vanishing small and the dynamical phase
can not be distinguished from a gapless state. Therefore, for
large negative and positive δ (λ f → ±0) the system converges
to the same gapless phase.

The occurrence of SHP associated with upper and lower
edges of the fluctuation/quasiparticle DOS suggests that sin-
gularities act as a nucleation centers in frequency space to
stabilize the synchronized phases during the nonlinear dy-
namics. We expect this mechanism to be ubiquitous, thus
leading to the appearance of Higgs mode signatures in any

023011-3



COLLADO, DEFENU, AND LORENZANA PHYSICAL REVIEW RESEARCH 5, 023011 (2023)

0

2

4

6

Δ+

Δ−

(a)

0 10 20

(b)ωD

×3

2Δ̄

4Δ̄
6Δ̄

-0.12

-0.06

0

0.06

0.12

0 15 30

(c)

0 20 40 60

(d)

ωV

ωu

Δ
/Δ

i Δ̄

Δ
/Δ

i

tΔi

Δ+

Δ−

ω/Δi

FIG. 3. Same as Fig. 2 for the graphene-like DOS case. For
the noncritical quenches (a), the magenta and dark-blue curves cor-
respond to synchronized phases, while we show in red a typical
dynamics in the overdamped regime. Notice that the FT in (b) shows
peaks related to Higgs mode 2�̄ and high harmonics, as well as ωD.
In (d), in addition to the strong response with frequency ωu 
 W ,
also a frequency ωV emerges. This Higgs mode is related to the
Van Hove singularities in the graphene-like DOS (see text). The
time window is as in Fig. 2 except to resolve the slow Dirac-Higgs
mode [dark blue curves in panels (a) and (b)] for which we use
t�i ∈ [5, 300] [62].

BCS system with singular DOS. In order to confirm this ex-
pectation, we have studied the dynamical phase diagram of a
Dirac system with a graphene-like DOS where two additional
singularities are present already in the bare DOS: one at the
Fermi level (Dirac point) and the Van Hove singularities at
ξV

k ≈ ±6.66�i (see DOS in the white background inset of
right panels of Fig. 1).

Interestingly, the phase diagram of the graphene-like model
turns out to be quite different from the flat-DOS case. The
damped regime (yellow region) is completely absent and syn-
chronization occurs even for an arbitrary small quench [see
zoomed region inset in Fig. 1(b)]. A hint of this behavior can
be obtained from linear response theory [70]. The imaginary
part of the susceptibility shows a sharper and more intense
Higgs mode in the case of the Dirac system, indicating less
propensity to decoherence than the flat-DOS case. One arrives
to the same conclusion studying the participation ratio of
quasiparticles to the Higgs mode and the phase diagram of
related models with an indentation in the DOS near the Fermi
level (Sec. III C).

Also, differently from the constant DOS model, the syn-
chronization phenomenon takes place for both an increase
and a decrease of the pairing interaction. In the latter case,
decreasing enough λ f , the pseudospins effectively decouple
from each other and the gapless regime is recovered (red
region). A representative dynamics of this phase is shown in
Fig. 3(a) in red using the parameters indicated with a red circle
in Fig. 1(b).

Between the δ = 0 and the overdamped gapless phase, a
quite rich transition is found, as shown in the zoomed in-

sets of Figs. 1(b) and 1(d). First, twice the average order
parameter (thin dashed line) and the frequency ωl decrease
very rapidly tracking each other, as in other non-ZOPA syn-
chronized phases, until a critical value δc1 = 0.07 where both
are driven to zero. Beyond this δc1, a ZOPA synchronized
phase appears associated to the Dirac point singularity with
a frequency ωD as shown in dark blue in Figs. 3(a) and 3(b).
This dynamical phase is stable in a very narrow window of the
phase diagram with the frequency ωD increasing with δ until
it collapses in the overdamped phase at a second critical value
δc2 = 0.22.

The FT of the dynamics shown in Fig. 3(b) reveals that
in the lower-edge SHP, the graphene-like model shows up to
three harmonics while in the flat DOS model only two har-
monics are visible for the present parameters [Fig. 2(b)]. The
synchronized Dirac-Higgs phase, in contrast, appears much
more harmonic.

Figure 3(c) and 3(d) exemplify the dynamics for the CQ
corresponding to the matching color full dots in Figs. 1(b)
and 1(d), where the upper-edge SHP is excited. The overall
appearance is very similar to the case of a flat DOS [Figs. 2(c)
and 2(d)] showing ZOPA behavior. However, an extra weak
modulation appears, which is revealed as a new frequency ωV

in the Fourier transform [Fig. 3(d)]. This frequency matches
twice the Van Hove singularity in the DOS 2ξV

k , thus as ex-
pected, a synchronized Van Hove–Higgs mode can be excited.
Its amplitude decreases in time, indicating that the mode is
damped, although with quite a long coherence time, as wit-
nessed by the narrow peak in the FT.

To fully characterizes the dynamical phases and the emer-
gence of synchronization in the system, it is instructive to
analyze the ξk-resolved FT of the pseudospin dynamics. As
we are interested in the pairing dynamics, we show the FTs
of the x component of pseudospins for the flat DOS model
and the graphene-like model in Figs. 4 and 5, respectively. In
these figures, single-particle (pseudospin) excitations appear
as dispersive features, while synchronized collective modes
appear as vertical lines.

Figures 4(a) and 5(a) show the pseudospin-resolved FT
of the dynamics in the lower-edge SHP with λ f /λi > 0, for
the flat-DOS and the graphene-like DOS case respectively.
The large black dots correspond to the Larmor frequency

�L = 2
√

ξ 2
k + �̄2. In addition, of the main �L(k) dispersion,

Floquet side bands appear analogous to the bands observed
under periodic drive [65,71]. Here, of course, an external
periodic drive is not present and the bands are self-generated
by the action of the lower-edge Higgs mode with frequency
ωl yielding replicas (small black dots) at �L(k) + nωl with
n = −1, 0, 1, 2, . . . and weaker features at −�L(k) + nωl

with n = 0, 1. The same panels show that the lower edge
Higgs mode is not determined only by the quasiparticles
participating in the edge singularity of �L(k) at the fre-
quency 2�̄. Indeed, the vertical feature emerging from 2�̄

witnesses that all quasiparticles in this ξk window are syn-
chronized and participate in the collective mode. Thus, the
edge singularity of the dispersion can be seen as a nucle-
ation center in frequency space given a “rhythm” which
is followed by the rest of the quasiparticles due to the
interactions.

023011-4



ENGINEERING HIGGS DYNAMICS BY SPECTRAL … PHYSICAL REVIEW RESEARCH 5, 023011 (2023)

log |Sx
k |

−10

−4

2

log |Sx
k |

−10

−4

2

log |Sx
k |

−12

−6

0

log |Sx
k |

−10

−4

2

0

10

20

ξ k
/Δ

i

)b()a(

0 20 40

ω/Δi

0

10

20

ξ k
/Δ

i

(c)

0 20 40

ω/Δi

(d)
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model: non-ZOPA persistent oscillation (a), ZOPA persistent oscil-
lation (b), damped oscillations (c), and overdamped (d). For each
panel, the used quench parameters (δ) corresponds to the matching
full colored circles in Fig. 1 and the colors of the dynamics in Fig. 2.
For all panels λ f /λi > 0 except for (b), which corresponds to the CQ.
In this case, the synchronization phenomenon appears as a vertical
intensity line close to the upper edge, ω = 40�i. The FTs were
computed considering a time window t�i ∈ [0, 100] [62]. The large
black dots represent the self-consistent Larmor frequency in each
case (see text). Some replicas are indicated with small black dots
in panel (a).

Figure 4(c) shows the same information in the damped
oscillatory regime for the flat-DOS case. Each pseudospin

oscillates with an effective Larmor frequency 2
√

ξ 2
k + �2∞

(black dots) which introduces dephasing giving rise to
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FIG. 5. Same as Fig. 4 for a graphene-like DOS with correspond-
ing dynamics in Fig. 3. Here the dynamical phases are non-ZOPA
persistent oscillation (a), ZOPA persistent oscillation for CQ (b),
ZOPA persistent oscillation for non-CQ (c), and overdamped (d).

damped oscillations in �(t ) [cf. Fig. 2(a)]. The vertical line at
ω = 2�∞ is due to the finite time window in which the FT is
performed. In the long time limit, its spectral weight vanishes,
indicating the absence of persistent oscillations.

In the case of the graphene-like DOS, a damped oscillatory
regime is absent and a synchronized ZOPA phase appears for
positive δ. The Fourier transform of the x component of the
pseudospin textures dynamics is shown in Fig. 5(c). Since this
phase is gapless (ZOPA) the line of black dots extrapolates to
the origin. Also a vertical feature at ωD can be seen, indicating
the system syncronizes at the Dirac-Higgs frequency.

By decreasing enough the final coupling, the system enters
into the gapless overdamped phase, where each pseudospin
oscillates with its own bare Larmor frequency 2ξk with the
dispersion again extrapolating to the origin [see black dots in
Figs. 4(d) and 5(d)].

In the case of the CQ [Figs. 4(b) and 5(b)], the pseudospin-
resolved FT shows both the individual bare Larmor frequency,
2ξk and a vertical feature in the upper edge corresponding
to the upper-edge Higgs mode. The frequency is ωu ≈ W =
40�i and the intensity increase with ξk indicating that high-
energy pseudospins participate with larger amplitude. This
shows that the upper-edge singularity of the DOS is enough
to trigger the SHP (appearing as a vertical feature) with fre-
quency ωu 
 W provided that the appropriate protocol, i.e.,
the CQ, is used. Thus, the 1/

√
ω − 2�̄ divergence present

at the lower edge of the DOS is not a prerequisite to stabi-
lize Higgs modes. On the other hand, having a singularity
at the upper edge, as is the case for the DOS of a one-
dimensional system, enhances the corresponding SHP [see
Fig. 9 in Sec. III C].

No feature associated with the Van Hove–Higgs mode ωV

can be seen in Fig. 5(b), since the numerical analysis has been
performed on a time window larger than its coherence time in
order to have high-frequency resolution. Here again the ZOPA
manifests as a gapless linear dispersion of single-particle ex-
citations, �L(k) = 2ξk (black dots).

B. Linear response and participation ratio analysis

A striking characteristic of the phase diagram of the Dirac
system shown in Fig. 1(b) is the absence of the damped
regime. Linear response theory gives a first hint on this be-
havior. The susceptibility to an external perturbation which
couples linearly with the pairing field reads [16,64,70]

χ�,�(ω) ≡ χ0
�,�(ω)

1 − 2λiχ
0
�,�(ω)

, (9)

where

χ0
�,�(ω) = −

∑
k

ξ 2
k√

�2 + ξ 2
k

[
(ω − iδ)2 − 4

(
�2 + ξ 2

k

)]
(10)

is the bare susceptibility and we assume an equilibrium gap
parameter �. We can convert the sum to an integral by
inserting the corresponding DOS. In Fig. 6 we show the imag-
inary part of χ�,�(ω) for the flat DOS with dashed curve while
the full curve corresponds to the case of the graphene-like
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FIG. 6. Imaginary part of the interacting susceptibility for the flat
DOS (dashed curve) and the graphene-like DOS (full curve). In the
inset, we show the same plot but scaled to bring the maximum of the
two peaks together to highlight the difference in their widths.

DOS. The peak at 2� corresponds to the lower-edge Higgs
oscillation, which is damped in linear response. In the case of
a flat DOS, it has a very small oscillator strength compared
to the Dirac model, as witnessed by the difference in the
peak heights. The inset shows that by rescaling the intensities,
the Dirac system shows a narrower resonance, indicating a
slower decay. Both factors favor synchronization for the Dirac
system in an out-of-equilibrium situation. Similar changes in
the power law of oscillations for a nonconstant DOS were
obtained in Ref. [72–74].

Notice that, taken literally, the linear response computation
would imply a damped response for an infinitesimal excita-
tion even in the Dirac case, while we find that there is no
such dynamical phase. One should keep in mind that linear
response assumes an infinitesimal damping from the outset,
while the exact solution has no damping. Therefore, although
the linear response result is suggestive, the final result of the
two computations may differ.

To further characterize the dynamics in the synchronized
phase for both models, we go back to the Fourier transform of
the x component of the pseudospins in Figs. 4(a) and 5(a). In
Fig. 7 we plot the modulus of the Fourier component at the fre-
quency of the synchronized mode, |Sk (ω = ωl )|, as a function
of ξk. This yields the participation ratio of quasiparticles to the
synchronization. We see that the curve is very similar for both
models, but the graphene-like DOS avoids quasiparticles close
to the Fermi level, which do not participate in the synchro-
nization. Indeed, an analysis of the equation of motion reveals
that, in the pseudospin language, the torque at the Fermi level
vanishes. Thus, for the flat-DOS case, there is a range of
quasiparticles that have a small contribution to synchroniza-
tion but can contribute significantly to decoherence, while
in the graphene-like DOS those quasiparticles are removed.
This allows to rationalize why the graphene-like DOS is more
prone to synchronization. To confirm this interpretation, in the
next section, we analyze modified DOS models.

-20 -10 0 10 20

(a)

ρ

Sx
k (ω = ωl)

ξk/Δi

(b)
ρ

Sx
k (ω = ωl)

FIG. 7. Participation ratio of quasiparticles to the synchronized
phase for the flat-DOS (a) and the graphene-like DOS case (b). We
show the modulus of the Fourier transform of the x component of
the pseudospins at the frequency of the synchronized mode as a
function of the bare quasiparticle energy (blue). The black curves
are the corresponding DOS. We use the same parameters as in
Fig. 4(a) and Fig. 5(a). For the flat-DOS case in (a), δ = −2 and
ωl = 2�̄ = 11.31�i while for a graphene-like DOS case in (b) we
are considering δ = −0.42 leading to a Higgs mode frequency ωl =
2�̄ = 5.86�i.

C. Dynamical phase diagram for other models

To further illustrate the effect of the DOS on the phase
diagram, we show in Fig. 8 the dynamical phase diagram
for four different models. Figure 8(b) is the flat-DOS model
for reference. Figure 8(d) mimics the Dirac system by in-
troducing a linear indentation of the DOS around the Fermi
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FIG. 8. Dynamical phase diagrams for four different models. In
each panel the inset shows the corresponding DOS. Background
color indicates synchronized regime (light blue), damped oscillations
(yellow), and overdamped gapless regime (red). Full lines are gap
parameters defined as in Fig. 1.
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FIG. 9. Dynamical phase diagrams for a DOS corresponding to a
one-dimensional tight-binding model with nearest neighbor hopping,
as shown in the inset (full lines). Background colors have the same
meaning as in Fig. 1 and Fig. 8. Dashed lines show gap parameters
and frequencies for the flat-DOS case as a reference.

level, as shown in the inset. Here a Van Hove singularity is
absent, and we see that the phase diagram is very similar
to the graphene-like DOS, i.e., without the damped phase.
Figure 8(c) interpolates between these two models and shows
a narrow region with a damped phase (yellow). Figure 8(a)
illustrates the case in which there is an excess of DOS at
the origin, and we see that the damped region broadens. We
conclude that quasiparticles near the Fermi level favor deco-
herence and disfavor the synchronized phase.

For completeness, we show in Fig. 9 the phase diagram
for the DOS corresponding to a one-dimensional tight-binding
model with nearest-neighbor hopping which has square root
singularities at the band edges (see inset). In this case, the
rightmost part of the phase diagram (non CQ) is qualitatively
similar to the flat-DOS case (shown with dashed lines) as the
central part of the DOS is very similar to a flat DOS. On the
other hand, for CQ one notices, in Fig. 9(b), that the upper-
edge Higgs frequency converges to the bandwidth energy
W = 40�i as δ → −∞ (λ f → 0−) as a power law, while the
behavior for the flat-DOS case is exponential. The same can
be said for the amplitude of the oscillation in Fig. 9(a). The
behavior is analogous to the one of an impurity state creating
a bound state in a tight-binding model, where the bound state
energy is exponentially small if the DOS has an edge and
behaves as a power law for a one-dimensional system [75].

IV. CONCLUSIONS

We have shown that different synchronized Higgs phases
can be excited in a BCS system by choosing an appropri-
ate quench protocol. For a given system, the frequency of
the mode is determined by singularities in the DOS with
small corrections due to quasiparticle interactions. The pre-
viously known lower-edge Higgs mode appears at the same
frequency of a singularity in the equilibrium particle-particle

response. The upper-edge SHP is reminiscent of antibound
states appearing in the equilibrium pairing response of re-
pulsive systems. However, at equilibrium the mode is not
present in particle-hole symmetric situations [76], while here
the mode is stabilized in an out-of-equilibrium setting. Thus,
generalized Higgs modes do not appear to have always an
equilibrium counterpart.

Our findings provide an innovative interpretation to the
Higgs mode dynamics, which appear as synchronized quasi-
particles oscillations nucleated by DOS singularities. This, in
turns, implies that any spectral singularity can give rise to
Higgs-mode like oscillations given a suitable quench.

One possibility to create singularities in the DOS is through
confinement in a nanoscale wire. A detailed study [72] have
revealed differences in the oscillatory dynamics depending on
the shape of the local DOS. Also, confinement in ultracold
atoms leads to similar effects [73,74].

The observation of the previously reported lower-edge SHP
in real superconductors is hindered by its decay in other
excitations and its weak coupling to light [26,27,29,63]. Fur-
thermore, signatures of Higgs dynamics in pump and probe
experiments [20,21,77] cannot be clearly distinguished from
Raman modes [78] with similar frequencies, but different
character. The experimental detection of other Higgs modes
presented here will probably encounter similar difficulties in
solid state systems, as our picture is based on the BCS model,
whose integrable nature does not account for thermalization.

A proper understanding of the generalized Higgs dynam-
ics, as well as the possible relation with the equilibrium
characteristic of the SSB phase, may be obtained by direct
observation in Fermi superfluids of cold atoms. Indeed, re-
cent improvements in the control and observation of ultracold
atoms in optical lattices [79,80] allowed the study of both
equilibrium and transport properties of Fermi systems on
the lattice [81–84], paving the way to the realization of the
generalized Higgs dynamics described here. In particular, an
artificial graphene-like lattice with tunable interactions has
been realized [85,86]. Another route is to use cold atoms in
an optical cavity, which has recently been proposed as a BCS
simulator [87].

Interestingly, the search for more than one Higgs boson
is a subject of intense search also in high-energy scattering
experiments [88]. This kind of probes, however, are more
akin to equilibrium responses in condensed matter. Instead,
the strongly out-of-equilibrium physics investigated here may
find parallels in the electroweak transition of relevance for
early universe cosmology and baryogenesis [89].
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APPENDIX: LAX ROOTS ANALYSIS

Because of the integrability of the BCS model, the different
dynamical phases can be obtained by analyzing the integrals
of motion. For this purpose, it is useful to define the so-called
Lax vector [60,90,91] defined as a function of an auxiliary
complex parameter y,

L(y) = z + λ f

∑
k

Sk

y − ξk
, (A1)

where z is a unit vector along the z direction, and Sk is
the pseudospin texture before the quench. The square of the
Lax vector is a conserved quantity under time evolution with
the BCS Hamiltonian. Therefore, the complex roots of such
vector (in the following Lax roots) are also conserved. Since
the square of the Lax vector is nonnegative, all roots are
complex-conjugated pairs. Furthermore, due to the electron-
hole symmetry of the problem, it is easy to show that if the
initial texture is particle-hole symmetric then if y is a Lax root
−y is also a root. We choose the initial superconducting order
parameter, �, to be real. Also, this property is preserved at all
times due to particle-hole symmetry.

As previously discussed [90,91], Lax roots provide infor-
mation on the frequency spectrum in the Fourier transform of
�(t ) after a quench. Starting from the equilibrium pseudospin
texture, a dense distribution of Lax roots appears along the
real axis which, in the thermodynamic limit, define the con-
tinuous part of the spectrum. For t → ∞ this contribution
vanishes in the Fourier transform of �(t ) and only isolated
pairs of complex-conjugated Lax roots (bound states) con-
tribute corresponding to persistent oscillations. It has been
shown [90,91] that the number of discrete frequencies k in the
Fourier transform of �(t ) is equal to m − 1. Here m is the

number of isolated pairs of complex-conjugated Lax roots.
Thus, �(t ) shows persistent oscillations at long times with
k different frequencies if m > 1 while �(t ) converges to a
constant value (�(t ) → �∞) if m = 1.

To complement the numerical results, we constructed the
Lax vector and computed its roots using the equilibrium
pseudospin texture for λi as the initial condition. For non-
critical quenches (λ f /λi > 0) the Lax analysis was done in
Refs. [60,90,91] and the possible isolated pairs of Lax roots
are always purely imaginary: (1) In the synchronized regime,
there are two pairs of isolated roots (m = 2) namely, y =
±iu1 and y = ±iu2 that give information on the amplitude
of persistent oscillation as �± = (u1 ± u2)�i. In this case,
�(t ) shows only one fundamental frequency (k = m − 1 = 1)
corresponding to the lower edge Higgs mode 2�̄. (2) In the
damped phase there is only one isolated pair of Lax roots
(m = 1) namely, y = ±i�∞ indicating there are not persistent
oscillations (k = m − 1 = 0) but damped. (3) In the over-
damped regime, the latter pair of roots collapse to the origin
(�∞ = 0) so no isolated roots are present (m = 0).

We now extend these results to the critical quench (CQ,
λ f /λi < 0). In this case, the Lax roots are complex numbers
with a finite real part, giving precise information not only
on the amplitude but also the oscillation frequency of �(t ).
Both in the case of the constant and in that of the graphene
like-DOS, the roots can be written as y = ±(ur ± iui) with
the real part providing information on the upper-edge Higgs
mode frequency, ωu = 2ur and the imaginary part yielding the
oscillation amplitude �± = ±2ui.

For the graphene-like DOS and λ f /λi > 0, there is a
regime where 2�̄ 
= 0 for which the isolated Lax roots are
purely imaginary, mimicking the non-ZOPA synchronized
phase of the constant DOS model. Still in the synchronized
regime, where the Dirac-Higgs mode emerges, the isolated
Lax roots acquire a finite real part defining the mode fre-
quency as ωD = 2ur and the amplitudes of oscillations �± =
±2ui.
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