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Vibration-assisted multiphoton resonance and multi-ion excitation
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We investigate the multiphoton resonance and multi-ion excitation in a single-mode cavity with identical
vibrating ionqubits, which enables the tripartite interaction among the internal states of ions, the cavity mode
and the ions’ vibrational motion. Under particular resonant conditions, we derive effective Hamiltonians for
the three-photon and the three-excitation cases, respectively, and find that the magnitude of the effective
coupling energy can be tuned through the vibration mode, allowing for manipulations of ion-photon coupling in
experiments. Furthermore, we analyze the system dynamics of our proposed setups and demonstrate the Rabi
oscillation behaviors in these systems with dissipation effects. We propose our system as a versatile platform for
the exploration of entangled multiqubit physics.
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I. INTRODUCTION

The investigation of resonant emission of multiple pho-
tons [1–3] and resonant excitation of multiple atoms [4–6] is
important not only due to the fundamental physics involved,
but also because of their potential applications in, for example,
the realization of quantum gates [7–11] and quantum informa-
tion storage devices [12–14]. Following the first realization
of two-photon absorption [15–18] in the 1960s and its rapid
application [19–21] as a powerful spectroscopic and diagnos-
tic tool, variant multiphoton processes have attracted growing
research interests. Recently, Ma and Law [22] found that three
photons can be simultaneously absorbed by a two-level atom
in the strong coupling (SC) regime of Rydberg atoms confined
in a high-Q cavity. On the other hand, Nori et al. [4,5] reported
a counter-intuitive reverse phenomenon where a single photon
can simultaneously excite two or more independent atoms in
a symmetry-breaking potential.

Most existing investigations of multiphoton resonance and
multiatom excitation processes assume the atoms to be static
with the dipole approximation. With the development of atom
and ion trapping techniques [23–25], however, the inclusion
of the vibrational degrees of freedom of atoms in a cavity
becomes increasingly important. The trapped ions [13,26,27]
interacting with a quantized cavity field can be cooled down
to their lowest vibrational state [28]. In such a cavity quan-
tum electrodynamics (QED) system, the internal ionic states,
the quantum vibration mode of the ion, and the single-mode
cavity field are necessarily intertwined. For instance, Bužek
et al. [28] analyzed the quantum motion of a cold, trapped
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two-level ion interacting with a quantized light field in a
single-mode cavity. At zero temperature, the dynamics of a
single trapped ion inside a nonideal QED cavity was studied
by Rangel et al. [29]. Nevertheless, the effects of vibrational
states in the multiphoton and multiatom processes remain
unexplored to our knowledge.

In this work, we investigate a chain of trapped ions in a
single-mode cavity and focus on the quantum effect of ionic
vibration on the three-photon resonance and three-ion excita-
tion processes in the cavity QED system. We derive effective
Hamiltonians close to the resonance points and determine the
energy level splittings. This reveals rich physics in our system.
Although small vibrational frequency hardly affects the over-
all energy spectrum, the situation can be completely different
and very interesting if the vibrating frequency is comparable
to or larger than the ionic transition frequency. Remarkably,
the energy splitting can be effectively controlled and enhanced
by varying the vibration frequency, particularly around certain
resonant conditions, resulting in vibrationally controlled ion-
photon coherent manipulation. We further demonstrate the
Rabi oscillation dynamics and discuss the associated damping
effects, validating our analytical results with concrete numer-
ical simulations.

This paper is organized as follows. In Sec. II, we describe
the theoretical model of our scheme. Sections III and IV
are devoted to study the vibration-assisted multiphoton res-
onance and multi-ion excitation, respectively, and Sec. V
displays the quantum Rabi oscillations. In Sec. VI we give two
examples of how to prepare N00N states and Greenberger-
Horne-Zeilinger (GHZ) states. Finally, we end with discussion
and conclusion in Sec. VII.

II. MODEL

We consider a chain of N identical ionqubits placed in a
single-mode high-Q cavity [30,31]. As schematically shown
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FIG. 1. Schematic diagram of a series of two-level ions trapped
inside a standing-wave mode of an optical cavity. All ions are ar-
ranged at the nodes of the cavity’s standing wave to make sure the
tripartite coupling among the atomic internal states, the cavity mode
and the vibrational motion to be the only relevant interaction.

in Fig. 1, the trapped ions are assumed to sit close to the
nodes of the cavity field standing wave, which can be best
achieved by tuning the longitudinal trapping potential or the
wavelength of the cavity field in the few-ion cases (N � 3). At
the position of the node, the corresponding interaction Hamil-
tonian of the atomic internal states coupled to the cavity is
Hint = h̄g(σ+ + σ−)(b† + b) sin(kx), where x is the displace-
ment of ion from the node; k is the cavity wave vector; b†

(b) is the creation (annihilation) operator of the cavity field
mode with the frequency ωc; σ+ = |e〉〈g| and σ− = |g〉〈e| are
Pauli matrices for the two-level ion; g represents the coupling
strength between the cavity mode and the ionic internal states
|e〉 and |g〉 [32]. Any ion-light coupling cannot be evoked
without the motional excursion of the ion away from the
node. Consequently, the tripartite coupling among the atomic
internal states, the cavity mode, and the vibrational motion
of the ions, become the only allowed interaction [32–34]. We
will consider the lowest collective mechanical mode of the
ions [7,8,35], which is referred to as the center-of-mass mode.
The fully quantized Hamiltonian of the system thus reads (we
set h̄ = 1) [31–34]

H = H0 + Hint, (1)

H0 = νa†a + ωcb†b + 1
2ω0Jz, (2)

Hint = g sin[η(a† + a)](J+ + J−)(b† + b), (3)

where a† (a) is the creation (annihilation) operator of the ion
center-of-mass mode with frequency ν; J± = ∑

i σ
i
± and Jz =∑

i σ
i
z = ∑

i(|ei〉〈ei| − |gi〉〈gi|) operate on the ionic twolevels
with transition frequency ω0; η = k�x is the Lamb-Dicke
parameter, �x being the amplitude of the harmonic motion
with x = �x(a† + a) [29]. In the case of strong confinement,
the Lamb-Dicke condition η � 1 is naturally satisfied and
the interaction Hamiltonian can be transformed conveniently
to a trilinear form Hint ≈ gη(a† + a)(J+ + J−)(b† + b) with
the approximation sin[η(a† + a)] ≈ η(a† + a). Note that the
high-order resonant transitions that are of our particular in-
terest in this paper can be realized via intermediate states
connected by counter-rotating terms (CRTs) in the interaction
Hamiltonian, such as aσ+b†, which describes the creation of a

FIG. 2. Sketch of two paths contributing to the effective coupling
between the bare states |g, 3, 0〉 and |e, 0, 1〉 via intermediate virtual
transitions. The rotating processes are indicated by solid lines and
the counter-rotating processes are indicated by dashed lines. The
transition matrix elements are also displayed.

photon in the cavity accompanied by an ionic excitation from
its ground state together with the annihilation of a phonon
from the ionic vibration.

III. ENERGY SPLITTING CONTROLLED
BY VIBRATIONAL MODE

For the sake of simplicity, we first investigate the sin-
gle ion case with N = 1. Under the resonant condition with
ωc ≈ (ω0 + ν)/3, the dominant coupling terms are a†b3σ+
and a(b†)3σ−, describing the ion excited from its ground
state by annihilating three photons while creating one phonon,
as well as its inverse process. As illustrated in Fig. 2, the
presence of CRTs in the interaction Hamiltonian enables two
different paths for the transitions |g, 3, 0〉 ↔ |e, 0, 1〉. Here
and in what follows, kets list qubit state, photon excitation
number, followed by phonon excitation number. By applying
standard third-order perturbation theory [6,36], we obtain the
effective coupling strength between bare states |g, 3, 0〉 and
|e, 0, 1〉, under the resonant condition 3ωc = ω0 + ν, to be

�eff = 27
√

6(ηg)3ω0

4(ω0 + ν)2(ω0 − 2ν)
. (4)

The effective interaction Hamiltonian of interest is Heff =
−�eff (|e, 0, 1〉〈g, 3, 0| + H.c.). Typically, 2�eff can be un-
derstood as the energy splitting at the avoided crossing (see
Fig. 3), which originates from the hybridization of the states
|g, 3, 0〉 and |e, 0, 1〉.

Clearly, when ν is small compared with the ionic transition
frequency ω0, 2�eff/ω0 is proportional to the cubic of the
coupling coefficient, i.e., 2�eff/ω0 ∼ (ηg)3/ω3

0. Therefore, in
order to observe this energy splitting, the ultra-strong cou-
pling (USC) [37,38] or even deep-strong coupling (DSC)
regime [39], is required to ensure that the effective coupling
induced by the higher-order processes becomes larger than
the relevant decoherence rate in the system. In Fig. 3, we
further compare analytically obtained Eq. (4) with the energy
splitting 2�eff/ω0 obtained from numerically diagonalizing
the original Hamiltonian at different ηg/ω0. The results from
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FIG. 3. Comparison of the effective energy splitting 2|�eff |/ω0

obtained analytically (solid red line) and numerically (dashed line)
as a function of interaction strength ηg/ω0 with ν/ω0 = 0.2. The
inset shows the energy spectrum for states: |g, 3, 0〉 ↔ |e, 0, 1〉 and
|g, 3, 1〉 ↔ |e, 0, 2〉 at ηg/ω0 = 0.06 marked by the black circle. The
avoided-level crossings indicated by the arrows occur with the energy
splitting about 0.008ω0 and 0.021ω0, respectively. The correspond-
ing positions of resonance are 0.415ω0 and 0.437ω0.

the two methods agree very well at relatively small coupling
(the percentage difference is lower than 2% for ηg/ω0 < 0.1),
validating our perturbation theory formula Eq. (4) as a good
approximation. We note that the above results can be general-
ized to other pairs of bare states |g, m, n〉 and |e, m − 3, n +
1〉, where m (n) denotes the photon (phonon) number, and
the energy splitting can be formally enhanced with a larger
number of photons or phonons [40].

When the vibrational frequency is comparable to or larger
than the ionic transition frequency and the cavity mode fre-
quency, the picture can be complicated by the additional
longitudinal modes of the cavity generated due to the rapid
ionic vibration [34]. In this regard, the capability of the cavity
to maintain a single mode [31] is particularly useful for us to
neglect such a complication in our following discussion. To
achieve a more prominent energy splitting, we consider the
vibrational frequency in the regime 0 < ν < ω0. As shown
in Fig. 4(a), the perturbative result in Eq. (4) suggests a di-
vergence of the effective coupling �eff at ν/ω0 = 1/2, which
is regularized in the numerical calculation as a pronounced
but finite peak. This divergence point is indeed where the
perturbation theory breaks down because of the occurrence
of higher level degeneracy involving other states than the two
original states in our problem. Specifically, for the case with
the initial state |g, 3, 0〉 or |e, 0, 1〉, the presumed intermediate
state |g, 1, 2〉 becomes energetically aligned with these two
states in the decoupled limit when ν/ω0 = 1/2, such that the
coupling will lead to hybridization of all three states (see
Appendix A) and both our perturbation theory and the two-
level resonance picture will fail close to this point. Hence
we introduce a fidelity measure for the two-state transition,
which is defined by the total probability weights of the two
relevant states |g, 3, 0〉 and |e, 0, 1〉. In Fig. 4(b), we show
the line contours for where this fidelity is equal to 90%

FIG. 4. (a) Energy splitting 2|�eff |/ω0 of |g, 3, 0〉 ↔ |e, 0, 1〉 ob-
tained numerically as a function of ν/ω0 for ηg = 0.03ω0 (green
diamond), ηg = 0.04ω0 (red triangle), and ηg = 0.05ω0 (blue circle),
as well as the corresponding analytical results (solid lines). Note that
the numerical results show finite peaks at the analytically divergent
point at ν/ω0 = 0.5. (b) The numerically-calculated resonant energy
splitting in the ν − ηg plane. The inset shows the fidelity, defined as
the average probability weights on the states |g, 3, 0〉 and |e, 0, 1〉,
under the resonant condition for ηg varying from 0.01ω0 to 0.06ω0

(lines from top to bottom). The 90% and 95% fidelity levels are
indicated in both the main plot and the inset by the dashed and the
dotted lines, respectively. In the main plot, the three values of ηg
considered in panel (a) are also marked with short line segments of
corresponding colors.

(the dashed line) and 95% (the dotted line), respectively. By
following such contours, optimized values of the interaction
strength ηg and the vibrational frequency ν can be found with
a specific fidelity threshold. It is quite interesting that the
energy splitting can be greatly enhanced by the ionic vibration
mode, making high-order resonant transitions significant for
realistic experimental parameters. As we will see below, such
enhanced energy splitting also appears in the system with
multiple trapped ions.
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IV. VIBRATION-ASSISTED MULTI-ION
EXCITATION PROCESS

We now turn to study a chain of N = 3 ions and discuss
a specific multi-ion excitation process: one photon and one
phonon can be jointly absorbed by three ions. Following
similar procedures as in the above section and utilizing the
generalized James’ effective Hamiltonian method [41], we
arrive at

Heff = −�eff [abσ 1
+σ 2

+σ 3
+ + a†b†σ 1

−σ 2
−σ 3

−], (5)

with

�eff

ω0
= 3ν(3ω0 − ν)

2(ω0 − ν)(2ω0 − ν)

(
ηg

ω0

)3

(6)

being the effective coupling strength for the transition
between the states |ggg, 1, 1〉 and |eee, 0, 0〉, where the simul-
taneous excitation condition ωc = 3ω0 − ν has been taken.
The above result resembles that in the case of simultaneous
excitation of three ions by only one photon, except that in
the latter case the strength of the effective coupling between
|ggg, 1〉 and |eee, 0〉 vanishes on resonance ωc = 3ω0 (dis-
cussed in Ref. [4] and the case IV B2(c) of Ref. [6]) because
of the destructive interfere between different transition paths.
By contrast, the energy splitting will be finite on resonance as
long as the transition is assisted by a vibration mode (see Ap-
pendix B). In addition, similar to the preceding three-photon
resonance process, the energy splitting implied by Eq. (6)
shows two divergences at ν/ω0 = 1, 2, which indicate the
breaking down of the perturbation theory and are regulated
in the numerical results as two pronounced peaks.

V. SYSTEM DYNAMICS

In order to better demonstrate the processes we have pro-
posed, we now describe the system dynamics with all the
dissipation channels taken into account. Here, we adopt the
master equation approach following Refs. [3–5,42–46] as the
standard quantum optical master equation breaks down in
the USC regime. With the Born-Markov approximation and
assuming the system interacting with zero-temperature baths,
the Lindblad master equation (see Appendix C) regarding our
system is given by

ρ̇(t ) = − i[H, ρ(t )] + κD[X +]ρ(t )

+ γ
∑

i

D[C+
i ]ρ(t ) + ζD[P+]ρ(t ), (7)

where the Lindblad superoperator D is defined as
D[O]ρ = 1

2 (2OρO† − ρO†O − O†Oρ) with O =∑
j,k> j〈 j|(o + o†)|k〉| j〉〈k| in terms of the energy eigenstates

| j〉 of the system Hamiltonian H being the dressed lowering
operator (positive frequency part) for the cavity field (o = b,
O = X +), the vibration mode (o = a, O = P+), and the ith
ion (o = σ i

−, O = C+
i ), respectively. We choose the labeling

of the states | j〉 (to avoid unphysical effects) such that
ωk > ω j for k > j [5,43]. Correspondingly, for the negative
frequency part, O† = X −, P− or C−

i . The constants κ , ζ , and
γ correspond to the damping rates for the cavity mode, the
vibration mode, and the ions, respectively.

FIG. 5. Time evolution of the ion mean excitation number
〈C−C+〉 (red dashed curve), the cavity mean photon number 〈X −X +〉
(blue solid curve), the three-photon correlation function G(3) (green
dashed curve), and the mean phonon number 〈P−P+〉 (black dot
dashed curve) with (a) no decay and (b), (c) decay rates κ = γ =
2ζ = 1×10−4ω0, respectively. The initial state is taken to be |e, 0, 1〉
and the other parameters are ηg/ω0 = 0.06 and ν/ω0 = 0.15.

For the case of three-photon resonance, the system is ini-
tially prepared in the state |e, 0, 1〉. Figure 5 shows the time
evolution of the ion mean excitation number 〈C−C+〉, the
cavity mean photon number 〈X −X +〉, the three-photon cor-
relation function G(3) = 〈X −X −X −X +X +X +〉, and the mean
phonon number 〈P−P+〉. In the ideal case without dissipa-
tion [Fig. 5(a)], the mean photon number at its maximum
approaches three; meanwhile, the ion transits to its ground
state and the mean phonon number approaches zero, which
is a signature of the cavity mode being in a three-photon
state excited by the ion and one phonon. This process is
reversible accompanied by energy exchanges. When the dis-
sipation effect is included in the system dynamics [Fig. 5(b)],
the mean values oscillate with the time evolution but decrease
exponentially in their amplitudes as expected. To get an es-
sentially deterministic transfer, �eff should far exceed the
relevant damping rates κ , ζ and γ . In Fig. 5(c) we observe that
the peak values of G(3) are approximately twice of the mean
photon number 〈X −X +〉 in the first transition cycle, indicating
an almost-perfect three-photon correlation [3]. Similarly, the
Rabi oscillation of multi-ion excitation (see Appendix D) also
shows a reversible energy exchange with the decay rate of
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its amplitudes depending on the relative strength between the
effective coupling and the system loss.

VI. CONSTRUCTION OF N00N STATES AND GHZ STATES

By tuning the cavity frequency, we can construct an assort-
ment of entangled states [9], such as N00N states and GHZ
states. Firstly, we construct the N00N states in the investiga-
tion of a simple multiphoton case: three photons excite one ion
accompanied with the creation of three phonons. By applying
the third-order perturbation theory with ωc = (ω0 + 3ν)/3,
we find there only exists a path connecting the specific states
|g, 3, 0〉 and |e, 0, 3〉, and the effective coupling strength is
�eff = 27(ηg)3/2ω2

0. To construct a N00N entangled state,
one may prepare the trapped ion in a coherent superposition
of two energy eigenstates |ϕ〉 = cos θ |e〉 + eiφ sin θ |g〉. Mean-
while, the cavity state is prepared to vacuum state, and the
ionic motional state is in three-phonon state. So we have the
following state vector for the ion-field state

|�〉(0) = (cos θ |e〉 + eiφ sin θ |g〉)|0, 3〉. (8)

At a time t , the ion-field state vector will become

|�〉(t ) = cos θ [cos(�efft )|e, 0, 3〉 − i sin(�efft )|g, 3, 0〉]
+ eiφ sin θ |g, 0, 3〉. (9)

Once interaction time t satisfies tk = π (4k + 3)/2�eff (k =
0, 1, 2, . . .), the resulting state is

|�(tk )〉 = i cos θ |g, 3, 0〉 + eiφ sin θ |g, 0, 3〉. (10)

If measuring the ion in its internal state |g〉 for equally
weighted ionic states (θ = π/4), we finally get a N00N state
with N = 3 :

|ψ〉 = 1√
2

(i|3, 0〉 + eiφ |0, 3〉), (11)

where the phase φ is fully transferred from the ionic superpo-
sition states |ϕ〉 [33]. As a source of entanglement, the N00N
states are often used for performing high-precision measure-
ments.

In the multi-ion excitation process, a multiqubit type GHZ
state can be constructed, which is highly sought for appli-
cations to quantum communication and information. Under
the resonant condition ωc = 3ω0 + ν, the dominant coupling
give a description of simultaneous excitation of three ions and
one phonon triggered by one photon. �eff = 3ν(3ω0+ν)(ηg)3

2ω2
0 (ω0+ν)(2ω0+ν)

is the effective coupling strength for the transition between
the bare states |ggg, 1, 0〉 and |eee, 0, 1〉. Consider that the
cavity state is prepared in a coherent superposition state |ϕ〉 =
cos θ |1〉 + eiφ sin θ |0〉 and both three trapped ions and ionic
motional state are prepared to ground states; the initial state
of the system is given by

|�〉(0) = |ggg〉(cos θ |0〉 + eiφ sin θ |1〉)|0〉, (12)

then we have

|�〉(t ) = cos θ [cos(�efft )|ggg, 1, 0〉 − i sin(�efft )|eee, 0, 1〉]
+ eiφ sin θ |ggg, 0, 0〉. (13)

Clearly, if one measures the cavity photon in its vacuum state
when tk = π (4k + 3)/2�eff (k = 0, 1, 2, . . .) with θ = π/4,
the resulting state will become a GHZ4 state:

|ψ〉 = 1√
2

(eiφ|ggg, 0〉 + i|eee, 1〉). (14)

It is different to the case shown in Ref. [4], in which only a
hybrid entangled GHZ state, i.e., (|gg, 1〉 + |ee, 0〉)/

√
2, can

be obtained without atomic vibration. In our system including
the quantum vibrational mode, a tetrapartite and fully corre-
lated GHZ state [Eq. (14)] can be constructed in a remarkably
simple way.

VII. DISCUSSION AND CONCLUSION

For the case we have discussed with N = 1, 3, the ions
are assumed to be distributed uniformly [47–49] in a Radio-
Frequency (RF) linear Paul trap [50]. The ions are strongly
bound in radial directions and weakly bound in a harmonic
potential in the axial direction. The equilibrium position of
the ion is determined by the joint effect of the overall har-
monic trap and the Coulomb force, and the ion-ion distance
can be tuned via the trap frequency. To achieve the vibra-
tion frequency [51,52] of the ion comparable to the cavity
field frequency and ionic transition frequency, a microwave
cavity with resonant frequency in the MHz spectral range is
adopted and a suited Rydberg transition of Rb ions can be
achieved [53], which is feasible with current existing tech-
niques. Moreover, in the USC or DSC regimes the coupling
constant g/ω0 = 0.1 ∼ 1, thus the effective coupling strength
�eff can be the order of kHz and even larger. As quantum
circuit has advantages of tunability and flexibility, our model
can be simulated in the circuit QED experiments [54,55],
in which the relevant decay rates κ = γ = 2ζ = 10−4ω0 are
available [56,57]. In perspective, with the development and
improvement of the experimental setup applied in cavity QED
experiments [52,58], our proposal would be realized with a
large probability in the nearest future. A noteworthy issue is
that with increasing number of ions (N > 3), the ion distri-
bution in a RF trap becomes inhomogeneous and the ion-ion
distance increases from the trap center to the edges. For a
system involving only a small number of ions such as in our
proposals, however, we expect the ion-ion distance only varies
insignificantly and the equilibrium positions of the ions are
still close enough to the nodes of the cavity standing wave.
Recently, a technique [49,59] has been developed to realize
an uniform ion distribution in a long range by controlling the
electrode voltage of a surface ion trap, which may also be
adapted for implementations of our proposals.

We have investigated the cavity QED with vibrating
two-level ions in the large-detuning regime, focusing on
two phonon-assisted phenomena: three-photon resonance and
three-ion simultaneous excitation. Such cavity QED systems
can be used to prepare complex entangled states such as the
N00N states and the GHZ states, or to realize threebody
effective interaction [60–62] among trapped ions. With the
state-of-the-art techniques in optical lattices, circuit QED sys-
tems [54,55], and optomechanical systems [63,64], we expect
our proposals can be generalized (see Appendix E) to vari-
ous experimental platforms with coupling between qubits and
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multiple types of bosons such as resonator modes, optical
or acoustic phonons [65], thus providing more insights into
quantum entanglement physics and promoting the further de-
velopment of novel quantum technology.
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APPENDIX A: EFFECTIVE THREE-LEVEL
HAMILTONIAN

By adjusting the frequency ν ∼ ω0/2, three energy levels
|e, 0, 1〉, |g, 3, 0〉, and |g, 1, 2〉 become degenerate instead of
two. We can expect something different. In this Appendix, we
present the full adiabatic elimination calculations [3,22,46]
for the degenerate three levels and give rise to an effective
three level Hamiltonian describing the hybridization between
those degenerate levels. Starting from the truncated levels
shown in Fig. 2, we move to a frame rotating with ω0 + ν,
i.e., subtracting ω0 + ν from the diagonal of the Hamiltonian,
giving

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2ωc 0
√

3ηg 2ηg
√

2ηg

0 0 0
√

2ηg ηg√
3ηg 0 3ωc − ω0 − ν 0 0

2ηg
√

2ηg 0 ωc − ω0 + ν 0√
2ηg ηg 0 0 ωc − ω0 − ν

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (A1)

where the states are ordered as |e, 2, 1〉, |e, 0, 1〉, |g, 3, 0〉, |g, 1, 2〉, and |g, 1, 0〉. Denoting the amplitudes of the five states by
c1 − c5, respectively, the Schrödinger equation gives

iċ j =
5∑

i, j=1

Hjici. (A2)

Assuming that 3ωc ∼ ω0 + ν, ν ∼ ω0/2 and ηg � 2ωc, ωc − ω0 − ν, we can adiabatically eliminate the two intermediate levels
and their population will not change significantly, i.e., ċ1 = ċ5 = 0, thus we give

c1 = − 9
√

2(ηg)2

18(ηg)2 + 4(ω0 + ν)2
c2 − 3

√
3ηg(ν + ω0)

9(ηg)2 + 2(ω0 + ν)2
c3 − 6ηg(ν + ω0)

9(ηg)2 + 2(ω0 + ν)2
c4, (A3)

c5 = 3ηg(ω0 + ν)

9(ηg)2 + 2(ω0 + ν)2
c2 − 9

√
6(ηg)2

18(ηg)2 + 4(ω0 + ν)2
c3 − 9

√
2(ηg)2

9(ηg)2 + 2(ω0 + ν)2
c4. (A4)

Then we insert into the equations for c2, c3, and c4 and the effective three-level Hamiltonian is shown to be

Heff =

⎛
⎜⎜⎜⎜⎝

3(ηg)2(ω0+ν)
9(ηg)2+2(ω0+ν)2 − 9

√
6(ηg)3

18(ηg)2+4(ω0+ν)2
2
√

2ηg(ν+ω0 )2

9(ηg)2+2(ω0+ν)2

− 9
√

6(ηg)3

18(ηg)2+4(ω0+ν)2 − 9(ηg)2(ν+ω0 )
9(ηg)2+2(ω0+ν)2 − 6

√
3(ηg)2(ν+ω0 )

9(ηg)2+2(ω0+ν)2

2
√

2ηg(ν+ω0 )2

9(ηg)2+2(ω0+ν)2 − 6
√

3(ηg)2(ω0+ν)
9(ηg)2+2(ω0+ν)2

2
3ω0 + 4

3ν − 12(ηg)2(ν+ω0 )
9(ηg)2+2(ω0+ν)2

⎞
⎟⎟⎟⎟⎠. (A5)

If the frequency ν is far away from the half of the transition
ω0, by applying standard perturbation theory again, we can
obtain more exact effective coupling strength between bare
states |g, 3, 0〉 and |e, 0, 1〉 to be

�eff = 27
√

6(ηg)3ω0

54(ηg)2ω0 − 4(ω0 + ν)2(ω0 − 2ν)
. (A6)

Clearly, when ν is close to the divergence point ν/ω0 = 1/2
of the former effective coupling �eff [Eq. (4)], there is a
pronounced and finite peak ∼√

6ηg/2. This expression is a
much better approximation to the exact value, which provides
a more accurate analytical description of Fig. 4.

APPENDIX B: COMPARISON OF THE EFFECTIVE
COUPLING STRENGTHS WITH AND WITHOUT

VIBRATION

According to the standard perturbation theory [4,6,36], the
magnitude of the effective coupling between two bare states
|i〉 and | f 〉 is expressed as

�eff =
∑

j1, j2··· jn−1

Vf jn−1 · · ·Vj2 j1Vj1i

(Ei − Ej1 )(Ei − Ej2 ) · · · (Ei − Ejn−1 )
, (B1)

where Ejn represents the energy of the bare state | jn〉, while
Vjn jn+1 = 〈 jn|Hint| jn+1〉. The sum goes over all of the virtual
transition steps which forms a transition path connecting the
initial state |i〉 to the final state | f 〉. As presented in Ref. [6],
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the effective coupling strength between the states |eee, 0〉
and |ggg, 1〉, representing the simultaneous excitation of three
atoms with a single photon, is

�eff = −3g3(ωc − 3ω0)

ω0(ωc − ω0)2
. (B2)

Apparently, such a coupling between the states |eee, 0〉 and
|ggg, 1〉 nevertheless exists close to the resonance (ωc = 3ω0),
which has been substantiated by the numerical calculations
when the two states are slightly out of resonance in the Sup-
plemental Material of Ref. [4].

By contrast, the effective coupling strength will never go
to zero on resonance in our system due to the involvement
of a vibration mode in the process of simultaneously exciting
three ions with one photon. Specifically, we consider a case in
which three ions are simultaneously excited by a photon and
a phonon. The effective coupling strength between |eee, 0, 0〉
and |ggg, 1, 1〉 has a complex form

�eff = 3(ηg)3

ω0

(
1

ω0 − ωc − ν
+ 2

ω0 − ωc + ν

+ 2

ω0 + ωc − ν
+ 4

ω0 + ωc + ν

)
, (B3)

which gives a nonzero outcome under the resonance condition
ωc = 3ω0 − ν, just being equivalent to the �eff in Eq. (6).
A similar result can be obtained in the case that one photon
can simultaneously excite three ions and one phonon. The ef-
fective coupling strength for the transition between the states
|eee, 0, 1〉 and |ggg, 1, 0〉 is

�eff = 3(ηg)3

(
1

ω0 − ωc + ν
+ 2

ω0 + ωc + ν

)

(
1

ω0
+ 2

ω0 + ν

)
, (B4)

which also never go to zero on resonance (ωc = 3ω0 + ν).

APPENDIX C: MASTER EQUATION

Here, we briefly present some key points to derive the
master equation. First, we consider a generic system, which
consists of N interacting subsystems or components. Each nth
subsystem is assumed to be coupled to an independent bath of
quantum harmonic oscillators, with the free Hamiltonian [43]

H (n)
B =

∑
l

ωl c
†
n,l cn,l , (C1)

where c†
n,l and cn,l are bosonic creation and annihilation oper-

ators for the lbath mode with frequency ωl of the nth reservoir.
The interaction between the system and the oscillator baths is
describes by

HSB =
∑
n,l

αn,l (sn + s†
n)(cn,l + c†

n,l ), (C2)

where s†
n (sn) are creation (annihilation) operators of the nth

subsystem. For the ion-qubit sn → σ−, while for the bosonic
mode (photon or phonon) sn → a, b. αn,l denotes the coupling
strength between the nth subsystem and the bath mode l of
the nth reservoir. In the interaction picture, the system-bath
interaction Hamiltonian is given by

H̃SB =
∑
n,l

αn,l e
iHSt (sn + s†

n)e−iHSt (cn,l e
−iωl t + c†

n,l e
iωl t ),

(C3)
in which HS is the system Hamiltonian. Expressing HS in the
dressed basis of its energy eigenstates | j〉, then we write the
system operators in the interaction picture as

S̃n(t ) =
∑
j,k> j

Cjk| j〉〈k|ei� jk t , (C4)

with

Cjk = 〈 j|(sn + s†
n)|k〉, (C5)

� jk = Ej − Ek, (C6)

and the reservoir operators as

B̃n(t ) =
∑
n,l

αn,l cn,l e
−iωl t . (C7)

Here the “ ˜ ” sign identifies the operators in the interaction
picture. As shown in detail in Ref. [42], Cj j = 0, as the
considered system in this case has parity symmetry. Then
dropping the fast oscillating terms S̃†

n (t )B̃†
n(t ) and S̃n(t )B̃n(t )

by the rotating-wave approximation, we find Eq. (C3) can be
simplified as

H̃SB =
∑

n

[S̃n(t )B̃†
n(t ) + S̃†

n (t )B̃n(t )]. (C8)

By Born-Markov approximation, the dressed master equa-
tion for the system becomes [22,42]

˙̃ρs(t ) =
∑
m,n

{∫ t

0
dt ′[S̃n(t ′)ρ̃s(t

′)S̃m(t ) − S̃m(t )S̃n(t ′)ρ̃s(t
′)]〈B̃†

m(t )B̃†
n(t ′)〉 +

∫ t

0
dt ′[S̃n(t ′)ρ̃s(t

′)S̃†
m(t )

− S̃†
m(t )S̃n(t ′)ρ̃s(t

′)]〈B̃m(t )B̃†
n(t ′)〉 +

∫ t

0
dt ′[S̃†

n (t ′)ρ̃s(t
′)S̃m(t ) − S̃m(t )S̃†

n (t ′)ρ̃s(t
′)]〈B̃†

m(t )B̃n(t ′)〉

+
∫ t

0
dt ′[S̃†

n (t ′)ρ̃s(t
′)S̃†

m(t ) − S̃†
m(t )S̃†

n (t ′)ρ̃s(t
′)]〈B̃m(t )B̃n(t ′)〉

}
+ H.c.. (C9)

Each term of which embodies oscillating exponentials of
the form exp[i(� jk − � j′k′ )t]. For pairs of different tran-

sitions occurring at the same frequency, or for j = j′ and
k = k′ (since k > j and k′ > j′), the argument of these
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FIG. 6. Time evolution of the cavity mean photon number
〈X −X +〉 (green solid curve), the ion 1 mean excitation number
〈C−

1 C+
1 〉 (cyan dashed curve), the zero-delay two-ion correlation

function S(2) (blue dotted curve), the zero-delay three-ion correlation
function S(3) (red dot-dashed curve) and the mean phonon number
〈P−P+〉 (black dashed curve) by preparing the initial state of the
system as |eee, 0, 0〉. (a) System dynamics with no decay. (b) System
dynamics with decay rates κ = γ = 2ζ = 1×10−4ω0. Other param-
eters are ηg/ω0 = 0.06 and ν/ω0 = 1.5.

exponentials will go zero [42]. Only considering the energy
levels of the system with all transitions having differ-
ent frequencies, we then can neglect all fast oscillating
terms. In the text, the system consists of three subsys-
tems (n = 3). At zerotemperature T = 0 with 〈OmOn〉 =
TrB[OmOnρB], the nonzero two-time correlation functions
are given by 〈B̃1(t )B̃†

1(t ′)〉 = κδ(t − t ′)/2, 〈B̃2(t )B̃†
2(t ′)〉 =

ζ δ(t − t ′)/2, and 〈B̃3(t )B̃†
3(t ′)〉 = γ δ(t − t ′)/2, where κ , ζ ,

and γ are the decay rates of the cavity mode, the vibration
mode, and the ions, respectively [22]. In the Schrödinger
picture, we finally get the master equation (7).

APPENDIX D: SYSTEM DYNAMICS FOR THREE-ION
EXCITATION WITH ONE PHOTON AND ONE PHONON

A small energy splitting means a long periodic time, where
such a long evolution time is hard to achieve in realistic
experiment. And if the effective coupling strength is close
to and sometimes even smaller than the system decay rates,
the amplitudes of the mean values will decrease rapidly
within one period of the population oscillation when includ-
ing loss effects. Figure 6 displays the time evolution of the
cavity mean photon number 〈X −X +〉, mean excitation num-
ber 〈C−

1 C+
1 〉 for ion 1 (coincides with that of ion 2 and 3),

the two-ion correlation S(2) = 〈C−
1 C−

2 C+
2 C+

1 〉 (coincides with
〈C−

1 C−
3 C+

3 C+
1 〉 and 〈C−

2 C−
3 C+

3 C+
2 〉), the three-ion correlation

S(3) = 〈C−
1 C−

2 C−
3 C+

3 C+
2 C+

1 〉, and the mean phonon number
〈P−P+〉 by preparing all ions in their excited states. In an

ideal case without decay, the mean photon number is at its
maximum and the ion jumps to its ground state. Meanwhile,
the mean phonon number close to one gets its maximum.
The Rabi oscillations show the reversible excitation exchange.
We observe that the single-ion excitations 〈C−

i C+
i 〉 and S(2),

S(3) approximately coincide at any time. This almost-perfect
three-ion correlation is a clear signature of the joint excitation.
When taking loss effects into consideration, the mean values,
which decrease exponentially as expected, still oscillate in
cosine or sine form. As expected, the three-ion correlation is
more fragile to losses than two-ion correlation, which are all
more fragile to losses than 〈C−

i C+
i 〉 [4].

To simulate more realistic scenes, three excited ions are
needed to prepare the initial state as |eee, 0, 0〉, or one can
inject both a single photon and a single phonon to prepare the
initial state as |ggg, 1, 1〉. While for a situation that one photon
can simultaneously excite three ions and one phonon, only a
single photon is needed to be injected by applying a Gaussian
pulse to prepare the initial state as |ggg, 1, 0〉. In the injection
process, the additional nonlinearity such as Kerr, cross-Kerr,
and Pockels effects need to be taken into consideration [4–6].

APPENDIX E: MODEL GENERALIZATION

With the rapid development in circuit QED systems, op-
tomechanical systems and optical lattices, our model can be
further generalized to various experimental platforms by cou-
pling qubits to two bosonic modes. For example, the ionic
vibration mode here can be equivalent to the phonon mode of a
mechanical resonator in hybrid optomechanical systems [64].
The interaction between two-level atoms and an optical cavity
can be described by Rabi model through the Hamiltonian

Hint = g(J+ + J−)(b† + b), (E1)

where g = −d · ε0 is the atom-photon coupling strength. Con-
sider a standard dispersively coupled optomechanical system
with the frequency of a mechanical resonator ν and phonon
annihilation operator a, in which the resonator’s displacement
x = xzp f (a + a†) (xzp f is the zero-point motion amplitude)
creates spatial influence on the cavity field (see details in
Ref. [64]). Thus, the atom-photon coupling strength g be-
comes dependent on the mechanical position. Expanded to
the first order in x, g(x) = g(0) + γ (a + a†), where γ =
(∂g/∂x)|x=0xzp f . Inserting g(x) into the Hamiltonian (E1)
and taking g(0) = 0, an atom-photon-phonon coupling arise,
which is termed mode field coupling (MFC). The interaction
Hamiltonian becomes

Hint = γ (a + a†)(J+ + J−)(b† + b), (E2)

which is the only possible interaction allowing the swap
of excitation between three quantum systems. This effective
MFC interaction Hamiltonian [Eq. (E2)] from hybrid optome-
chanical systems can also realize three-photon resonance and
three-ion excitation.
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