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Theory of x-ray absorption spectroscopy: A microscopic Bloch equation approach
for two-dimensional solid states
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We develop a self-consistent Maxwell-Bloch formalism for the interaction of x-rays with two-dimensional
crystalline materials by incorporating the Bloch theorem and Coulomb many-body interaction. This formalism
is illustrated for graphene, by calculating the polarization-dependent XANES, formulating expressions for the
radiative and Meinter-Auger recombination of core holes, and the discussion of microscopic insights into the
spectral oscillations of EXAFS beyond point scattering theory. In particular, the correct inclusion of lattice
periodicity in our evaluation allows us to assign so far uninterpreted spectral features in the Fourier transformed
EXAFS spectrum.
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I. INTRODUCTION

At the beginning of the last century x-ray absorption
spectroscopy (XAS) has been the key instrument to acquire
knowledge about atomic energy levels [1–5] and later for the
discovery and systematization of rare-earth elements [6]. The
constant development of intense synchrotron radiation sources
during these times led to a steady growth in x-ray experi-
ments [7–12]. At the end of the century a connection between
the x-ray absorption spectrum and the local structure of the
investigated material has been drawn. This promoted XAS
from a spectroscopic to a structural characterization technique
[13,14]: X-ray absorption spectroscopy, probing the core elec-
tronic states of atomic systems, is a highly element-sensitive
and environment-specific spectroscopic technique with appli-
cations in atom and molecular physics, chemistry, biology,
and material science [15–19]. For this, a large range of tunable
x-ray synchrotron sources [20–22] sensitive for most elements
in the periodic table are available.

In this contribution, we develop, based on a Bloch function
approach in the Heisenberg equation formalism, a micro-
scopic description of x-ray induced electronic transitions and
ionization for solid-state two-dimensional semiconductors,
Dirac semimetals, or insulators [23–26]. We include nonlinear
excitation effects, discuss x-ray absorption dynamics in solids
beyond Fermi’s golden rule, and include explicitly the lattice
periodicity of crystalline solids. In particular, we shine light
on the microscopic origin of the spectral oscillations observed
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in absorption and identify quantum-interference peaks, which
cannot be described in point scattering theory [22].

Typical experimental x-ray absorption spectra exhibit two
general features: (i) resonance lines in the absorption co-
efficient at specific energies below the ionization threshold
and (ii) a continuous absorption coefficient above the ion-
ization threshold over a large photon energy range [22,27–
31], including spectral oscillations. The latter appear only for
molecules or crystals but not for single atoms. Figure 1(a)
shows the possible excitations, while Fig. 1(b) sketches the
corresponding spectral features.

The first feature (i) is related to the transition energy of
most-inner core shell electrons to unoccupied states in the
conduction band (CB) or partly filled valence bands (VB).
This characteristic resonant feature is usually referred to as
absorption edge and the spectroscopic technique exploiting
such transitions is called x-ray absorption near-edge structure
(XANES) or near-edge x-ray absorption fine structure (NEX-
AFS). In the existing literature, to describe XANES, typically
Fermi’s golden rule for the transition probability from core
bands to unoccupied bands under illumination with a x-ray
frequency ω is used [32–34],

α(ω) = ωπ

ε0cn

∫∫
dk dk′ |e · dk,k′ |2δ(Ek′ − Ek − h̄ω). (1)

Here, the transition probability α(ω) involving initial core
states k to final conduction band states k′ is determined by the
product of the transition dipole moment dk,k′ projected on the
incident x-ray polarization e and an energy conserving delta-
function during the transition. The prefactor incorporates the
dielectric constant ε0, speed of light in vacuum c, and the
refractive index n of the material.

The part of the absorption spectrum containing spectral
oscillations above the ionization energy (ii) is named ex-
tended x-ray absorption fine structure (EXAFS) spectrum. It
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FIG. 1. (a) Lattice periodic potential resulting from periodically
arranged atoms in a solid. Sketched are exemplary flat core states,
continuous bands forming higher lying valence bands (VB) and
conduction bands (CB) and the ionization continuum (IC) above the
ionization threshold. Transitions into the conduction bands and the
ionization continuum form the XANES and EXAFS, respectively.
(b) Sketch of a typical XAS spectrum with its (i) XANES and
(ii) EXAFS part.

results from the transition of core electrons to the ionization
continuum (IC) above the ionization threshold of the mate-
rial, cf. Fig. 1(a). The explanation of the EXAFS spectrum
is based on the theory introduced by Kronig for molecular
gases [35,36]. This description explains the oscillations in
the spectrum as interference effects emerging from secondary
photoelectron waves emitted by an x-ray absorbing atom and
waves back scattered by neighboring atoms. The correspond-
ing parametrization of the absorption by Sayers et al. [13,14]

αk = S2
0

∑
i

Ni
| fi(k)|

kR2
i

sin (2kRi + φi )e
− 2Ri

λk e−2σ 2
i k2

(2)

has become standard in describing EXAFS. Equation (2) de-
scribes the absorption coefficient as function of the electronic
wave number k of the ionized, free electron. Here, for x-ray
energies higher than the ionization energy EIon of the mate-
rial (EXAFS), the excess energy is transferred to the excited
photoelectron in form of kinetic energy. The wave number
of the emitted electrons is related to the x-ray excitation fre-
quency ω by k2 = 2m0(h̄ω − EIon )/h̄2 with the free (vacuum)
electron mass m0. Here, λk stands for the x-ray wavelength.
The structural parameters are the number of equivalent scat-
terers Ni of type i, the interatomic distances Ri, and the bond
length σi. The Debye-Waller factor accounts for thermally or
disorder induced changes in the bond length. The quantity
| fi(k)| describes the back scattering amplitude, resulting from
back scattering of neighboring atoms, and S0 describes the
reduction factor due to multielectron processes. The expo-
nential factor exp(−2Ri/λk ) accounts for the finite lifetime
of the photoelectron, which is only scattered elastically over

a short distance. Finally, φi stand for phase shifts due to the
initially excited and the back scattering atom [14,31]. The
wave functions used to obtain this formula are not lattice
periodic and therefore do not exploit the Bloch theorem in
crystalline matter. While this approach might be appropriate
for molecules, where only a few Ri have to be accounted for,
a x-ray absorption theory for solids should take the lattice
periodicity into account.

In this paper, to address recent advances in pulsed x-ray
spectroscopy [37–39] of solids we develop a dynamical ap-
proach to account for the description of ultrafast many-body
solid-state phenomena in time resolved x-ray spectroscopy
[40–42]: We develop a microscopic, temporal resolved formu-
lation of the underlying mechanisms of the x-ray absorption in
a two-dimensional solid. For this, we use the method of sec-
ond quantization to also have a basis to sequentially include
many-body interaction at a later stage of theory. In particular,
we shine light on the origin of peaks in the Fourier trans-
formed EXAFS spectrum, which are not captured by the point
scattering theory but observable in experiment [22]. Incorpo-
rating Maxwell equations for the x-ray field a self-consistent
coupling between the light field and the microscopic core
transition including radiative damping and lineshifts can be
achieved. Including also many-body interactions the resulting
Maxwell-Bloch formalism provides a powerful tool to inves-
tigate core excitations induced by classical light in solids.

The paper is organized as follows: We start in Sec. II by
setting up the Hamiltonian on the basis of single-particle elec-
tronic wave functions and their interaction matrix elements
for the XANES and EXAFS processes. This section is sepa-
rated into two parts: the first is using a general Bloch wave
approach suited for periodic atomically-thin solids, while the
second part bridges the Bloch description with a tight binding
approximation often used in electronic structure theory. In
Sec. III we derive the dynamical Bloch equations for the
x-ray induced electronic transitions. Here, we do not only
consider the x-ray induced core excitations but also display
the Coulomb-induced mean-field Hartree-Fock and relaxation
channels of the excited core electrons. In particular, the equa-
tions of motion include the spatial resolution of the x-ray
radiation. In Sec. IV, we solve the wave equation to couple
self-consistently the Maxwell equations to the nonlocal mi-
croscopic excitations, including nonlinear effects and finally
apply in Sec. V the developed theory to the exemplary mate-
rial of graphene.

II. SOLID-STATE ELECTRON–X-RAY INTERACTION

A. Hamiltonian

To develop a microscopic theory of electron–x-ray interac-
tion in solids, we start by deriving the interaction Hamiltonian.
A schematic picture of the electronic structure is sketched
in Fig. 1(a). Typically, electrons in crystalline solids can be
separated into two groups: core and valence electrons. Core
electrons occupy filled orbitals and are spatially localized at
the nuclei, both contributing to core ions, cf. Fig. 1(a). In
contrast, valence electrons are less localized. In addition to
the bound states (core, valence, and conduction bands), if
ionization processes take place, the ionization continuum [IC,
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cf. Fig. 1(a)] for electronic states above the ionization edge
must be taken into account. The corresponding field operators
for electrons can be expanded into a complete set {α} of
(i) core, (ii) valence, conduction, and (iii) ionization con-
tinuum states: 
̂ (†)(r, t ) = ∑

α 
 (∗)
α (r)a(†)

α (t ) with quantum
number α, single-particle wave functions 
α (r) and the
fermionic annihilation (creation) operators a(†)

α . The Hamil-
tonian contains the single electron energies Eα in the
lattice periodic potential, the carrier-carrier interaction with
Coulomb matrix element V αβ

α′β ′ and the light-matter interaction
�αα′ in second quantization,

H =
∑

α

Eαa†
αaα − h̄

∑
α,α′

�αα′ a†
αaα′

+ 1

2

∑
α,α′,β,β ′

V αβ

α′β ′ a†
αa†

βaβ ′aα′ . (3)

The light-matter interaction, described in length gauge, dis-
cussed in the Appendix A, is given by the Rabi frequency
�αα′ , and reads �αα′ = e0〈
α|r · E(r, t )|
α′ 〉/h̄, where e0 is
the elementary charge. The Coulomb matrix element reads
V αβ

α′β ′ = 〈
α
β |V (r − r′)|
β ′
α′ 〉 with the Coulomb poten-
tial V (r − r′) in real space discussed in the Appendix. The
single-particle eigenbasis 
α (r) of the one-particle Hamil-
tonian and the corresponding eigenenergies Eα are obtained
from the Schrödinger equation

H0
α (r) =
(

− h̄2∇2

2m
+ U (r)

)

α (r) = Eα
α (r) (4)

describing electrons in a lattice periodic potential U (r) of
the ions: U (r − R‖) = U (r) with a lattice vector R‖ in the
in-plane motion of the atomically thin two-dimensional struc-
ture. The vector r of the electron is still three-dimensional
to have access to the orbitals extending perpendicular to the
plane. Eigenfunctions of the lattice periodic Hamiltonian have
to fulfill the Bloch condition 
(r + R‖) = exp(ik‖ · R‖)
(r).
Therefore, the eigenvectors 
α and eigenenergies Eα are clas-
sified by two quantum numbers {α} = {k‖, λ}, namely wave
vector k‖ in the plane of the two-dimensional material and
band index λ. The normalized eigenfunctions in the lattice
periodic potential are Bloch waves [43–45]


λ,k‖ (r) = 1√
Alz

eik‖·r‖uλ,k‖ (r) (5)

with lattice periodic Bloch factor uλ,k‖ (r), the sample area
A and length of the quantization volume in perpendicular
direction to the material lz (sample volume Alz). The lattice
periodic function uλ,k‖ (r) are orthonormalized on the in-plane
unit cell: 〈uλ,k‖ |uλ′,k‖ 〉UC = VUCδλ,λ′ , with unit-cell volume
VUC . Figure 2 represents a conceptional sketch of a two-
dimensional crystal built by consecutive identical unit cells.
Equation (5) represents solutions for all states α: (i) core,
(ii) valence/conduction band, and (iii) ionization continuum
state. This accounts for the translation invariance of the crys-
tal, a property, which is also existing for vanishing coupling
among the electrons in the core states of different atoms.
In the following we discuss the properties of the different

FIG. 2. Sketch of a two-dimensional crystal built by a series of
unit cells, highlighted in green, with an area A and thickness lz. The
space vector can be decomposed into a lattice vector Rn‖ pointing
towards the nth unit cell and a unit cell local vector rn. The complete
crystal can then be expressed by a sum over the number of repeating
unit cells.

wave functions and the approximations made in the following
separately:

(i) As solution of the Schrödinger equation, Eq. (5) can be
used to describe the core state wave functions. However, core
states are strongly localized at the atomic site and it is useful to
built a localized wave packet as superposition of Bloch waves
of different k‖ to use Wannier functions [46,47]

wλ(r, Rn‖) =
∑

k‖

exp(−ik‖ · Rn‖)
λ,k‖ (r)/
√

N (6)

as alternative representation to Eq. (5) for Bloch states. The
number of unit cells building the crystal is denoted by N .
Wannier functions are essentially a real-space representation
of localized orbitals and provide an extension of the con-
cept of atomic orbitals into solids. They have assigned as
quantum numbers the lattice vectors Rn‖ of the nth cell,
where the orbital is localized, and the band index λ. Us-
ing Eq. (5) an expression for the Bloch factor uλ,k‖ (r) as a
function of the Wannier orbitals wλ(r, Rn‖) reads uλ,k‖ (r) =√

VUC
∑

Rn‖ e−ik‖·(r−Rn‖ )wλ(r, Rn‖). Since core electronic
wave functions of neighbored atoms do barely overlap and
electron hopping between neighboring sites is unlikely, the
band dispersion is small and can be treated as a flat band.
This band is built up from all the core levels of the different
atoms of the crystal to account for the translation invariance.
Therefore, irradiating a solid state should not be seen as light
being absorbed by one individual atom with a core hole that
sits exactly at the individual atom but as a superposition of all
core states represented by a collective flat band excitation.

(ii) For valence and conduction band wave functions, typ-
ically, a full band calculation needs to be performed [48–50]
and we will use the full Bloch equation structure Eq. (5) to
determine the interaction matrix element �αα′ and V αβ

α′β ′ . These
calculation yields also an expression for the single-particle
band structure Eλ,k‖ . At this point, the description of this work
can be connected to ab initio electronic structure theory.

(iii) The wave function of the ionization continuum can,
to a good approximation, be expressed by plane waves in
vacuum orthogonalized to core and band states. The orthog-
onalization ensures that all states, including core, valence,
and conduction band, and ionization continuum form a com-
plete orthogonal basis. For the ionization continuum, where
the plane wave has been orthogonalized to the Bloch wave
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functions we exploit the Gram-Schmidt process [51–53]


kz,k‖ (r) = 1√
V

eik·r −
∑

λ

ηλ,k
λ,k‖ (r) (7)

with orthogonalization coefficient ηλ,k =∫∞
−∞ d3r exp(ik · r)
∗

λ,k‖ (r)/
√

V . The ionization continuum

Ekz,k‖ = h̄2k2/2m0 + EIon constitute the manifold of
three-dimensional parabolas with energies starting at the
ionization energy EIon of the material.

In principle, Eq. (5) [alternatively using Eq. (6)] and Eq. (7)
constitute a complete set of orthonormal basis functions. In
the basis of the Bloch functions Eq. (5), the Hamiltonian
Eq. (3) reads

H =
∑
λ,k‖

Eλ,k‖ a†
λ,k‖aλ,k‖

+ 1

2

∑
λ,ν,λ′,ν ′

k‖,q‖,k′
‖,q

′
‖

V λνν ′λ′
k‖q‖q′

‖k′
‖

a†
λ,k‖a

†
ν,q‖aν ′,q′

‖
a

λ′,k′
‖

−
∑

λ,λ′,k‖,k′
‖,Q‖

dλλ′
k‖,k′

‖
(Q‖) · E−Q‖ (z0, t ) a†

λ,k‖aλ′,k′
‖
, (8)

where the λ and ν sums include all three types of states—core,
valence, conduction band, and ionization continuum. Note
that we use the out-of-plane wave vector component kz as
quantum number for the three-dimensional states above the
ionization threshold: In case that the band index λ describes
an unbound state we write λ → kz, which is conform with the
notation used for the wave function Eq. (7).

The Coulomb interaction in Eq. (8) couples two initial
(λ, k‖) and (ν, q‖) with two final electron states (λ′, k′

‖) and
(ν ′, q′

‖). The corresponding matrix element is defined by

V λνν ′λ′
k‖q‖q′

‖k′
‖
= 〈
λ,k‖
ν,q‖ | V (r − r′) | 
ν ′,q′

‖
λ′,k′
‖ 〉 (9)

with the Coulomb potential V (r − r′).
In Eq. (8), for the light-matter interaction at the sample po-

sition the in-plane Fourier transform of the x-ray electric field
E(r, t ) = ∑

Q‖
EQ‖ (z0, t ) exp(−iQ‖ · r‖), the wave vector of

the x-ray radiation Q‖ and z0 as sheet position are introduced.
Since we investigate two-dimensional materials we assume an
atomically thin sheet lying at z0 that the spatial variation of the
electric field in z direction is negligible. This approximation
can be discussed in more detail: For two-dimensional materi-
als the layer thickness lies in the range of the lattice constant.
For many materials such as graphene, TMDCs or antimonene
the thickness lies between 0.3 nm and 0.6 nm . Here, we focus
on soft x-ray radiation up to an energy of 500 eV correspond-
ing to a wavelength of 2.5 nm justifying the neglect of the
spatial variation of the electric field perpendicular to the plane.
Without the loss of generality, we set z0 = 0 at the coordinate
center. The dipole matrix element reads

dλλ′
k‖,k′

‖
(Q‖) = e0〈
λ,k‖ | r eiQ‖·r‖ | 
λ′,k′

‖ 〉, (10)

which carries also the spatial in-plane component of the x-ray
field. To evaluate the dynamics of x-ray electron interac-
tions, we need to determine the interaction matrix element

dλλ′
k‖,k′

‖
(Q‖). While the Hamiltonian Eq. (8) contains all pos-

sible electronic transitions, we discuss at this point the matrix
elements for the XANES and EXAFS processes separately.
We start with the XANES process in Sec. II A 1 and discuss
the EXAFS transition in Sec. II A 2. The corresponding tran-
sitions are sketched in Fig. 1(a).

1. XANES matrix element

In XANES the x-rays have sufficient energy to excite elec-
trons from core band states to unoccupied excited states below
the ionization threshold (CB-states), cf. Fig. 1(a). This process
gives rise to sudden absorption edges in the XAS spectrum. To
calculate the XANES matrix element, we restrict the quantum
number λ to bands energetically below the ionization thresh-
old and use the wave functions Eq. (5) in the form of the
Bloch functions for the definition of the dipole matrix element
dλλ′

k‖,k′
‖
(Q‖), Eq. (10). This implies a momentum selection rule

of k′
‖ = k‖ − Q‖ + G‖ for the optical transition, where the

momentum is conserved up to a reciprocal lattice vector G‖
and detailed in the Appendix B. The wave vector k‖ is a
reduced wave vector lying in the first Brillouin zone. Already
soft x-rays have a wave number of tens of percent of the Bril-
louin zone. Therefore, when adding k‖ and Q‖ the resultant
vector can lie outside of the first Brillouin zone. The recip-
rocal lattice vector G‖ �= 0 accounts for Umklapp processes,
refolding the resultant vector to its equivalent wave vector
in the first Brillouin zone [54]. A detailed derivation of the
XANES dipole matrix operator acting partly as a derivative
on a†

λ,k‖aλ′,k′
‖ is provided in the Appendix. Up to this point,

coming from Eq. (8), the x-ray wave vector is defined by a
general Fourier transform over the complete space. Therefore,
to be consistent with the definition of the electronic wave vec-
tor k‖ we replace Q‖ → Q‖ + G‖, where Q‖ is now defined
within the first Brillouin zone. We obtain

Xλλ′
k‖+Q‖,k‖ (G‖)

= − ie0

VUC

〈(∇k‖+Q‖
iz

)
uλ,k‖+Q‖ | eiG‖·r‖ | uλ′,k‖

〉
−ie0δλ,λ′∇k‖+Q‖ . (11)

To clarify that the matrix operator Eq. (11) describes only
x-ray induced transitions with initial and final electronic state
below the ionization threshold (XANES) from now on the la-
beling dλλ′

k‖+Q‖,k‖ (G‖) → Xλλ′
k‖+Q‖,k‖ (G‖) is chosen. In Eq. (11),

the first term describes interband transitions between core and
unoccupied conduction band states. XANES transitions are
labeled K, L, M, etc. depending on the principle quantum
number of the initial core band λ, based on the Siegbahn
notation [55,56]. For example, K transitions involve 1s elec-
trons, while excitation of 2s and 2p electrons occurs at L
edges. The latter, as energetically following edges, are divided
into L1 for 2s electrons and L2, L3 for 2p electrons (total
angular momentum J = 1/2 and J = 3/2). The momentum
conservation accounts for a transfer of the in-plane field mo-
mentum to the optically excited electron. The second term
with the momentum gradient acting on the creation operator
in Eq. (8), leads to a wave vector gradient, which changes
according to the acceleration theorem with a rate proportional
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to the x-ray field [43] and describes the coupling strength of
x-ray excitation to intraband transitions [57,58]. Since x-ray
radiation includes excitation energies from a hundred of eV
up to tens of keV, the intraband dynamics do not significantly
change the optical response in a rotating wave approximation.

Note that the Bloch factors of the core states in Eq. (11) can
also be expressed as functions of the Wannier orbitals Eq. (6)
if this representation is desired.

2. EXAFS matrix element

After having discussed the XANES dipole matrix ele-
ment we turn our attention to the EXAFS matrix element
between a Bloch-like core state {k‖, λ}, Eq. (5), and ionization
continuum (IC) state {k‖, λ′ ≡ kz}, cf. Fig. 1. Inserting the
orthogonalized plane waves Eq. (7) and the Bloch band states
Eq. (5) into the definition of the dipole matrix element Eq. (10)
yields formally

Yλkz

k‖,k′
‖
(Q‖) = e0〈
λ,k‖ | r eiQ‖·r‖ | k′〉

+ e0

∑
λ′

ηλ′,k′ 〈
λ,k‖ | r eiQ‖·r‖ | 
λ′,k′‖ 〉 (12)

with the notation 〈r|k〉 = exp(ik · r)/
√

V resulting from the
unorthogonalized plane wave character of the final state. The
second contribution originates from the orthogonalization co-
efficients defined below Eq. (7). To clarify that the dipole
matrix element now describes transitions into the ionization
continuum it is denoted by dλkz

k‖,k′
‖
(Q‖) → Yλkz

k‖,k′
‖
(Q‖). The EX-

AFS matrix element Eq. (12) can be calculated in similar way
as the XANES matrix element, however, the final state wave
vector is, in contrast to the initial state, three-dimensional.
After some manipulations, detailed in the Appendix C, and
restricting Q‖ to the first Brillouin zone the EXAFS matrix
element is obtained as

Yλkz

k‖+Q‖,k‖ (G‖) =
∑
λ′

ηλ′,kXλλ′(inter)
k‖+Q‖,k‖

− ie0√
VUC

〈(∇k‖+Q‖
iz

)
uλ,k‖+Q‖ | eiG‖·r‖eikzz

〉
.

(13)

Similar to Eq. (11) (XANES), we find an interband term
describing the optical transition between a Bloch and a plane
wave state (second line). Note that we consider for EXAFS
only transitions from the material into the ionization con-
tinuum. Therefore the matrix element Eq. (13) contains no
intraband interaction because of the forced orthogonality of
the ionization continuum to all band states. Consequently, the
appearing XANES matrix element in Eq. (13), stemming from
the orthogonalization, is restricted to its interband part. In
principle, also an acceleration of the free electrons is possible
and a third contribution to the matrix element Ykzkz

k‖+Q‖,k‖ (G‖)
is present, which is proportional to the x-ray field times the
momentum gradient of the electronic creation operator [57].
However, since this is no EXAFS transition, goes beyond our
description, and is not visible in the absorption spectrum this
contribution is neglected.

3. Hamiltonian, discriminating XANES, and EXAFS processes

Using the calculated matrix elements for the XANES and
EXAFS processes, the Hamiltonian containing the electron
dispersion and the interaction of x-ray electric field with the
crystal electrons reads

H =
∑
λ,k‖

Eλ,k‖ a†
λ,k‖aλ,k‖ +

∑
k‖,kz

Ekz,k‖ a†
kz,k‖akz,k‖

−
∑
λ,λ′

k‖,Q‖,G‖

Xλλ′
k‖+Q‖,k‖ (G‖) · E−Q‖+G‖ (t ) a†

λ,k‖+Q‖aλ′,k‖

−
∑
λ,kz

k‖,Q‖,G‖

(
Yλkz

k‖+Q‖,k‖ (G‖)

· E−Q‖+G‖ (t ) a†
λ,k‖+Q‖akz,k‖ + H.c.

)
+ 1

2

∑
λ,ν,λ′,ν ′

k‖,q‖,k′
‖,q

′
‖

V λνν ′λ′
k‖q‖q′

‖k′
‖

a†
λ,k‖a

†
ν,q‖aν ′,q′

‖
a

λ′,k′
‖
. (14)

The unperturbed single-particle energies in a lattice periodic
atomic potential are described by the first line of Eq. (14).
The crystal band index λ in the first term incorporates all
bound bands, starting at the core level 1s state up to the
comparable delocalized valence and conduction band states.
The second line describes XANES transitions between two-
dimensional core and conduction band states. The third line
describes EXAFS transitions between two-dimensional initial
and three-dimensional final states lying above the ionization
threshold of the crystal. It should be remembered that kz

describes the out-of-plane wave vector and acts as quantum
number for the unbound states in a three-dimensional contin-
uum. The last line describes Coulomb interaction between the
carriers. It couples two initial states (λ, k‖), (ν, q‖) and two
final states (λ′, k′

‖), (ν ′, q′
‖). Computing the Coulomb matrix

element as is shown in the Appendix we can also derive mo-
mentum selection rules holding during Coulomb scattering.
In detail, we can use

∑
G‖ δk‖,k′

‖+p‖−G‖ and
∑

G′
‖
δq‖,q′

‖−p‖−G′
‖ ,

where p‖ describes the momentum transfer during the carrier-
carrier interaction and the reciprocal lattice vectors G‖ and
G′

‖ takes into account for possible Umklapp processes. The
Coulomb selection rules can be inserted in the Hamiltonian
Eq. (14) if Coulomb scattering wants to be evaluated explic-
itly.

B. Dipole matrix elements in tight binding approximation

The character of the dipole transitions, Eqs. (11) and (13),
including the lattice geometry, which is of essential impor-
tance for x-ray experiments in the solid state, as well as the
orbital band composition are encoded in the lattice periodic
function uλ,k‖ (r). Access to the Bloch functions (or Wan-
nier functions) typically requires computationally expensive
methods. To evaluate explicitly the matrix element and to
obtain more analytical insights into x-ray induced electronic
transitions we use the tight binding method [59,60], in chem-
istry usually referred to as Hückel theory [61], for core and
conduction band wave function. The method consists of the
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assumption to approximate the Wannier functions with atomic
orbitals. The Bloch states 
λ,k‖ (r) are then expanded in terms
of a linear combination of atomic orbitals 〈r|λ, β, j, 0〉 =
φλ

β, j (r) (orbital of type j on atom β) of the composing atoms,
which are eigenstates of the single atom Hamiltonian,


λ,k‖ (r) = 1√
N

∑
β, j,Rβ‖

Cλ
β j,k‖e

ik‖·Rβ‖φλ
β, j (r − Rβ‖). (15)

The atomic orbitals spatially decay with a typical constant
of ζ = Z/aB, where aB denotes the hydrogen Bohr radius
and Z is the effective nuclear charge, incorporating electron
screening effects. Values for an effective nuclear charge Z
in atoms or ions is provided by the Slater rule [62], which
can be used as a first estimate also in crystals. For more
accurate values first-principle calculations are necessary. In
Eq. (15), the coordinates of the atoms in the crystal lattice

are denoted by Rβ‖ and the tight binding coefficients Cλ
β j,k‖

determine the weight of the different orbitals. For core states
the atomic orbitals decay rapidly from the atomic position that
their overlap is negligible small. In the following we revisit
the XANES and EXAFS matrix elements exploiting the wave
function Eq. (15) for core and conduction band wave function
and derive the solid-state electron x-ray Hamiltonian in tight
binding approximation.

1. XANES

The XANES matrix element is evaluated by inserting the
tight binding wave function Eq. (15) for initial and final state
into the formal definition Eq. (10). Expanding the integral into
a sum over unit cells at the lattice vector Rβ‖ leads to the
matrix element

Xλλ′
k‖+Q‖,k‖ (G‖) = −e0

∑
α,β,i, j

∑
δβα

C∗λ
β j,k‖+Q‖C

λ′
αi,k‖e

ik‖·δβα 〈λ, β, j, 0 | r ei(Q‖+G‖ )·r‖ | λ′, α, i, δβα〉

− ie0

∑
α,β,i, j

∑
δβα

C∗λ
β j,k‖+Q‖C

λ′
αi,k‖e

ik‖·δβα 〈λ, β, j, 0 | ei(Q‖+G‖ )·r‖ | λ′, α, i, δβα〉∇k‖+Q‖ (16)

including the same momentum selection rule as previously,
Eq. (11) and using that Q‖ is restricted to the first Bril-
louin zone. The projection onto atomic orbital basis yields
〈r|λ, β, j, δβα〉 = φλ

β j (r − δβα ). The electron momentum de-
pendence is carried out by the tight binding coefficients
and the phase factor exp(ik‖ · δβα ), where δβα = Rβ‖ − Rα‖
stands for the next-neighbor vectors connecting the atoms.
The sum over the sublattices α, β includes neighboring atoms
of arbitrary order. Since we investigate the interaction of
strongly localized core electrons, their spatial extension de-
cays rapidly even compared to the wavelength of soft and
medium x-rays up to an energy of ∼4–5 keV . Therefore,
it is reasonable to treat the transition integral in dipole ap-
proximation, i.e., perform an expansion of the radiation field
in zeroth order exp (i(Q‖ + G‖) · r‖) ≈ 1. We have carefully
checked, see Appendix D, that the inclusion of the Q‖ depen-
dence to the transition integral does not change the result at
this point. Since the spatial localization of the core electrons
increases with the atomic weight, the dipole approximation
becomes better the heavier the constituting atoms are. Treating
the transition integral within the dipole approximation, the
optical selection rules known from atomic spectroscopy are
recovered. However, thanks to the tight binding wave function
of the crystalline solid and the plane wave decomposition
in Eq. (16) we include solid-state properties, in particular
the lattice periodicity. Because the core orbitals are generally
more localized compared to other states the optical transitions
involving core states are generally weaker than transitions
between valence and conduction band addressed in optical
experiments with visible light. Applying the dipole approx-
imation to the second line of Eq. (16) the integral turns
into an overlap integral 〈λ, β, j, 0 | λ′, α, i, δβα〉. The over-
lap is generally small and we may assume that the chosen
orbitals are orthogonal to each other showing that the sec-

ond line in Eq. (16) describes intraband transitions similar
to Eq. (11).

2. EXAFS

As for the XANES transitions, we evaluate the EXAFS
matrix element for tight binding wave functions. The starting
point is the EXAFS dipole matrix element Eq. (12), now
with the initial state electronic wave function 
λ,k‖ (r) in the
tight binding approach. First we investigate the orthogonal-
ization coefficients defined below Eq. (7), which appears as
a sum involving all bound bands. With the main n, angular
l , and magnetic m quantum numbers, which determine the
atomic orbitals, the coefficients can be calculated to be ηλ,k =
il
√

(2ζ )2n+1/(2n)!Jn,l (k)Ylm(ϑk, ϕk )/2π2 with the spherical
harmonics Ylm and the radial function Jn,l (k) = √

π/2k(ζ 2 +
k2)−(n+1)/2�(n − 1 + l )P−l

n [ζ (ζ 2 + l2)−1/2] with the associ-
ated Legendre polynomials Pl

n (x). The orthogonalization
coefficient to the 1s state is proportional to η1s,k ∝ (ζ 2 +
k2)−2. Here, η1s,k decreases to a value of 10% at approx-
imately k = √

2ζ . Generally, because the 1s orbital has
the smallest extent in real space, its orthogonalization con-
tribution determines the strength of the orthogonalization
contribution to the EXAFS dipole matrix element. Further,
we see that the orthogonalization coefficient depends on
the atomic number and gains importance with increasing
atomic weight. With an exemplary effective atomic number of
Z = 5.7, stemming from the Slater rule for carbon [62], we
obtain a wave number of 140 nm−1 corresponding to an en-
ergy of 5 eV . We see that the coefficients decrease rapidly
with increasing energy (starting at the ionization threshold)
since the orthogonalization contributes only close to the sur-
face. Since the coefficients ηλ,k decrease rapidly to zero with
increasing energy, we use in the following free electronic
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continuum states for simplicity and obtain for the first term
of Eq. (12),

Yλkz

k‖+Q‖,k‖ (G‖) = −e0√
VUC

∑
β, j

C∗λ
β j,k‖+Q‖

× 〈λ, β, j, 0 | r | k + Q‖ − G‖〉. (17)

However, the plane wave approximation (17) has to be inves-
tigated carefully for each material independently.

To illustrate the approach, we focus on K-shell transitions,
namely λ = 1s for the initial state. The calculation of the
transition integral from a 1s core electron to the plane wave
state is included in the Appendix. We obtain

Y1skz

k‖+Q‖,k‖ (G‖) = −e0√
VUC

∑
β,n

C∗1s
β1s,k‖+Q‖

× 32
√

π iζ 5/2(k + Q‖ − G‖)n

(ζ 2 + (k + Q‖ − G‖)2)3
ên (18)

with the unit vector ên in cartesian coordinates. Equation (18)
consists of the tight-binding coefficients C∗1s

β1s,k‖+Q‖ , which
carry the lattice periodicity, and the transition integral (second
line), which carries the unit cell information. The magnitude
and width of this form factor peaks are determined by the
spatial electron distribution. Therefore, the form factor is
weakened by the effective inverse Bohr radius ζ , cf. Eq. (18)
denominator. Further, we see that the optical transition into
the ionization continuum is unpolarized in contrast to transi-
tions within the material. Therefore, the optical transition of
internal states into the vacuum are independent of the incident
angle of the light.

It is interesting to compare x-ray absorption to the com-
plementary technique x-ray diffraction used to measure the
structure of crystals. The difference between EXAFS and x-
ray diffraction lies in the choice of the observable: While for
the EXAFS a transmission or reflection is measured under the
same angle as the x-ray incident angle, for x-ray diffraction
also the signal under a different angle than the incident is
measured. In particular, we have checked that the conven-
tional x-ray diffraction of the ground state is included in our

description for ω → ∞. The diffraction is determined by the
Fourier transform of the electron distribution and often called
form factor. As consequence the x-ray propagation involves a
reduced sensitivity to light atoms with stronger localized and
only weakly screened inner shell electrons [63]. Moving to
electron diffraction the form factor can be calculated from
the x-ray form factor by the Mott-Bethe equation [64,65],
which takes additionally to the elastic scattering at the electron
clouds also nucleus scattering into account. Then also crystals
of lighter element can be resolved and measured.

III. X-RAY BLOCH EQUATIONS

The observable describing the x-ray response of the ma-
terial is the detected x-ray field (Sec. IV), which can be
calculated from the incident field interfering with the excited
dipole density in the sample in reflection or transmission ge-
ometry. To derive the dipole density P(r, t ) as a function of the
electric field E(r, t ), we start from the light-matter interaction
Hamiltonian (cf. Appendix). From Eq. (8) we can identify the
two-dimensional macroscopic polarization density

P2D
Q‖+G‖ (t ) = 1

A

∑
λ1 �=λ2,k‖

dλ1λ2
k‖+Q‖,k‖ pλ1λ2

k‖+Q‖,k‖ (t ), (19)

which determines the x-ray response (Sec. IV) in wave
number space. Here, we explicitly exclude the intraband con-
tribution as discussed in Sec. II A. Please note that Q‖ is
defined within the first Brillouin zone. For the x-ray dynamics,
the relevant quantities occurring in Eq. (19) are the transi-
tion pλ1λ2

k‖+Q‖,k‖ (t ) = 〈a†
λ1,k‖+Q‖aλ2,k‖ 〉(t ) defined as expectation

value for a single electronic transition between the states
|λ1, k‖ + Q‖〉 and |λ2, k‖〉, which can be excited if the cor-
responding dipole matrix element dλ1λ2

k‖+Q‖,k‖ does not vanish.
Due to the spatial resolution of the x-ray light and a pos-
sibly nonorthogonal incidence, the nondiagonal character of
the transitions and occupations in momentum space (Q‖ �= 0)
have to be included. The electronic transitions can be derived
from the Heisenberg equation of motion using the Hamilto-
nian Eq. (14). The corresponding equation of motion for the
microscopic transition reads

ih̄
d

dt
pλ1λ2

k‖+Q‖,k‖ = (
Eλ2

k‖ − Eλ1
k‖+Q‖

)
pλ1λ2

k‖+Q‖,k‖

−
∑

λ,Q′
‖,G‖

E−Q′
‖+G‖ (t ) · (dλ2λ

k‖,k‖−Q′
‖
(G‖)σλ1λ

k‖+Q‖,k‖−Q′
‖
− dλλ1

k‖+Q‖+Q′
‖,k‖+Q‖

(G‖)σλλ2
k‖+Q‖+Q′

‖,k‖

)

+
∑
μ,λ,ν

k′
‖,q‖,p‖

(
V λ2μλν

k‖,k′
‖,q‖,p‖

− V λ2μνλ

k‖,k′
‖,p‖,q‖

)
σ

μν

k′
‖,p‖

σ
λ1λ
k‖+Q‖,q‖

−
∑
μ,λ,ν

k′
‖,q‖,p‖

(
V μλνλ1

k′
‖,q‖,p‖,k‖+Q‖

− V λμνλ1

q‖,k′
‖,p‖,k‖+Q‖

)
σλν

q‖,p‖σ
μλ2
k‖,k‖ + ih̄∂t pλ1λ2

k‖+Q‖,k‖

∣∣
coll. (20)

Equation (20) describes the dynamics of an x-ray induced
electronic transitions pλ1λ2

k‖+Q‖,k‖ within a two-dimensional ma-
terial defining the response in Eq. (19). The first term
incorporates the free oscillation of the transition with the

single-particle energies of initial and final state. The second
line of Eq. (20) describes the coupling to the x-ray field. For
now, σλλ′

k1,k2
= 〈a†

λ,k1
aλ′,k2〉 describes a general density matrix

element. In case that λ �= λ′ this expectation value describes a
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nonlocal (k1 �= k2) interband transition pλλ′
k1,k2

. In contrast, for
λ = λ′ the quantity stands for a nonlocal electron occupation
f λ
k1,k2

. The two different wave number indices indicate the
existence of spatial correlations in a spatially inhomogeneous
system. Therefore, Eq. (20) allows for the description of trans-
lational noninvariant, spatially localized, x-ray excitation of
the crystal. The last three lines describe the Coulomb con-
tribution. The many-particle interaction leads to a coupling
to the dynamics of higher-order expectation values, known as
hierarchy problem, which is treated by exploiting the cluster
expansion [66–68]. The action of the Coulomb interaction is
divided in Hartree-Fock (third and fourth line) and collision
contributions pλ1λ2

k‖+Q‖,k‖ |coll including many-body interaction
and scattering-induced dephasing beyond the Hartree-Fock
level [69]. Here, we see that our approach includes naturally
many-body interaction in a self-consistent way: Depending on
the band index combination of the Coulomb matrix element,
the third and fourth line implicitly include different kinds of
Coulomb interaction mechanisms. For example: (i) when all
band indices are equal we find a band renormalization. (ii) In
case of two λ1 and two λ2 indices we can have electron-core-
hole interaction giving rise to core excitons. (iii) With three
occupied and one unoccupied band indices (or vise versa) the
third and fourth line describe Meitner-Auger-type interaction.
Meitner-Auger transitions are recombinations of electron and
core hole accompanied by an energetic elevation of a sec-
ond electron. In principle, different kinds of Meitner-Auger
transitions are included in the Hamiltonian. Figure 3 shows
two exemplary transitions as included in the Hamiltonian
corresponding to Meitner-Auger recombination and impact
ionization. Figure 3(a) sketches the relaxation of previously
excited hot electrons within the conduction band, which leads
to an excitation of a valence electron to the conduction band.
This way the number of electrons in the conduction band
changes. Note that, the mentioned valence electrons can also
be core electrons and that the ionization continuum counts
to the unoccupied states. In the following we term transi-

FIG. 3. (a) Impact ionization leads to a relaxation of an electron
within the conduction bands, which leads to an excitation of a va-
lence band electron to the conduction band. This way, the number
of electrons in the conduction bands changes. (b) Meitner-Auger
recombination leads to the relaxation of a conduction band electron
to the valence band, which is assisted by the excitation of a core
electron to an upper shell.

tions within the core/valence bands or conduction/vacuum
bands as intersubband transitions to distinguish from inter-
band transitions, where an electron changes between occupied
core/valence and unoccupied conduction/vacuum bands. Fig-
ure 3(b) sketches a possible Meitner-Auger recombination
channel. Here, the relaxation of a conduction to valence band
electron is assisted by the excitation of a core electron. In
general, one has to carefully check the sources in the equa-
tions of motion to see which processes sketched in Fig. 3
are contributing to the dynamics. This can depend on the
electronic structure of the investigated material and on the
type of experiment.

For spectrally sufficient sharp x-ray pulses exciting only
the transition between the bands λ1 and λ2 we can obtain more
analytical insights from Eq. (20),

ih̄
d

dt
pλ1λ2

k‖+Q‖,k‖ = (
Eλ2

k‖ − Eλ1
k‖+Q‖

)
pλ1λ2

k‖+Q‖,k‖

−
∑

Q′
‖,G‖

E−Q′
‖+G‖ (t ) · (dλ2λ1

k‖,k‖−Q′
‖
(G‖) f λ1

k‖+Q‖,k‖−Q′
‖
− dλ2λ1

k‖+Q‖+Q′
‖,k‖+Q‖

(G‖) f λ2
k‖+Q‖+Q′

‖,k‖

)

+
∑

k′
‖,q‖,p‖

(
V λ1λ1λ1λ1

k′
‖,q‖,p‖,k‖+Q‖

f λ1
k′

‖,p‖
pλ1λ2

q‖,k‖ − V λ2λ2λ2λ2
k‖,k′

‖,q‖,p‖
f λ2
k′

‖,p‖
pλ1λ2

k‖+Q‖,q‖

)

−
∑

k′
‖,q‖,p‖

(
V λ2λ1λ1λ2

k‖,k′
‖,q‖,p‖

f λ1
k‖+Q‖,q‖ pλ1λ2

k′
‖,p‖

− V λ1λ2λ2λ1
k′

‖,q‖,p‖,k‖+Q‖
f λ2
q‖,k‖ pλ1λ2

k′
‖,p‖

)

+
∑

μ,λ,k′
‖,q‖,p‖

[
V λ2μλλ1

q‖,k′
‖,p‖,k‖+Q‖

pλ2λ
q‖,p‖ pμλ2

k′
‖,k‖

− V λ2λμλ1

k‖,q‖,k′
‖,p‖

pλλ1
q‖,p‖ pλ1μ

k‖+Q‖,k′
‖

]

+
∑

μ,λ,k′
‖,q‖,p‖

[
V λμλ2λ1

q‖,k′
‖,p‖,k‖+Q‖

pλλ2
q‖,p‖ pμλ2

k′
‖,k‖

− V λ2λ1μλ

k‖,q‖,k′
‖,p‖

pλ1λ
q‖,p‖ pλ1μ

k‖+Q‖,k′
‖

] + ih̄∂t pλ1λ2
k‖+Q‖,k‖

∣∣
coll. (21)

The second line in Eq. (21) describes the coupling to the x-ray
field. The x-ray transition is initiated by the core occupa-
tion f λ1

k‖+Q‖,k‖−Q′
‖

and blocked by the final band occupation

f λ2
k‖+Q‖+Q′

‖,k‖
. The third line describes an energy renormal-

ization, due to intraband Coulomb interaction, for both
bands. They are well known in the literature as a core-hole
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renormalization [70–72] and lead to an effective energetic
blue-shift of the transition energy (Eλ2

k‖ − Eλ1
k‖+Q‖ ) of the

electronic transition Eq. (21) for occupied valence states.
The fourth line describes a Coulomb-induced renormaliza-
tion of the Rabi frequency EQ‖+G‖ (t ) · dλ2λ1

k‖,k‖+Q‖ (G‖), which
can be interpreted as local field contribution and leads to
the formation of excitons [73–75]. The crystalline exci-
tons are quasi-particles built up by a Coulomb-correlated
wave number distribution of core holes and electrons by
two occupied/unoccupied bands, respectively. The equa-
tion of motion Eq. (21) implicitly includes the Wannier
equation [75,76] describing the formation of core excitons
bleached by the occupation difference between electrons and
core holes. Depending on the bleaching this contribution to
the equation of motion leads to excitonic peaks below the
absorption edge. Such bound electron-core-hole quasiparticle
can play a considerable role in the interpretation of x-ray
spectroscopy [42,74,77–80], for example, in the case of metal
oxides [80–82]. The interpretation of the corresponding two
lines can be verified in the limit of a spatially homoge-
neous system [83] and are discussed in the Appendix E.
An advantageous representation for space-dependent phe-
nomena is the Wigner representation [84]. The occupations
and transitions can be Fourier transformed with respect to
their relative momentum. Performing a gradient expansion of
the Fourier phase factor and going beyond the zeroth order
yields spatially-resolved Bloch equations for occupation and
transition in an inhomogeneous system [84]. The fifth and
sixth line include Meitner-Auger-like terms in the Hartree-
Fock approximation. As previously discussed, Meitner-Auger
interaction couples interband transitions between core and
conduction band to transitions within the occupied (or un-
occupied) bands. In line five μ and λ need to correspond
either both to occupied or unoccupied bands. This leads to
a product of two (intersubband) transitions between different
conduction or valence bands. Therefore, line five gives rise
to nonlinearities in second order. For the first term of the
sixth line the band indices have to correspond to two occu-
pied bands, while for the second both need to be unoccupied
bands. Also here, the source is quadratic in intersubband
transitions and therefore goes beyond the linear optics limit.
Within a rotating wave approximation only sources on the
right-hand side of Eq. (21) contribute, which oscillation en-
ergy matches the energy difference of λ1 and λ2 of the
left-hand side of Eq. (21). Line five and six include the
generation of second harmonics resulting from the excitation
with intense fields [85]. So far, for the Coulomb contribu-
tion no assumption concerning the momentum selection rules
were made. Making use of the momentum conservation law

V μλνρ

k‖,q‖,p‖,k′
‖
= ∑

q′
‖,G‖,G′

‖
V μλνρ

k‖,q‖,p‖,k′
‖
δG‖,k′

‖−k‖+q′
‖δG′

‖,p‖−q‖−q′
‖ the

last four lines (see Appendix F for a detailed derivation) can
be written in a more convenient form. Higher-order contri-
butions to the Coulomb interaction, which are included in
the collision term, need to be treated on the same level. The
contribution ∂t pλ1λ2

k‖+Q‖,k‖ |coll describes the many-particle scat-
tering beyond the Hartree-Fock interaction. The collision term
contributes to diagonal γk‖+Q‖,k‖ and off-diagonal Uλ1λ2

k‖+Q‖,k‖
dephasing [86] of the microscopic transition and acts as a
dephasing,

d

dt
pλ1λ2

k‖+Q‖,k‖

∣∣∣∣
coll

= −γk‖+Q‖,k‖ pλ1λ2
k‖+Q‖,k‖ + Uλ1λ2

k‖+Q‖,k‖ . (22)

The diagonal part is determined by the time- and momentum-
dependent Coulomb scattering rates

γk‖+Q‖,k‖ (t ) = �in
λ1,k‖+Q‖ + �out

λ1,k‖+Q‖ + �in
λ2,k‖ + �out

λ2,k‖ . (23)

The off-diagonal contribution couples to all coherences in the
Brillouin zone and reads

Uλ1λ2
k‖+Q‖,k‖ (t ) =

∑
q,p

(
Vλ1λ2

k‖+Q‖,k‖,q,p pλ1λ2
q,p + c.c

)
. (24)

For the carrier relaxation processes the Coulomb interaction
is treated up to second-order Born-Markov approximation.
The scattering rates in Eq. (23) and Vλ1λ2

k1,k2,q,p are specified
in the Appendix G. The efficiency of the scattering channels
is determined by the Coulomb matrix element and the oc-
cupation probabilities of the involved states. The scattering
rates feature a sum over different band indices, which include
all possible Meitner-Auger relaxation channels, which fulfill
momentum and energy conservation at the same time [87,88].
The Meitner-Auger effect [89–92] as a nonradiative relaxation
mechanism of the core hole is characterized by the filling of
the inner-shell vacancy accompanied by the emission of an
electron into the unoccupied conduction band states and possi-
bly even out of the sample into the ionization continuum. The
microscopic transition [Eq. (21)] solely determines absorp-
tion. The lineshape resulting from an absorption measurement
depends on the interplay of the electronic transitions, their
bandwidth from the electronic structure (density of states of
the Coulomb coupled Bloch states) and dephasing from colli-
sions such as electron-electron or electron-phonon interaction.
For instance, if the band dispersion and collision broadening
are small compared to the involved band offsets, more or less
isolated lines may occur and will result in a multiplet structure
in XANES.

Finally, we present the dynamics in a many band system of
the occupations in band λ1,

d

dt
f λ1
k‖+Q‖,k‖ = − 1

ih̄

∑
λ,Q′

‖,G‖

E−Q′
‖+G‖ (t ) · (Xλ1λ

k‖,k‖−Q′
‖
(G‖)pλ1λ

k‖+Q‖,k‖−Q′
‖
− Xλλ1

k‖+Q‖+Q′
‖,k‖+Q‖

(G‖)pλλ1
k‖+Q‖+Q′

‖,k‖

)

− 2

h̄

∑
λ,k′

‖,q‖,p‖

�m
([

V λ1λλλ1
q‖,k′

‖,p‖,k‖+Q‖
pλλ1

k′
‖,k‖

− V λ1λ1λλ

k‖,q‖,k′
‖,p‖

pλ1λ

k‖+Q‖,k′
‖

]
pλ1λ

q‖,p‖

)

+
∑
λ,μ,ν

k′
‖,q‖,p‖

[
V λμνλ1

q‖,k′
‖,p‖,k‖+Q‖

σλν
q‖,p‖σ

μλ2

k′
‖,k‖

− V λ1λμν

k‖+Q‖,q‖,k′
‖,p‖

σλν
q‖,p‖σ

λ1μ

k‖+Q‖,k′
‖

]
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+
∑

k′
‖

[
�in

λ1,k‖+Q‖,k′
‖

(
δk‖+Q‖,k′

‖ − f λ1
k′

‖,k‖+Q‖

) + �in
λ1,k‖,k′

‖

(
δk‖,k′

‖ − f λ1
k‖,k′

‖

)]

−
∑

k′
‖

[
�out

λ1,k‖+Q‖,k′
‖

f λ1
k′

‖,k‖+Q‖
+ �out

λ1,k‖,k′
‖

f λ1
k‖,k′

‖

]
. (25)

The first line describes the excitation of a nonequilibrium
electron distribution in the band λ1. The second line describes
the nonlinear Coulomb sources of the carrier population. The
third line includes Meitner-Auger-type terms. Therefore, the
band indices in the Coulomb element need to correspond to
three occupied (unoccupied) and one unoccupied (occupied)
bands. Then line three carries a product of occupation and
interband transition. Note that, again the momentum conser-
vation for the Coulomb interaction can be inserted. The last
two lines express the Coulomb interaction described by a
microscopic Boltzmann-like scattering equation [93,94]. The
scattering rates explicitly include Pauli-blocking terms and are
explicitly given in the Appendix.

Investigating Eq. (21) we see that all quantities, except for
the electric field, are known. To determine the electric field
as an observable self-consistently, we have to solve the wave
equation, which is performed in the following section.

IV. OBSERVABLES AND SOLUTION OF THE
WAVE EQUATION

Figure 4 sketches the investigated geometry. A freestand-
ing atomically thin material is irradiated by an external x-ray
field E0

Q‖
(z, ω) under an angle of incidence θ . We assume

an infinitely thin two-dimensional material located at z0 and
use a two-dimensional polarization P2D(r‖, t ) to describe the
material response P(r, t ) = P2D(r‖, t )δ(z − z0). The measur-
able observables are the reflected ER

Q‖
(z, ω) and transmitted

ET
Q‖

(z, ω) fields containing information on the x-ray material
response.

To determine the observables, we solve the Maxwell equa-
tions. In the absence of free charges or currents and a spatially
homogeneous dielectric environment the corresponding wave

FIG. 4. Atomically thin material at z = z0 under x-ray radiation
E0

Q‖ (z, ω) and two-dimensional response P2D
Q‖ of the material. An

incident angle of θ = 0◦ denotes a perpendicular irradiation, while
θ = 90◦ corresponds to an in-plane propagating field. ER

Q‖ (z, ω)

and ET
Q‖ (z, ω) denote the reflected and transmitted x-ray field,

respectively.

equation reads

∇2E(r, t ) − ε

c2

∂2

∂t2
E(r, t )

= μ0
∂2

∂t2
P(r, t ) − 1

ε0ε
∇(∇ · P(r, t )). (26)

Here, for simplicity, we used a uniform background with
constant permittivity ε representing off resonant electronic
transitions and possible substrate effects. For a free stand-
ing layer the dielectric constant reads ε = 1. Clearly,
P2D(r‖, t ) acts as a link between the microscopic x-ray
Bloch [cf. Eq. (19)] and the wave equations Eq. (26).
To study experimental observables, we need to solve the
Bloch equation Eq. (21) and wave equation Eq. (26)
self-consistently.

A formal solution of the wave equation Eq. (26) is given
by the Green’s function. Transforming into momentum and
frequency space EQ‖ (z, ω) = ∫

dz′ GQ‖ (z − z′, ω)�Q‖ (z′, ω)
yields an expression for the in-plane and out-of-plane elec-
tric field components as a function of the in-plane radiation
wave vector Q‖, spatial z component and frequency ω [95,96].
�Q‖ (z, ω) denotes the Fourier transform of the source act-
ing on the right-hand side in Eq. (26). The corresponding
Green’s function can be determined to be GQ‖ (z − z′, ω) =
i exp(−iκ|z − z′|)/2κ with κ2 = εω2/c2 − |Q‖|2. The electric
field, separated in in-plane and out-of-plane components and
x-ray wave vector restricted to the first Brillouin zone, reads

E‖
Q‖+G‖ (z, ω) = i

2κ

(
(Q‖ + G‖) ⊗ (Q‖ + G‖)

εε0
− μ0ω

2

)

× P2D
‖Q‖+G‖ (ω)e−iκ|z−z0|

− i(Q‖ + G‖)

2εε0
sgn(z − z0)

× e−iκ|z−z0|P2D
⊥Q‖+G‖ (ω), (27)

E⊥
Q‖+G‖ (z, ω) = i

2

(
κ

εε0
− μ0ω

2

κ

)
e−iκ|z−z0|P2D

⊥Q‖+G‖ (ω)

− i

2εε0
sgn(z − z0)e−iκ|z−z0|(Q‖ + G‖)

· P2D
‖Q‖+G‖ (ω), (28)

with the dyadic product of the x-ray wave vectors (Q‖ +
G‖) ⊗ (Q‖ + G‖). To obtain the full field acting in the Bloch
equations (21), the incident electric field E0

Q‖+G‖ (z, ω) has to
be added to Eqs. (27) and (28) as homogeneous solution. In
the limit of Q‖ → 0, we find the result of a perpendicular
incidence of an optical field on a material sheet, where the
field travels as a plane wave varying only in the propagation
direction [97]
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To describe reflection and transmission, we are interested
in the left propagating field in front of the material and
the propagating field behind the sample, respectively. Inves-
tigating Fig. 4, for the reflected light for all z holds z <

z0. Therefore, the sign function is negative and the phase
factor reads exp (iκ (z − z0)). The reflection coefficient is de-
fined as the ratio of the intensity of the left propagating
electric field in front of the material and incident elec-
tric field intensity: rQ‖ (ω) = |EL

Q‖ (z < z0, ω)|2/|E0
Q‖ (z, ω)|2.

The transmitted field is located behind the sample, that the
sign function becomes positive and propagates in the di-
rection z > 0, that the phase factor is exp ( − iκ (z − z0)).
The transmission coefficient is defined as tQ‖ (ω) = |ER

Q‖ (z >

z0, ω)|2/|E0
Q‖ (z, ω)|2 using the right propagating electric field

behind the sample [98,99].
Note that we exploited the two-dimensional nature of the

material to access an analytical solution of Maxwell’s equa-
tion for the propagating x-rays. However, an expansion to
three-dimensional bulk materials is possible: In order to ex-

pand the theory to three dimensions, the observable Eq. (19)
needs to be defined in three dimensions including the crystal
symmetry, i.e., PQ(t ). Subsequently, to define observables the
Maxwell equations need to be solved by applying additional
boundary conditions [100–102]. Here, x-ray propagation ef-
fects arise due to the finite sample thickness and the interface
needs to be treated carefully, tractable at least numerically.
The occurring propagation effects come from interactions be-
tween electronic resonances mediated by reemitted photons
in an optically thick sample. Propagation induced effects in
optically thick samples could be a pulse breakup or polariton
beating in case of strong light-matter coupling [103–105].
When the electronic excitations decay radiatively the reemit-
ted photon can propagate giving rise to partial reflections
[106,107].

A. Linear x-ray absorption

We rewrite the electric field as EQ‖+G‖ (z, ω) =
[KQ‖+G‖ ](z, ω)P2D

Q‖+G‖ (ω) + E0
Q‖+G‖ (z, ω) with the matrix

[KQ‖+G‖ ](z, ω) = e−iκ|z−z0|

2i

⎛
⎜⎜⎝

μ0ω
2

κ
− (Qx+Gx )2

ε0εκ
− (Qx+Gx )(Qy+Gy )

ε0εκ

Qx+Gx

ε0ε
sgn(z − z0)

− (Qy+Gy )(Qx+Gx )
ε0εκ

μ0ω
2

κ
− (Qy+Gy )2

ε0εκ

Qy+Gy
ε0ε

sgn(z − z0)
Qx+Gx

ε0ε
sgn(z − z0) Qy+Gy

ε0ε
sgn(z − z0) μ0ω

2

κ
− κ

ε0ε

⎞
⎟⎟⎠. (29)

Together with the definition of the macroscopic polarization Eq. (19) and the solution of the x-ray Bloch equations in frequency
space yields the identification of the susceptibility [χQ‖](ω). Here, in anisotropic media the susceptibility is a second rank tensor
since polarization and electric field may not be necessarily collinear anymore. Using the electric field Eqs. (27) and (28) at the
position z0 and applying the definition for P2D

Q‖+G‖ (ω) yields a self-consistent description of the electric field of the form

EQ‖+G‖ (z, ω) = ε0[KQ‖+G‖ ](z, ω)[χQ‖](ω)

⎡
⎢⎣11 − ε0

∑
G′

‖

[KQ‖+G′
‖ ](z0, ω)[χQ‖ ](ω)

⎤
⎥⎦

−1 ∑
G′′

‖

E0
Q‖+G′′

‖
(z0, ω) + E0

Q‖ (z, ω). (30)

Equation (30) describes the formation of the reflected and transmitted field as driven by the incident electric field E0
Q‖+G‖ (z, ω).

The occurring dielectric susceptibility is determined by the microscopic Bloch equations, calculated in Sec. III. For the reflected
and transmitted light the sign function and the phase factor in [KQ‖+G‖ ] has to be selected as discussed at the end of the last
section. We stress that the relation between x-ray wave vector and angle of incidence is Q2

‖ = ω2 sin2 θ/c2 obtained from the
linear light dispersion.

A complementary approach to include propagation effects is by inserting the field Eqs. (27) and (28) in the Bloch
equations (21). Here, besides Coulomb interaction as recombination channel included in the x-ray Bloch equations, a second
mechanism of dephasing is caused by radiative interaction: Conduction band electron and the core-hole recombine under the
emission of an x-ray photon. This process is included in the x-ray Bloch equation (21) via the self-consistently determined
electric field. This allows for a self-consistent description of the radiative dephasing in two-dimensional materials as a function
of the wave vector. Inserting the emitted electric field Eqs. (27) and (28) into Eq. (21) yields for the radiative contribution (for
simplicity here given without the incident field),

h̄ωpλ1λ2
k‖+Q‖,k‖ (ω)

∣∣
rad = −i

2εε0

∑
k′

‖,G‖

[
d‖λ2λ1

k‖,k‖+Q‖ (G‖)

(
1

κ

(
(Q‖ + G‖) ⊗ (Q‖ + G‖) − ε

ω2

c2

)
d‖λ1λ2

k′
‖+Q‖,k′

‖
(G‖) − (Q‖ + G‖)

×d⊥λ1λ2
k′

‖+Q‖,k′
‖
(G‖)

)
+ d⊥λ2λ1

k‖,k‖+Q‖ (G‖)

((
κ − εω2

κc2

)
d⊥

k′
‖+Q‖,k′

‖
(G‖) − (Q‖ + G‖) · d‖λ1λ2

k′
‖+Q‖,k′

‖
(G‖)

)]

× pλ1λ2
k′

‖+Q‖,k′
‖
(ω). (31)

The radiative interaction couples all x-ray induced transitions pλ1λ2
k‖+Q‖,k‖ to all others. This way, the Bloch equation fully

include the self-consistent light-matter interaction. To gain more insights in Eq. (31), we determine the main contribution to the
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dephasing from the diagonal dephasing k′
‖ = k‖. The diagonal radiative dephasing reads

γ rad
k‖,Q‖ = 1

2εε0

∑
G‖

[
− ε

ω2

c2
|d‖λ1λ2

k‖+Q‖,k‖ (G‖)|2 + 1

κ
d‖λ2λ1

k‖,k‖+Q‖ (G‖)(Q‖ + G‖) ⊗ (Q‖ + G‖)d‖λ1λ2
k‖+Q‖,k‖ (G‖)

+
(

κ − εω2

κc2

)∣∣d⊥λ1λ2
k‖+Q‖,k‖ (G‖)

∣∣2 − 2�e
(
(Q‖ + G‖) · d‖λ1λ2

k‖+Q‖,k‖ (G‖)d⊥λ1λ2
k‖,k‖+Q‖ (G‖)

)]
. (32)

For a vanishing Q‖ + G‖ (normal incidence) only the first
term of Eq. (32) survives. In accordance to a first-order per-
turbation theory, Eq. (32) resembles Fermi’s golden rule for
the radiative broadening and energy shifts, both, determined
by the square of the dipole matrix element.

To compare our result with the literature, the rate of sponta-
neous emission WX between an initial band λ and the 1s band
for atoms is calculated in dipole approximation by Fermi’s
golden rule [108],

WX ∝ ω3
∑
β, j

|〈1s, β, 1s, 0 | r | λ, β, j, 0〉|2 (33)

where ω stands for the transition energy between initial and
final state. While we find for the two-dimensional semicon-
ductor a ω dependence of the dephasing, cf. Eq. (32) with
inserted Q‖, for atoms a ω3 dependence is well known. The
difference originates from the different dimensionality of the
emitting systems. To connect our results to the existing lit-
erature we specify to the atomic case: Here, we can argue
that the electronic wave functions have strongly contributing
values only for |r| < aB/Z and we can roughly approximate
the transition integral to be proportional to Z−1. From Mose-
ley’s law [3], being an extension of the Rydberg formula,
we know that the transition energy ω is proportional to Z2.
Consequently, we see that the spontaneous K-shell emission
rate is proportional to Z4 [109]. It can be shown that for atoms
the Meitner-Auger yield WA is almost independent of the
effective nuclear charge [110]. A semi-empirical expression
for the x-ray yield is introduced in Ref. [111],

wX = WX

WX + WA
, (34)

which is proportional to Z4. Hence, for atomic systems
Meitner-Auger transitions offer higher sensitivity to core level
transitions for low Z and luminescence is more likely to
occur with increasing nuclear charge. The advantage of the
formalism presented here is that for radiative and Meitner-
Auger recombination, it might be possible to extent and
establish similar statements for crystalline solids. For ex-
ample, the luminescence yield can be calculated from the
time-integrated conduction band electron occupation, which
decays radiatively WX = ∑

k‖,Q‖ γ rad
k‖,Q‖ f c

k‖ . In a similar way
also the amount of nonradiatively decaying electrons can be
calculated from the microscopic scattering rates expressed by
the x-ray Bloch equations.

V. APPLICATION TO GRAPHENE

We apply the derived theory to the exemplary material
graphene [97,112]. Graphene is a monolayer of carbon atoms

in a two-dimensional honeycomb lattice. Carbon exhibits six
electrons with an electronic ground state configuration of
1s22s22p2. The 1s-electrons form the core bands, the 2s and
2p electrons are valence electrons and dominate the energy
dispersion around the Fermi level, which is set to 0 eV for
undoped graphene. The 2s and 2px/y electrons undergo a sp2

hybridization with one further electron in the 2pz orbital. The
in-plane hybridized electrons form the σ bands, which are
responsible for the in-plane covalent bonding between the
atoms. The 2pz electrons form the π bands [113].

Figure 5(a) illustrates the unit cell, spanned by the lattice
vectors a1 and a2, containing two atoms and constituting
the equivalent sublattices A and B, which are rotated with
respect to each other by π/3. The vectors RA‖ and RB‖ de-
note the position of the corresponding atoms obtained by
linear combination of the lattice vectors. In nearest-neighbor
approximation the constructed vectors δBA = RB‖i − RA‖ ≡ δi

FIG. 5. (a) Hexagonal lattice of graphene. Empty circles denote
the atoms on sublattice A and filled circles on sublattice B. The
vectors δi denote the nearest-neighbor vectors connecting atom A to
the three surrounding B atoms. (b) Electronic dispersion above the
Fermi level (grey dashed) and for orientation also the filled π band
below 0 eV . The light green curves show the π bands and the blue
curves show the σ bands. Dark green denotes the degenerate core
band and violet the ionization continuum for kz = 0.
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connect the atoms on sublattice A with the three surrounding
atoms on sublattice B, cf. Fig. 5(a). The six second nearest
next-neighbors are located on the same sublattice.

A. Band structure and dipole moments of graphene

The energy dispersion and corresponding tight binding co-
efficients are obtained from the Schrödinger equation Eq. (4)
[113], cf. Fig. 5(b), which also includes the correspond-
ing XANES and EXAFS transitions. The Hamiltonian of
graphene is symmetric with respect to the x-y plane. Conse-
quently, the π and σ bands decouple since the former have an
odd symmetry and the latter even with respect to the reflec-
tion. For the π bands we obtain analytically [114]

Eπ,k‖ = ±tπ |ξk‖ | (35)

with the positive solution describing the valence band and the
negative solution the conduction band formed of 2pz elec-
trons (tπ < 0). The shape of the band structure depends on
the lattice symmetry only, described by the nearest-neighbor
form factor ξk‖ = ∑

i exp(ik‖ · δi ). Here, for the analytical
treatment we neglected contributions from the overlap of
electronic orbitals, which is generally small and lead to an
asymmetry between the valence and conduction π band. Since
we include the full form factor ξk‖ without Taylor expan-
sion trigonal warping is included [115,116]. The electronic
hopping between 2pz orbitals from different lattice sites is
denoted by tπ . The band exhibits Dirac cone-like minima at
the K-points, saddle points at the M points and a maximum at
the � point, all included in Eq. (35). As discussed in Sec. II A,
the core dispersion is treated as a flat band Ei = −283 eV
[117] and the ionization continuum as a manifold of three-
dimensional parabolas. Because of the neglected hopping for
the core states between different sublattices the bonding and
antibonding core state are degenerate. The tight binding co-
efficients for π and 1s state read Cπ/1s

A2pz/1s,k‖ = ∓ξk‖/
√

2|ξk‖ |
and Cπ/1s

B2pz/1s,k‖ = 1/
√

2. In theoretical approaches focusing on
the response with respect to optical frequencies in the visible
range the orbital composition of graphene is restricted to the
2pz orbital, which governs the optical properties of graphene.
The reason for this approximation that only the K and M
points of the π bands lie energetically in the optical range of
the Fermi surface. However, in x-ray experiments the excita-
tion energy is tuned over several hundreds of eV. Therefore,
also states energetically further away from the Fermi level
have to be taken into account. The σ bands are obtained
by numerical diagonalization of the Schrödinger equation.
A spaghetti plot of the used band structure is displayed in
Fig. 5(b). Note, that for the numerical evaluation we focus
on an analytical 10-band tight-binding model as proof of
principle and as illustration of the approach. However, to
fully describe linear x-ray absorption experiments over sev-
eral hundreds of eV an accurate band structure beyond five
orbitals, as it appears in Eq. (19), from ab initio electronic
structure theory, as provided by density function theory (DFT)
calculations are necessary. In this paper we use the five-orbital
system as a toy model only. In the following, we will always
refer with π and σ to the unoccupied conduction band states.

With the tight-binding coefficients Cλ
jβ,k‖ we can calcu-

late the XANES dipole matrix element Eq. (16) for the
core-conduction band transitions. Since we are interested
in excited interband transitions the intraband contribution
is neglected. Restricting the next-neighbor sum to the first
nearest-neighbors we obtain in dipole approximation for the
K-edge dipole matrix elements

X1sλ
k‖+Q‖,k‖ = −e0

∑
α,β,i

C∗1s
β1s,k‖+Q‖C

λ
αi,k‖

× (〈1s, β, 1s, 0 | r | λ, α, i, 0〉 δα,β

+ eik‖·δβα 〈1s, β, 1s, 0 | r | λ, α, i, δβα〉). (36)

The dipole matrix element exhibits an on-site (first term)
and an off-site contribution (second term). The band λ = π

consists just of the i = 2pz orbital. The λ = σ band is built
by i = 2s, 2px, 2py orbitals. The off-site transition integral
between sublattices A and B can be calculated analytically
by transforming the integral to prolate spheroidal coordinates
helping to handle the two-center nature of the integral. The
calculation can be found in the Appendix H. Here, we briefly
present the result of the calculations: The z-polarized π tran-
sition depends only on the absolute value of the next-neighbor
vector, which is δi = 0.14 nm for the nearest-neighbors. The
corresponding integral has a value of

〈1s, A, 1s, 0 | r | π, B, 2pz, 0.14〉 =
⎛
⎝ 0

0
0.14

⎞
⎠pm. (37)

In contrast the transition into the σ bands are in-plane polar-
ized because of the mirror symmetry of the graphene plane.
The in-plane transitions are differently weighted for each
next-neighbor vector depending on its angular orientation ϑi

to the y axis, cf. Fig. 5(a). We find

〈1s, A, 1s, 0 | r | σ, B, 2px, δi〉

=
⎛
⎝ cos2 ϑi sin2 ϑi 0

sin ϑi cos ϑi − sin ϑi cos ϑi 0
0 0 1

⎞
⎠
⎛
⎝−0.12

0.14
0

⎞
⎠pm

〈1s, A, 1s, 0 | r | σ, B, 2py, δi〉

=
⎛
⎝sin ϑi cos ϑi − sin ϑi cos ϑi 0

sin2 ϑi cos2 ϑi 0
0 0 1

⎞
⎠
⎛
⎝−0.12

0.14
0

⎞
⎠pm.

(38)

In the δ → 0 limit the prolate spheroidal coordinates evolve
into the spherical coordinates. The on-site transitions for the
2px, 2py, and 2pz-integrals are purely x, y, and z-polarized,
respectively, and have the value of 4.00 pm . Finally, the 1s
to 2s transition does not contribute for vanishing connection
vector because of there even symmetry and the uneven parity
of the dipole vector. For the off-site transition we obtain

〈1s, A, 1s, 0 | r | σ, B, 2s, δi〉 = −0.5

⎛
⎝cos ϑi

sin ϑi

0

⎞
⎠pm. (39)

The result is negative because of the node of the 2s orbital.
Obviously, off-site transitions (δ �= 0) are smaller than on-site
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transition (δ = 0) integrals because of the small overlap of
the core orbital with other orbitals. The transition integral of
the EXAFS matrix element for 1s-electrons has already been
calculated in Eq. (18).

Next, we evaluate the x-ray Bloch equations. For a weak
x-ray excitation density we assume that the occupations
are unchanged by the optics corresponding spatially homo-
geneous system ( f λ

k1,k2
→ f λ

k1,k2
δk1,k2 ) and set the diagonal

occupation in initial and final band to one and zero, respec-
tively. Then, in linear optics, the solution of the microscopic
Bloch equation Eq. (21) reads, with dipole approximated ma-
trix element, in frequency space

pλ1λ2
k‖+Q‖,k‖ (ω) =

−∑
G‖ Xλ2λ1

k‖+Q‖,k‖ · EQ‖+G‖ (ω)

h̄ω − Eλ2
k‖ + Eλ1

k‖+Q‖ + iγ
(40)

pλkz

k‖+Q‖,k‖ (ω) =
−∑

G‖ Ykzλ

k‖+Q‖,k‖ · EQ‖+G‖ (ω)

h̄ω − Ekz

k‖ + Eλ
k‖+Q‖ + iγ

(41)

for the XANES and EXAFS transitions, respectively. The for-
mer equation describes absorption between two-dimensional
bands within the material (1s to conduction band) and the
latter yields the absorption of 1s to vacuum transitions.
Coulomb-induced renormalizations of the unexcited graphene
band gap are assumed to be included in the single-particle flat
band core binding energy E1s [117]. As a first attack, and as
experiments suggest, core-excitonic effects of graphene are
neglected in Eq. (40). This allows to illustrate the strength
of including the Bloch theorem in crystalline solids via a first
analytical approach Eqs. (40) and (41). Additionally, we intro-
duced a phenomenological dephasing constant γ attributing
to the finite lifetime of the electronic transition and leading
to a broadening of the absorption line. The radiative lifetime
for graphene is of a few picoseconds obtained from Eq. (32).
Different studies report a core-hole lifetime in graphite and
carbon-based molecules of around 10 fs [118–120]. However,
the formalism allows for a straightforward calculation of the
linewidth due to Coulomb interaction [cf. Eq. (22)] or phonon
scattering [121–123]. Together with the definition of the two-
dimensional macroscopic polarization, being proportional to
the electric field, we can identify the dyadic susceptibility

[χQ‖](ω) =
∑

λ1,λ2,k‖

Xλ1λ2
k‖,k‖+Q‖ ⊗ Xλ2λ1

k‖+Q‖,k‖

h̄ω − Eλ2
k‖ + Eλ1

k‖+Q‖ + iγ

+
∑

λ,k‖,kz

Yλkz

k‖,k‖+Q‖ ⊗ Ykzλ

k‖+Q‖,k‖

h̄ω − Ekz

k‖ + Eλ
k‖+Q‖ + iγ

(42)

with the dyadic product of the dipole matrix elements yielding
a 3 × 3 matrix. The XANES dipole matrix element Xλ2λ1

k‖+Q‖,k‖
is determined by Eq. (36) and the EXAFS matrix element
Yλkz

k‖,k‖+Q‖ by Eq. (18). The x-ray wave number and the exci-

tation frequency are related by the relation Q2
‖ = ω2 sin θ/c2,

where θ denotes the incident angle of the x-ray radiation and
c the speed of light in the surrounding medium (cp. Sec. IV).
Consequently, we perform no further approximation and in-
clude all Q‖ over the full range of the absorption spectrum.
With the susceptibility all quantities are known and the re-
sponse of the material to the weak excitation is investigated

FIG. 6. (a) XANES of graphene for different angles of incidence.
The first peak stems from absorption into the π bands, while the three
succeeding peaks are transitions into the σ bands. (b) The π peak as
extracted from the numerics shows a sin2 θ behavior. The deviation
at higher angles stems from the fact that we assumed an infinite thin
graphene layer.

by calculating the absorption. Therefore, we introduce with
the dipole approximated dipole matrix element the absorp-
tion coefficient as αQ‖ (ω) = 1 − rQ‖ (ω) − tQ‖ (ω) defined by
reflection rQ‖ and transmission tQ‖ . The reflection is defined
by the reflected intensity of the left propagating field in front
of the graphene sheet rQ‖ (ω) = IL

Q‖ (ω)/I0
Q‖ (ω) and the trans-

mission by the intensity of the right propagating electric field
behind the graphene sheet tQ‖ (ω) = IR

Q‖ (ω)/I0
Q‖ (ω).

B. X-ray spectrum of graphene

Due to the nonisotropic character of graphene, in the
susceptibility all possible components of the dipole matrix
element are coupled, which leads to a rather difficult expres-
sion for the absorption. We start by investigating the XANES
spectrum, i.e., the susceptibility in Eq. (42) is restricted to the
first line and calculating the absorption with Eq. (30). Fig-
ure 6(a) displays the calculated XANES spectrum of graphene
for different angles of incidence θ . The absorption starts at
283 eV corresponding to the binding energy of the core elec-
trons relative to the Fermi surface of graphene. The first peak
at 286 eV rises with increasing angle and stems from the
transition of 1s electrons into the π band close to the M point,
which exhibits a van Hove singularity due to a saddle point.
The following three peaks at 293 eV, 298 eV, and 303 eV stem
from transitions into the three σ bands and are decreasing with
angle of incidence. All four peaks are observed in experiments
for graphite [22,124] and graphene [125–127] and matches
with the here calculated energetic positions and spectral struc-
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FIG. 7. Comparison between the true absorption coefficient,
Fermi’s golden rule and experiment. Due to a weak x-ray-matter
interaction both calculated absorption curves are almost identical.
They reproduce the first four resonances of the experiment but miss
the plateau at higher energies since these electronic states are not
included in the numerical evaluation. The experimental curve is
adjusted in height to the calculated absorption spectrum.

ture. However, when comparing Fig. 6(a) to experiments
[22,124–127] a clear difference can be noticed (cp. green line
in Fig. 7): After the second peak a plateau in the absorption
spectrum is observed. This can be traced back to the point that
we limited our approach to orbitals up to the 2p orbitals (10
band approximation). Including more orbitals [128] leads to
a continuum of close lying bands and should form an almost
continuous absorption. At this point, we want to point out, that
the strength of the developed Bloch equation approach lies
in the description of self-consistent many-body interaction,
as introduced in Sec. III, and the description of nonlinear
optics occurring in ultrafast pump-probe type experiments as
attosecond transient absorption. The use of the tight binding
approach to calculate the band structure as input (as done
here for illustration) is not always sufficient (illustrated later
on in Fig. 7) but a connection of the Maxwell-x-ray Bloch
formalism developed here and more advanced DFT meth-
ods, as �SCF-DFT [129,130], for single-particle energies and
coupling elements should be applied to accurately predict x-
ray-matter interaction and nonlinear effects. In our first attack
here, the tight binding method is just used for illustration.

Figure 6(b) shows the peak height of the π peak as a func-
tion of the angle of incidence. We obtain that the absorption
follows a sin2 θ behavior before deviating from this trend at
about 50◦ : This polarization-dependent absorption can be ex-
plained by the symmetry of the orbital composition of the final
band as was already done in different theoretical and experi-
mental works [33,124,131,132]. Because of the out-of-plane
character of the 2pz orbital the dipole transition for the π peak
is z polarized, which greatly simplify the susceptibility tensor
since only one component remains nonzero. Consequently,
we can find an analytical expression for the absorption into
the π band. Without the loss of generality we assume for the
in-plane incidence angle zero degree, such that Qy = 0. Then
we obtain for small Q‖ for the absorption

αQ‖ (ω) =
�Q‖ (ω)�m

(
χ33

Q‖ (ω)
) − Q2

x
2ε

∣∣χ33
Q‖ (ω)

∣∣2∣∣1 − i
2�Q‖ (ω)χ33

Q‖ (ω)
∣∣2 (43)

with �Q‖ (ω) = ω2

c2κ
− κ

ε
and χ33

Q‖ (ω) as the zz entry of the
susceptibility tensor. The coefficient �Q‖ (ω) stems from the
matrix [KQ‖](ω) following from the Maxwell equations. In
particular, the denominator arises from the self-consistent
treatment of Maxwell and Bloch equations and includes
for instance the radiative coupling in the sample. The in-
plane light wave vector |Q‖|2, which is orthogonal to the
x-ray polarization vector of the incident light, is propor-
tional to sin2 θ . When inserting the definition for κ =√

εω2/c2 − |Q‖|2 and express the x-ray wave vector as func-
tion of the angle of incidence we obtain for the prefactor
�Q‖ = ω2 sin2 θ/εc2

√
ε − sin2 θ . Now, we explicitly observe

the sin2-dependence of the true absorption coefficient for the
π -transition. For a perpendicular irradiation of the sample
θ = 0◦ we see immediately that �Q‖ (ω) and Qx vanish and
consequently also the absorption vanishes as expected from
the z-polarized transition. The derived absorption formula di-
verges for an incident angle of θ = 90◦ in the case of ε = 1,
explaining the observed deviation in Fig. 6(b). That for ε > 1
the singularity does not explicitly appear anymore, suggests
that the origin lies in the assumption of an infinitely thin layer
in vacuum. The divergence can be lifted by starting with a
three layer model—supstrate, layer, substrate—all with finite
thickness and solve the Maxwell equation for each region
with corresponding continuity conditions [133]. In our case,
because of the weak x-ray matter interaction, the additional
denominator in Eq. (43) including the radiative coupling plays
only a minor role. We elaborate on this in the following.

In Fig. 7, we plot the 20◦-result from Fig. 6(a) and a
XANES measurement on graphene taken from Ref. [126]
(16◦). As discussed previously, we can see that the four res-
onances, which are explicitly calculated, reproduces well the
experiment, but that the plateau is missed due to the fail of the
restricted tight binding method (cp. above) applied in our ap-
proach. To evaluate the influence of x-ray propagation effects,
included in the denominator unequal to one in Eq. (43), we
plot the result obtained from Fermi’s golden rule, which ne-
glects propagation effects. To obtain Fermi’s golden rule, we
start from the x-ray Bloch equation Eq. (40) and carry out the
limit γ → 0. The intensity of a light field propagating though
a medium is damped by the imaginary part of the complex per-
mittivity [69]. Therefore, we can approximate the absorption
by α(ω) = ω�m(χ (ω))/cn = ω�m(P(ω)/E (ω))/ε0cn [69],
where we projected the polarization density on the polar-
ization vector and introduced the material refractive index
n. With the macroscopic polarization density we obtain an
expression for the absorption coefficient for mall Q‖ in terms
of Fermi’s golden rule

αQ‖ (ω) = ωπ

ε0cn

A

4π2

∑
λ

∫
d2k‖

∣∣X 1sλ
k‖+Q‖,k‖

∣∣2
× δ

(
Eλ

k‖ − E1s
k‖+Q‖ − h̄ω

)
, (44)

which we can fairly compare to the self-consistent result. In
Eq. (44) we transformed the k‖ sum into an integral with
area A. To have a fair comparison with our result, the delta
function is phenomenologically broadened by the same rate
γ as the x-ray Bloch equations. Figure 7 shows the result
of Fermi’s golden rule Eq. (44), which well reproduces the
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FIG. 8. X-ray absorption spectrum of graphene for 30◦ irradia-
tion. We obtain a dominating XANES contribution stemming from
transition between core and conduction bands. Also, the weaker
transitions into the ionization continuum, displayed in the inset,
are obtained. The absorption into the three-dimensional continuum
(grey dashed displays the joint density of states) is modulated by
oscillations with maxima at different energies.

self-consistent result: We see that the magnitude of the results
are comparable. The reason lies in the weak x-ray-matter
interaction. Differences between Fermi’s golden rule and the
true absorption can be expected, when non-Markovian effects
such as quantum kinetics of electron-phonon interactions (if
not included in Fermi’s golden rule) dominate the lineshape
or strong radiative interaction occurs in a way that the pertur-
bation approach of Eq. (44) breaks down. The latter can for
example occur for two-dimensional materials involving more
layers enhancing the light-matter interaction: For example,
taking ten two-dimensional sheets can lead to an increase
of the susceptibility by a factor of 10 [97]. Increasing the
susceptibility leads to a deviation of Fermi’s golden rule and
the true absorption [134]. In this case, the true absorption
becomes suppressed and accumulates an increased radiative
broadening, cf. Fig. 12 of the Appendix. Also the oscillator
strength can be distributed differently, due to lineshifts. Other
scenarios, where Fermi’s golden rule breaks down are x-ray
excitations of materials in a cavity or for materials, which
have an intrinsically stronger light-matter interaction. For the
latter nonlinear many-body effects can show up differently in
transmission and reflection geometry [135] and reflection is
not included in Fermi’s golden rule.

After investigating the XANES contribution, we compute
the full x-ray absorption spectrum by including also the EX-
AFS part, described by the second line of Eq. (42). The
ionization threshold is set artificially to the maximum of the
energetically highest lying σ band. Figure 8 shows the full
absorption spectrum (θ = 30◦) and for better visibility the
EXAFS part as inset, where the absorption involving the
three-dimensional electronic continuum of vacuum states as
final states can be observed. The absorption curve is modu-
lated with oscillations. For the particular situation plotted here
we recognize three maxima. Following the pioneering work
by Sayers et al. it is widely recognized that these wiggles
could be used to obtain quantitative information about the
spatial structure of the atomic lattice the x-rays are interact-
ing with. The current interpretation in literature is that these
oscillations stem from a modulation of the absorption cross

section due to interference of the x-ray waves between neigh-
boring atoms. In our approach, which is specifically developed
for crystalline solids, includes the full lattice symmetry by the
sum over reciprocal lattice vectors, we calculate the absorp-
tion using the susceptibility determined by the second line
of Eq. (42), which naturally includes the Bloch theorem. For
a constant EXAFS dipole matrix element the second line of
Eq. (42) summed over the electronic wave vectors describes a
square-root like absorption into the three-dimensional contin-
uum states of the vacuum electrons, cf. the grey dashed line of
Fig. 8 (inset). However, this simplified absorption line is mod-
ulated by the dyadic product of the EXAFS matrix elements,
cf. Eq. (42). The occurring form factor of the EXAFS matrix
element is abbreviated fn(k) = 8π iζ 3/2knên/(ζ 2 + (k)2)3, cf.
Eq. (18). Analytically we obtain for the squared dipole matrix
element Eq. (18) of the entry nm in the susceptibility tensor
Eq. (42),∣∣(C∗1s

A1s,k‖ + C∗1s
B1s,k‖

)∣∣2 fn(k) fm(k)

=
(

1 + 1

|ξk‖ |
∑

i

cos(k‖ · δi )

)
fn(k) fm(k) (45)

where we inserted the definitions for the tight binding coeffi-
cients, shown below Eq. (35). Similar to the work of Sayers,
in Eq. (45), bracket right hand side, we clearly find an os-
cillating behavior in k‖ with the lattice vector frequency δi

comparable to Eq. (2). Due to the small nuclear number, the
broadening of the form factor fn is that strong that fn is almost
constant, fn(k) ≡ fn. Therefore, the reciprocal lattice geome-
try is not resolved and its influence on αQ‖ (ω) is negligible.
Consequently, Eq. (45) is determined solely by the squared
tight binding coefficients (1 + ∑

i cos(k‖ · δi )/|ξk‖ |), which
are responsible for the cosine-like oscillations in Fig. 8. From
a physical point of view, the tight binding coefficients describe
the orbital contribution of a specific lattice site to the band
composition, cf. Eq. (15). Due to the lattice periodicity, the
tight binding coefficients are a function of the wave vector k‖,
which is determined by the lattice geometry. We can therefore
understand the absorption, summing over all wave vectors
[Eq. (42)] and proportional to Eq. (45), as showing the quan-
tum interference between orbital electronic wave functions,
which can be constructive or destructive depending on the sign
of the tight binding coefficients.

Summarizing this discussion, we can conclude that the
EXAFS oscillations stem from an interference of standing
electronic wave functions of the graphene sublattices A and
B, which are summed up in Eq. (45). The interference is a
spatially stationary property of the intrinsic electronic wave
function, and therefore it is independent of the x-ray excitation.
Since for EXAFS, the x-ray light has an excitation energy
higher than the threshold energy, the absorption coefficient
αQ‖ (ω) can be expressed as function of the wave number of
free electrons, i.e., with dispersion ω(k) = h̄k2/2m0 + EIon/h̄
as final states. To discuss the spatial interference in close
analogy to experiments, the absorption coefficient is Fourier
transformed

∫
d2k kmαQ‖(k‖ )(k‖) exp(ik‖ · r‖) to real space

with respect to the wave number. To increase the visibility
and access more conveniently the oscillations at higher k, the
absorption spectrum as function of wave number is multiplied
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FIG. 9. (a) Fourier amplitude of the EXAFS spectrum. The blue
curve includes only the first-nearest neighbor (nn). It peaks at the
first nearest-neighbor distance and its higher harmonics. The green
curve includes also the second and third-next neighbors. The peaks
stem from the first three neighbors (black) and interferences among
themselves (yellow). (b) Comparison of Bloch theory, experiment
(adapted from Ref. [22]) and point scattering theory [Eq. (47)].

by km with typically m ∈ [1, 2, 3] and Fourier transform sub-
sequently [136–138]. In the following we discuss the Fourier
transform of the absorption spectrum evaluated by our de-
scription, which involves the Bloch theorem for solid states:

The blue curve in Fig. 9(a) displays the Fourier amplitude
of the k (m = 1) weighted and background corrected EXAFS
spectrum [139] in first-neighbor approximation. The effective
radial distribution function clearly displays a peak at the dis-
tance of the first neighbor. The second peak at 0.28 nm lying
at twice of the first-nearest-neighbor distance originates from
the performed discrete Fourier transformation on a finite grid.

So far we have considered only the nearest-neighbor
hoppings for the calculation of the matrix elements. As
a result we obtain a peak at the first-neighbor distance.
However, calculating the matrix elements beyond the nearest-
neighbor approximation should add additional features to
the Fourier amplitude of the EXAFS, cf. Fig. 9(a) green
curve. To go beyond the nearest-neighbor hopping we intro-
duce the second ξ

(2)
k‖ = η2

∑9
i=4 exp(ik‖ · δi ) and third ξ

(3)
k‖ =

η3
∑12

i=10 exp(ik‖ · δi ) next-neighbor form factors. For the free
parameters of second and third next-neighbor hoppings we
reasonably choose η2 = 0.05 and η3 = 0.01, respectively:
The ratios of η2 and η3 with respect to the hopping parameter
to the nearest-neighbor are chosen such that they coincide
with the relative deviation of the hoppings between 2pz or-
bitals with increasing order of neighbors [140,141]. The peak
heights are uncertain under this assumption, but the peak
positions—which is the most important in our study—are
unaffected by that. The tight binding coefficients up to the

third neighbor hopping read

C1s
A1s,k‖ =

ξk‖ + ξ
(3)
k‖√

2
(∣∣ξk‖ + ξ

(3)
k‖

∣∣ + ξ
(2)
k‖

) , and C1s
B1s = 1√

2

(46)
and enter the matrix element, described by the first line of
Eq. (45), now including 12 neighbors instead of three.

The green line in Fig. 9(a) displays the effective radial dis-
tribution function including hoppings up to the third neighbor
coupling in the EXAFS matrix element. In contrast to the
calculation with first neighbor hopping (blue curve), we find
additional peaks at the second and third neighbor distance of
0.24 nm and 0.28 nm, respectively. Interestingly, since the
modulus square of the dipole matrix element is observed,
also peaks appear, which do not correspond to next neighbor
vectors, but do correspond to interferences of different next-
neighbor vectors. Exemplary, we obtain a peak at 0.38 nm
corresponding to the sum of the first and second-neighbor dis-
tance. Since 0.38 nm also correspond to the fourth-neighbor
hopping in graphene, this peak could also be interpreted as
the fourth neighbor in experiments. At 0.05 nm we can resolve
a peak, which arises from the difference of third and second
neighbor. So far, this peak has been explained as phase shift
stemming from a difference between measured and geometrical
interatomic distances and required a theoretical or experimen-
tal correction [31]. In contrast, in our approach, we show that
the peak can be interpreted as quantum interference between
electronic Bloch wave functions of first and second neigh-
bor. The slight sideband of the first nearest-neighbor peak
at 0.1 nm stems from the difference of the second and first
neighbor. Further, we observe a peak at 0.42 nm, which can
be understood as interference of the first with third neighbor.

To manifest our interpretation, in Fig. 9(b) we provide a
direct comparison of our full computational result up to the
third nearest-neighbor to experiment, adapted from Ref. [22],
and additionally display the outcome obtained from the point
scattering theory [14]. In point scattering theory the oscil-
latory part of the EXAFS is solely described by the matrix
element squared corresponding to Eq. (2). The Fourier trans-
form yields the structure-related function [14]

S(r) = 1

2

∑
i

Ni

σiR2
i

e−γ Ri e−2(r−Ri )2/σ 2
i (47)

displayed as dashed line in Fig. 9(b). The γ factor accounts
for the photoelectron scattering range and leads to an overall
decrease with increasing distance. The result is a sum of
Gaussian functions lying at the next-neighbor distances Ri.

The blue curve in Fig. 9(b) corresponds to the Fourier
transform of a measured EXAFS with an isolated soft x-ray
pulse produced by high harmonic generation. In the exper-
imental curve, the Fourier transformation the EXAFS data
were background corrected. This correction consists of an
approximation of the EXAFS data by an adjustable smooth
function, which represents the absorption coefficient without
neighboring atoms. The spline function is then subtracted
from the measured data. Details of the experiment are given
in the Appendix J. To have a fair comparison between the two
theories (point scattering and Bloch theorem based approach)
and the experiment we perform the same manipulations. Ad-
ditionally, we force the first neighbor peak to match the
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experimental one in height. The experimental curve in
Fig. 9(b) displays three major peaks: The first at 0.14 nm
reflects the first neighbor. The second peak around 0.26 nm
consists of a sum of second and third neighbor. The reason
that in the experiment the second and third neighbor peak
add to one spectral signature is that the momentum transfer
range of the measurement is limited, which smears out the
Fourier transformed peaks. We expect that this effect could
be minimized with a broader spectral range of the laser.
Lastly, the maximum at 0.38 nm can be interpreted as fourth
neighbor. All three peaks are well reproduced by our Bloch
as well as the point scattering theory. However, a close look
to the experiment reveals clear additional spectral features
around 0.05 nm and at 0.42 nm, both distances that do not
exist in the graphene lattice. While those spectral features
are absent in a point scattering theory, our theory reproduces
them in good agreement in position: Following the description
above, these features rely on the use of the Bloch theorem and
can be explained as quantum interference between electronic
Bloch wave functions. Although the interference peaks are
observed in experiment [22] they have not been discussed so
far. Moreover, the existing interpretation in literature is not
able to explain these spectral features, but a detailed solid-
state theory involving the full solid-state lattice symmetry is
required to interpret these features. Thus a first central result
of our approach is a solid-state generalization of Eq. (2).

Summarizing, the EXAFS oscillations are encoded in the
dipole matrix element, which modulate the square root-like
absorption line into the three-dimensional continuum. The
modulations can only be understood by a solid-state specific
theory that confirms the relation between the EXAFS oscilla-
tions and the local real space configuration of the crystalline
material [14]. However, these oscillations does not originate
from an interference of the x-ray waves but from quantum in-
terferences of electronic wave functions of neighbored atoms.

With the newly obtained insights, we want to finally sug-
gest a phenomenological modified fit formula for EXAFS
of crystalline solids. As we identified interference peaks, we
suggest to add to Eq. (2),

αk = S2
0

∑
i

Ni| fi|
kR2

i

e−γiRi

[
e−2σ 2

i k2
sin(2kRi )

+ S2
0

∑
j>i,±

Nj | f j |
kR2

j

e−γ j R j e−2σ 2
j k2

sin(2k|Ri ± Rj |)
]

(48)

where we abbreviated the finite lifetime of the photoelectron
by γ . In the newly added term, the j sum runs over all next-
neighbor orders higher than i. In the Appendix K, we calculate
the absolute square of the sum of the tight binding coefficients
Eq. (46), which support the inclusion of the interference peaks
in a form of the second line of Eq. (48). A Fourier transforma-
tion yields for the structure-related function

S(r) =
∑

i

Ni

σiR2
i

e−γiRi

[
e−2(r−Ri )2/σ 2

i

+
∑
j>i,±

Nj

σ jR2
j

e−γ j R j e−2(r−|Ri±Rj |)2/σ 2
j

]
(49)

FIG. 10. Comparison with the newly suggested fit formula. The
suggested expression for the structure-related function includes now
also the phenomenological phase shift peak and the peak at 0.42 nm
in addition to the true next-neighbor distances.

where the second summand now attributes for the interfer-
ence peaks. Figure 10 compares the original solution Eq. (47)
with the experiment and the solid-state specific suggestion
Eq. (49). For both fit functions we used the same parameters as
for Fig. 9. We see that we can now address also the phase shift
peak rising before the first neighbor and the peak at 0.42 nm .

VI. CONCLUSIONS

We have presented a self-consistent theory of Maxwell and
Bloch equations to describe x-ray absorption in crystalline
two-dimensional crystals by incorporating the Bloch theorem
and many-body effects. The occurring description develops
XANES, EXAFS, excitonic, core-hole, and nonlinear effects
as well as radiative and Meitner-Auger recombination out
of one Hamiltonian. As an example, we study the linear re-
sponse, where in-plane excited Bloch waves interfere in the
total susceptibility. Also, due to the interplay of the polar-
ization of the underlying electron transitions, we find a sig-
nificant dependence on the angle of the incident light, which
differs for different spectral regions. By this, we developed
a XANES description, which goes beyond the usually used
Fermi’s golden rule. We demonstrated that the XANES part
of the spectrum maps the density of states of bound electronic
states, whereas in the EXAFS substantial oscillations can be
found, which can be identified as transitions between different
atoms in the layer. Consequently, the Fourier transformed EX-
AFS spectrum exhibits peaks at the distances between atoms
of consecutive atomic sites and at sums or differences of them.
This corresponds to first microscopic insights to the origin
of these spectral oscillations in two-dimensional solid states.
Further, our approach assign so far overlooked peaks in the
Fourier transformed EXAFS spectrum.

The line broadening occurring in optical spectra is related
to the core-hole lifetime. Two prominent recombination mech-
anisms are radiative and Meitner-Auger recombination. The
radiative recombination can be described in a self-consistent
way by combining the wave equation and the microscopic
Bloch equation under consideration of the in-plane x-ray
wave vector. The Meitner-Auger contributions result straight-
forward from the Coulomb interactions within the Bloch
equation formalism. With this, we give an extension of the
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typical core-hole recombination channels in atomic systems
to solid states. The presented x-ray absorption theory for
two-dimensional materials can be straightforwardly expanded
to layered materials, by adjusting the definition of the two-
dimensional polarization by adding a layer index. The strength
of the developed method relies on its possibility to be com-
bined with ab initio electronic structure theory (DFT) to
explicitly calculate all input matrix elements.

So far for this paper, we focused on x-ray absorption
spectroscopy. An additional quantization of the electric field
yields a fully quantized light-matter Hamiltonian, which en-
ables the description of x-ray fluorescence. Further so far, the
absorption coefficient depends on the x-ray wave vector Q‖,
which equals the incident x-ray wave vector. However, inves-
tigating the absorption coefficient as a function of a different
x-ray wave vector Q′

‖ leaving the sample, would lead to the
possibility of investigating the absorption cross section addi-
tionally as function of the scattering angle as done for example
in resonant elastic or inelastic x-ray scattering (REXS or
RIXS) [63,142–144]. However, as pointed out for XANES
this requires a close connection with DFT methods for single-
particle energies to accurately describe the experiments.
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APPENDIX A: LIGHT-MATTER HAMILTONIAN
IN LENGTH GAUGE

The Lagrange function most generally used in classical
electrodynamics consists of the free Lagrangians for the mat-
ter, the electromagnetic field and an interaction Lagrangian.
In Coulomb gauge we obtain

L =
∑

i

1

2
miṙi(t ) + 1

2

∫
d3r (ε0(∂t A2(r, t )

− φ(r, t )�φ(r, t )) − 1

μ0
(∇ × A(r, t ))2)

+
∑

i

e0,iṙi(t ) · A(ri, t ) −
∑

i

e0,iφ(ri, t ). (A1)

For an ensemble of point charges i the charge density reads
ρ(r, t ) = ∑

i e0,iδ(r − ri(t )). Exploiting the Poisson equa-
tion and inserting the definition of the charge density we
obtain

L =
∑

i

miṙi(t )

2

+ 1

2

∫
d3r

(
ε0∂t A2(r, t ) − 1

μ0
(∇ × A(r, t ))2

)

− 1

2

∑
i

e0,iφ(ri(t ), t ) +
∑

i

e0,iṙi(t ) · A(ri(t ), t ). (A2)

The Euler-Lagrange equations are invariant under Gauge
transformation L′(r, ṙ, t ) = L(r, ṙ, t ) − d

dt F (r, t ). In the fol-
lowing we choose the gauge function F = ∑

i e0,iA(ri(t ), t ) ·
ri(t ) and abbreviate A(ri(t ), t ) ≡ Ai(t ). The derivative reads

d

dt
F =

∑
i

e0,i
(
∂t A(ri(t ), t ) · ri(t )

+ (
ṙ(t ) · ∇ri Ai

) · ri(t ) + Ai · ṙi
)
. (A3)

In the second term the velocity is inversely proportional to
the light wavelength 1/λ and the spatial electron distribution
is determined by the orbital spread aB/Z . Consequently, the
second term is proportional to ∝ aB

Zλ
� 1. This holds safely

up to x-ray light with energies of 2.5 keV . Therefore, in the
soft and beginning medium x-ray range the second term can
be dropped. This yields for the Lagrangian

L′ =
∑

i

miṙi

2
+ 1

2ε0

∑
i, j

e0,ie0, jG(ri, r j )

+ 1

2

∫
d3r

(
ε0Ȧ2 − 1

μ0
B2

)
−
∑

i

e0,iri · Ȧi(t ). (A4)

Calculating the canonical momenta we can derive the Hamil-
tonian

H =
∑

i

p2
i

2mi
− 1

2ε0

∑
i, j

e0,ie0, jG(ri − r j )

+ 1

2

∫
d3r

(
D2

ε0ε
+ B2

μ0

)
−
∑

i

e0,i
ri · Di

ε0ε

+ 1

2ε0ε

∑
i, j

e0,ie0, jri · r jδ(ri − r j ). (A5)

This Hamiltonian reproduces the Maxwell equations. Next,
we expand around the unit cells r‖ + R‖ and Taylor ex-
pand the Green’s function up to second order but neglecting
monopole-dipole interaction. Together with the displacement
field D = εε0E⊥ + P⊥ we obtain

H =
∑

i

p2
i

2mi
− 1

2ε0

∑
i, j

e0,ie0, jG(Ri − R j ) +
∑

i

Vlatt,i(ri )

−
∑

i

e0,iri ·
⎛
⎝E‖

i +
∑

j

e0, jr j · ∇RG(R)|R=Ri−R j

⎞
⎠.

(A6)
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In the first line we find the electron kinetic energy,
the Coulomb interaction and the lattice potential from
the ions. The light-matter interaction in the second
line consists of the longitudinal field E‖

i and the

transversal field E⊥
i = ∑

j e0, jr j · ∇RG(R)|R=Ri−R j that
the second line becomes the length gauge Hamiltonian
Hint = ∑

i e0,iri · E(ri, t ) with spatial dependent electric
field.

APPENDIX B: XANES MATRIX ELEMENT

1. Derivation

The general light-matter interaction Hamiltonian Eq. (8) with inserted Bloch functions for XANES yields

H = − e0

Alz

∑
λ,λ′

∑
k‖,k′

‖,Q‖

E−Q‖ (z0, t ) ·
∫

d3r e−ik‖·r‖u∗
λ,k‖ (r) r eiQ‖·r‖ eik′

‖·r‖uλ′,k′
‖ (r) a†

λ,k‖aλ′,k′
‖
. (B1)

Expanding the integral into a sum over elementary cells at the lattice vector Rn‖: r → rn + Rn‖ yields

H = − e0

Alz

∑
λ,λ′

∑
k′

‖,Q‖

E−Q‖ (z0, t ) ·
∑
Rn‖

ei(k′
‖+Q‖−k‖ )·Rn‖

∫
UC

d3r ei(k′
‖+Q‖−k‖ )·rn‖u∗

λ,k‖ (rn) rn uλ′,k′
‖ (rn) a†

λ,k‖aλ′,k′
‖

− e0

Alz

∑
λ,λ′

∑
k‖,k′

‖,Q‖

E−Q‖ (z0, t ) ·
∑
Rn‖

ei(k′
‖+Q‖−k‖ )·Rn‖Rn‖

∫
UC

d3r ei(k′
‖+Q‖−k‖ )·rn‖u∗

λ,k‖ (rn)uλ′,k′
‖ (rn) a†

λ,k‖aλ′,k′
‖

= − e0
N

Alz

∑
λ,λ′

∑
k′

‖,Q‖

E−Q‖ (z0, t ) ·
∑
G‖

∫
UC

d3r eiG‖·rn‖u∗
λ,k′

‖+Q‖−G‖ (rn) rn uλ′,k′
‖ (rn) a†

λ,k′
‖+Q‖−G‖

a
λ′,k′

‖

− i
e0

Alz

∑
λ,λ′

∑
k‖,k′

‖,Q‖

E−Q‖ (z0, t ) ·
∑
Rn‖

(∇k‖e
i(k′

‖+Q‖−k‖ )·Rn‖ )
∫

UC
d3r ei(k′

‖+Q‖−k‖ )·rn‖u∗
λ,k‖ (rn)uλ′,k′

‖ (rn) a†
λ,k‖aλ′,k′

‖

= − e0
N

Alz

∑
λ,λ′

∑
k′

‖,Q‖

E−Q‖ (z0, t ) ·
∑
G‖

∫
UC

d3r eiG‖·rn‖u∗
λ,k′

‖+Q‖−G‖ (rn) rn uλ′,k′
‖ (rn) a†

λ,k′
‖+Q‖−G‖

a
λ′,k′

‖

− ie0
N

Alz

∑
λ,λ′

∑
k‖,k′

‖,Q‖

E−Q‖ (z0, t ) ·
∑
G‖

(∇k‖δk′
‖+Q‖−k‖,G‖ )

∫
UC

d3r ei(k′
‖+Q‖−k‖ )·rn‖u∗

λ,k‖ (rn)uλ′,k′
‖ (rn) a†

λ,k‖aλ′,k′
‖
. (B2)

Writing the k‖ sum as integral and transforming the Kronecker delta to a delta function, we can exploit the product rule to obtain

H = − e0
N

Alz

∑
λ,λ′

∑
k‖,k′

‖,Q‖

E−Q‖ (z0, t ) ·
∑
G‖

∫
UC

d3r eiG‖·rn‖u∗
λ,k′

‖+Q‖−G‖ (rn) rn uλ′,k′
‖ (rn) a†

λ,k′
‖+Q‖−G‖

a
λ′,k′

‖

− ie0
N

Alz

∑
λ,λ′

k′
‖,Q‖,G‖

E−Q‖ (z0, t ) ·
∫

d2k ∇k‖

(
δ(k′

‖ + Q‖ − k‖ − G‖)
∫

UC
d3r ei(k′

‖+Q‖−k‖ )·rn‖u∗
λ,k‖ (rn)uλ′,k′

‖ (rn)a†
λ,k‖aλ′,k′

‖

)

+ ie0
N

Alz

∑
λ,λ′

k′
‖,Q‖,G‖

E−Q‖ (z0, t ) ·
∫

d2k δ(k′
‖ + Q‖ − k‖ − G‖)

∫
UC

d3r (∇k‖e
i(k′

‖+Q‖−k‖ )·rn‖ )u∗
λ,k‖ (rn)uλ′,k′

‖ (rn) a†
λ,k‖aλ′,k′

‖

+ ie0
N

Alz

∑
λ,λ′

k′
‖,Q‖,G‖

E−Q‖ (z0, t ) ·
∫

d2k δ(k′
‖ + Q‖ − k‖ − G‖)

∫
UC

d3r ei(k′
‖+Q‖−k‖ )·rn‖ (∇k‖u

∗
λ,k‖ (rn))uλ′,k′

‖ (rn) a†
λ,k‖aλ′,k′

‖

+ ie0
N

Alz

∑
λ,λ′

k′
‖,Q‖,G‖

E−Q‖ (z0, t ) ·
∫

d2k δ(k′
‖ + Q‖ − k‖ − G‖)

∫
UC

d3r ei(k′
‖+Q‖−k‖ )·rn‖u∗

λ,k‖ (rn)uλ′,k′
‖ (rn)(∇k‖a

†
λ,k‖ )a

λ′,k′
‖
.

(B3)
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The second line vanishes at the boundaries. The in-plane component of the first line cancels with the third line. The results read

H = ie0
N

Alz

∑
λ,λ′

∑
k′

‖,Q‖

E−Q‖ (z0, t ) ·
∑
G‖

∫
UC

d3r eiG‖·rn‖

((∇k′
‖+Q‖−G‖

iz

)
u∗

λ,k′
‖+Q‖−G‖ (rn)

)
uλ′,k′

‖ (rn) a†
λ,k′

‖+Q‖−G‖
a

λ′,k′
‖

+ ie0
N

Alz

∑
λ,λ′

∑
k′

‖,Q‖

E−Q‖ (z0, t ) ·
∑
G‖

∫
UC

d3r eiG‖·rn‖u∗
λ,k′

‖+Q‖−G‖ (rn)uλ′,k′
‖ (rn)(∇k′

‖+Q‖−G‖a
†
k′

‖+Q‖−G‖
)ak′

‖
. (B4)

Exploiting the periodicity of the Bloch factors in reciprocal space and their orthogonality yields the XANES Hamiltonian

H =
∑
λ,λ′

∑
k′

‖,Q‖

E−Q‖ (z0, t ) ·
∑
G‖

ie0

VUC

[∫
UC

d3r eiG‖·rn‖

((∇k′
‖+Q‖−G‖

iz

)
u∗

λ,k′
‖+Q‖−G‖ (rn)

)
uλ′,k′

‖ (rn)

+VUCδλ,λ′∇k′
‖+Q‖−G‖

]
a†

λ,k′
‖+Q‖−G‖

a
λ′,k′

‖
. (B5)

with the unit-cell volume VUC = V/N . Replacing Q‖ by Q‖ + G‖ yields the result from the main text.

2. XANES oscillations

In the main text, we discuss the oscillations observed in the EXAFS absorption coefficient, which are encoded in the dipole
matrix element. In a same way, we can discuss possible oscillations encoded in the XANES matrix element. For XANES
excitations the tight binding coefficients of the initial and final states are multiplied and the XANES dipole matrix element
consists of a sum of on-site and off-site contributions, cf. Eq. (36) of the main text: In the case of diagonal transitions, where
k1 = k2 = k‖, the lattice geometry-dependent phase cancels for the on-site contribution due to the product of the tight binding
coefficients. However, the off-site contribution still carries a phase with included lattice geometry: −X1sπ

k‖,k‖ = don(|ξk‖ | + 1)/2 +
doff

∑
i cos(k‖ · δi )/|ξk‖ |, where don and doff stand for the on-site and off-site dipole transition integrals occurring in Eq. (36).

In the case of nondiagonal transitions even for the on-site contribution the phase is nonvanishing. However, due to the k-space
restriction of the first Brillouin zone, the bandwidth is not large enough that the oscillating behavior of the phase becomes visible
in the absorption spectrum. This is different for the ionization continuum since it lacks the translational invariance of the lattice.

APPENDIX C: EXAFS MATRIX ELEMENT

Inserting the Bloch and orthogonalized plane wave, shifting the integral into the first unit cell and summing over all

H = − e0

V

∑
λ,k‖,k′,Q‖

E−Q‖ (z0, t ) ·
∑
Rn‖

ei(k′
‖−k‖+Q‖ )·Rn‖

∫
UC

d3r ei(k′
‖−k‖+Q‖ )·rn‖eikzz rn u∗

λ,k‖ (rn) a†
λ,k‖ak′

− e0

V

∑
λ,k‖,k′,Q‖

E−Q‖ (z0, t ) ·
∑
Rn‖

ei(k′
‖−k‖+Q‖ )·Rn‖Rn‖

∫
UC

d3r ei(k′
‖−k‖+Q‖ )·rn‖eikzzu∗

λ,k‖ (rn) a†
λ,k‖ak′

+ e0

V

∑
λ,k‖,k′,Q‖

E−Q‖ (z0, t ) ·
∑
λ′

ηλ′k′
‖

∑
Rn‖

ei(k′
‖−k‖+Q‖ )·Rn‖

∫
UC

d3r ei(k′
‖−k‖+Q‖ )·rn‖u∗

λ,k‖ (rn) rn uλ′,k′
‖ (rn) a†

λ,k‖ak′

+ e0

V

∑
λ,k‖,k′,Q‖

E−Q‖ (z0, t ) ·
∑
λ′

ηλ′k′
‖

∑
Rn‖

ei(k′
‖−k‖+Q‖ )·Rn‖Rn‖

∫
UC

d3r ei(k′
‖−k‖+Q‖ )·rn‖u∗

λ,k‖ (rn)uλ′,k′
‖ (rn) a†

λ,k‖ak′ + H.c. (C1)

Executing the lattice sum and following the procedure of the XANES matrix element, we write the Kronecker delta as delta
function and use the product rule. This yields

H = −
∑

λ,k′,Q‖

E−Q‖ (z0, t ) ·
∑
G‖

e0

VUC

∫
d3r eiG‖·rn‖eikzz

(−i∇k′
‖+Q‖−G‖
z

)
u∗

λ,k′
‖+Q‖−G‖ (rn) a†

λ,k′
‖+Q‖−G‖

ak′

+
∑

λ,k′,Q‖

E−Q‖ (z0, t ) ·
∑
λ′

ηλ′,k

∑
G‖

e0

VUC

∫
d3r eiG‖·rn‖uλ′,k′

‖ (rn)

(−i∇k′
‖+Q‖−G‖
z

)
u∗

λ,k′
‖+Q‖−G‖ (rn) a†

λ,k′
‖+Q‖−G‖

ak′

+
∑

λ,k′,Q‖

E−Q‖ (z0, t ) ·
∑
G‖

ie0

VUC

∫
d3r

(
eiG‖·rn‖eikzz −

∑
λ′

ηλ′keiG‖·rn‖uλ′,k′
‖ (rn)

)

× u∗
λ,k′

‖+Q‖−G‖ (rn)∇k′
‖+Q‖−G‖a

†
λ,k′

‖+Q‖−G‖
ak′ + H.c. (C2)
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The orthogonalized plane waves are by definition orthogonal to the Bloch states. Since the Bloch states lie all below the ionization
threshold the last line vanishes. The first line describes a transition into the plane wave state and the second line stems from the
orthogonalization corresponding to the interband XANES matrix element. Replacing Q‖ by Q‖ + G‖ yield the result from the
main text.

The EXAFS dipole matrix element reads with tight binding wave functions

Yλkz

k‖,k′
‖
= − e0√

NV

∑
j,β

∑
Q‖

Cλ
β j,k‖

∑
Rβ‖

e−ik‖·Rβ‖
∫

d3r φ j (r − Rβ ) reiQ‖·r‖eik′ ·r +
∑
λ′

ηλ′k′Xλλ′
k‖,k′

‖
. (C3)

When shifting the integral into the first unit cell r → r + Rβ‖ the contribution of the second summand vanishes because the
orthogonalized plane waves are orthogonal to the tight binding wave functions by definition. We obtain

Yλkz

k‖,k′
‖
= − e0√

NV

∑
j,β

Cλ
β j,k‖

∑
Rβ‖

ei(k′
‖−k‖+Q‖ )·Rβ‖

∫
d3r φ j (rβ ) rβeiQ‖·rβ‖ eik′ ·rβ +

∑
λ′

ηλk′Xλλ′
k‖,k′

‖
(C4)

and

Yλkz

k‖,k‖−Q‖+G‖ =
∑
λ′

ηλ′k−Q‖+G‖X
λλ′(inter)
k‖,k‖−Q‖+G‖ − e0√

VUC

∑
j,β

Cλ
β j,k‖

∫
d3r φ j (rβ ) rβ ei(k+G‖ )·rβ . (C5)

We replace Q‖ by Q‖ + G‖, and, since in the Hamiltonian we sum over k‖, shift k‖ → k‖ + Q‖ to obtain the result from the
main text,

Yλkz

k‖+Q‖,k‖ (G‖) = − e0√
VUC

∑
j,β

Cλ
β j,k‖+Q‖

∫
d3r φ j (rβ ) rβ ei(k+Q‖−G‖ )·rβ +

∑
λ′

ηλ′kXλλ′(inter)
k‖+Q‖,k‖ (G‖). (C6)

Next, we calculate the remaining integral for j = 1s. We substitute k + Q‖ − G‖ = p and write

I(p) =
∫

d3r φ1s(rβ ) rβ eip·rβ . (C7)

In spherical coordinates we can substitute for the x component sin ϑ cos ϕ = −√
2π/3(Y11(ϑ, ϕ) − Y1−1(ϑ, ϕ)), for the y

component sin ϑ sin ϕ = i
√

2π/3(Y11(ϑ, ϕ) + Y1−1(ϑ, ϕ)) and for the z component cos ϑ = √
4π/3Y10(ϑ, ϕ). We calculate

exemplary the z component,

Iz = 8π√
3
ζ 3/2

∫
dr r3e−ζ r

∑
l

l∑
m=−l

il jl (pr)Ylm(θ, φ)
∫∫

dϑdϕ sin ϑ Y ∗
l ′m′ (ϑ, ϕ)Y ∗

lm(ϑ, ϕ)

= 8π√
3
ζ 3/2

∫
dr r3e−ζ r

∑
l

l∑
m=−l

(−1)mil jl (pr)Ylm(θ, φ)
∫∫

dϑdϕ sin ϑ Y ∗
l ′m′ (ϑ, ϕ)Ylm(ϑ, ϕ)

= 8π√
3
ζ 3/2il ′Yl ′m′ (θ, φ)

∫
dr r3 jl ′ (pr)e−ζ r (C8)

where we exploited in the last step the orthogonality of the spherical harmonics. Next, we insert l ′ = 1 and m′ = 0,

Iz = 8π√
3
ζ 3/2iY10(θ, φ)

∫
dr r3 j1(pr)e−ζ r = 8π√

3
ζ 3/2iY10(θ, φ)

8ζ p

(ζ 2 + p2)3
= 32

√
πζ 5/2i

kz

(ζ 2 + (k + Q‖ − G‖)2)3 . (C9)

The x and y components can be obtained analogously.

APPENDIX D: ON-SITE TRANSITION INTEGRAL BEYOND THE DIPOLE APPROXIMATION

Here, we calculate the z polarized on-site optical transition between 1s and 2pz orbital beyond the electric dipole approxima-
tion,

μ(Q‖) =
∫

d3r φ1s(rβ )zφ2pz (rβ )eiQ‖·rβ‖ . (D1)

For reasons of simplicity, we drop the index β. First, we extend the integral into the third dimension.
Writing φ1s(r)z = φ1s(r, ϑ, ϕ)r cos ϑ = R̃21(r)Y10(ϑ, ϕ) with R̃21(r) = √

4/3ζ 3/2r exp(−ζ r) and using exp(iQ · r) =
4π

∑∞
l=0

∑l
m=−l il jl (Qr)Y ∗

lm(θ, φ)Ylm(ϑ, ϕ) we obtain generally

μ = 4π

∫ ∞

0

∫ π

0

∫ 2π

0
drdϑdϕ r2 sin ϑ

∞∑
l=0

l∑
m=−l

il jl (Qr)Rn1l1 (r)Rn2l2 (r)Y ∗
l1m1

(ϑ, ϕ)Yl2m2 (ϑ, ϕ)Y ∗
lm(ϑ, ϕ)Ylm(θ, φ), (D2)
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where θ and φ are the polar and azimuth angles of the light wave vector. The angular integral � =∫∫
dϑdϕ sin ϑY ∗

l1m1
(ϑ, ϕ)Yl2m2 (ϑ, ϕ)Y ∗

lm(ϑ, ϕ) yields

� =
∫∫

dϑdϕ sin ϑY ∗
lm(ϑ, ϕ)

l1+l2∑
L=|l1−l2|

L∑
M=−L

√
(2l1 + 1)(2l2 + 1)(2L + 1)

4π

[
l1 l2 L
0 0 0

][
l1 l2 L
m1 m2 M

]
Y ∗

LM (ϑ, ϕ)

=
∫∫

dϑdϕ sin ϑ (−1)mYl,−m(ϑ, ϕ)
l1+l2∑

L=|l1−l2|

L∑
M=−L

√
(2l1 + 1)(2l2 + 1)(2L + 1)

4π

[
l1 l2 L
0 0 0

][
l1 l2 L
m1 m2 M

]
Y ∗

LM (ϑ, ϕ)

= (−1)m2
∑

L=|l1−l2|

√
(2L + 1)(2l1 + 1)(2l2 + 1)

4π

[
l1 l2 L
0 0 0

][
l1 l2 L
m1 m2 m1 − m2

]
δl,Lδm,m2−m1 (D3)

where we used the orthogonality of the spherical harmonics and the Wigner 3j symbols. We have now

μ(Q, θ, φ) = (−1)m2

l1+l2∑
L=|l1−l2|

√
(2L + 1)(2l1 + 1)(2l2 + 1)

[
l1 l2 L
0 0 0

][
l1 l2 L
m1 m2 m1 − m2

]
IL(Q)YL,m2−m1 (θ, φ) (D4)

with

IL(Q) = iL8
√

π
(ζ1ζ2)3/2

n2
1n2

2

√
(n1 − l1 − 1)!(n1 + l1)!(n2 − l2 − 1)!(n2 + n2)!

×
n1−l1−1∑

s1=0

n2−l2−1∑
s2=0

(−1)s1+s2 (2ζ1/n1)l1+s1 (2ζ2/n2)l2+s2 ILω(γ , Q)

s1!(n1 − l1 − s1 − 1)!(s1 + 2l1 + 1)!s2!(n2 − l2 − s2 − 1)!(s2 + 2l2 + 1)!
(D5)

with inserted radial functions and

ILω(γ , Q) =
∫ ∞

0
dr rω+2e−γ r jL(Qr) =

√
π

2Q

�(L + ω + 3)

(γ 2 + Q2)(ω+5/2)/2
P−(L+1/2)

ω+3/2 [γ (γ 2 + Q2)−1/2] (D6)

where Pμ
ν (x) stands for the associated Legendre polynomial, γ = ζ1/n1 + ζ2/n2 and ω = l1 + s1 + l2 + s2 � L. Now, we have

to insert the wave functions for the 2pz orbitals φ2pz = R21(r)Y10(ϑ, ϕ) and obtain

μ = 1

2
√

π
(I0(Q) + (3 cos2 θ − 1)I2(Q))

with I0(Q) =
√

π

12
(ζ1ζ2)5/2I02(ζ1/2 + ζ2/2, Q) (D7)

and I2(Q) = −
√

π

12
(ζ1ζ2)5/2I22(ζ1/2 + ζ2/2, Q).

Note that ζ1 = 2Z/aB = 2ζ and ζ2 = Z/aB = ζ . We find

μ = 3

2

(2ζ 2)5/2ζ
(( 3ζ

2

)2 + Q2
)4

(
9

4
ζ 2 − 2Q2 − 3Q2 cos(2θ )

)
. (D8)

Going back to the two-dimensional case θ = π/2 and multiplying with a constant N = 4
√

6π/(3ζ ) we obtain finally

μ(Q‖) = 16
√

3πζ 5(( 3ζ

2

)2 + Q2
‖
)3 . (D9)

APPENDIX E: SPATIAL HOMOGENEOUS X-RAY BLOCH EQUATIONS

This section contains a more detailed discussion of the physics encoded by the x-ray Bloch equations in the Hartree-Fock
limit. In the following we will discuss different contributions to the x-ray Bloch equations. We start from Eq. (20) of the main
text, taking only the free kinetic energy and Coulomb contribution into account,

ih̄
d

dt
pλ1λ2

k1,k2
= (

Eλ2
k2

− Eλ1
k1

)
pλ1λ2

k1,k2
+

∑
λa,λb,λc
ka,kb,kc

(
V λ2λaλbλc

k2,ka,kb,kc
− V λ2λaλcλb

k2,ka,kc,kb

)
σ

λaλc
ka,kc

σ
λ1λb
k1,kb

−
∑

λa,λb,λc
ka,kb,kc

(
V λaλbλcλ1

ka,kb,kc,k1
− V λbλaλcλ1

kb,ka,kc,k1

)
σ

λbλc
kb,kc

σ
λaλ2
ka,k2

.

(E1)
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The equation of motion contains the Coulomb matrix element and a general transition amplitude σ
λaλb
ka,kb

= 〈a†
λa,ka

aλb,kb
〉. When

carrying out the band sums, different Coulomb sources can be identified, where the physical interpretation of some shall be
discussed in the following.

1. Energy renormalization

When carrying out the band sum, exploiting the momentum selection rules discussed in the main text under neglection of the
reciprocal lattice vector, and renaming the momentum indices, we find one contribution of the form

ih̄
d

dt
pλ1λ2

k1,k2
= (

Eλ2
k2

− Eλ1
k1

)
pλ1λ2

k1,k2
+

∑
k′

‖,q‖

(
V λ1λ1λ1λ1

k1+q‖,k′
‖,k

′
‖+q‖,k1

f λ1
k1+q‖,k′

‖+q‖
pλ1λ2

k′
‖,k2

− V λ2λ2λ2λ2
k2,k′

‖−q‖,k′
‖,k2−q‖

f λ2
k′

‖−q‖,k2−q‖
pλ1λ2

k1,k′
‖

)
(E2)

with the electron occupation f λ
k = 〈a†

λ,ka
λ,k〉. For a spatial homogeneous system, we can assume that k′

‖ = k1 in the first term
and k′

‖ = k2 in the second term. This yields

ih̄
d

dt
pλ1λ2

k1,k2
= (

Eλ2
k2

− Eλ1
k1

)
pλ1λ2

k1,k2
+
∑

q‖

(
V λ1λ1λ1λ1

k1+q‖,k1,k1+q‖,k1
f λ1
k1+q‖,k1+q‖ − V λ2λ2λ2λ2

k2,k2−q‖,k2,k2−q‖ f λ2
k2−q‖,k2−q‖

)
pλ1λ2

k1,k2
. (E3)

Now, we can easily see that this contributions corresponds to an energy renormalization of the single-particle energies, which is
sometimes also known as core-hole effect.

2. Core excitons

Next, we discuss the appearance of excitons. With the same steps as before the x-ray Bloch equations contain also

ih̄
d

dt
pλ1λ2

k1,k2
= (

Eλ2
k2

− Eλ1
k1

)
pλ1λ2

k1,k2
+

∑
k′

‖,q‖

(
V λ1λ2λ2λ1

k1+q‖,k′
‖,k

′
‖+q‖,k1

f λ2
k′

‖,k2
pλ1λ2

k1+q,k′
‖+q − V λ2λ1λ1λ2

k2,k′
‖−q‖,k′

‖,k2−q‖
f λ1
k1,k′

‖
pλ1λ2

k′
‖−q‖,k2−q‖

)
. (E4)

Again, we assume a spatial homogeneous system, which yields k′
‖ = k2 for the first term and k′

‖ = k1 for the second terms. The
x-ray Bloch equations including an exciting electric field E(t ) read

ih̄
d

dt
pλ1λ2

k1,k2
= (

Eλ2
k2

− Eλ1
k1

)
pλ1λ2

k1,k2
+ (

f λ1
k1

− f λ2
k2

)⎛⎝E(t ) · dλ2λ1
k1,k2

−
∑

q‖

V λ1λ2λ2λ1
k1+q‖,k2,k2+q‖,k1

pλ1λ2
k1+q‖,k2+q‖

⎞
⎠, (E5)

with dipole matrix element dλ2λ1
k1,k2

. We see how the Coulomb contribution acts as a renormalization of the Rabi frequency. We can
identify a generalized Wannier equation describing the binding energy and wave function of excitons. For that we introduce the
center-of-mass momentum Q = k2 − k1. In the new coordinate system we can use the generalized Wannier equation [145,146]

Eμ

Qϕ
μ

k2
(Q) = (

ε
λ2
k2

− ε
λ1
k2−Q

)
ϕ

μ

k2
(Q) − (

f λ1
k2−Q − f λ2

k2

)∑
q‖

Vk2,Q,q‖ϕ
μ
q‖ (Q), (E6)

where ϕ
μ

k2
(Q) and Eμ

Q denote the exciton wave function amplitude and exciton dispersion of state μ, respectively. By these
means the attractive electron-core-hole Coulomb interaction can be directly diagonalized and the x-ray Bloch equations can be
expressed in terms of excitons.

APPENDIX F: COULOMB MATRIX ELEMENT

The Hamiltonian reads

H =
∑

λ1,λ2,λ3,λ4
k1,k2,k3,k4

∫∫
d3rd3r′ ψ

∗λ1
k1

(r)ψ∗λ2
k2

(r′)V (r − r′)ψλ3
k3

(r′)ψ∗λ4
k4

(r)a†λ1
k1

a†λ2
k2

a†λ3
k3

a†λ4
k4

= 1

A2l2
z

∑
λ1,λ2,λ3,λ4
k1,k2,k3,k4

∫∫
d3rd3r′ ei(k4−k1 )·r‖ei(k3−k2 )·r′

‖u∗
λ1,k1

(r)u∗
λ2,k2

(r′)V (r − r′)u
λ3,k3

(r′)u
λ4,k4

(r)a†λ1
k1

a†λ2
k2

a†λ3
k3

a†λ4
k4

. (F1)
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Next, we Fourier transform the Coulomb potential V (r − r′) = ∑
q‖ Vq‖ (z)eiq‖·(r‖−r′

‖ ). Inserting and shifting the integral into the
first unit-cell yields

H = 1

A2l2
z

∑
λ1,λ2,λ3,λ4
k1,k2,k3,k4

∑
Rn,R′

n

ei(k4−k1+q‖ )·Rn ei(k3−k2−q‖ )·R′
n

∫
UC

∫
UC

d3rd3r′ ei(k4−k1+q‖ )·r‖ei(k3−k2−q‖ )·r′
‖

× u∗
λ1,k1

(r)u∗
λ2,k2

(r′)Vq‖ (z)u
λ3,k3

(r′)u
λ4,k4

(r)a†λ1
k1

a†λ2
k2

a†λ3
k3

a†λ4
k4

, (F2)

where we already used the periodicity of the Bloch functions. Next, we evaluate the lattice vector sums, which lead to the
momentum selection rules mentioned in the main text,

H =
∑

λ1,λ2,λ3,λ4
k1,k2,k3,k4

N2

A2l2
z

∑
G‖,G′

‖

δk4−k1+q‖,G‖δk3−k2−q‖,G′
‖

∫
UC

∫
UC

d3rd3r′ ei(k4−k1+q‖ )·r‖ei(k3−k2−q‖ )·r′
‖

× u∗
λ1,k1

(r)u∗
λ2,k2

(r′)Vq‖ (z)uλ3,k3
(r′)uλ4,k4

(r)a†λ1
k1

a†λ2
k2

a†λ3
k3

a†λ4
k4

=
∑

λ1,λ2,λ3,λ4
k3,k4

N2

A2l2
z

∑
G‖,G′

‖

∫
UC

∫
UC

d3rd3r′ eiG·r‖eiG′ ·r′
‖

× u∗
λ1,k4+q‖−G‖ (r)u∗

λ2,k3−q‖+G′
‖
(r′)Vq‖ (z)uλ3,k3

(r′)uλ4,k4
(r)a†λ1

k4+q‖−G‖a
†λ2
k3−q‖−G′

‖
a†λ3

k3
a†λ4

k4

=
∑

λ1,λ2,λ3,λ4
k3,k4

∑
G‖,G′

‖

V λ1λ2λ3λ4
k3,k4,q‖,G‖,G′

‖
a†λ1

k4+q‖−G‖a
†λ2
k3−q‖−G′

‖
a†λ3

k3
a†λ4

k4
, (F3)

where we named the Coulomb matrix element V λ1λ2λ3λ4
k3,k4,q‖,G‖,G′

‖
.

APPENDIX G: SCATTERING RATES

Here, we show the Coulomb-induced scattering rates

�in
λ,kλ,k = π

h̄

∑
λa,λb,λc
ka,kb,kc
kA,kB,kC

V (λkλ )(λaka )
(λbkb)(λckc )Ṽ

(λbkA )(λckB )
(λk)(λakC )

(
δka,kC − f λa

ka,kC

)
f λb
kA,kb

f λc
kB,kc

δ
(
Eλ

k + Eλa
kC

− Eλc
kB

− Eλb
kA

)
, (G1)

�out
λ,kλ,k = π

h̄

∑
λa,λb,λc
ka,kb,kc
kA,kB,kC

V (λkλ )(λaka )
(λbkb)(λckc )Ṽ

(λbkA )(λckB )
(λk)(λakC ) f λa

ka,kC

(
δkB,kc − f λc

kB,kc

)(
δkA,kb − f λb

kA,kb

)
δ
(
Eλ

k + Eλa
kC

− Eλc
kB

− Eλb
kA

)
, (G2)

and

Vμν

k1,k2,q,p = π

h̄

∑
λb,λc

kA,kB,kD
kb,kc

∑
λ={λ1,λ2}

Ṽ (λ2kA )(λckB )
(νp)(λbkD ) Ṽ (μq)(λbkD )

(λ1k1 )(λckB )

[
f λ
kλ,kA

(
δkb,kD − f λb

kb,kD

)
f λc
kB,kc

+ (
δkA,k2 − f λ

kA,k2

)(
δkB,kc − f λc

kB,kc

)
f λb
kb,kD

]
δ
(
Eλ

kA
+ σλ

μEλ
q/p − Eλb

kD
+ Eλc

kB

)
− π

h̄

∑
λb,λc

kA,kB,kD
kb,kc

∑
λ={λ1,λ2}

V (λ2k2 )(μq)
(λbkb)(λckc )Ṽ

(λbkA )(λckB )
(λ1kD )(νp)

[
f λb
kA,kb

(
δkλ,kD − f λ

kλ,kD

)
f λc
kB,kc

+ (
δkA,kb − f λb

kA,kb

)(
δkB,kc − f λc

kB,kc

)
f λ
kλ,kD

]
δ
(
Eλ

kD
+ σλ

μEλ
q/p − Eλb

kA
− Eλc

kB

)
, (G3)

with σλ
μ = 1 if λ = μ and otherwise σλ

μ = −1 and with q/p if λ = λ1/λ2. The Coulomb matrix element is defined by V AB
CD =∫∫

d3rd3r′ 
∗
A(r)
∗

B(r′)V (r − r′)
C (r)
D(r′) using compound indices, for example, A = (λA, kA) and the Coulomb potential
V (r − r′). Further, the used abbreviation in the scattering rates reads Ṽ AB

CD = V AB
CD − V BA

CD .
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APPENDIX H: OFF-SITE TRANSITION INTEGRALS IN DIPOLE APPROXIMATION

We start by calculating the 1s-2pz transition,

μ =
∫

d3r φ1s

⎛
⎝x

y
z

⎞
⎠ r φ2pz

⎛
⎝x − δ cos ϑ

y − δ sin ϑ

z

⎞
⎠. (H1)

First, we shift the dipole moment between the atoms of sublattice A and B by r → r − δ/2

μ =
∫

d3r φ1s(r)

⎛
⎜⎝

x − δ
2 cos ϑ

y − δ
2 sin ϑ

z

⎞
⎟⎠ φ2pz

⎛
⎝x − δ cos ϑ

y − δ sin ϑ

z

⎞
⎠. (H2)

Then, we rotate the coordinate system in direction of δ and shift x′ → x′ + δ/2, where the prime indicates the new coordinate
system. We obtain

μ =
∫

d3r φ1s

⎛
⎝
(
x′ + δ

2

)
cos ϑ − y′ sin ϑ(

x′ + δ
2

)
sin ϑ + y′ cos ϑ

z

⎞
⎠
⎛
⎜⎝

x′ cos ϑ − y′ sin ϑ

x′ sin ϑ + y′ cos ϑ

z

⎞
⎟⎠ φ2pz

⎛
⎜⎝
(
x′ − δ

2

)
cos ϑ − y′ sin ϑ(

x′ − δ
2

)
sin ϑ + y′ cos ϑ

z

⎞
⎟⎠. (H3)

From here, we define the radii r1 = [(x′ − δ
2 )2 + y′2 + z′2]1/2 and r2 = [(x′ + δ

2 )2 + y′2 + z′2]1/2. Then, we introduce the
prolate spheroidal coordinates ξ = (r1 + r2)/δ and η = (r1 − r2)/δ. This yields r1 = δ

2 (ξ + η) and r2 = δ
2 (ξ − η). Now

φ(ξ, η) is defined. For our coordinate system, the cartesian coordinates as function of prolate spheroidal coordinates are
z = δ

2

√
(ξ 2 − 1)(1 − η2) cos φ, y = δ

2

√
(ξ 2 − 1)(1 − η2) sin φ and x = δ

2ξη. Inserting the hydrogen-type orbitals we see that
the angle-integral eliminates the x and y components. The z component of the integral reads in prolate spheroidal coordinates

μz = N1sN2pz

(
δ

2

)5 ∫ ∞

1

∫ 1

−1

∫ 2π

0
dξdηdφ (ξ 2 − η2)e−ζ1sδ(ξ−η)/2e−ζ2pδ(ξ+η)/4(ξ 2 − 1)(1 − η2) cos2 φ

= N1sN2pz

(
δ

2

)5

π

∫ ∞

1

∫ 1

−1
dξdη (ξ 2 − η2)e−ζ1sδ(ξ−η)/2e−ζ2pδ(ξ+η)/4(ξ 2 − 1)(1 − η2) (H4)

where N1s and N2pz are the normalization constants of the hydrogen-like orbitals. The left integral is only a sum of integrals
consisting of a product of exponential and polynomial functions, which can easily be evaluated. We find

μ =
⎛
⎝ 0

0
0.14

⎞
⎠pm. (H5)

After having shown the concept, we evaluate also the 1s-2px integral. The first steps are identical. We shift the dipole moment
into the center of the atoms, rotate the coordinate system and introduce prolate spheroidal coordinates. We end up with

μ = N1sN2px

∫∫∫ 2π

0
dξdηdφ

(
δ

2

)3

(ξ 2 − η2)e−ζ1sδ(ξ−η)/2e−ζ2pδ(ξ+η)/4

×

⎛
⎜⎜⎝

δ
2ξη cos ϑ − δ

2

√
(ξ 2 − 1)(1 − η2) sin φ sin ϑ

δ
2ξη sin ϑ + δ

2

√
(ξ 2 − 1)(1 − η2) sin φ cos ϑ

δ
2

√
(ξ 2 − 1)(1 − η2) cos φ

⎞
⎟⎟⎠

×
[(

δ

2
ξη − δ

2

)
cos ϑ − δ

2

√
(ξ 2 − 1)(1 − η2) sin φ sin ϑ

]

= N1sN2p

(
δ

2

)5

π

∫ ∞

1

∫ 1

−1
dξdη (ξ 2 − η2)e−ζ1sδ(ξ−η)/2e−ζ2pδ(ξ+η)/4

×
⎛
⎝ 2ξη(ξη − 1) cos2 ϑ + (ξ 2 − 1)(1 − η2) sin2 ϑ

2ξη(ξη − 1) sin ϑ cos ϑ − (ξ 2 − 1)(1 − η2) sin ϑ cos ϑ

0

⎞
⎠. (H6)
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Alternatively, we can write

μ = N1sN2p

(
δ

2

)5

π

⎛
⎝ cos2 ϑ sin2 ϑ 0

cos ϑ sin ϑ − sin ϑ cos ϑ 0
0 0 1

⎞
⎠∫ ∞

1

×
∫ 1

−1
dξdη (ξ 2 − η2)e−ζ1sδ(ξ−η)/2e−ζ2pδ(ξ+η)/4

⎛
⎝ 2ξη(ξη − 1)

(ξ 2 − 1)(1 − η2)
0

⎞
⎠. (H7)

The last two integrals can again easily be evaluate, yielding
the result Eq. (38). The integrals involving the 2s and 2py can
be calculated analogously. Figure 11 displays the transition
integral from 1s to 2pz as function of x-ray wave number Q‖.
Considerable changes of the transition integral start at an x-ray
energy of about 5.4 keV suggesting the appliocability of the
dipole approximation in the soft x-ray regime.

APPENDIX I: SELF-CONSISTENT ABSORPTION AND
FERMI’S GOLDEN RULE

Figure 12 compared the true absorption obtained from
coupled Maxwell-x-ray Bloch equations with Fermi’s golden
rule. Fermi’s golden rule treats the optical field as unmodified
external field by solving the x-ray Bloch equations without
coupling to the wave equation. From a self-consistent solu-
tion, as shown in the main text, we obtain linear transmission
and reflection spectra from which the coefficients can be
calculated. They tell us how the self-consistent light-matter in-
teraction transforms the linear susceptibility. From Fig. 12(a)
we see that for weak coupling, that Fermi’s golden rule pre-
dicts well the true absorption and is a valid approximation. A
different situation holds for strong light-matter coupling, cf.
Fig. 12(b). Here, we multiplied the susceptibility by a factor of
10. Fermi’s golden rule is just rescaled by this factor. In con-
trast, the true absorption gets suppressed and broadens due to
the additional radiative broadening implicitly included in the
reflection and transmission coefficients. A similar effect can
be observed for example for exciton absorption in quantum
wells or wires [147]. Also the oscillator strength is differently
distributed over the four peaks.

FIG. 11. Transition integral 1s → 2pz as a function of Q‖. A
change of the transition strength of 10% happens at Q‖ = 30 nm−1

corresponding to an excitation energy of 5.4 keV . Around this
energy lies also the transition from soft to medium x rays. This
suggests the applicability of the dipole approximation for soft x ray.

APPENDIX J: EXPERIMENTAL DETAILS

The experiment consists of a simultaneous measurement
of XANES and EXAFS with an isolated soft x-ray pulse
produced by high harmonic generation. The used pulses pro-
vide the ultrafast temporal resolution combined with a broad
spectral coverage to access core-level transitions. Such op-
tical tabletop sources are only available since short times
[148,149]. The measured absorbance is determined by the
measured transmitted intensity through graphite and substrate
and normalized to the transmitted intensity of bare substrate.
Due to the low reflectivity the transmission can directly be
converted to absorption. The absorption is pre-edge corrected,
normalized and background corrected before being converted
from energy to wave number scale. Subsequently, the mag-
nitude of the Fourier transform of kαk is determined using
a Hanning window function to minimize the effects of data
truncation. The background correction consists of an approx-
imation of the EXAFS data by an adjustable smooth function,
which represents the absorption coefficient without neighbor-
ing atoms. The spline function is then subtracted from the
measured data.

APPENDIX K: EXAFS MATRIX ELEMENT UP TO THIRD
NEXT-NEIGHBOR ORDER

To motivate the suggestion for our adjusted fit formula, we
have a closer look at the EXAFS matrix element now with
tight binding coefficients including three next neighbors. We
insert their definition into |C1s

A1s,k‖ + C1s
B1s,k‖ |2 and find∣∣∣∣∣∣

1√
2

ξk‖ + ξ
(3)
k‖∣∣ξk‖ + ξ

(3)
k‖

∣∣ + ξ
(2)
k‖

+ 1√
2

∣∣∣∣∣∣
2

= 1

2
+ 1

2

ξk‖ + ξ
(3)
k‖∣∣ξk‖ + ξ

(3)
k‖

∣∣ + ξ
(2)
k‖

+ 1

2

ξ ∗
k‖ + ξ

(3)∗
k‖∣∣ξk‖ + ξ

(3)
k‖

∣∣ + ξ
(2)∗
k‖

+1

2

ξk‖ + ξ
(3)
k‖∣∣ξk‖ + ξ

(3)
k‖

∣∣ + ξ
(2)
k‖

·
ξ ∗

k‖ + ξ
(3)∗
k‖∣∣ξk‖ + ξ

(3)
k‖

∣∣ + ξ
(2)∗
k‖

= 1

2
+ �e

⎛
⎝ ξk‖ + ξ

(3)
k‖∣∣ξk‖ + ξ

(3)
k‖

∣∣ + ξ
(2)
k‖

⎞
⎠

+
|ξk‖ |2/2 + ∣∣ξ (3)

k‖

∣∣2/2 + �e
(
ξk‖ξ

(3)∗
k‖

)
∣∣ξk‖ + ξ

(3)
k‖

∣∣2 + ∣∣ξ (2)
k‖

∣∣2 + 2�e
(
ξ

(2)
k‖

)∣∣ξk‖ + ξ
(3)
k‖

∣∣ .
(K1)
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FIG. 12. Comparison of the true x-ray absorption with Fermi’s golden rule, which does not include radiative coupling. (a) For weak
light-matter interaction Fermi’s golden rule predicts well the absorption. (b) In contrast, for strong interaction (here susceptibility is multiplied
by 10. Alternatively, the dephasing could be set close to the radiative dephasing) the true absorption gets suppressed and broadens such that
Fermi’s golden rule is not a good approximation anymore.

In the following we have an exemplary closer look at the second term. For simplicity, we assume only one dimension and
assume one nearest-neighbor δ1, one second next-neighbor δ2, and one third next-neighbor δ3. The next-neighbor form factors
read ξ

(1/2/3)
k = exp(ikδ1/2/3). The second term reads

�e

(
ξk + ξ

(3)
k∣∣ξk + ξ

(3)
k

∣∣ + ξ
(2)
k

)
= 1

[2 cos(k(δ1 − δ3)/2) + cos(δ2k)]2 + sin2(δ2k)
(cos (k(δ1 − δ3)) + cos (k(δ1 + δ3))

+2 cos(δ1k)2 cos (k(δ1 − δ3)/2) + sin (k(δ1 − δ3)) + sin (k(δ1 + δ3))), (K2)

where we can already see the type of interference peaks, which we included to the fit formula.
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