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The ground states of noninteracting fermions in one-dimension with chiral symmetry form a class of topo-
logical band insulators, described by a topological invariant that can be related to the Zak phase. Recently, a
generalization of this quantity to open systems—known as the ensemble geometric phase (EGP)—has emerged
as a robust way to describe topology at nonzero temperature. By using this quantity, we explore the nature
of topology allowed for dissipation beyond a Lindblad description, to allow for coupling to external baths at
finite temperatures. We introduce two main aspects to the theory of open-system topology. First, we discover
topological phase transitions as a function of the temperature T , manifesting as changes in differences of the
EGP accumulated over a closed loop in parameter space. We characterize the nature of these transitions and
reveal that the corresponding nonequilibrium steady state can exhibit a nontrivial structure—contrary to previous
studies where it was found to be in a fully mixed state. Second, we demonstrate that the EGP itself becomes
quantized when key symmetries are present, allowing it to be viewed as a topological marker which can undergo
equilibrium topological transitions at nonzero temperatures.
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I. INTRODUCTION

Topology has emerged as a new paradigm in the theory
of quantum phase transitions beyond the established Landau
formalism [1]. Whereas Landau-type phases are described by
continuous and local order parameters [2,3], topological phase
transitions are characterized by integer-valued invariants de-
rived from quantized geometric phases [4–8] which reflect
knots or twists in the ground state wave function.

The theoretical description of topological order [9–20]
was initially developed from the discovery of the fractional
quantum Hall effect [21,22], and relied on long-range en-
tanglement [23–26]. Soon enough, though, other quantum
phases such as the spin-1 Haldane phase [27–29] were found
to possess the hallmarks of topological phases, such as
charge fractionalization, despite being product states with
short-range entanglement. In this case, the concept of sym-
metry is crucial, but in a different way than the established
mechanism of symmetry breaking underpinning Landau phe-
nomenology. The symmetries (in the case of the Haldane
phase time reversal symmetry and spatial reflection) protect
the fractionalized boundary charges from perturbations. After
the spin-1 Haldane phase, many other symmetry protected
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topological (SPT) phases were discovered [26,30–42]. In
particular, the presence of symmetry gives rise to a rich clas-
sification of SPT phases in noninteracting fermionic systems,
such as topological insulators and superconductors [7,43–52]
For such systems, topological invariants are constructed from
the ground state wave functions of the underlying noninteract-
ing fermions, with symmetries enforcing their quantization.

More recently, the exploration of SPT insulators and super-
conductors has been extended to more complex landscapes,
such as systems with interactions [53–59] or driven out of
equilibrium [60–79]. The question of extending concepts of
topology to open systems has also attracted particular interest
[80–92], not only for states at thermal equilibrium, but also
for systems with engineered dissipation that lead to nonequi-
librium states.

For open systems, various generalizations of geometric
phases and corresponding topological invariants have been
proposed. One way to tackle this question is to describe
the effect of the environment with effective non-Hermitian
Hamiltonians [93–98], though, this construction is not very
general. For instance, it is not suitable for the description of
thermal equilibrium states. Other approaches have confronted
the problem more head on, and tried to define topologi-
cal invariants directly from mixed states. One example is
the Uhlmann phase [99–106], a formal generalization of
the Berry phase [107–109]. However, while this quantity
does exhibit finite-temperature quantization, its topological
nature has been disputed on the basis that its construction
relies on the definition of a global gauge, which is always
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topologically trivial [84]. Furthermore, while in one dimen-
sion the Uhlmann phase of gapped ground states recovers the
closed-system topological invariant known as Zak phase, its
construction in two dimensions fails to give a consistent defi-
nition of geometric phase because its winding takes different
values depending on directionality [84,101,102,110].

Another, more promising concept is that of the so-called
ensemble geometric phase (EGP) [84,88,110–117], which can
be regarded as the mixed-state extension of Resta’s polar-
ization [118]—a reformulation of the Zak phase in terms
of the expectation value of a many-particle momentum-
translation operator. The EGP appears to be more suitable
candidate to extend topology to mixed states. It naturally
extends the definition of closed-system topological invariants
by replacing ground-state expectation values with statistical
averages computed via the density matrix; it can be defined
also when interactions are present [113]; it correctly recol-
lects the expected quantization in two dimensions, leading to
well-defined Chern numbers [110]; it is directly measurable
because it based on a many-body observable [88,116].

So far, topological quantization was studied through the
winding of the EGP under the cyclic variation of external
parameters. In all cases, the corresponding topological phase
transitions, signalled by a change in quantization, were found
to occur always at infinite temperature or equivalently for fully
mixed states. Here, we show that this is an artefact of the
fact that previous studies involved either thermal systems or
dissipative systems described by Lindblad master equations.

We go beyond previous treatments by employing the Red-
field master equation, which generalizes the Lindblad master
equation in a way that allows us to define fermionic baths
at both finite temperature and chemical potential, i.e., es-
tablishing baths within the grand canonical ensemble. We
then explore the full nature of mixed-state topology for a
combination of unitary dynamics and local Markovian dissi-
pation. Within this framework, we introduce two new aspects
to the theory of open-system topology. First, a new kind of
topological phase transition in the EGP winding can occur at
finite temperature and for a correlated nonequilibrium steady
state. This transition is different from previously studied cases
because the quantization jumps between two nonzero, in-
equivalent values. Second, we prove that the EGP itself can
become Z2-quantized at equilibrium when key symmetries are
present, and in certain parameter regimes. We also show that,
by tuning the values of the hoppings in the Hamiltonian, it is
possible to generate a topological phase transition between the
two quantized values. This result further strengthens the con-
nection between the behavior of the EGP in open systems and
the known theory of topological phase transitions in closed
systems.

The rest of this paper is structured as follows. In Sec. II,
we introduce the model, the methods, and the measures used
to describe mixed-state topology. In Sec. IV, we present our
results for the topological quantization of the EGP wind-
ing in a nonequilibrium steady state and the corresponding
temperature-driven topological phase transition. In Sec. III,
we discuss our results for the system at equilibrium and
demonstrate the EGP quantization, also by means of two ana-
lytical calculations. Finally, Sec. V summarizes our discussion
and provides an outlook for future studies.

II. MODEL

We consider a Su-Schrieffer-Heeger (SSH) chain with L
unit cells [119,120], described by the Hamiltonian

HS = −
L−1∑
n=1

[
t f †

n,A fn,B + t ′ f †
n+1,A fn,B + H.c.

]
. (1)

The system is composed of two sublattices A and B. The
operators f †

n,I ( fn,I ) denote creation (annihilation) operators
for fermions on the I = A, B sublattice of unit cell n, and sat-
isfy canonical anticommutation relations { fν, f †

μ} = δνμ. The
particles can hop between the two sublattices with hopping
strengths t (intracell) and t ′ (intercell).

The SSH chain at half filling is a prototypical model for
symmetry-protected topological insulator in one dimension in
closed systems. Because of the staggered hopping configura-
tion, the model possesses chiral symmetry [7,121]. When t ′ <

t , the system is topologically trivial. When t ′ > t , instead, the
system is in a topological phase and topologically protected
modes appear at the end of the chain. Various proposals have
been made to exploit the properties of the edge modes in
different contexts, from constructing thermoelectric devices
[122], to performing quantum computations and processing
[123,124], to building waveguides of magnetic excitation
[125], and more. Furthermore, this model has been realized
in numerous different platforms, including Rydberg atoms
[126,127], ultracold atoms [128–131], polaritonic micropil-
lars [132], and optomechanical devices [133]. The variety
of SSH model applications despite its simplicity make it an
excellent system with which to investigate finite-temperature
topology.

The two different topological phases of the SSH model can
be distinguished by a topological invariant constructed as a
winding number from the momentum-space Hamiltonian [7].
For inversion-symmetric systems, a related way of classifying
the topological phases is offered by the Zak phase [134]. A
major advantage in using the Zak phase to describe topology
is its physical interpretability; it is the generalization of the
Berry phase to Bloch wave functions in solids, it can be nat-
urally extended to the concept of non-Abelian Wilson loops
in multiband cases [135], and it is experimentally measurable
[128]. Furthermore, it can also be rewritten in terms of a
polarization P as [118]

φZ = 2πP = � log 〈ψ0|T |ψ0〉, (2)

where |ψ0〉 is the ground state and

T ≡ exp

(
2π i

L
X

)
,

X ≡
∑

n

n f †
n,A fn,A + (n + 1/2) f †

n,B fn,B. (3)

X is the (center of mass) position operator and T is its
generalization that assures a well-defined operator also for
periodic boundary conditions [118]. This is a form that can
be extended more easily to open-system topology. Due to the
chiral symmetry, the Zak phase can only acquire two discrete
values. For the definitions given, one finds that φZ = −π

2 for
the nontopological phase, and φZ = +π

2 for the topological
one.
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FIG. 1. (a) Sketch of the system analyzed in this article: a Su-
Schrieffer-Heeger model with hoppings t and t ′ is attached to two
Markovian fermionic reservoirs of chemical potential μi and inverse
temperature βi. (b) Example of an adiabatic cycle performed in the
parameter space spanned by the hoppings and the chemical poten-
tials. The other cyclic protocols described in this work are obtained
by translating the path horizontally [see also inset in Fig. 2(b)].

Since we are interested in describing the topology of this
system at finite temperature and in nonequilibrium settings,
we additionally couple it to two fermionic, Ohmic reservoirs
RA and RB. Reservoir RA (RB) is kept at chemical potential
μA (μB) and inverse temperature βA (βB), and both have a
constant density of states. In all our calculations we will set
the Boltzmann constant to be kB = 1 and Planck’s constant
h̄ = 1. Furthermore, the two reservoirs couple differently to
the system. Reservoir RA only couples to the A sublattice,
while reservoir RB only couples to the B sublattice. A com-
plete sketch of system and reservoirs is presented in Fig. 1(a).

A. Methods

To describe the physics of the SSH model coupled to
the two fermionic reservoirs, we employ the Redfield master
equation (RME) [136–138]. The RME has several advantages
over the more commonly used Lindblad master equation. It
is more general than the latter, because it retains oscillating
terms that are otherwise ignored when the secular approxi-
mation is performed. It contains only one generator for each
system-bath interaction, and it allows to construct dissipation
processes directly from the macroscopic state variables of the
reservoirs, such as their temperatures and chemical potential.
This allows us to probe the effects of such state variables on
the system, in particular with respect to its topology. When it
preserves positivity, the Redfield equation can also be more
accurate than the Lindblad master equation [139].

To describe the total system, we decompose its Hilbert
space into a tensor product of the Hilbert subspaces of the
system with Hamiltonian HS and reservoirs with Hamiltonian
HR ≡ HRA + HRB . The total Hamiltonian of the system can
then be written in terms of such a tensor product as

H = HS ⊗ 1R + 1S ⊗ HR + λ
∑

	

X	 ⊗ Y	, (4)

where 1S (1R) indicates the identity operator on the Hilbert
space of the system (reservoirs). The last term in Eq. (4)
describes the interaction between system and reservoirs, with
a coupling constant λ. Throughout this work, we shall assume
λ to be small and equal for both reservoirs. We remark that,
while the value of λ does impact transient dynamics and
dictates the relaxation time to the steady state, it should not

influence the behavior of the system at long times, which is
the focus of our study.

The operators X	 (Y	) act on the Hilbert subspace of the
system (reservoirs) and are chosen to be Hermitian and local.
We shall consider baths that lead to the injection and removal
of fermions for each site (n, I ) in the chain. We remark that
this type of local dissipation differs from the nonlocal dissipa-
tion used in earlier works [88]. Motivated by exact solutions
available for quadratic systems with Hermitian bath operators
[138], we cast them in terms of the Majorana operators

X	 ≡ Xn,I,α =
⎧⎨
⎩

1√
2
( fn,I + f †

n,I ), α = 1,

i√
2
( fn,I − f †

n,I ), α = 2.
(5)

The RME is obtained by solving the Heisenberg equa-
tion of motion for the total system under the assumptions that
the coupling between system and reservoir is weak (λ small),
that the initial density matrix is factorizable as ρS (0) ⊗ ρR(0),
and that the bath correlation functions

�
βI

( j,I ),(k,I )(t ) ≡ λ2 Tr[Ỹj (t )Yke−βIHRI ]

Tr[e−βIHRI ]
, (6)

with Ỹj (t ) ≡ eit (HRI −μINRI )Yje−it (HRI −μINRI ), decay much
faster than the time scale of the system dynamics (Born-
Markov approximation) [137,138]. The RME so obtained then
describes the Liouvillean dynamics L̂ of the system density
matrix in terms of a coherent time evolution Ĉ generated by
the system Hamiltonian, and a dissipative part D̂ stemming
from the interaction between system and reservoirs:

ρ̇(t ) ≡ L̂[ρ(t )] = Ĉ[ρ(t )] + D̂[ρ(t )] (7)

= −i[HS, ρ(t )]

+
∑

j,k

∫ ∞

0
dτ �

βRI
k, j (τ )[e−iτHS Xje

iτHS ρ, Xk] + H.c.

(8)

Here, the dotted quantities indicate time derivatives, whereas
the hats indicate superoperators acting in the Liouvillean
space.

The bath correlation functions of Eq. (6) are more easily
expressed in frequency space via a Fourier transform

�̃
βRI
jk (ω) =

∫ ∞

−∞
dτ �

βRI
k j (τ )e−iωτ . (9)

The corresponding bath correlation spectral functions take the
form

�̃(ω) = diag(�̃A(ω), �̃B(ω), �̃A(ω), �̃B(ω), · · · ), (10)

�̃I (ω) = λ2gI (ω)[ f+(ω)1 − f−(ω)σ y], (11)

with f±(ω) ≡ nI (ω) ± (1 − nI (−ω)), nI (ω) = 1
eβI (ω−μI )+1 the

Fermi-Dirac distribution of reservoir RI , and gI (ω) its density
of states. As we will assume baths of free fermions that couple
equally to all unit cells throughout this work, we will set
gI (ω) ≡ const.

B. NESS observables

We now address the question of how to solve the RME of
Eq. (8). We shall be focusing exclusively on the structure of
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the nonequilibrium steady state (NESS) in the RME, i.e., the
behavior of the density matrix ρNESS ≡ ρ(t → ∞). In princi-
ple, this can be obtained by performing exact diagonalization
of the full Liouvillean spectrum and then analyzing the eigen-
state corresponding to the zero eigenvalue. For large systems,
this is typically a hard problem. However, further simplifica-
tions can be performed when the Liouvillean is a quadratic
form in the fermionic operators, i.e., when the Hamiltonian
is quadratic and the bath operators are linear. This is the case
that we consider in the present work, which is best formulated
in terms of Majorana operators

w2m−1 = fm + f †
m w2m = i( fm − f †

m), (12)

with the index m now encompassing both the unit cell and
sublattice indices, i.e., m = (n, I ). In the Majorana represen-
tation, the Hamiltonian and the interaction operators can be
written as

HS =
4L∑

j,k=1

w jHjkwk, (13)

X	 =
4L∑
j=1

x	, jw j, (14)

with

Hjk = i

4

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 −t 0 0 0 · · ·
0 0 t 0 0 0 0 · · ·
0 −t 0 0 0 −t ′ 0 · · ·
t 0 0 0 t ′ 0 0 · · ·
0 0 0 −t ′ 0 0 0 · · ·
0 0 t ′ 0 0 0 t · · ·
0 0 0 0 0 −t 0 · · ·
...

...
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(15)

and x	, j = δ	, j for our particular choice of system and dissi-
pation.

For such a quadratic problem, Prosen [138,140] showed
that the Liouville space of (22L )2-dimensional operators,
which the density matrix ρ(t ) is also a member of, has a
Fock space structure which can be spanned by a set of 8L
new Majorana operators. The doubling of the space 4L → 8L
comes from assigning Majorana fermions to both bras and
kets. Each superoperator acting on the density matrix can
then be rewritten as a quadratic form in such new opera-
tors, including the Liouvillean itself [141]. By diagonalizing
this quadratic form, it is possible to obtain an analytic ex-
pression for the two-point Majorana correlator in the NESS,
〈w jwk〉NESS ≡ Tr[w jwkρNESS]. This mathematical derivation
is explained in more detail in Appendix A.

The analytic calculation of the two-point Majorana cor-
relator in the NESS forms the base for the calculation of
any other quantities. By virtue of the quadratic form of the
Liouvillean, a generalized Wick’s theorem guarantees that all
other NESS observables can be derived from it. This includes
the extension of the closed system topological invariants to
finite temperature, which we will discuss next.

C. Ensemble geometric phase

After having defined the methods to calculate observables
for the NESS of the open SSH chain, we now present the
quantity that describes its topology. We follow the approach
defined in Refs. [84,88,110–117], where the Zak phase of
Eq. (2) is naturally extended to open systems by replacing
the ground-state expectation value of the operator T with its
mixed-state analog:

φE ≡ � log Tr[ρT ]. (16)

This generalized topological invariant is termed the ensemble
geometric phase (EGP). To measure it, direct interferometric
methods have been proposed [88], as well as indirect methods
by means of coupling the original system to ancillary ones
[116].

Earlier studies on purely thermal or purely nonlocal dissi-
pative systems [88] have highlighted the topological character
of the EGP. Specifically, the winding of the EGP along a
closed parameter cycle is quantized. The quantized value de-
pends on the path taken: it is nonzero when the cycle encircles
gap-closing points of the Liouvillean, and zero otherwise.
This feature is analogous to what happens in topological
pumping procedures in closed systems [121,142,143]. Later
studies [113] have also highlighted that the quantization of the
winding survives when interactions are present. However, in
all previous studies the corresponding topological phase tran-
sition between different quantized values was always found to
occur only at infinite temperature or when the state becomes
fully mixed. In the following, we will show that it is actually
possible to obtain topological transitions in the EGP also at
finite temperatures and for a correlated NESS.

To calculate the EGP analytically, we can again take advan-
tage of the fact that the Liouvillean is a quadratic form in the
Majorana operators. The NESS can therefore be mapped to
a Gaussian state described by Grassmann variables [81,144].
We emphasize that this construction is not restricted to the
particular dissipative SSH model studied here, but can be
applied to any quadratic Liouvillean. By recasting the problem
in the language of Grassmann variables, we are able to rewrite
U ≡ Tr[ρNESST ]/Tr[ρNESS] as Gaussian integrals and use the
rules of Grassmann calculus to obtain the following analytic
expression in terms of pfaffians of matrices:

U = c � Pf(C)[Pf(K1 − C−1) − Pf(K2 − C−1)]. (17)

In this expression, c = exp( iπ
2 (2N + 3)) and � ≡∏2N

k=1,k �=N−1 cos( π (k+1)
2N ) are constants. The covariance

matrix Cjk = i
2 Tr(ρNESS[w j,wk]) is the representation

of ρNESS as a Gaussian state of Grassmann variables,
and can be obtained from the two-point correlators
via the procedure explained in Sec. II B. The matrices
K1 = ⊗2N

k=1,k �=N−1 σ k
y tan( π (k+1)

2N ) ⊗ σ N−1
y and K2 =⊗2N

k=1,k �=N−1 σ k
y tan( π (k+1)

2N ) define instead the Grassmann
representation of the operator T and are block diagonal.
The full derivation of Eq. (17) and all its quantities is
presented in Appendix C, and forms the basis of our analysis
of open-system topology in the next sections. From it, the
EGP can be easily obtained by calculating either directly
the complex phase of U (equilibrium case), or its winding
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number as U traces a closed path on the complex plane when
parameters are adiabatically modulated (nonequilibrium
case).

It was recently argued [145] that a finite-temperature def-
inition of the EGP should be valid only in the canonical
ensemble. However, we note that in the thermodynamic limit
the magnitude of the quantity U approaches zero. Therefore,
for any realistic measurements of the EGP, finite size systems
should be considered. More precisely, in the grand canonical
ensemble we observe U ∝ e−L/L∗

/L, for some length scale
L∗ and where the exponential decay is present already in the
canonical ensemble and dominates over the additional 1/L
factor introduced in the grand canonical ensemble. In finite
systems, we have thus the freedom to choose between work-
ing in the canonical or in the grand canonical ensemble. We
choose the latter because this will allow us to obtain analytical
results in equilibrium settings.

III. FINITE-TEMPERATURE TOPOLOGICAL CYCLES

We now present the results obtained by analyzing the
SSH chain coupled to fermionic reservoirs within the RME
formalism. We begin by discussing how the EGP behaves
in adiabatic cyclic protocols similar to those investigated in
Refs. [88] and [113]. We take inspiration from well-known
topological pumping procedures that take place in 1D models
in closed settings.

When the chiral symmetry is broken, for instance by
adding a staggered on-site potential u to the SSH model, the
Zak phase loses its quantization. The resulting model is often
denoted as Rice-Mele model [142]. While the Zak phase is no
longer quantized, it is possible to retrieve another quantization
by adiabatically varying the parameters (t ′ − t )/t and u/t in
time along a closed cycle, for instance described by the an-
gle φ ≡ atan2(u/t ′). Then the quantity �φZ ≡ 1

2π

∮
dφ∂φφZ

is integer quantized and is associated with the number of
particles (charges) pumped across the chain per cycle. The
quantized differential changes of the Zak phase are topologi-
cal because they can be regarded as a two-dimensional Chern
number when time is interpreted as a quasimomentum in an
additional spatial dimension. The quantization is nonzero only
if the path encircles the gap closing point at t ′ = t , u = 0. As a
consequence, one can realize topological transitions between
phases with different values of �φZ (�φZ = ±1 ↔ 0) by
shifting the path in parameter space until it crosses the gap
closing point.

A similar reasoning has been studied before for open SSH
chains that are purely dissipative, and where the role of tun-
neling is replaced by nonlocal dissipators that act on two
neighboring sites. Here we study an open SSH chain that has
both coherent tunneling and local dissipation, which we will
employ dissipation to break inversion symmetry. This can be
achieved by having baths with different chemical potentials,
i.e., μA �= μB in general. In other words, the quantity �μ ≡
μA − μB plays the open-system role of the staggered potential
u used in the closed system Rice-Mele model. Similar to
the closed system counterpart, we also define a closed loop
in the parameter space spanned by �μ/t and (t ′ − t )/t . For
simplicity, we employ the piecewise straight path illustrated

in Fig. 1(b), but we expect our results to remain valid for other
closed loops in parameter space.

Following the analogy with the closed-system topological
pumping scenario, our expectation is that differential changes
of the EGP accumulated along the path P will be topologi-
cally quantized,

�φE ≡ 1

2π

∮
P

(
u

u2 + v2
dv − v

u2 + v2
du

)
, (18)

where in this case we have just written the accumulated dif-
ferential changes in the EGP as the winding number of the
quantity U = u + iv defined in Eq. (17) along the path P . As
we will see, not only is this realized, but the quantization can
even change as a function of the inverse temperature β and the
shift δ.

Figure 2 summarizes the results of our adiabatic cycles at
finite temperature. Figure 2(a) illustrates a topological phase
diagram, where the value of �φE is plotted as a function of a
horizontal shift δ in the adiabatic cycle (depicted in the inset),
and the inverse temperature of the reservoirs β = βA = βB.
We reiterate that while the reservoirs are kept at the same
temperature, the system is in a nonequilibrium state because
the chemical potentials are varied. From the topological phase
diagram, we can recognize three inequivalent regions where
�φE takes different discrete values. The topological phases
are separated by topological phase transitions occurring both
as a function of δ and β. We emphasize that throughout the
adiabatic cycle, the NESS remains a correlated state, as we
can see from Fig. 2(c).

At low values of β and δ, such that the path encircles the
inversion-preserving gap closing point at t ′ = t , μA = μB, we
find �φE = 2π . This is the region (depicted in green in the
figure) that is adiabatically connected to the quantized value
of the EGP winding at infinite temperature found in earlier
studies [81,113]. We note that this quantization is preserved
upon lowering the temperature by many orders of magni-
tude. When the displacement is increased beyond δc = 0.5,
an abrupt jump to �φE = 0 occurs. This happens because
the path crosses the gap-closing point and stops encircling it,
and mirrors the situation known in the closed-system Rice-
Mele model [142]. The phase at δ > δc (depicted in pink
in the figure) is analogous to the trivial phase discussed in
Refs. [81,113].

The most intriguing phase transition occurs however for
δ < δc, as β is increased. At a critical value of β = βc ≈ 0.3t
the value of �φE abruptly jumps from 2π to −2π . This
topological phase transition is of a new and different kind that
the one triggered by the change in δ. This can be justified by
considering both its intrinsic jump by two integers, and the
behavior of the quantity U from which �φE is calculated. The
latter is illustrated in Fig. 2(b).

In the region at low β, U traces a closed, almost rectan-
gularly shaped loop around the origin in the complex plane
(dashed green line). Its winding depends on the direction
in which we follow the path traced in parameter space. For
our choice of trajectory, U winds in counterclockwise direc-
tion, and hence �φE/(2π ) = 1. A change in δ simply shifts
the loop of U away from the origin, eventually leading to
�φE = 0. When β is increased, instead, the loop is gradually
deformed around the origin. Its vertical edges fold inward
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FIG. 2. (a) Topological phase diagram for a L = 8 system, de-
fined by the integrated difference in the EGP, �φE , showing a
temperature-driven topological phase transition. The parameters of
the phase diagram are the horizontal displacement of the path center
δ (shown in the inset) and the inverse temperature β = βA = βB.
The path is constructed by varying t ′ from 0.5 to 1.5 and μB from
−1.0 to 1.0, while all other parameters are kept fixed to t = 1.0 and
μA = 0.0. (b) Illustration of the quantity U , whose winding is �φE ,
along the path traced in Fig. 1(b) for various values of increasing
temperature β as indicated by the red arrow in the upper panel. At a
critical value around βc ≈ 0.3 (red dotted line), the winding number
of U jumps abruptly from 1 to −1 as U develops foldings which cross
at the origin. (c) Majorana correlators 〈wiw j〉 along the path traced
by U for β = 1.0 (the behavior for other values of β is equivalent).

until they cross at the origin at β = βc (dotted red line), and
move past one another for β > βc (solid blue line). Because
of the foldings, the path now winds in the opposite direc-
tion in the innermost loop, while the upper and lower loops

do not contribute to the total winding number. As a result,
�φE/(2π ) = −1.

It should be noted that previous studies had already shown
the existence of the �φE/(2π ) = 1 ↔ 0 topological phase
transition in purely thermal systems [81,113]. However, in
these studies the transition always occurred at infinite tem-
perature by going through a fully mixed state ρNESS ∝ 1. Our
case is remarkably different, because the topological phase
transition occurs at finite temperature, i.e., β �= 0 and through
a NESS which remains correlated, as highlighted in Fig. 2(c).

We finally remark that, while our study is inspired by the
topological pumping procedures realized in closed systems,
where charges are pumped from one end of the chain to the
other, we do not observe a manifest charge transport occurring
in the phases where �φE �= 0. The quantization is rather a
property of the EGP itself, which also acts as the observable to
be measured. However, our findings do not a priori exclude the
connection between EGP quantization and some other type of
physical quantization at a different level.

IV. FINITE-TEMPERATURE TOPOLOGICAL
QUANTIZATION

We now focus on the equilibrium situation when both
reservoirs are kept at the same inverse temperature and chem-
ical potential, i.e., β = βA = βB and μ = μA = μB. In this
case, the symmetry breaking between A and B sublattices
does not occur. We will show that under such conditions
the EGP itself can become quantized in certain regimes, and
that some form of quantization persists at all temperatures.
This quantization is distinct from the quantization observed in
the adiabatic cycles, both in nature (equilibrium quantization
versus nonequilibrium quantization) but also in origin, since it
can be clearly traced back to the existence of underlying sym-
metries, as we shall prove with exact analytical calculations.

We begin by describing the topological phase diagram that
can be obtained by mapping φE as a function of β and μ, de-
picted in Fig. 3 for both t ′ > t [Fig. 3(a)] and t ′ < t [Fig. 3(b)].
From this figure, we can distinguish three regimes:

(i) In the high-temperature limit, β → 0, the EGP φE is
quantized up to numerical accuracy at either φE = π (for μ >

0) or φE = 0 (for μ < 0). An apparent topological transition
between these two phases occurs at μ = 0. Upon closer in-
spection, however, the value of the EGP φE at μ = 0 observed
in the numerics is quantized at either π/2 (for t ′ > t) or −π/2
(for t ′ < t).

(ii) At intermediate temperatures, the quantization at φE =
π and φE = 0 is lost. However, the φE = ±π/2 quantization
at μ = 0 persists.

(iii) At low temperatures, the EGP φE assumes again a
discrete set of values. Both the number and the values of
these discrete steps depend directly on the system size L. As
explained in Appendix B, this discretization is in one-to-one
correspondence with the system filling. In the limit L → ∞,
the discretization becomes a continuum of infinitely small
steps, and can therefore not be topological in nature. We
elaborate more on this limit in Appendix B.

Based on the observations extracted from the topological
phase diagram, we now focus on the quantization observed
in regimes (i) and (ii) and explain their physical origin. First
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(a) (b)

(c)
(d)

FIG. 3. EGP, φE , at equilibrium as a function of the bath pa-
rameters βA = βB and μA = μB for a system of L = 8 unit cells
(OBC). Upper panels: topological phase diagram for (a) t ′ > t and
(b) t ′ < t . Lower panels: cuts at fixed values of μA = μB, indicated
in the legend, for (c) t ′ > t and (d) t ′ < t .

of all, because the EGP quantization at φE = 0 and φE = π

is smoothly lost at intermediate values of the inverse tem-
perature, it can only truly exist in the limit β → 0. In this
limit, the NESS is a fully mixed, infinite temperature state.
This is similar to the behavior observed in the earlier studies
of topological cyclic protocols mentioned in the earlier sec-
tions [88,113]. In the β → 0 regime, the EGP φE becomes a
proxy for the average particle occupation in the chain, which
is above half filling when μ > 0 and below it when μ < 0.

The quantization of the EGP φE as β → 0 can also be
understood analytically. In the long time limit, we expect
the system to equilibrate with the reservoirs independently
of initial conditions. We can therefore describe it in the
grand-canonical ensemble as a thermal Gibbs distribution ρ

described by inverse temperature β and chemical potential μ:

ρ ∝ e−β(H−μN ), (19)

where H is the Hamiltonian of Eq. (1) and N =∑L
j=1( f †

j,A f j,A + f †
j,B f j,B) ≡ ∑L

j=1(n j,A + n j,B) is the particle
number operator. In the β → 0 limit, taking βH → 0 but
allowing βμN to remain finite, the Gibbs distribution ρ →
exp(βμN ). Writing U ≡ U ′/Z with Z = Tr[exp(βμN )] the
partition function, we have

U ′ = Tr
[
eβμN ei 2π

L X
]

(20)

=
∑

{n j,A,nk,B}

∏
j,k

(
eβμn j,A+i 2π

L jn j,A
)

× (
eβμnk,B+i 2π

L (k+1/2)nk,B
)

(21)

=
L∏

j,k=1

(
1 + eβμ+2π i j/L

)(
1 + eβμ+2π i(k+1/2)/L

)
, (22)

0

-1

+1

-20 200

FIG. 4. Behavior of U in the limit β → 0, βμ �= 0 for various
values of the system size L.

where {n j,A, nk,B} stands for all possible configurations of
fermionic occupations n j,I = 0, 1. This can be rewritten as the
product U ′ = p(η)p(ξ ) with η ≡ −eβμ and ξ ≡ −eβμeiπ/L ,
by defining the function

p(z) ≡
L∏

j=1

(1 − q jz), (23)

with q ≡ exp(2π i/L). The function p(z) is a polynomial of
degree L in z, and its roots are evidently z = 1/q j = e−2π i j/L ,
i.e., the Lth roots of unity. Thus, by the fundamental theorem
of algebra we can rewrite it as the equivalent polynomial
p(z) = 1 − zL. Using this fact, the expression for U ′ simplifies
to

U ′ = (1 − ηL )(1 − ξL ) (24)

= (1 − (−1)LeLβμ)(1 + (−1)LeLβμ) (25)

= 1 − e2Lβμ. (26)

Adding the normalization Z = Tr[ρ] = Tr[eβμN ] =∏L
j=1(1 + eβμ)2, we find

U = 1 − e2Lβμ

(1 + eβμ)2L . (27)

This expression is real, which implies the quantization of the
EGP to φE = 0, π . In the limit βμ → ∞, U = −1 and φE =
π , while in the limit βμ → −∞, U = +1 and φE = 0. We
therefore obtain an analytical expression that coincides with
our numerical results in those limits. The transition between
phases φE = 0 and φE = π occurs at βμ = 0. However, one
finds that over a range �(βμ) ∼ ln(L) around βμ = 0 the
magnitude of U is close to zero, rendering φE very difficult
to measure close to the transition; see Fig. 4.

Besides the transition in the infinite-temperature limit, the
system exhibits another, more interesting transition for μ = 0
at any finite temperature, e.g., β ∈ (0,∞). As the difference
between the two hoppings t and t ′ is what determines the
quantized value of the EGP at μ = 0, it should be then
possible to realize a topological phase transition by tuning
them. This is indeed the case, as shown in Fig. 5(a): as t ′ is
varied and becomes larger than t , the EGP abruptly jumps
from φE = −π/2 to φE = +π/2. We stress that this is a
topological phase transition that can occur at any finite and

023004-7



PAOLO MOLIGNINI AND NIGEL R. COOPER PHYSICAL REVIEW RESEARCH 5, 023004 (2023)

(a)

(c)

(b)

FIG. 5. (a) Finite-temperature transition in the EGP φE as a
function of the hopping ratio t ′/t . The EGP abruptly jumps from
− π

2 to π

2 . The red dashed line indicates the transition at t ′ = t .
(b) The corresponding behavior of the Majorana correlators 〈wiw j〉
between the first and second unit cell (the other unit cells behave
in an analogous fashion). (c) Illustration of the behavior of the full
correlation matrix. At the transition t ′ = t , the inter- and intra-cell
correlations are equal, whereas for t ′ > t (t ′ < t) the intercell (intra-
cell) correlation dominates.

nonzero temperature. The corresponding physical behavior of
the system can be understood by examining the correlation be-
tween different Majorana sites, and is illustrated in Figs. 5(b)
and 5(c). Throughout the whole transition, the NESS remains
in a correlated state with nonzero values of 〈w jwk〉. Below
the transition, t ′ < t , the intracell correlation dominates. At
the transition t ′ = t , the correlation becomes uniform across
the whole chain. Above the transition, t ′ > t , the situation is
then reversed and the intercell correlation becomes stronger.
This behavior is very similar to what occurs in the closed-
system SSH model as a function of the hopping strengths. The
EGP behaves exactly how the Zak phase would in the closed
setting. However, we stress that in our case the system is fully
open and thermalized.

We now demonstrate analytically how this finite-
temperature EGP quantization can be related to the system
fulfilling certain symmetries. We restrict our analysis to the
SSH chain with L unit cells and periodic boundary conditions,
but we believe that our findings should apply to any system
that fulfils the same symmetry requirements. We consider the

following transformation:

fi,A = − f̃ †
i,A, fi,B = f̃ †

i,B. (28)

This transformation implicitly relies on the chiral symmetry of
the model because it transforms A and B sublattice differently.
The operators appearing in the definition of U are changed
under this mapping as

H̃ = H, (29)

Ñ = 2L − N , (30)

X̃ = L(L + 1) + L

2
− X, (31)

ei 2π
L X̃ = −e−i 2π

L X . (32)

Then we can rewrite U as

U = Tr
[− e−β(H̃−2Lμ+μÑ )e−i 2π

L X̃
]
. (33)

In particular, for βμ = 0, this simplifies to

U = −Tr
[
ρe−i 2π

L X̃
] = −U ∗, (34)

since we can equally well take the trace over fi,α or f̃i,α . The
EGP is the phase of U , and thus the restriction of Eq. (34)
imposed by the symmetries implies its quantization:

eiφE = −e−iφE (35)

⇒ φE = π

2
mod π. (36)

We remark that, contrary to previous studies in which the
quantization of the EGP was predicted to occur only in the
thermodynamic limit L → ∞ [81], our proof demonstrates
the EGP quantization also for finite system size, provided the
relevant symmetries are present. In summary, we can inter-
pret the observed EGP quantization as the finite-temperature
generalization of the quantization of the Zak phase observed
in closed systems. From a different perspective, this is the
generalization of the Zak phase quantization from a single
ground state to a many-body density matrix. Similarly to what
happens with the Zak phase in closed systems, a symmetry
transformation is required to enforce the EGP quantization.
Since in the grand canonical ensemble the symmetry transfor-
mation also impacts the particle number effectively creating
a bias term, the quantization can emerge only for μ = 0 or
β = 0.

V. CONCLUSIONS AND OUTLOOK

We have shown how topological phase transitions can
occur at finite temperatures in a one-dimensional open sys-
tem. Concretely, we have analyzed a Su-Schrieffer-Heeger
model, a prototypical symmetry-protected topological insu-
lator, coupled to two fermionic reservoirs and described in
the formalism of the Redfield master equation. Contrary
to previous studies, our model requires only local dissipa-
tion combined with nearest-neighbor coherent tunneling. The
reservoirs were chosen such that each couples to only one of
the two sublattices of the model. To describe the topology of
such an open system, we have employed the ensemble geo-
metric phase (EGP), a many-body observable that naturally
extends the notion of the Zak phase to mixed states. We have
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calculated the ensemble geometric phase of the steady state in
two different scenarios.

First, we have analyzed the out-of-equilibrium behavior of
the system when both reservoirs are kept at the same tempera-
ture, but their chemical potentials and the system hoppings are
varied adiabatically in time along a closed loop. We discov-
ered that in this case the EGP is not quantized, but differential
changes along the loop in parameter space are. This behavior
is similar to what occurs for pumping procedures in closed
systems and in other studies of mixed-state topology. The
quantization changes as a function of whether the loop en-
circles gap closing points or not. More remarkably, changing
the temperature also affects the quantization and leads to a
temperature-driven topological phase transition.

Second, we have considered the system at thermal equilib-
rium, when both the temperature and the chemical potential
are kept equal across the two reservoirs. In this scenario the
EGP itself is quantized and the quantized values depend on the
hopping parameters of the system. The quantization can occur
either at infinite temperature for any chemical potential, or at
finite temperature when the chemical potential is zero. In this
case, we proved the quantization analytically by leveraging
the chiral symmetry of the problem. By tuning the values
of the hoppings, we showed that it is therefore possible to
achieve a topological phase transition at finite temperature.

Our study elucidates the untapped potential of extending
concepts of topological phases and phase transitions to out-of-
equilibrium and thermal systems. Furthermore, it illustrates
that temperature, long thought to be mainly a detrimental
factor to topological quantization, can not only be compatible
with it but also induce topological phase transitions. Never-
theless, the concept of symmetries appears to remain central
also for finite-temperature topology.

Our work opens up a broad range of future directions
of study. These could include generalizing our results to
generic quadratic systems without explicitly relying on a
particular form of the Hamiltonian, but by considering the
possible classes of the Altland-Zirnbauer symmetry classi-
fication. The EGP quantization could also be explored in
higher dimensions, still in conjunction with different sym-
metries. Other studies of thermal systems have shown that
differential changes of the EGP can be interpreted as the
“Chern number” of a higher-dimensional system, similarly
to what happens in closed systems [115,116]. However, for
such systems no transition as a function of the temperature
was found. It would then be natural to ask whether a nonequi-
librium construction with adiabatically changing chemical
potentials as in our present work could instead lead to a
transition in higher dimensions. It would also be interesting
to explore the connection between the EGP quantization and
the recently discovered symmetry classifications of open topo-
logical systems [146–148]. Another direction of study could
be exploring the connection between EGP quantization and
the topology of effective non-Hermitian Hamiltonians derived
from master equations [95,96]. On the more experimental
front, a natural question to ask is whether the EGP quantiza-
tion can be measured. Ultracold atomic systems are the ideal
arena for this endeavor, given the possibility of engineering
tailored dissipation and the proposals of detecting the EGP in
interferometric measurements [88].
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APPENDIX A: CALCULATION OF THE TWO-POINT
MAJORANA CORRELATOR IN THE NESS

We summarize here the analytic expression for the
two-point Majorana correlator in the NESS, 〈w jwk〉 ≡
Tr[w jwkρNESS]. Our calculation follows Refs. [138,140],
where the Liouvillean superoperator of a quadratic system is
shown to possess a decomposition

L̂ = âT Aâ − A01̂, (A1)

in terms of new Majorana operators âr , r = 1, . . . , 8L. In this
expression, A is an 8L × 8L complex antisymmetric matrix
termed structure matrix, and A0 is a scalar. They are expressed
as

A2 j−1,2k−1 = −2iHjk − Mjk + Mk j, (A2)

A2 j−1,2k = iMk j + iM∗
jk, (A3)

A2 j,2k−1 = −iMjk − iM∗
k j, (A4)

A2 j,2k = −2iHjk − M∗
jk + Mk j, (A5)

A0 = TrM + TrM∗, (A6)

where M is a bath matrix that encodes the effect of the reser-
voirs and takes the form

M ≡
∑

j

x j ⊗ z j, (A7)

with

z j = π
∑

k

2L∑
m=1

[
�̃

βRi
jk (−4εm)(xk · um)u∗

m

+ �̃
βRi
jk (4εm)(xk · u∗

m)um
]
. (A8)

Here, εm and um are, respectively, the eigenvalues and eigen-
vectors of the system Hamiltonian, i.e., Hum = εmum and
Hu∗

m = −εmu∗
m since the Hamiltonian in Majorana represen-

tation fulfils H∗ = −H . The structure matrix A can be further
diagonalized as A = V T diag{βA,−βA, · · · , β4L,−β4L}JV
with VV T = J and J ≡ σ x ⊗ 14L. We remark that in the
numerics it is necessary to perform an additional Schmidt
orthonormalization procedure to guarantee the condition
VV T = J if degeneracies in the rapidity spectrum are present
such as in the SSH model studies in this work [149,150].
The two-point correlator is finally calculated in terms of the
eigenvectors of the structure matrix as [138]

〈w jwk〉NESS = 2
4L∑

m=1

V2m,2 j−1V2m−1,2k−1. (A9)
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FIG. 6. Behavior of a system with L = 8 unit cells (OBC) in the
β → ∞ limit. (a), (b) EGP φE as a function of chemical potentials
μ1 = μ2 for t = 1.5, t ′ = 1.0 (left panel) and t = 1.0, t ′ = 1.5 (right
panel). (c), (d) Particle filling as a function of μ1 = μ2 for the same
parameters.

APPENDIX B: EGP DISCRETIZATION AT ZERO
TEMPERATURE

In this Appendix, we show results that explain the origin of
the EGP quantization at equilibrium in the zero-temperature
limit (β → ∞). In Fig. 6, we plot the behavior of the EGP as
a function of the chemical potential for two different regimes
of t ′/t , corresponding to a closed system (a) without and (b)
with topological edge modes. At first sight, the quantized
values look random. However, if we measure the jump in the
EGP across two consecutive plateaus, we realize that this has
a constant value of �φE = 2L−3

2L π mod 2π (2L is the total
number of sites in the system). This is the change in the EGP
associated with a jump in the average filling factor of the
fermionic chain. We can see this by comparing the behavior
of the EGP with the filling illustrated in Figs. 6(c) and 6(d).
At zero temperature, as we increase the value of the chemical
potential particles are pumped into the system one by one, and
the average filling increases in steps of 1/2L. We remark that
the presence or absence of the topological edge modes at half
filling has an impact both on the behavior of the filling itself
and on the EGP quantization. In the limit of an infinitely long
chain, where the modes are completely decoupled from each
other, the filling jumps by two when crossing μ1 = μ2 = 0.
At the same time, we would see a jump of 2�φE in the EGP.
For finite system sizes, as in the results shown here, a very
small region around μ1 = μ2 = 0 exists where the robust π/2
quantization still shows up in the numerics.

APPENDIX C: GRASSMANN REPRESENTATION OF THE
ENSEMBLE GEOMETRIC PHASE

As explained in Sec. II C, the EGP can be evaluated analyt-
ically by mapping the Majorana operators of the Liouvillean
space to Grassmann variables, and then using known identities
for Gaussian states. In this Appendix, we illustrate the steps
that lead to this analytic results.

We begin by constructing a representation ω of products
of Majorana operators in terms of Grassmann variables θ as
[144]

ω(wpwq · · · wr, θ ) ≡ θpθq · · · θr, ω(1, θ ) = 1. (C1)

This definition is then extended by linearity to arbitrary opera-
tors X of the Clifford algebra: X �→ ω(X, θ ). The Grassmann
variables are anticommuting, such that

{θi, θ j} = 0 θ2
i = 0. (C2)

Because of this property, the operators appearing in the
Liouvillean can be readily written as Gaussian forms (expo-
nentials) of Grassmann variables, e.g.,

f1 f †
1 = 1

2 (1 + iw1w2) �→ 1
2 (1 + iθ1θ2) = 1

2 exp(iθ1θ2).
(C3)

In particular, the NESS density matrix ρNESS has the following
Gaussian form [81]:

ω(ρNESS, θ ) = 1

22N
exp

(
i

2
θT Cθ

)
, (C4)

where θ = (θ1, · · · , θ2N ) and Cjk = i
2 Tr(ρNESS[w j,wk]) is

the covariance matrix that can be computed via third quan-
tization as explained in Sec. II B.

The matrix form of ω(T, θ ) can be obtained instead by
evaluating the definition of the operator T defined in Eq. (3).
In Majorana representation, we can write

T = c
2N∏

k=1

[
sin

(
π (k + 1)

2N

)
w2k−1w2k + cos

(
π (k + 1)

2N

)
1

]
,

(C5)

with c = exp[ iπ
2 (2N + 3)]. The Grassmann representation

ω(T, θ ) is obtained by simply replacing wi �→ θi. Let us
define S(k) ≡ sin( π (k+1)

2N ), C(k) ≡ cos( π (k+1)
2N ), and T (k) ≡

tan( π (k+1)
2N ). Then we can write, as C(N − 1) = 0 and S(N −

1) = 1,

ω(T, θ ) = c
2N∏

k=1

[S(k)θ2k−1θ2k + C(k)] (C6)

= c
N−2∏
k=1

[S(k)θ2k−1θ2k + C(k)]

× S(N − 1)θ2N−3θ2N−2

×
2N∏

k′=N

[
S(k′)θ2k′−1θ2k′ + C(k′)

]
(C7)

= c
N−2∏
k=1

C(k)[T (k)θ2k−1θ2k + 1]

× (−1 + 1θ2N−3θ2N−2)

×
2N∏

k′=N

C(k′)[T (k′)θ2k′−1θ2k′ + 1] (C8)
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= c
2N∏

k=1,k �=N−1

C(k)

︸ ︷︷ ︸
≡�

exp

[
N−2∑
k=1

T (k)θ2k−1θ2k

]
︸ ︷︷ ︸

≡α

× (−1 + 1 + θ2N−3θ2N−2)︸ ︷︷ ︸
≡exp(θ2N−3θ2N−2 )−1

× exp

[
2N∑

k′=N

T (k′)θ2k′−1θ2k′

]
︸ ︷︷ ︸

≡γ

(C9)

= c�(α exp(θ2N−3θ2N−2)γ − αγ ) (C10)

= c�

[
exp

(
i

2
θT K1θ

)
− exp

(
i

2
θT K2θ

)]
, (C11)

where θ = (θ1, · · · , θ4N ), and K1 and K2 are the following
matrices:

K1 =
2N⊗

k=1,k �=N−1

σ k
y T (k) ⊗ σ N−1

y (C12)

K2 =
2N⊗

k=1,k �=N−1

σ k
y T (k). (C13)

Here, σ
j

y is the Pauli matrix that spans a 2 × 2 space corre-
sponding to site j.

Armed with the Grassmann representations of ρNESS and
T , we can now calculate φE = � log Tr[ρNESST ] explicitly.
We first note that the trace of two operators X , Y living in
the Clifford algebra of the Liouvillean have the following
representation as Gaussian integral of Grassmann fields:

Tr(XY ) = (−2)2N
∫

dθdμ exp(θT μ)ω(X, θ )ω(Y, μ),

(C14)
where

∫
Dθ ≡ ∫

dθN · · · dθ2dθ1, and similarly for μ. By em-
ploying the well-known identities for Gaussian integrals of

Grassmann fields θ , μ,∫
Dθ exp

(
i

2
θT Cθ

)
= i2N Pf(C), (C15)

∫
Dθ exp

(
ηT θ + i

2
θT Cθ

)
= i2N Pf(C) exp

(
− i

2
ηT C−1η

)
,

(C16)

and the Grassmann representations (C4) and (C11) above,
we can evaluate Tr[ρNESST ] explicitly. To make the notation
lighter, we focus only on the K1 summand of Eq. (C11).
The part for the summand containing K2 can be obtained
analogously:

Tr[ρNESST ] = (−1)2N c�

2

∫
Dθ exp

(
i

2
θT K1θ

)

×
∫

Dμ exp
(
θT μ

)
exp

(
i

2
μT Cμ

)
(C17)

= (−1)2N c�

2

∫
Dθ exp

(
i

2
θT K1θ

)
×
∫

Dμ exp

(
θT μ + i

2
μT Cμ

)
(C18)

= (−i)2N c�

2
Pf(C)

×
∫

Dθ exp

(
i

2
θT (K1 − C−1)θ

)
(C19)

= c�

2
Pf(C)Pf(K1 − C−1), (C20)

where in the second equivalence we have used eAeB = eA+B

because θ and μ are independent fields and hence commute,
in the third equivalence we have used Eq. (C16), and in the
fourth equivalence we have used Eq. (C15). The total expres-
sion is then

Tr[ρNESST ] = c�Pf(C)[Pf(K1 − C−1)

− Pf(K2 − C−1)]. (C21)
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