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Tradeoff between speed and reproductive number in pathogen evolution
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The rapid succession of new variants of SARS-CoV-2 emphasizes the need to understand the factors driving
pathogen evolution. Here, we investigate a possible tradeoff between the rate of progression of a disease and its
reproductive number. Using an SEIR framework, we show that in the exponential growth phase of an epidemic,
there is an optimal disease duration that balances the advantage of a fast disease progression with that of causing
many secondary infections. This result offers one possible explanation for the ever shorter generation times of
novel variants of SARS-CoV-2, as it progressed from the original strain to the Alpha, Delta, and, from late 2021
onwards, to several Omicron variant subtypes. In the endemic state, the optimum disappears and longer disease
duration becomes advantageous for the pathogen. However, selection pressures depend on context: mitigation
strategies such as quarantine of infected individuals may slow down the evolution towards longer-lasting, more
infectious variants. This work then suggests that, in the future, the trend towards shorter generation times may
reverse, and SARS-CoV-2 may instead evolve towards longer-lasting variants.
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I. INTRODUCTION

Since the emergence of SARS-CoV-2, multiple variants of
the virus with faster transmission dynamics have arisen. The
variants have supplanted each other in successive waves, with
variants with ever higher transmission rates and/or shorter
generation times replacing older, slower variants [1,2]. This
unfolding evolutionary race suggests a dynamic that can be
explored through modeling. Here, we explore the tradeoff
between the number of secondary cases an epidemic disease
has time to cause over its infectious period and the speed with
which the pathogen goes through disease generations.

Some work has already been done on modeling the evo-
lution of the infection profile of SARS-CoV-2 and other
pathogens with similar generation times. Saad-Roy et al. stud-
ied the evolution of a presymptomatic infectious state under
the assumption that such a state is less infectious [3], and in
the context of superinfection and within-host competition [4].
In addition, the relationship between the duration of a disease
or parasitic infection and the infection rate has been studied
under the assumption of a tradeoff between the two given by
some functional relationship [5,6]. Porco et al. [7] investigated
the effects of treatment and other interventions on disease evo-
lution under the assumption of a similar tradeoff. Analogous
studies have been done on other ecological relationships, such
as predation [8,9]. Finally, Park et al. [10] have studied the
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interplay between disease infectivity and speed with a focus
on mitigation rather than evolution. However, the possibility
that a longer infectious period might be an evolutionary ad-
vantage for a disease only up to a certain threshold has not
been studied in detail.

Here we investigate disease duration alone, and not
increases in the infection rate, which confer an obvious advan-
tage for the pathogen, while the situation is less obvious when
it comes to the rate of disease progression. We focus on the
tradeoff between the duration of the individual infections and
the number of secondary cases that each infected individual
generates. We assume that infected individuals transmit the
disease at a constant rate during the infectious period. This
means that a long disease duration should lead to a higher
effective reproductive number, R0, that is, to more secondary
infections. On the other hand, a long disease duration might
also be a disadvantage to the disease, as it may be associated
with a long latency and thereby a slow epidemic progression.
This is particularly the case if one assumes direct proportion-
ality between the duration of the latency time of a disease
and its infectious period. Table I suggests that across diseases
spread through the air or via direct social contact, longer in-
fectious periods indeed correlate with longer latent periods. In
a susceptible-exposed-infectious-recovered (SEIR) type com-
partmental model, which we will consider in this study, the
latent period corresponds to the E state. We will derive re-
lations and carry out epidemic simulations based on systems
of ordinary differential equations (ODEs) to investigate the
condition for an optimum disease duration.

II. MODEL SETUP

We assume that the transmission rate β of a disease is
constant throughout the duration of the infectious period T ,
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TABLE I. Duration (days) of the latent and infectious periods for some infectious diseases. c is the ratio of the latency time to the infectious
period of the disease, while k = kincubation is the shape factor for a � distribution, which we fit approximately to the measured distribution of
incubation times found in the cited literature. The coefficient of variation of these distributions is given by CV 2 = 1/k. Note that we show the
k values for the incubation periods as opposed to the latent periods, which we assume are similarly distributed. The incubation period is
the time from infection to symptom onset, while the latent period is the time from infection to onset of infectiousness. The last column shows
the estimated basic reproductive number. Diseases are here sorted by whether they are mainly spread through water, by vectors or other animals,
by sexual contact, or by droplets or aerosols upon casual social contact.

Disease Latency time Infectious period c k R0

Airborne/Social contact:
Influenza H1N1 2.6 [11] 3.4 [11] 0.8 2 [12] 1.6 [13]
COVID-19 (wild-type) �4.0 [14] 6.5–9.5 [15] 0.4–0.6 5 [16] 2.9 ± 0.5 [17]
Measles ∼8.5 [18]a ∼8 [19] ∼1 15 [20] 13 [21]
SARS ∼10 [22] ∼12 [22]b ∼0.8 2 [23] 2–4 [24]
Ebola 12.7 [25] 7.2 [26]c 1.8 10 [25] 1.4–1.8 [27]
Smallpox 14.6 [28] 8.6 [28] 1.7 35 [29] 3.5–6 [28]

Waterborne:
Cholera 1.7 [30] 2.0 [31] 0.9 2 [30] 1.1–2.6 [32]

Vector-borne/zoonotic:
Yellow fever 4.3 [33] 1–4 [34] 1.1–4.3 8 [33] 2.4 [34]
Rabies 10–700 [35] <7 [36] 1.4–100 − −
Sexually transmitted:
Syphilis 9–90 [37] ∼365 [38] 0.02–0.2 − −
aAs infectiousness begins four days before the onset of a rash, latency time is calculated as incubation period minus four days.
bIncubation period is reported as 4.6 days. Here, we define the infectious period by the requirement that at least 50% of patients secrete
measurable quantities of the virus. In that case, infectiousness begins on day five after the onset of symptoms and ends on day 17, yielding a
latency time of 9.6 days.
cThe cited study reports separate infectious periods for survivors and deceased patients. We have here indicated the average.

giving a linear relationship between disease duration and
number of secondary cases. While strict proportionality does
not necessarily hold [39,40], a positive, monotonic relation
between the two is expected since a longer infectious period
leads to more opportunities for passing on the infection.

Throughout this work, we will distinguish between the
latent and incubation periods of a disease. The latent period
is the time from the initial infection until the patient becomes
infectious. In contrast, the incubation period is the time from
infection until the onset of symptoms.

The SEIR model reads:

dS

dt
= − β S I (1)

dE

dt
= β S I − 1

τ
E (2)

dI

dt
= 1

τ
E − 1

T
I (3)

dR

dt
= 1

T
I. (4)

where S, E , I , and R are susceptible, exposed (but noninfec-
tious), infectious, and recovered compartments, respectively.
β is the transmission rate per unit time, τ is the average dura-
tion of the preinfectious exposed period, and T is the duration
of the infectious period. We take the total population of the
system to be fixed at N = 1 and assume that the timescale of
the entire scenario is short enough that vital dynamics, i.e.,
births and deaths, can be neglected.

We will also investigate the effects of variability in the
durations of the E and I states. Usually, an exponential distri-
bution is assumed in SEIR models. However, by subdividing
each of the compartments E and I into k equally long sub-
compartments, we instead obtain a Gamma distribution of
latency times and infectious periods with a shape parameter
k [41]. The shape parameter is related to the coefficient of
variation CV by k = 1/

√
CV . Thus, a greater k corresponds

to lower person-to-person variation in the durations of the
E and I states. Since we assume integer values of k, this
distribution coincides with an Erlang distribution. The above
equations for the simple SEIR model correspond to letting the
shape parameter take on the value k = 1, yielding the familiar
exponential case.

When considering the evolution of the disease in an en-
demic state with a high degree of existing immunity in the
population, we slightly modify the above SEIR model. To
make the endemic state possible, we allow individuals to lose
immunity at a rate ω, corresponding to a SEIRS model of
disease progression. This model is then solved numerically,
including multiple cocirculating variants with different dis-
ease durations T . Thereby we emulate the natural competition
between variants.

Finally, mitigation by isolation of infected individuals is
implemented by the addition of a quarantine rate q and cor-
responding noninfectious quarantine compartment Q to the
SEIRS model. This represents how individuals have some
chance of becoming symptomatic, being contact traced, or
otherwise being diagnosed and isolated for each day of illness.
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We expect that individuals suffering from a very long-lasting
infectious disease will eventually self-quarantine. The result-
ing equations thus become

dS

dt
= ω R −

nvar∑
i

β S Ii (5)

dEi

dt
= β S Ii − 1

τi
Ei (6)

dIi

dt
= 1

τi
Ei −

(
1

Ti
+ q

)
Ii (7)

dQi

dt
= q Ii − 1

Ti
Qi (8)

dR

dt
=

nvar∑
i

1

Ti
(Ii + Qi ) − ω R. (9)

Here we have introduced an index i to indicate the possibility
of including nvar different variants, all of which we assume to
have perfect cross immunity with respect to the others. This
will become important when simulating competition between
strains with different disease durations and latency times.

III. RESULTS

A. Optimum disease duration for exponential growth

In the exponential growth phase of an epidemic, the growth
rate for k = 1 may be determined by linearizing the system
of equations (1)–(4) around the disease-free equilibrium. The
epidemic growth rate r is then the largest eigenvalue of the
Jacobian [42]:

r = −(1 + c) +
√

(1 + c)2 − 4(1 − βT )c

2cT
, (10)

where c ≡ τ/T , and we have chosen the physically allowable
positive branch. The above function has a maximum for the
duration T given by

R0,fastest = βTfastest = 2 + √
c + 1√

c
, (11)

In the limit of k → ∞, the durations of the exposed and
infectious stages are deterministic. If we further neglect the
variation in the timing of disease transmission, total disease
duration thus becomes τ + T and the generation time be-
comes τ + T/2. Under these approximations, the number of
infected in the exponential growth phase approaches

I (t ) = Rt/(τ+T/2)
0 = (βT )t/(( 1

2 +c)T ). (12)

This is only an approximate expression, as it requires the
assumption that disease transmission is also deterministic,
which is not the case even for k → ∞. Maximizing the ex-
ponential growth rate as a function of T in the infinite-k limit
and under the assumptions of Eq. (12), we obtain the finite
value

Tfastest = e/β, (13)

where e denotes Euler’s number.
In the exponential growth phase, the variant with the high-

est growth rate will quickly come to dominate. An illustration
of this phase for different disease durations and k = c = 1
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FIG. 1. Direct simulation of the initial growth of an epidemic
for different disease durations T . When disease duration is short,
the epidemic grows faster as T increases because each infected
individual can infect more people. However, for larger values of T ,
the cost of the longer latent period increases and leads to slower
exponential growth. Here, β = 1, k = 1, and c = τ/T = 1, corre-
sponding to assuming equal duration of the E and I states. The initial
exposed and infected fractions of the population are E (0) = 10−12

and I (0) = 10−12.

can be seen in Fig. 1, while a plot of the growth rate as a
function of T for various values of c is shown in Fig. 2(a). As
shown, the exponential growth rate is much higher for lower
values of c. Furthermore, there is good agreement between our
analytical and numerical calculations. When increasing c, the
maximum growth rate decreases strongly, and the optimum
with respect to T becomes less clear.

In the equation for r [Eq. (10)], it is assumed that the
probability distribution for the duration of the latency time
and infectious period of each individual is an exponential
distribution, corresponding to a shape parameter k = 1. We
wish to explore how the degree of variability in the latent and
infectious period affects the optimal value disease duration
and the resulting growth rate. We do this numerically by
solving the SEIR equations with a � distributed latent and
infectious period and varying the shape parameter.

In Fig. 2(b), the effects of varying k are shown. At c = 1,
the effect of an increase in k is modest. However, when the la-
tent period is much longer than the infectious period (c = 10),
a more definite duration (k = 10) is associated with a clearly
lower resultant growth rate. A more complete overview of
growth rates and maxima as functions of c for different k is
given in Fig. 3.

Overall, Fig. 3 illustrates that the maximal daily growth
rate decreases monotonically as a function of c, reflecting a
longer latency time. Increasing k, i.e., making the distribution
of latency times more sharply peaked, also leads to a slight
decrease in maximal growth rate for c > 1.

Figure 3(b) shows that the value of T , which maximizes
growth rate r, denoted Tfastest , is highest in the limit of c → 0.
At low values of k, Tfastest exhibits a dependence on c, with
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FIG. 2. Growth rate as a function of infectious period duration
T as simulated, compared with the growth rate derived in Eq. (10).
Here, we set the infection rate β = 1/day. In (a) we vary the ratio
between exposed and infectious period duration, c. One observes that
the growth rate has a maximum at the duration given by Eq. (11)
(giving T = 4 for c = 1 and T = 5.48 for c = 10). (b) shows the
corresponding plot when considering a larger shape factor k for the
distribution of the durations of latent and infectious periods.

a local minimum around c = 1 beyond which it grows as c
increases. Tfastest (c) for k = 1 reproduces Eq. (11). As k is
increased, Tfastest becomes nearly independent of c and ap-
proaches a value of approximately e, as predicted by Eq. (13)
for β = 1. The good agreement is remarkable given the sim-
plifications contained in that equation.

The exponential growth rates of Fig. 3 are calculated by
fitting an exponential function to the initial phase of a simu-
lated SEIR epidemic model. For high values of k and c, the
disease prevalence oscillates around the expected exponential
curve over the course of a disease generation. In this case, we
fit an exponential function to the local peaks rather than the
whole curve. Due to these inherent fluctuations in the number
of infected, the numerically determined exponential growth
rate is very sensitive to the exact start and end points of the fit.
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FIG. 3. Maximal growth rates and optimal disease durations as
functions of c for various k. (a) shows the maximal exponential
growth rate r of an epidemic pathogen given different values of
c and k. We see that growth rates are highest for low c and also
decrease very slightly with k. (b) shows the disease duration Tfastest

that maximizes the growth rate. For β = 1 this is also the value of
R0 that maximizes the growth rate. This is equal to the predictions
from Eq. (10) for k = 1 and drops as k increases. At higher k, Tfastest

approaches e as predicted in the limit of k → ∞.

This gives rise to the slight fluctuations seen in the curves of
Fig. 3(b).

In a situation where the disease is growing exponentially,
e.g., when an epidemic is breaking out or control measures
are failing, the variant with the fastest exponential growth rate
will win as illustrated in Fig. 1. This, however, only holds
transiently and we will see that the situation is reversed when
considering the endemic state in a model with immunity loss.

B. Endemic state

In the endemic state, the disease prevalence is sustained at
an approximately constant level. In our model, this is done by
introducing a small rate of loss from the recovered (R) state,
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corresponding to the waning of acquired immunity [terms in-
volving ωR in Eqs. (5) and (9)]. Furthermore, we will consider
a quarantine rate q that quantifies the probability per day that
an individual in the I state goes into isolation [see Eq. (7)]. As
previously described, this is represented by a noninfectious
quarantine compartment Q, which infected persons may leave
upon recovery [see Eq. (8)]. The extended multistrain model
[Eqs. (5)–(9)] reduces to the simple SEIR model of Eqs. (1)–
(4) when only one strain is included and q = ω = 0. If one
were to consider very long disease durations, inclusion of vital
dynamics (birth and death) would be necessary. This would
entail the inclusion of loss terms from the E , I , and Q states.
This would in turn limit the maximal effective duration of
diseases to be below the scale of a human generation.

The results of the simulations including immunity loss
and quarantine are illustrated in Fig. 4. The figure shows
that in this case, longer-lasting variants always outcompete
shorter-lasting ones. The simulations illustrate that this pat-
tern persists even for very long disease durations (up to 400
days), although the replacement dynamics become extremely
slow when, e.g., a 300-day and a 400-day variant compete
(simulation time > 105 days). If the system starts out with an
equal fraction of the population infected with each variant, we
thus see a succession of variant takeovers [Fig. 4(a)]. Longer-
lasting variants take longer to grow, but eventually always end
up taking over due to their higher basic reproductive number.
However, by increasing the quarantine rate q [Fig. 4(b)], we
see that this development can be slowed significantly. We have
also examined the sensitivity to variations in the immunity
loss rate ω, but varying this rate has little effect, except on
the magnitude of outbreaks.

In the limit of very large T (formally, T → ∞), the size
of the recovered population R goes to 0, while the sus-
ceptible population tends towards the limit S → q/β. Thus
E + Q + I → 1 − q/β. Interestingly, in this limit the vast
majority of nonsusceptible individuals will be in the exposed
and quarantined states, since, at steady state I/(E + Q) =
1/[c + (1 + c)T q], which decreases as T is increased. Strictly
speaking, the T → ∞ limit is only meaningful if vital dy-
namics are included, but already at moderate values of T ,
we can see that E + Q + I increases with increasing T while
I in fact decreases [see Fig. 4(c)]. As such, the competitive
advantage of slower variants does not owe to a higher number
of individuals in the I state, but rather to a minimization of the
uninfected population.

IV. DISCUSSION

Our analysis illustrates that being fast acting can be an
evolutionary advantage for a pathogen, even if it comes at the
cost of a lower reproductive number. However, this is only the
case in the initial exponential growth phase of the epidemic.
In the endemic phase the longer-lasting variants, which have
a higher R0, will always eventually come to dominate. This is
the case regardless of interventions such as quarantine, though
evolution towards long-lasting, more infectious variants may
be slowed by quarantining infectious individuals.

We expect the two scenarios modeled here to be applicable
across most of the trajectory of a real-world epidemic. With
regard to quarantine, we would expect the onset of symptoms

FIG. 4. Competition between variants of different infectious pe-
riod duration T as the disease progresses to the endemic phase. We
here show the results of an ODE-based simulation of six different
variants of duration T = 10, 50, 100, 200, 300, 400 days. The sim-
ulations use fixed β = 1, c = 1, and ω = 10−3. The first two panels
show the total exposed, infected, and quarantined infected population
E + I + Q. In (a), we simulate the system without quarantine. We
see that the longer-lasting variants replace the shorter-lived ones.
(b) shows a simulation using the same parameters and a quarantine
rate of q = 0.1 per day of infectious illness. The longer-lasting vari-
ants still win, but quarantine slows down the evolution. (c) shows the
same simulation as (b), but only I is plotted. I decreases as longer-
lasting variants take over, since more and more of the population is
quarantined for very long disease durations.
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to increase the chance that individuals stay home or are
bedridden, effectively self-quarantining. This is likely the case
regardless of large-scale mitigation policies.

In addition, the exponential growth scenario is not neces-
sarily limited to the short initial stage of the epidemic. In the
case of the COVID-19 pandemic, mitigation efforts in various
locations often kept the local reproductive number at or below
1. When such efforts failed or were relaxed, local epidemics
entered a new exponential growth phase. Our results may thus
contribute to an understanding of the successive shifts from
the Wuhan strain, to the Alpha and Delta variants, and then,
during 2022, to various Omicron subtypes. The Delta variant
has been shown to have a somewhat shorter incubation period
and significantly shorter generation time than the ancestral
strain [43–45]. Hart et al. [1] measure a generation time of 5.5
days for the Alpha variant and 4.6 days for the Delta variant.
Omicron was even faster, with a reported serial interval of
only 2.2 days [46]. The analysis in Abbott et al. further sup-
ports the tendency of faster disease progression for the latter
SARS-CoV-2 variant, although Pung et al. dispute whether
generation times of Delta were in fact significantly lower than
for the Alpha variant [2,47].

Each new SARS-CoV-2 variant has been accompanied by
changes in transmission rate as well as generation time. The
analysis presented here focuses on the time aspect while ig-
noring the obvious evolutionary gain a pathogen may obtain
by increasing the infection rate β. We found that the growth
rate in the exponential growth phase of an epidemic indeed
seems to be optimal for rather short generation times, which
agrees with the observation that new SARS-CoV-2 variants
tend to be faster than older variants. This overall tendency dur-
ing 2020–2021 with ever faster virus variants may later be bro-
ken, however. Our simulations demonstrate that this is likely if
the pandemic reaches a more endemic state where slower vari-
ants of the disease gain in fitness, as mitigation and quarantine
efforts are dropped. Even under the assumption of quarantine
measures, the optimal strategy should shift towards a longer
disease duration in the endemic state, albeit more slowly.

Our analysis focuses on pathogens like SARS-CoV-2,
which are transmitted through social contact and act on a
relatively short timescale. There are of course also pathogens
that act on timescales longer than those predicted here. This
is for example true of sexually transmitted infections such
as syphilis and HIV, which cause lifelong infection (c � 1).
These infections violate the assumption of latency time being
roughly proportional to infectious period duration, and thus
are not captured by our model. In the case of these STIs, the
two aspects of pathogen dynamics are essentially decoupled
in the body.

Alternative approaches have been used to investigate the
reasons for the variation in disease duration observed in the
real world. These have predicted the existence of several
regimes of disease duration [48]: from fast-acting childhood
infections in situations with high contact rates to lifelong
infections in low-contact situations.

It is of course both idealized and highly simplified to as-
sume that latency times scale proportionally with infectious
periods. As mentioned in Sec. I, there is, however, some
support for our assumption of a relationship between the two
quantities. The values of c are indeed often on the order of 1,
except for zoonotic diseases like rabies or sexually transmitted
infections like syphilis (Table I). Interestingly, the data show
a large variation in how sharply peaked the incubation periods
are, with the shape parameter k varying from ≈2 in respiratory
diseases such as SARS and influenza, to an estimated 35 in
smallpox.

The findings of this paper highlight the context depen-
dence of evolutionary fitness as it pertains to disease duration
and latency. Our results may help explain some of observed
dynamics of emerging SARS-CoV-2 variants. In a wider per-
spective, our work also sheds some light on the apparent
division of infectious diseases into a group of quite fast
diseases characterized by epidemic outbreaks, and another
group, which are slow with long latent periods and an endemic
pattern of infection.

The code used to generate the plots shown in this pa-
per is available on GitHub [49] or in a permanent archived
version [50].
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