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Reversible to irreversible (R-IR) transitions arise in numerous periodically driven collectively interacting
systems that, after a certain number of driving cycles, organize into a reversible state where the particle
trajectories repeat during every or every few cycles. On the irreversible side of the transition, the motion is
chaotic. R-IR transitions were first systematically studied for periodically sheared dilute colloids, and have now
been found in a wide variety of both soft and hard matter periodically driven systems, including amorphous
solids, crystals, vortices in type-II superconductors, and magnetic textures. It has been shown that in several
of these systems, the transition to a reversible state is an absorbing phase transition with a critical divergence
in the organization timescale at the transition. The same systems are capable of storing multiple memories and
may exhibit return point memory. We give an overview of R-IR transitions including recent advances in the
field and discuss how the general framework of R-IR transitions could be applied to a much broader class of
nonequilibrium systems in which periodic driving occurs, including not only soft and hard condensed matter
systems, but also astrophysics, biological systems, and social systems. In particular, some likely candidate
systems are commensurate-incommensurate states, systems exhibiting hysteresis or avalanches, nonequilibrium
pattern forming states, and other systems with absorbing phase transitions. Periodic driving could be applied to
hard condensed matter systems to see if organization into reversible states occurs for metal-insulator transitions,
semiconductors, electron glasses, electron nematics, cold atom systems, or Bose-Einstein condensates. R-IR
transitions could also be examined in dynamical systems where synchronization or phase locking occurs. We
also discuss the possibility of using complex periodic driving, such as changing drive directions or using multiple
frequencies, to determine whether these systems can still organize to reversible states or retain complex multiple
memories. Finally, we describe features of classical and quantum time crystals that could suggest the occurrence
of R-IR transitions in these systems.
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I. INTRODUCTION

Driven many-body deterministic nonlinear systems gen-
erally exhibit disordered or chaotic dynamics, as found
in turbulence [1], particle flow over disordered media [2],
plasmas [3], sheared materials [4,5], granular matter [6],
earthquakes [7], gravitational systems [8], and biological sys-
tems [9]. Chaotic dynamics can arise even in systems with
only three degrees of freedom [10,11] so it can be expected
that driven many-body disordered systems with hundreds or
thousands of degrees of freedom will generally exhibit fluc-
tuating or chaotic dynamics. Recently, a growing number of
many-body systems have been shown to exhibit a transition
from time periodic or reversible motion to chaotic irreversible
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motion under oscillatory driving [12–26]. In these studies,
the particle positions are compared from one driving cycle to
the next. In the chaotic phase, the particles do not return to the
same positions and undergo diffusive motion away from the
initial positions over many driving cycles. For certain driving
amplitudes or system parameters, however, the particles can
organize over many cycles into a reversible state in which they
return to the same positions after every or every few cycles,
and the long time diffusive behavior is lost.

Reversible behavior in viscosity-dominated flows was fa-
mously demonstrated by G. I. Taylor [27] using a two cylinder
setup in which the inner cylinder is rotated multiple times
and then rotated back. Pine et al. used the same shearing
geometry and viscous fluid as Taylor but considered the case
where there are additional colloidal particles in the fluid that
can collide with each other, so that any irreversible behav-
ior would be due to the particle collisions rather than the
fluid itself [12]. Periodically sheared dilute colloidal parti-
cle experiments allow for the systematic study of transitions
from irreversible to reversible motion in many-body systems.
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Pine et al. showed that there is a critical strain amplitude
below which the steady-state behavior is reversible and above
which the behavior becomes diffusive or irreversible. The col-
loids are in a viscous fluid and are large enough that thermal
effects are negligible; since they are also electrically neutral,
the only interactions capable of producing an irreversible
state are contact forces between the colloids during collisions.
During the initial shear cycles, particles move by different
amounts and some particles collide with one another. In a
steady irreversible state, collisions occur during each cycle
and cause the particles to wander away from their initial
positions in a Brownian-like diffusion, where the distances
traveled along the shear direction 〈x2〉 and perpendicular to
the shear direction 〈z2〉 increase linearly with time.

In further work, Corté et al. [13] studied the number of
drive cycles required for the system to reach a reversible state
from a randomized initial state. They introduced a simple toy
model for particles that either do not overlap or undergo a
stochastic collision process. The stochastic rule is partially
motivated by experimental studies [28] showing that even
for collisions of just two colloidal particles in a shear flow,
there is a stochastic element due to the roughness of the
particle surfaces. In the model Corté et al. use, during the first
cycles the motion is chaotic, but after many cycles the sys-
tem may organize to a state where collisions are absent. The
number of transient cycles nτ spent reaching the reversible
state diverges as a power law nτ = |γ − γc|−ν , where γc is a
critical shear amplitude [13]. A similar divergence can occur
for fixed γ and increasing density, where there is a critical
density φc below which the system organizes to a reversible
state and above which it is in an irreversible state [13]. This
critical behavior suggests that the transition to the reversible
state is a nonequilibrium phase transition, and the observed
exponents β = 0.45(2) and ν‖ = 1.33(2) are similar to the
critical exponents of the two-dimensional directed percola-
tion (DP) universality class [29], namely, β = 0.584(4) and
ν‖ = 1.295(6). Although extensive theoretical studies of DP
transitions have been performed, clear observations of these
transitions in experimental systems have only been obtained
relatively recently [30–32]. A related universality class is
conserved direction percolation (CDP), which has exponents
very similar to those of DP [29,33], so it is an open question
whether the dilute systems are in the DP or CDP universality
class. Some works suggest that CDP could be more relevant
for different driving protocols [34,35].

Since R-IR transitions were first observed in dilute
systems, it might seem reasonable to imagine that these tran-
sitions only arise under specialized circumstances where the
interactions are of sufficiently short range or the system is
sufficiently dilute that it is possible to reach a state where
collisions never occur. This would imply that it would be
difficult to find reversible states in disordered strongly coupled
systems where the particles are always in contact or where
long-range interactions are relevant; however, R-IR transitions
have in fact been observed for periodically driven granular
systems [17] where the particles are always in contact as well
as for vortices in type-II superconductors [14,24] at densities
for which the vortices are strongly interacting. One of the most
extensively studied strongly interacting systems exhibiting
an IR-R transition is periodically sheared amorphous solids

[15,16,18,19,21,23,25,36–38]. Here the particles or atoms are
always in contact and long-range strain fields are present. Re-
versible behavior is expected to occur in solids when the strain
amplitude is small so that the system behaves completely elas-
tically; however, the R-IR transitions in the amorphous solids
appear well into regimes where strong plastic deformations
occur and the particles are exchanging neighbors. In general,
in strongly coupled systems, the particle trajectories during re-
versible states show more complex loops or return to the same
position not after every drive cycle but after multiple drive
cycles, such as in examples where the motion repeats every
six cycles [16,21,38,39]. Plasticity is thought to be an inher-
ently irreversible process; however, these works indicate that
it is possible for plastically deforming reversible regimes to
emerge, suggesting that similar transitions to reversible states
could arise in many other strongly coupled systems. One
example is the work of Keim et al. [18] in which individual
reversible plastic events were observed experimentally. There
have now been several other studies of many-body interact-
ing systems undergoing IR-R transitions including crystals
[40], systems with quenched disorder [14,24,41], chiral active
matter [42,43], skyrmions [44], and magnetic materials [45].
Additionally, it has been shown that in the reversible phase,
the system can be trained to store multiple memories [20,37].
In this case, the system can retain a memory of the deforma-
tion amplitude applied under periodic cycling in the form of a
dip that appears in the response to a dc drive that is swept up
from zero. For a dilute system, such memories would be stored
in particular spatial arrangements of the particle locations,
whereas in dense systems, the memories could take the form
of particular arrangements of plastically deforming regions.

In this paper, we give an overview of work on reversible-
irreversible transitions in both dilute and strongly coupled
systems, and discuss how ideas about R-IR transitions could
be more broadly applied to other areas including polymeric
soft matter, pattern forming systems, and frictional systems.
The R-IR transition could be induced via global driving such
as a shear or external field, or via local driving such as the peri-
odic motion of a local probe. We also discuss classes of active
matter systems that could exhibit R-IR transitions in the limit
where thermal effects are negligible but the activity can be
treated as periodic. Most existing studies involved a periodic
drive applied in a single direction at one frequency; how-
ever, much more complicated periodic drives could be applied
with multiple frequencies or changing directions, opening a
new area of investigation. Such systems might organize to
more complex reversible states and could retain a memory
of past drive protocols as the driving is changed from more
to less complex. We also discuss possible applications of
R-IR transitions to a wider number of hard condensed mat-
ter systems under periodic driving, including metal-insulator
systems, charge ordering systems, Bose-Einstein condensates,
superfluids, sliding charge density waves, Wigner crystals,
systems showing nonlinear transitions, classical time crystals,
and numerous magnetic textures including magnetic domain
walls and magnetic bubbles. These types of systems can be
subjected to numerous forms of periodic driving, such as elec-
tric currents, magnetic fields, or optical excitations. The most
promising quantum systems for observing R-IR transitions
are the time crystals [46], which already show a number of
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FIG. 1. A schematic of the system studied by Pine et al. [12],
consisting of a dilute suspension of colloids (black disks) subjected
to periodic shearing. Arrows indicate the shearing direction. In
(a) and (b), the system is in the dilute limit, and the comparison of
the starting (black) and ending (red) positions of the particles shown
in (c) indicates reversible behavior. In (d) and (e), the system is in
the dense limit, the particles collide repeatedly under shear, and the
image of starting and ending positions in (f) indicates the occurrence
of irreversible motion.

features consistent with a transition from a chaotic state to a
time periodic state. There is also a broader class of nonlin-
ear coupled systems such as coupled oscillators or networks
that have been shown to exhibit synchronization and phase
locking effects [47,48] and nonequilibrium pattern formation
[49]. Synchronization effects can occur in many-body cou-
pled systems when the many degrees of freedom become
coupled so that the response looks like that of a few body
system, and we argue that such transitions could be viewed
as R-IR transitions, suggesting that these systems could
also be candidates for exhibiting transitions into absorbing
states.

II. SHEARED SYSTEMS

The dilute colloid experiments performed by Pine et al.
[12] showing an irreversible to reversible transition inspired
a variety of studies that tested for similar behavior in
other many-body systems under periodic driving. In Fig. 1,
representative configurations show the situation in the re-
versible versus irreversible steady states for systems with low
[Fig. 1(a)] and high [Fig. 1(b)] colloid densities subject to the
same amplitude of shearing. Comparison of the starting (black
dots) and ending (red dots) positions of the particles, shown in
Figs. 1(c) and 1(f) for the two densities, reveals that the motion
is reversible in the low density system where collisions do
not occur and irreversible in the higher density system where
collisions are ongoing. Here, in “reversible” motion all of the
particles return to their previous positions after the shearing
deformation is reversed, while for “irreversible” motion this is
not the case. Figure 2(a) shows the experimentally measured
particle positions from Ref. [12] at the end of each cycle over
multiple cycles in the irreversible regime. Here the dynamics
is Brownian-like, and the particles gradually diffuse away

FIG. 2. (a) Particle trajectories measured experimentally for the
sheared colloid system in Ref. [12] in the irreversible or chaotic
regime. (b) The corresponding mean square particle displacements
in the direction parallel, 〈x2〉 (filled squares), and perpendicular, 〈z2〉
(open squares), to the drive, showing diffusive motion. Reprinted by
permission from Springer Nature, D. J. Pine et al. [12].

from their initial positions. In Fig. 2(b), the corresponding
measured mean square displacement 〈x2〉 in the direction of
drive versus accumulated stain increases linearly as expected
for Brownian motion. The displacement 〈z2〉 in the direction
perpendicular to the drive shows the same scaling but with a
smaller prefactor.

In general, for any random initial condition in sheared
colloidal systems, during the first few cycles the particles do
not return to their original positions after each cycle. Instead,
over time the particles either organize to a reversible state
or remain in an irreversible state. Corté et al. [13] used a
combination of simulation and experiments to further explore
the system studied by Pine et al. [12] and applied different
strain amplitudes to identify the manner in which the system
reaches a steady irreversible or reversible state. Figures 3(a)
and 3(b) show the positions of the active particles, or particles
that did not return to their original positions after each cycle,
for a simulation of two-dimensional (2D) sheared hard disks
at two different strain amplitudes of γ0 = 3.0 [Fig. 3(a)] and
γ0 = 2.0 [Fig. 3(b)] [13]. At the end of the first shear cycle,
there are numerous active particles in each case, but over time
the system reaches a steady state that is either irreversible
with a finite number of active particles, as shown for γ0 = 3.0
in Fig. 3(a), or reversible with no active particles, as shown
for γ0 = 2.0 in Fig. 3(b). A time series of the fraction of
active particles as a function of shear cycle number appears
in Fig. 3(c) for the same two strain amplitudes. After 2500
cycles, there are no active particles remaining in the γ0 = 2.0
sample, but the activity in the γ0 = 3.0 sample plateaus at
a finite steady-state value where about 39% of the particles
remain active. The inset in Fig. 3(c) shows the steady-state
active particle fraction versus strain amplitude, indicating that
there is a transition from irreversible (active) to reversible
(nonactive) behavior near a critical strain of γ c

0 = 2.66.
By fitting the curves in Fig. 3(c) to a stretched exponential,

Corté et al. [13] obtained the mean time τ required to reach
a steady reversible or irreversible state, plotted in Fig. 4 as a
function of strain amplitude γ0. At the critical amplitude γ c

0 ,
τ diverges as a power law according to

τ ∝ ∣∣γ0 − γ c
0

∣∣−ν
. (1)

In the 2D simulations, it was found that ν ≈ 1.33 on both
sides of the transition, while the three-dimensional (3D)
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FIG. 3. [(a) and (b)] Snapshots from simulations in Ref. [13] of a
hard disk model of the experiments in Fig. 2 as a function of time for
different strain amplitudes γ0. Black disks are moving irreversibly
between cycles and open disks are returning to the same position
between cycles. (a) γ0 = 3 in the irreversible regime. (b) γ0 = 2
in the reversible regime. (c) For the same system, the fraction of
particles that are active (moving irreversibly) in each cycle as a
function of the number of shear cycles applied at γ0 = 3 (red) and
2 (blue). The inset shows the steady-state fraction of active particles
as a function of γ0. Reprinted by permission from Springer Nature,
L. Corté et al. [13].

experiments produced a similar divergence with ν = 1.1. This
transition has the hallmarks of what is known as an ab-
sorbing phase transition, which appears in nonequilibrium
systems and often falls in the directed percolation (DP) uni-
versality class [29,50]. The irreversible state can be viewed
as a dynamically fluctuating state in which the particles
continue to exchange positions and long time diffusion is
occurring. In contrast, the reversible state corresponds to the
absorbed state where the fluctuations are lost and the be-
havior becomes completely time repeatable, indicating that
the system is dynamically frozen or trapped in a limit
cycle.

Corté et al. [13] called the transition into the reversible
state “random organization” since the particles form a random
configuration in which collisions do not occur. Since that
time there have been further studies of random organization
in these sheared dilute colloidal systems [51], as well as a
number of studies indicating that randomly organized states

FIG. 4. For the simulation of sheared 2D disks from Fig. 3, a
plot of the time τ to reach a steady state vs shear amplitude γ0 for
the reversible (blue diamonds) and irreversible (red squares) regimes.
The inset shows the same data as a power-law plot of τ vs |γ0 − γ c

0 |,
where the critical shear amplitude is γ c

0 = 2.66 ± 0.05. The lines
indicate fits of the data to τ ∝ |γ0 − γ c

0 |−ν with ν = 1.33 ± 0.02.
Reprinted by permission from: Springer Nature, L. Corté et al. [13].

near the critical threshold are hyperuniform [22,42,52–57].
Hyperuniform particle arrangements contain no large-scale
deviations in the density from the average density, unlike
random particle arrangements. Periodic crystals are hyper-
uniform by definition; however, certain random structures
also have hyperuniform properties [58], and there is ongo-
ing work to understand the conditions under which random
hyperuniform states can occur. In a random organized state,
the particles form configurations where collisions are ab-
sent. This increases the average distance between particles
and reduces large local variations in the particle positions,
thereby diminishing large density fluctuations and giving a
more uniform density that extends out to long length scales.
An open question is whether all systems near a R-IR tran-
sition exhibit hyperuniformity, or whether this is a property
found only in systems that are dilute or that have short-range
interactions.

There has also been work on ordered pattern formation in
dilute systems where the R-IR transition overlaps with a disor-
der (irreversible) to order (reversible) transition [59] for hard
disk colloidal particles interacting with a periodic array of
obstacles. Figure 5(a) shows the fraction Rn of active particles
at the end of each cycle for periodically driven disks moving
through an ordered array of posts at a fixed drive amplitude
for different disk densities φ. When φ > 0.3716, the system
remains in an irreversible state, while for φ � 0.3716, the
disks organize into a reversible state. Figures 5(b) and 5(c)
illustrate the particle positions in the steady state, which is
irreversible and disordered in Fig. 5(b) at φ = 0.3962, and
reversible and ordered at φ = 0.3716 in Fig. 5(c). In Ref. [59],
the authors also found a power law divergence of the time re-
quired to reach the reversible state. The power-law exponents
are similar to those observed in 2D random organization sys-
tems, suggesting that the periodically driven disks fall in the
same universality class as those systems. Another interesting
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FIG. 5. Simulations of cyclically driven disks in a periodic array
of obstacles from Ref. [59]. (a) The number Rn of active or irre-
versibly moving disks vs cycle number n for different disk densities
ranging from φ = 0.335 (bottom) to φ = 0.3962 (top) under shear-
ing with an amplitude of A = 0.031623 at an angle of θ = 18.435◦

from the x-axis symmetry direction of the obstacle array. [(b) and (c)]
Images of the disk locations (blue) and obstacles (red) in a portion
of the sample for the same driving amplitude and direction as in
(a). (b) An irreversible state at φ = 0.3962. (c) A reversible state at
φ = 0.3716. Reprinted from C. Reichhardt and C. J. O. Reichhardt
[59] with the permission of AIP Publishing.

feature of the reversible state in Fig. 5(c) is that collisions are
not absent, but instead the particles collide with the obstacles
in a repeating pattern. Pattern formation in a reversible state
was also studied for bidisperse systems in which half of the
particles move in circles and the other half do not, where it was
shown that there is a transition from a mixed fluid to a pattern
forming phase separated reversible state [43]. There could be
other dilute systems on complex landscapes that could give
rise to similar types of reversible pattern formation.

III. CONDENSED SYSTEMS

We next consider R-IR transitions in systems close to or
just at jamming, as well as in amorphous solids and systems
deep in the jammed phase. In dilute systems, the irreversible
state generally has a liquid structure and the particles do not
form a solid. At the transition into the absorbing state, the par-
ticles either experience a small number of repeating collisions
or have no collisions at all. As a result, it might be assumed
that R-IR transitions are limited only to systems that are dilute
or have contact interactions, making it possible to provide the
particles with enough space to rearrange and organize into a
reversible state. Below we show that this is not the case.

FIG. 6. R-IR transition in simulations of a 2D bidisperse assem-
bly of hard disks from Ref. [60]. The dynamic phases are plotted
as a function of the strain amplitude γmax vs the disk density φ.
Black symbols indicate reversible states where the disks return to
their original locations after a single cycle. For the green symbols,
the states are loop reversible with complicated disk trajectories that
repeat after one or more periods. In the region with red symbols,
the steady state is irreversible. Reprinted with permission from C. F.
Schreck et al. [60]. Copyright by the American Physical Society.

A. Reversibility near jamming and packing

Schreck et al. [60] studied a granular matter version of
R-IR transitions for a periodically driven 2D bidisperse disk
assembly, and focused on the formation of a reversible state
below the jamming transition, φ < φJ = 0.84. Well below
jamming, the system organizes into a reversible state where
there are no collisions. Schreck et al. term this a “point re-
versible” state, and it is the same as a random organization
state. For higher densities, the system can still organize to a
reversible state, but the disk trajectories become much more
complex and involve some collisions. Schreck et al. named
these “loop reversible” states since the reversible orbits form
loop structures instead of straight lines. At densities near
jamming, an irreversible steady state emerges. Figure 6 shows
the phase diagram as a function of strain amplitude γmax and
disk density φ from Ref. [60], where the black region is point
reversible, the green region is loop reversible, and the irre-
versible states are colored in red. Schreck et al. also obtained
similar results in 3D systems. Recent studies by Gosh et al.
on disk packings showed that the transition to a reversible
state coincides with a transition to a crystalline state, which
is interesting because it was not expected a priori that these
transitions would occur at the same point [61].

Both experiments and simulations have been performed for
R-IR transitions in granular matter as a function of varied
shear amplitude [62] and friction [17]. Other works address
transitions to reversible states or random organization at the
approach to jamming or random close packing [63], as well
as possible ways to connect jamming and yielding in a unified
framework [64–66]. Open questions for systems transitioning
between jammed and unjammed states include how the na-
ture of the trajectories changes across jamming and whether
there could be different types of absorbing transitions. Other
effects to consider would be adding quenched disorder sites
to a jamming system [67,68] in order to determine how
the R-IR transition is affected, or to study whether R-IR

021001-5



C. REICHHARDT et al. PHYSICAL REVIEW RESEARCH 5, 021001 (2023)

Simulation steps

(a) (b)

(c) (d)

Simulation steps Strain

En
er
gy

En
er
gy

St
re
ss

no
.o
fc
yc
le
s

Yield

Strain

St
re
ss

Yield

FIG. 7. (a) The energy as a function of simulation steps for an
athermal quasistatic simulation of an amorphous solid. The discon-
tinuous drops in the energy occur due to plastic rearrangements.
Reprinted under CC license from I. Regev et al. [36]. (b) An illustra-
tion of particle motion in the most fundamental plastic rearrangement
event, the soft-spot. (c) Three different potential energy time series
for three different maximal strain amplitudes, which increase from
top to bottom. The red lines mark the onset of repetitive behavior
or the formation of a limit cycle. (d) Stress-strain curve under linear
shear (green line). The red vertical line marks the R-IR transition,
while the red data points indicate the number of cycles required to
reach a limit cycle under oscillatory shear. The inset shows a similar
stress-strain curve obtained for different initial conditions. Reprinted
with permission from I. Regev et al. [16]. Copyright by the American
Physical Society.

transitions change in the presence of Griffiths [69] or Gardner
transitions [70].

B. Amorphous solids

For systems such as solids or glasses well above the jam-
ming density subjected to shear, it is known that at small
strains, the response is elastic and plastic rearrangements do
not occur, while for intermediate strains, plastic events start to
appear, and for even higher strains the system exhibits plastic
yielding. In plastic events, particles can exchange neighbors,
and continuous plasticity is often associated with mixing and
irreversible deformations. It is possible for reversible plas-
ticity to occur in which the particles can exchange one or
more neighbors during the first portion of the drive cycle, but
then these exchanges are inverted during the second portion
of the drive cycle, bringing the system back to its original
configuration. In this way, a jammed system could have a
reversible elastic response, a reversible plastic response, and
irreversible plastic events, as well as mixtures of reversible
and irreversible plastic events.

Currently there is a considerable amount of work on elu-
cidating the nature of the yielding transition in sheared solids
and glasses, understanding the shape of the stress-strain curve,
and determining the way in which shear response and the
yielding transition depend on how the system is prepared.
Figure 7(a) shows the potential energy of an amorphous solid

10−1 100 101 102

γacc

−7.66

−7.64
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(a) (b)−7.58

E
(γ

=
0)

FIG. 8. (a) A repeating avalanche in the reversible state of the
system from Fig. 7. Arrows and colors indicate the direction and
magnitude, respectively, of the displacements during the avalanche
motion. Reprinted under CC license from I. Regev et al. [36]. (b) The
potential energy E per particle in the steady state under zero strain
(γ = 0) vs accumulated strain γacc for different values of maximum
shear strain γmax increasing from bottom to top under temperatures
T = 1.0 (open symbols) and T = 0.466 (closed symbols). Reprinted
with permission from D. Fiocco et al. [15]. Copyright by the Ameri-
can Physical Society.

subject to an athermal strain increase every simulation step.
The energy increases parabolically, as is expected from a rigid
elastic material, and decreases discontinuously when a plastic
rearrangement of the particles occurs. The most basic plastic
rearrangement involves a change of nearest neighbors called a
“soft-spot” [71–74] that is illustrated in Fig. 7(b). Most plastic
events involve several soft-spots, as will be discussed below.
Amorphous and crystalline systems can also be subjected to
periodic shearing, and for strains where the response is plastic
under unidirectional shear, it could be assumed that the system
would only exhibit irreversible states; however, Fiocco et al.
[15], Regev et al. [16] and Priezjev [75] studied 3D and 2D
model glasses subject to cyclic shear and showed the existence
of a transition from reversible to irreversible dynamics at
a critical strain amplitude. Priezjev [75] demonstrated that,
at a finite temperature, there is a transition from an almost
periodic, subdiffusive regime, to a diffusive regime. Fiocco
et al. [15] and Regev et al. [16] used athermal quasistatic
simulations to show that below the critical point the dynamics
is exactly periodic and particles repeat the same positions after
each cycle. Regev et al. [16] found that the number of cycles
needed to reach a limit-cycle diverges at this point. In their
study, Fiocco et al. [15] also showed that the postyield dy-
namics involves a loss of memory of the initial configuration.

Figure 7(c) shows the potential energy as a function of
strain cycles for increasing strain amplitudes. At the lowest
amplitude, on the top portion of the panel, the system is ini-
tially in an irreversible state and settles after a short transient
into a reversible state, as indicated by the transitions from a
fluctuating non-repeating signal to a periodic signal. As the
strain amplitude increases, it takes longer for the system to
reach a reversible state. Remarkably, even in the reversible
states the system shows large scale reversible plastic defor-
mations. Figure 8(a) shows an example of a reversible plastic
avalanche event for the system from Fig. 7 [36]. Figure 7(d)
illustrates the number of cycles required to reach a reversible
state as a function of strain amplitude along with the stress-
strain curve. At yielding, marked by the red vertical line, there
is a divergence in the time needed to reach the reversible state.
This work also showed that there is a power-law divergence
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FIG. 9. Particle trajectories in an amorphous solid following a multiperiodic limit cycle. (a) A system of 4096 particles subject to periodic
shear. (b) A blow-up showing individual particles and the trajectories performed by their centers marked in blue and green, where blue
represents the first cycle and green represents the second cycle. (c) A blow-up showing the trajectory of a single particle. During the first cycle
the particle performs the blue trajectory, followed by the green trajectory during the second cycle. (d) The strain as a function of simulation
steps (quasistatic equivalent of time) in the cycle. Reprinted under CC license from I. Regev et al. [36].

in the timescale to reach the reversible state as a function
of strain amplitude; however, the observed critical exponent
ν ≈ 2.6 differs from the value ν ≈ 1.33 obtained by Corté
et al. [13], suggesting that the transition is in a different
universality class. There are several possible reasons why this
might be the case. Fiocco et al. [15] studied the potential
energy per particle in zero strain configurations for different
numbers of cycles at varied strain amplitude under two differ-
ent temperatures, as shown in Fig. 8(b). For low values of the
maximum shear strain γmax, the final steady state is affected
by how the system was prepared, while at higher γmax, the
system always converges to the same energy regardless of how
the system was prepared. The time required to reach a steady
state is largest near a critical value of γmax separating these
two regimes.

For a reversible state in dilute systems, there are no collec-
tive effects since the particle-particle contacts vanish, whereas
in the amorphous system, the reversible plastic events indicate
that there is strong coupling among the particles, implying
that there may be a dynamical length scale present and that
the microscopics of the reversible state are different in the
amorphous and dilute systems. Another feature in the work of
Regev et al. [16] is that the divergence in the reorganization
timescale correlates well with the point at which a yielding
transition appears, so that below yielding, the oscillating drive
creates a reversible plastic state, while above yielding, the
system can never reach a reversible state. As shown in Fig. 9
and Ref. [16], the reversible state does not have to recur
during each drive cycle, but may instead recur after multiple
driving cycles. For example, the pattern might repeat after two
cycles, and in fact limit cycles of up to seven or more cycles
have been observed [16,38,39]. Multiple other studies found
that periodically sheared amorphous systems can organize to
reversible states with a varied number of limit cycles. This
behavior is reminiscent of the routes into chaotic states that
arise in low dimensional systems [10,11,76]. Keim et al. [38]
showed that the multiperiodicity can be explained as resulting
from interactions between soft-spots such as the ones shown
in Fig. 10, while Szulc et al. [77] explained how oscillations
in the activation thresholds of the soft-spots cause multiperi-
odicity. There have also been a number of experiments on

transitions into reversible plastic states in amorphous jammed
systems. Keim et al. found that jammed systems can organize
into reversible plastic states [18], as highlighted in Fig. 11.
In this case, under a cyclic drive the plastic deformations
were either irreversible (red) or reversible (blue), with numer-
ous irreversible events appearing during the first few cycles
but a larger number of reversible events arising over time.
The reversible events often consisted of groups of four par-
ticles switching positions in a periodic fashion. Nagamanasa
et al. [78] also found a power-law diverging timescale for
the transition to an irreversible state in a binary colloidal
glass.

In several works [79–86], the effect of sample preparation
on the potential energy in the steady-state was considered.
For subcritical amplitudes, the steady-state potential energy

FIG. 10. Experimental observation of interacting plastically de-
forming regions or “soft spots” in the reversible state of a jammed
solid. (a) Arrows indicate the magnitude of the particle displacements
and colors indicate the two principal shear axes. (b) Cooperative
interactions among multiple soft spots. (c) Trajectories (blue) of
individual particles in a reversible state where the particles return
to their initial positions after each cycle. Reprinted under CC license
from N. C. Keim and J. D. Paulsen [38].
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FIG. 11. An experimental measure of plastic events for a periodically sheared 2D jammed configuration showing that motion occurs in
irreversible plastic regions (red) and reversible but plastic regions (blue), with the amount of reversible plasticity increasing over time. The
plastic regions are often composed of groups of four particles. [(a) and (b)] Reversible (blue) and irreversible (red) motion after (a) 8 shear
cycles and (b) 20 shear cycles showing that the system settles into a reversible state. (c) Detailed view of the residual displacement for the
reversible cluster outlined with a red box in panel (b). (d) Relative maximum displacements of the particles in this cluster at the point of
minimum shear (red) and at maximum shear (open blue circles). (e) The corresponding flow streamlines. [(f)–(h)] Images showing the details
of a plastic rearrangement event in the same region. Reprinted with permission from N. C. Keim and P. E. Arratia [18]. Copyright by the
American Physical Society.

of samples with different initial mean energies depends on
the initial conditions, but for postcritical initial conditions, the
steady-state potential energy is independent of the prepara-
tion protocol. These studies also showed that for postcritical
amplitudes, the potential energy increases up to saturation.
These observations were explained using models of dynamics
on random energy landscapes [82,87,88].

Other works have shown that in certain cases, the yield-
ing transition in amorphous systems can be discontinuous or
first order [84–86]. This opens up the possibility for studying
further R-IR effects such as hysteresis, where a system that
has reached a reversible state could remain stuck in that state
even for drives at which the steady state should be irreversible.
Studies that used special quenching protocols allowing the
system to be equilibrated at very low initial temperatures Tinit

prior to being quenched to zero temperature have shown that
the transition from reversible to irreversible dynamics can
be either abrupt or continuous, depending on the preparation
protocol. Soft samples that were prepared by a fast quench
from the liquid exhibited a smooth transition while samples
that were prepared using a slow quench (sometimes using
special preparation protocols) exhibited a sharp transition and
hysteresis [83,89]. Other studies have shown that within the
reversible state, although the system remains solid it becomes
a softer solid, particularly when the reversible trajectories
form loops [90]. It would be interesting to understand the cir-
cumstances under which first or second order R-IR transitions
occur, and whether it is possible that adding some critical
amount of disorder to a system could change the transition
from first to second order.

Efforts to model the R-IR transition in amorphous solids
subject to cyclic shear have so far focused on using integer
automata models that represent an amorphous solid as a lattice
of soft-spots interacting by elastic interactions. Using such a
model, Khirallah et al. [23] found that such systems indeed
exhibit a transition at a critical amplitude from asymptotically
periodic dynamics, where the system repeats after n forc-
ing cycles, to asymptotically diffusive dynamics. They also
found that, similar to what is observed in particle simula-
tions, the transition between the reversible and irreversible
phases is marked by a power-law divergence in the number
of cycles required to reach a reversible state. The exponent
observed in this case was ν ≈ 2.7, consistent with the expo-
nents found by Regev et al. [16] and lending further support
to the idea that the universality class of R-IR transitions in
amorphous solids differs from that of the dilute systems. Khi-
rallah et al. also observed that similar to the observations from
particle simulations [15,91], the diffusion coefficient on the
irreversible side of the transition increases as a power law
in the magnitude of the strain amplitude, and showed that
there are still a large number of reversible plastic events that
occur within the irreversible state. This work suggests that
cellular automata models, which are computationally faster
than particle simulations and are easier to model theoreti-
cally, can capture many of the relevant behaviors at R-IR
transitions, and that similar reversible plastic to irreversible
diffusive phases could arise in other types of cellular automata
models.

There are several possible avenues for continued research
in the study of amorphous solids under cyclic shear. First,
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there are a variety of different amorphous systems in which
R-IR transitions have not yet been studied such as poly-
mer glasses, metallic glasses, gels, and emulsions. It is not
clear if such systems will show the same transition and,
if so, whether the transition would be of the same charac-
ter. Second, the theoretical understanding of the transition
in amorphous solids remains undeveloped. Although it is
clear that in dilute systems, reversible dynamics arises due
to the emergence of states where the particles are spaced in
such a way that they are not interacting, it is not clear why
in some amorphous configurations the interactions between
soft-spots lead to irreversible dynamics whereas in others the
same interactions allow for periodic states. Third, it would
be interesting to study how the R-IR transition varies for
different kinds of particles. For example, droplets in densely
packed emulsions can undergo a variety of shape changes
under compression or have very different types of elastic
properties compared to hard particles [51,53,92]. It may be
that the ability of individual particles to distort would intro-
duce another form of dissipation that could increase the range
of reversible behavior; however, such distortions could also
inject additional degrees of freedom, giving more possible
ways for the packing to change and promoting irreversible
motion.

Beyond disordered solids, R-IR transitions have also been
studied in polycrystals [19,40] and point dislocation models
[90]. There have been only a few studies of R-IR transitions
in crystalline systems [40], but there are a variety of effects
that could be studied in ordered states, such as the motion
of grain boundaries or of isolated defects such as dislocation
lines and disclinations. In crystalline systems, application of
periodic driving could generate defects, leading over time to
work hardening and eventual failure; however, there could be
regimes in which the system reaches a steady reversible state
under cyclic driving. This could be tested for crystalline sys-
tems found in soft matter, materials science, and certain hard
condensed matter systems such as superconducting vortices
or Wigner crystals. In Fig. 12, dislocations in a 2D col-
loidal assembly are manipulated using local stresses, shears,
and dilatations [93]. One could consider applying local or
global periodic driving to such a system in order to deter-
mine whether the motion of the individual defects illustrated
in Figs. 12(a)–12(d) or of the grain boundary illustrated in
Fig. 12(e) is reversible.

C. Magnetic systems

Hysteresis is frequently observed in condensed matter and
materials science, and the best known example is in mag-
netism where cycling an applied field generates a hysteretic
magnetic response in the material [94]. Hysteresis in mag-
netic systems is a result of disorder and exchange interaction
between the spins of different atoms. In the case of ferromag-
netic interactions, disorder can take the form of a local random
field, as in the random field Ising model (RFIM), which has
the Hamiltonian [95]:

H = −J
∑

〈i, j〉
sis j −

∑

i

(hisi − hsi ), (2)

FIG. 12. Motion of dislocations and grain boundaries being con-
trolled with optically induced “topological” tweezers in experiments
on a colloidal assembly. (a) Inducing glide with localized shearing.
(b) Inducing climb by dilatation. (c) Dislocation fissioning through
applied shear. (d) Glide of a dislocation that has been trapped by
opposing shear stresses. (e) Moving a grain boundary by applying
a potential that is commensurate with the lattice on one side of the
boundary. From W. T. M. Irvine et al. [93].

where si = {−1, 1} is the direction of the ith spin, J > 0 is
a constant ferromagnetic coupling constant, hi is the random
field, and h is an externally applied field. Alternatively, there
can be randomness in the effective spin-spin interactions, as
captured by the Edwards-Anderson spin-glass model [96]:

H = −
∑

〈i, j〉
(Ji jsis j − hsi ). (3)

In this case, the coupling constant Ji j is a random variable that
can be both positive and negative, leading to geometric frus-
tration. Models with ferromagnetic interactions where J > 0
always reach a limit cycle after a transient of two cycles or less
due to the “no-passing” property first proved by Middleton
[95,97]. For this reason, such systems cannot have a R-IR
transition. Models with couplings that can be both positive or
negative, such as a spin-glass, can have long transients and
thus, in principle, can have both reversible and irreversible
behavior. In the case of the Edwards-Anderson spin-glass and
related systems, each spin has only two states, which may
hinder the emergence of completely irreversible dynamics. At
the thermodynamic limit, however, the transients may become
infinitely long, and the system can then become effectively
irreversible.

Basak et al. [45] considered cyclic driving of uniaxial
random field XY models with disorder. They found that for
increasing field amplitude, the system goes from an Ising fer-
romagnetic state to a paramagnetic state that does not repeat,
as shown in Fig. 13. In the reversible case, the spin patterns
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FIG. 13. Cyclic driving of uniaxial random field XY models with
disorder. (a) The driving field angle φ vs the magnetic response in
the x direction mx for increasing driving strengths, where purple is
the lowest drive and red is the highest drive. (b) A plot of φ vs φ

indicating that the applied field is rotated counterclockwise. (c) The y
direction magnetic response my plotted vs mx . (d) my vs φ. Reprinted
under CC license from S. Basak et al. [45].

repeat after n cycles, and the number of cycles to reach a
reversible state increases as the critical point is approached.
The plot of the y and x magnetizations my versus mx in
Fig. 13(c) indicates that there is an initial transient before the
system settles into a period-2 limit cycle. This implies that
the magnetic system can organize into a repeatable pattern
spanning one or multiple periods, similar to what was found
in the amorphous solids discussed previously.

Uniaxial random field XY models can be applied to many
systems, including Josephson junctions [98], superfluids in
a uniaxially stressed aerogel [99], uniaxially stressed 2D
Wigner crystals [100], the half-integer quantum Hall effect,
and the graphene quantum Hall ferromagnet [101]. Electron
nematics [102,103] are also promising. Each of these are
candidate systems in which to look for R-IR transitions under
periodic driving.

IV. FUTURE DIRECTIONS IN CONDENSED SYSTEMS

A. Commensurate-incommensurate systems

Another class of systems that are good candidates for
examining R-IR transitions is that in which commensurate-
incommensurate transitions can occur [104–107]. These
systems can be described in terms of interacting particles
on a periodic substrate, where the ratio of the number of
particles N to the number of substrate minima Ns is given by
the filling ratio f = N/Ns. For example, Fig. 14(a) shows a
schematic of charged colloidal particles interacting with a 2D
periodic egg-carton substrate at a filling close to f = 1 [108].

FIG. 14. An illustration of a 2D version of a Frenkel-Kontorova
model consisting of colloidal particles interacting with a periodic
substrate. From A. Vanossi et al. [108].

Commensurate conditions can arise for fractional match-
ing when f = n/m with integer n and m [107]. The
most celebrated example of this is the Frenkel-Kontorova
model for one-dimensional (1D) chains of elastically coupled
particles on a substrate [106]; however, commensurate-
incommensurate transitions arise across a remarkable variety
of hard and soft condensed matter systems in both one and
two dimensions. Specific systems include atomic ordering on
surfaces [104,105], cold atoms in optical traps [109], vor-
tices in nanostructured superconductors [110,111], vortices
in Bose-Einstein condensates [112], and colloidal systems
[108,113–115]. In quantum systems, there can be transitions
from commensurate Mott phases to incommensurate super-
fluids [116,117]. For most of the systems listed above, the
particles are not strictly elastically coupled but can undergo
exchanges with one another, permitting plastic deformations,
defect generation, and phase slips to occur.

In typical commensurate-incommensurate systems, the
particles are largely localized under commensurate condi-
tions, while for slightly incommensurate states there are kinks
or antikinks that are more mobile than the particles and that
depin first under an external drive [107]. At more strongly
incommensurate states, the system becomes increasingly dis-
ordered and can exhibit glasslike behavior. Since the amount
of order can be tuned by changing the filling, it would be
possible to examine R-IR transitions for varied fillings. For
example, under commensurate conditions the system may
be strongly reversible for a range of drives, whereas in-
commensurate fillings might either organize to a reversible
state similar to what is found in the sheared systems or
remain in an irreversible state. There could be a critical
drive amplitude marking the R-IR transition, or there could
be fillings for which the system becomes fluid-like and is
always irreversible. Whether the response of a commensurate-
incommensurate system is reversible or irreversible may also
depend on the type of drive applied. In addition to their
relevance to a wide class of systems, another advantage of
studying commensurate-incommensurate systems is that a va-
riety of distinct types of defect structures can be realized,
ranging from individual solitons or kinks and domain walls to
strongly amorphous phases. To illustrate why commensurate-
incommensurate systems could show different reversible or
irreversible behaviors, Fig. 15 shows that a wide range of de-
fect morphologies emerge for colloids on periodic substrates
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FIG. 15. Voronoi tessellations of colloidal particles interacting
with a periodic substrate for different nearly commensurate fillings
ranging from f = 3.075 to 8.80. Dark blue polygons are four-
fold coordinated, light blue polygons are fivefold coordinated, gray
polygons are sixfold coordinated, and red polygons are sevenfold
coordinated. A variety of grain boundary and dislocation structures
appear. Reproduced from Ref. [118] with permission from the Royal
Society of Chemistry.

at different incommensurate fillings [118]. It would be inter-
esting to understand whether the grain boundaries and isolated
defects that emerge in a system such as this one would exhibit
reversible or irreversible dynamics under periodic driving,
and whether a possible R-IR transition would resemble that
found in dilute or amorphous systems, or whether it would
fall into an entirely new universality class that has not yet
been observed for R-IR transitions. Such a study would relate
to the broader question of the nature of R-IR transitions in
interacting soliton systems.

B. Local driving

In the systems discussed up to this point, the driving is
applied globally via shearing, a current, or a field; however,
it is also possible to subject a system to local driving. In soft
matter, such driving is referred to as active rheology, where
a single particle is dragged through a background medium in
order to create measurable perturbations [119–123]. Studies
of this type have been used to examine changes in the drag
[121,123] and fluctuations [119,122,124], as well as to deter-
mine whether there is a threshold force needed for motion of
the probe particle [119,120,125] as the system passes through
different types of glassy or jamming transitions. Figure 16(a)
shows an example of a single probe particle driven through
a glassy background of bidisperse colloidal particles, and the
corresponding velocity time series contains a series of jumps
that indicate the occurrence of plastic events in the medium
surrounding the probe particle [119]. Similar active rheology
techniques have also been used to study plastic rearrange-
ments in crystalline systems [126,127].

In hard condensed matter systems, local driving can be
achieved using a magnetic force tip or scanning tunneling mi-
croscope for superconducting vortices [128,129] or an optical
probe for both superconducting vortices [130] and magnetic
skyrmions [131]. Other possible methods include injecting a
current at a single localized spot or applying time dependent
inhomogeneous fields. Most studies of active rheology have

FIG. 16. (a) Particle locations (small black dots) and trajecto-
ries (lines) in a simulation of a single probe particle (large black
dot) being dragged through a glassy background of bidisperse col-
loidal particles. (b) Time series of the velocity of the probe particle
in panel (a) shows jumps corresponding to plastic rearrangement
events. Reprinted with permission from M. B. Hastings et al. [119].
Copyright by the American Physical Society.

used dc driving, but ac driving could also be applied. Local
driving has been applied to plastic to elastic transitions as well
as situations where the probe particle particle creates local
plastic deformations in the system. Similar techniques could
be used to explore local R-IR. For example, if the probe par-
ticle is periodically driven at different driving amplitudes, as
illustrated schematically in Fig. 17, the system could organize
to an elastic reversible state with no plastic deformation, to a
state with reversible plastic events or loop reversibility, or to a
state that is continuously fluid-like or irreversible. It would
be possible to measure whether a reversible or irreversible
interface extends out from the region containing the driven
particle, or if there is a fluctuating or continuous border sur-
rounding the local probe region. To test for memory effects,
the ac drive could be applied in one direction until the system
reaches a reversible state, and could then be rotated into a new
direction to see whether the system still remains reversible.

FIG. 17. Schematic of how local periodic driving could be used
to detect an R-IR transition with a local probe by oscillating the probe
at low (left) and high (right) amplitudes.

021001-11



C. REICHHARDT et al. PHYSICAL REVIEW RESEARCH 5, 021001 (2023)

Such an approach would also be useful for understanding how
the dissipation or drag is affected when the system transitions
from an irreversible to a reversible state.

C. Systems with density gradients and confined geometries

In many of the systems examined so far, the density is
roughly uniform across the sample; however, there can be a
variety of cases in which density gradients arise, such as for
particles subjected to gravity or being pushed against a wall by
a driving field. It could also be possible to construct systems
in which half of the sample contains quenched disorder and
the other half is free of quenched disorder, or to introduce
spatial gradients in the quenched disorder itself. Guasto et al.
[132] studied R-IR transitions for oscillatory shear in pipe
flow, and found an onset of irreversibility throughout the
system even in regimes where the stain is very small. This
suggests that gradients can enhance irreversible behavior, and
opens the question of whether irreversible spatial regions can
coexist with reversible regions, or whether the boundaries
between such regions always generate enough randomness to
allow the irreversibility to propagate throughout the system.
In work examining the sedimentation of colloidal particles
under a periodic shear [35], the presence of a density gradient
made it possible to determine that the denser regions are
irreversible while the less dense regions are reversible, and
that the reversible and irreversible regions are separated by
a well defined coexistence front. Another area in which to
explore R-IR transitions is in confined geometries such as
pipes, channels, or labyrinths. Here, although the introduction
of spatial gradients may enhance the irreversible behavior, the
reduction of phase space may enhance the reversible behavior,
leading to a competition. It would be interesting to explore
whether such systems could have regions that are almost
completely reversible as well as other regions that are strongly
irreversible. Due to the geometric constraints, these regions
could be sufficiently isolated from each other that the R and IR
phases could exhibit dynamical coexistence over long times.

D. Complex interactions

Up until this point, R-IR transitions have been studied only
for systems with relatively simple short-range interactions.
There are, however, numerous systems in which more com-
plex interactions appear, such as long-range repulsion and
short-range attraction, frustrated interactions, and interactions
with multiple length scales. When these types of complex
interactions are present, pattern formation or phase separation
often occurs, as found in many soft matter systems [133–136]
as well as in hard condensed matter systems such as elec-
tron liquid crystals [137–139], doped Mott insulators [140],
charge ordering in Jahn-Teller systems [141] and magnetic
domains [142]. In Fig. 18, we show some examples of pattern
formation in a system with multiple length scale interactions,
which cause both short-range crystalline order and larger scale
ordering to occur. It would be interesting to test whether
systems of this type could exhibit R-IR transitions under pe-
riodic driving. For soft matter systems, this could be achieved
through shearing, while for hard condensed matter systems
such as electron liquid crystals, the driving could take the form

FIG. 18. Example of clump (left), stripe (center), and void (right)
patterns that form for particles with competing long-range repulsion
and short-range attraction from a system such as that described in
Ref. [133].

of an oscillating current [138,139]. Other systems with long
range interactions where some form of periodic driving can
be imposed include dusty plasmas or charged dust particles
that form microscale crystals [143,144]. Such systems could
be periodically sheared or driven with other methods [145].

Due to the multiple length scales that are present in the
interaction, it is possible that individual particles might un-
dergo irreversible deformations even as the larger scale pattern
remains reversible, producing a situation with microscopic
irreversibility but macroscopic reversibility. If this were the
case, there might be multiple R-IR transitions as well as the
possibility for complex memory formation.

E. Quasireversibility and universality classes

The systems described so far are in either a reversible or an
irreversible state during one or multiple drive cycles. Another
possibility is that even in the absence of long time diffusion,
the system could follow one of several available loop paths,
where on any given cycle the particular path that is chosen is
selected randomly. This could occur if the system shows only
a local ergodicity or if there are regions where the particles
can locally explore many different possible states but local
fluctuation paths remain confined, so that the particles are
unable to diffuse over long times. There could also be glassy
reversibility. In many of the systems described so far, the
irreversible states were characterized by observing diffusive
behavior of the particles; however, there could be regimes of
very long time diffusion in which the system is trapped in
one cyclic orbit for long times before making a rare jump to
a new orbit. Glassy behaviors of this type could arise when
thermal fluctuations become important. For example, the sys-
tem could be in a reversible regime for T = 0, but become
irreversible at finite T when it can occasionally thermally
hop to different periodic orbits. Finally, there could be orbits
that are quasiperiodic in time, in analogy to orbits that are
quasiperiodic in space.

Another possibility is smectic-like irreversibility in which
there is long time diffusion in one direction but not in the
perpendicular direction. In driven systems with quenched dis-
order, moving smectic states have been observed in which the
diffusion is finite in only one direction [107]. For colloidal
particles or amorphous solids under a periodic drive, 1D re-
versibility of this type could occur for anisotropic particles
or layered systems. There could then be two irreversible tran-
sitions that occur separately, with one for each direction. It
would be interesting to understand whether there are only a
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FIG. 19. Stroboscopic snapshots of the positions during 25 cy-
cles of superconducting vortices cyclically driven over a random
landscape. (a) The reversible regime for small ac drive amplitudes.
(a) The irreversible regime for large ac drive amplitudes. Reprinted
with permission from N. Mangan et al. [14]. Copyright by the Amer-
ican Physical Society.

few types of distinct universality classes for R-IR transitions,
or whether multiple universality classes could be observed by
changing the nature of the particle-particle interactions or the
driving.

V. VORTICES, SKYRMIONS, AND OTHER HARD
CONDENSED MATTER SYSTEMS

There are many other systems containing assemblies of
particles that can be periodically driven. These include cases
in which the particles are coupled to random or periodic
substrates [2,107], as found for sliding friction [146], vortices
in type-II superconductors [147,148], sliding charge density
waves [149,150], colloids [151], pattern forming systems
[136], active matter [152], election liquid crystals [153], and
Wigner solids [154]. The driving can be applied uniformly
using a current, an electric field, or a magnetic field. If there is
no quenched disorder present and the drive is uniform, the par-
ticles simply translate back and forth; however, when disorder
is present, certain particles can become trapped while other
particles move past them, leading to plastic events. Under an
increasing dc drive, these systems typically exhibit a pinned
phase, a plastically deforming phase, and a moving crystal
or moving smectic state. If the disorder is weak, the system
depins elastically without the creation of topological defects.

Mangan et al. [14] performed numerical simulations of su-
perconducting vortices in a 2D system with random disorder
and ac driving where the driving period, vortex density, and
pinning strength are varied. Figure 19(a) shows the vortex
positions at the end of each cycle for 25 cycles under a
drive at which each vortex moves a distance of 45λ during
a single cycle, where λ is the London penetration depth. Here
the system is in a reversible regime. In Fig. 19(b), when the
driving amplitude is increased so that each vortex moves a
distance of 160λ during every cycle, the vortices do not return
to the same positions and the system is irreversible. For the
reversible state, the diffusion is zero and the time series of
the average vortex velocity repeats the same pattern during
every drive cycle, which would produce a periodic voltage
signal if measured experimentally. In the irreversible regime,
the vortices exhibit a finite diffusion and the voltage signal

FIG. 20. Schematic illustration of R-IR phases in a supercon-
ducting vortex system as a function of shear amplitude d vs vortex or
particle density n. Point reversible states appear for low densities or
small shears, while a region of loop reversibility emerges prior to the
transition to irreversible behavior at high densities and large shears.
Reprinted under CC license from S. Maegochi et al. [24].

is chaotic. Okuma et al. [41] studied R-IR transitions exper-
imentally by shearing superconducting vortices in a Corbino
geometry, and mapped out the phase diagram for the transition
from reversible to irreversible flow as a function of vortex
displacement per cycle.

Additional work has since been performed [24] to more
clearly show that superconducting vortices can also exhibit
point reversible states similar to the random organization
found for dilute colloids, loop reversible states similar to
those observed in amorphous systems, and irreversible states,
as illustrated in Fig. 20. At low densities where the vor-
tices are far apart, the behavior resembles that of a dilute
colloidal system, and point reversible states emerge, while
at higher density where interactions between the vortices
become important, the system shows loop reversibility. For
large densities and large driving amplitudes, the system is
irreversible. In Ref. [24], there is also a diverging timescale
for the system to settle into a reversible or irreversible state.
The power-law divergence reported in Fig. 4 of Ref. [24] is
similar to that found in the random organization system and
has an exponent ν = 1.33 that is close to the value expected
for directed percolation [30]. Even though the vortices can
exhibit collective effects due to their longer range interac-
tions, the exponents observed are consistent with the dilute
colloidal system rather than with amorphous solids, where
exponents closer to ν = 2.6 are found. This could be due
to the nature of the plastic events that occur in the different
systems. There has also been work showing evidence for R-
IR transitions in ac driven superconducting vortices in linear
geometries [155].

Magnetic skyrmions are another particle-like magnetic tex-
ture that have many similarities to superconducting vortices in
that they can be driven by an applied current [156,157]. An
important distinctive feature is that skyrmions have a strong
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FIG. 21. Schematic of other elastic systems that could exhibit R-
IR transitions under ac driving (arrows), such as a moving contact
line (left) or a sliding charge density wave (right).

gyrotropic or Magnus force. Simulations of skyrmions under
ac drives with quenched disorder [44] showed an R-IR transi-
tion associated with a diverging timescale where the exponent
is close to ν = 1.29. In this system, the Magnus term enhances
the irreversible behavior by increasing the number of dynami-
cally accessible orbits. This is in contrast to the behavior of an
overdamped system, such as strongly damped skyrmions and
vortices in type-II superconductors. It has been shown that in
the overdamped limit, there appear to be two different R-IR
transitions, since the diffusion constant first drops to zero in
the direction perpendicular to the drive, followed by a regime
in which the behavior is reversible both parallel and perpen-
dicular to the drive. This suggests that the number of possible
R-IR transitions may depend on the effective dimensionality
of the system. Experimental results that seem consistent with
the predictions of Ref. [44] were found in the superconducting
vortex system [158].

VI. FUTURE DIRECTIONS FOR SYSTEMS
WITH QUENCHED DISORDER

R-IR transitions under periodic driving could be explored
in charge density wave systems [149,150], which often ex-
hibit narrow band noise or temporal ordering that may be the
hallmarks of reversible behavior. It would be interesting to
understand if there is also an irreversible regime and if there
is a diverging timescale for reaching the reversible regime.
This is of particular relevance since recent work on classical
time crystals has suggested that sliding charge density waves
under ac driving are examples of discrete time crystals [159],
which we discuss further in Sec. VIII. Other elastic systems
that can be driven periodically include magnetic domain walls
[160], moving contact lines [161], depinning interfaces [162],
and slider block models [2]. Examples of possible materials
science systems are ac driven grain boundaries [163], twin
planes [164], and dislocation patterns [165,166], as illustrated
in the schematic of Fig. 21. It is possible that systems of this
type would always organize to a reversible state; however,
there could be different kinds of reversible states separated
by transitions with diverging timescales. For example, there
could be a critical point separating point reversible states and
loop reversible states.

FIG. 22. Experimentally measured hysteresis loops in a VO2

sample at the metal-insulator transition. (a) Illustration of the sample
geometry showing that eight devices are present on a single sample;
the widths of two of the devices are marked with arrows. (b) Full
hysteresis loop as a function of resistance vs temperature. The main
panel shows consecutive resistance vs temperature cycles zoomed in
on the portion of the full hysteresis loop circled in (b). Jumps occur
that are not repeatable from cycle to cycle. Reprinted with permission
from A. Sharoni et al. [167]. Copyright by the American Physical
Society.

A. Systems with avalanches and noise

Further directions include studying systems with hystere-
sis that exhibit repeating avalanches to seek diverging time
and/or length scales under repeating hysteretic cycles. Fig-
ure 22 illustrates experimentally measured avalanches across
the metal-insulator transition of VO2 [167]. In systems of this
type, it would be possible to perform repeated cycles to deter-
mine whether the same resistance values recur, and whether
there is a finite number of cycles that must be performed
before the system reaches a repeating pattern.

In many condensed matter systems, noise is generated un-
der the application of a current or field. This noise can take
the form of avalanches or crackling noise [168,169], telegraph
noise [170], switching [171], narrow band noise [172,173], or
broad band noise [173,174], and can be characterized using
the power spectrum or second spectrum [169]. It would be
interesting to explore whether such a system exhibits a per-
fectly repeatable noise pattern under applied periodic driving,
and if so, whether a finite number of cycles must be performed
before the system reaches this type of reversible state.

B. Astrophysical systems

Another set of systems that can be considered to have
periodic driving and that also exhibits avalanches or bursts
are pulsar glitches in neutron stars [175–178] and bright-
ness variability for certain stars [179]. Here the periodic
driving arises from the rotation of the stars. When a pulsar
glitch occurs, there is a shift δν in the rotation frequency
ν of the pulsar. In general, glitching pulsars fall into two
classes: those with Poisson-like waiting times [175–177], and
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FIG. 23. Observations of glitches δν (in μHz) of the rotation
frequencies ν for different pulsars as a function of time in units of the
modified Julian date (MJD). The total number of glitches observed
for each pulsar is listed as Ng, and windows of time in which no
observations were made for at least 3 months are shaded in gray.
Reprinted under CC license from J. R. Fuentes et al. [180].

those with unimodal or quasiperiodic waiting times [177,178].
Figure 23 shows some example time series of pulsar glitches
exhibiting different levels of periodicity [180]. It is possible
that the glitches could be a sign that over time the star is
organizing to a more periodic state, and if so, a reversible
state could emerge in which there is a power-law distribution
of periodic waiting times. It would be interesting to under-
stand whether there could be a transition from chaotic glitch
intervals to periodic or quasiperiodic glitches, and whether a
diverging timescale appears in these systems. Sheikh et al.
[179] measured avalanches in the brightness variability of
stars and found scaling exponents that suggest the system may
be near a nonequilibrium critical point. A system of this type
might be irreversible on one side of the nonequilibrium point
and reversible on the other side.

VII. MEMORY EFFECTS

Sheared colloidal systems can organize to a reversible state
when the applied strain γi satisfies γi < γc, where γc is the
critical stain below which the system is always reversible.
If the strain amplitude is changed so that γi > γc, reversible
behavior cannot appear. In Fig. 24(a), a numerical study [181]
of a system with a critical strain level of γc = 4.0. showed that
when a training shear pulse amplitude of γ1 = 3.0 is applied, a
“reading” of the system with a trial strain level of γ produces
a signature or memory of γ1 in the form of a cusp. It is also
possible to store the values of two distinct strain levels, as
shown in Fig. 24(b) for γ2 = 2 and γ2 = 3.0, where there are
now two kinks that appear as the trial strain level is varied.
This implies that multiple memories can be storied in these
systems as long as the strain amplitude remains below the
critical stain where the system becomes irreversible and loses
all memory. Paulsen et al. [182] considered an experimental
dilute colloidal system and observed that a memory effect
emerges for strains smaller than γc.

Fiocco et al. [37] studied a protocol similar to that used
by Keim et al. [181] but employed an amorphous solid in
which the particles always remain in contact. They find that

FIG. 24. The fraction of moving or irreversible particles fmov vs
the trial strain level γ for different numbers of cycles in a numerical
model of sheared colloidal particles, demonstrating the emergence of
memory. (a) Application of a single shear level γ1 gives a kink in the
trial strain γ at γ = γ1; reversible behavior eventually emerges for
γ < γ1 but the system remains irreversible for γ > γ1. (b) Applica-
tion of a smaller shear level γ2 for five cycles followed by application
of a larger shear level γ3 for one cycle gives the trial strain level γ a
memory of the value of both γ2 and γ3. When the system organizes
to a reversible state, only memory of the larger strain level γ3 is
retained. Reprinted with permission from N. C. Keim and S. R. Nagel
[181]. Copyright by the American Physical Society.

a similar memory effect, shown in Fig. 24(a), can be achieved
by using a training shear amplitude. Since this is a jammed
solid, the memory is likely stored in a different manner than
for the dilute systems. For example, the memory may reside
in the plastic events or long-range strain fields, rather than in
the spatial configurations as found in the dilute systems.

Mungan et al. [183] showed that the configurations of
an amorphous solid sheared along a fixed plane can be rep-
resented by a directed graph where nodes represent stable
particle configurations and arrows represent transitions be-
tween them due to plastic events. Figure 25 shows an example
of such a network where all the transitions are reversible. In
each configuration, a soft spot is switched on or off. The soft
spot consists of a localized region in which the particles can
undergo a plastic event or the elasticity is small. Regev et al.
[184] further showed that the strongly connected components
of the graphs, representing clusters of configurations where
every two configurations (nodes) are reachable by a path of
plastic deformation, include all the possible limit-cycles of
the system. Since transitions between different strongly con-
nected components are irreversible, as the strain magnitude
increases to a level close to the R-IR transition, irreversible
transitions become more frequent and the strongly connected
components become smaller and can contain only small limit
cycles, such as the yellow arrows in Fig. 25. Some open ques-
tions include whether introducing a change in the direction
of shearing or driving in this regime could reduce the persis-
tence of the memory. Although memory has been studied in
sheared colloidal particles and sheared amorphous solids, less
is known about whether similar memory effects can occur in
other systems. For example, Dobroka et al. [185] found that
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FIG. 25. A network representation of the transitions between
different states of a model of an amorphous solid subjected to cyclic
shear deformations. The inset shows the soft-spot locations and num-
bers. Each state is represented by a binary number where 1 or 0 in the
second digit represents a state where soft spot number 2 is “switched
on” or “switched off,” respectively. Arrows represent transitions due
to an increase (black) or decrease (red) in the strain causing soft-spot
switching. The green and purple shaded regions are limit-cycles with
soft-spot number 6 switched off or on, respectively. Reprinted with
permission from M. Mungan et al. [183]. Copyright by the American
Physical Society.

kinks in the response similar to those observed by Paulsen
et al. [182] can occur for periodically driven superconducting
vortices.

Memory can also be associated with the hysteresis that ap-
pears in magnets, semiconductors [186], and metal-insulator
systems [187] under oscillating voltages, and at dynamic
transitions in magnetic systems subjected to fast oscillations
where the hysteresis occurs in the dynamic variables [188].
For example, in the phenomenon of return point memory
[189,190], spin configurations are examined at the end of each
minor loop cycle to see if the configurations fully overlap
from cycle to cycle according to an overlap function. In pe-
riodically driven colloidal spin ice systems [191], the spin
overlap function q was examined for repeated minor loops.
A value q = 1.0 means that exactly the same effective spin
configuration appears during each cycle, indicating reversible
behavior. In Ref. [191], the system did not adopt the same
spin configuration for every cycle, but as shown in Fig. 26, q
increases with time until saturating at a reversible state after
a fixed number of cycles, similar to the random organization

FIG. 26. Return point memory for minor loops in an artificial
spin ice system constructed from colloidal particles. When q = 1,
the system reaches a reversible state. For both the (a) square ice and
(b) kagome ice geometries, q increases as the number of minor loop
cycles performed increases (numbers), indicating the emergence over
time of reversible behavior. Reprinted with permission from A. Libál
et al. [191]. Copyright by the American Physical Society.

observed for dilute colloids. In addition, introducing quenched
disorder increased the memory of the system.

VIII. FUTURE DIRECTIONS FOR TIME CRYSTALS
AND QUANTUM SYSTEMS

Another promising area in which to seek R-IR transitions
is time crystals, which have been proposed for both quantum
[192] and classical systems [193]. In a time crystal, the low-
est energy state of the system is periodic not only in space
but also in time. Shortly after the initial proposals, it was
recognized that true time crystals as originally envisioned
cannot occur under conditions of strict equilibrium [194,195];
however, the time crystal concept has now generated a wealth
of ideas for creating time periodic systems that could arise
under nonequilibrium conditions [46,196], such as periodic
driving. A key feature of a time crystal is that the system
can exhibit subharmonics of the oscillatory driving [196–199]
(multiperiodic response). Yao et al. [159] have noted that there
are a number of classical systems that also show subharmonic
entrainment, including Faraday waves [49] and predator-prey
models [200], phase locking in driven charge density wave
systems [201] or Josephson junctions [202], and supercon-
ducting vortex [203] or magnetic skyrmion [204] motion on
periodic pinning arrays, meaning that these systems could be
examples of Classical Discrete Time Crystals (CDTCs). In
quantum systems, time crystals have been studied by measur-
ing subharmonic entrainment in unitary many-body systems
or Floquet systems [199]. In some cases, time crystals can
arise in quantum systems where many-body localization can
prevent thermalization [46,196]. Up until now, work on time
crystals has focused on identifying systems that support time
crystals; however, the dynamics of how a system can organize
into a time crystal state or the general phase diagram near
the boundary from chaotic to time crystal behavior has many
similarities to the R-IR transitions discussed above.
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FIG. 27. A stroboscopic image as a function of time vs position
j of a one-dimensional system of coupled oscillators. Oscillators
that have a position coordinate qi less than zero are red, those with
qi > 0 are blue, and those with qi ≈ 0 are white. Period-doubled
oscillations emerge from the uniform state over time, forming a
Classical Discrete Time Crystal (CDTC). The behavior is similar
to the organization of a fluctuating system into a reversible state as
shown earlier. Reprinted by permission from: Springer Nature, N. Y.
Yao et al. [159].

An example of a classical time crystal that appears close
to systems in which R-IR transitions can happen appears in
the work of Yao et al. [159], where a one-dimensional array
of coupled oscillators was studied at finite temperature. Fig-
ure 27 shows a stroboscopic view of the position coordinate q j

of each oscillator under periodic driving as a function of time.
In the initial state, the system is disordered or fluctuating,
but over time it organizes into an antiferromagnetic repeat-
ing state. This is reminiscent of an initially irreversible state
organizing over time into a reversible state. The reversibility
does not have to appear after a single driving cycle; instead,
the system can repeat after two or more driving cycles. It
would be interesting to see whether there is a timescale for
the organization into the time periodic or CDTC state, and
if so, whether this time diverges as a function of the driving
parameters, similar to what is found for the R-IR transition in
colloidal systems. The work of Yao et al. [159] can also be
applied to the much broader class of systems in higher dimen-
sions and at zero temperature, such as nonlinear systems that
exhibit higher order harmonic phase locking effects. There
could be a variety of other systems on periodic flashing sub-
strates that could organize to reversible states over time, such
as choreographic colloidal time crystals that have a liquid-like
state and a time ordered state [205].

As discussed in Sec. VII, the reversible states can exhibit
memory and training effects, so similar phenomena along with
memory encoding studies could be explored in time crys-
tal systems, where much more complicated periodic driving
protocols can be employed. For example, the system might

organize to a CDTC for one set of driving frequencies, but if
additional frequencies were added, the system could organize
into a new time crystal state. The question would be whether,
if the system is first trained with the initial set of frequencies,
these frequencies could be retained in the time crystal state
formed with additional driving frequencies. Although we have
focused on classical time crystals, similar R-IR transitions
could arise in periodically driven quantum time crystals, such
as periodically driven trapped atomic ions [206], driven spins
in diamond [207], and arrays of superconducting qubits [208].

IX. COMPLEX NETWORKS AND DYNAMICAL SYSTEMS

In general, there are many other coupled systems that
can organize into synchronized states. Systems that exhibit
ergodicity breaking would also be candidates for study in
the framework of R-IR transitions. For example, dynamical
many-body coupled oscillators are known to show transitions
to synchronized states [209]. Other systems include particles
coupled to or flowing on a complex network [210] under pe-
riodic driving. In this case, the particles could form repeating
loop paths on the network in the reversible state, such as those
illustrated in Fig. 10(c). Such systems could include those for
which particles or carriers of information cannot pass though
each other and the network is rigid. Other systems such as
those with nonreciprocal interactions [211] or odd viscosity
[212] show transitions from chaotic to ordered edge states, and
could organize to patterns containing ordered loop currents or
flocking.

Complex networks and dynamical systems exhibiting syn-
chronization arise across many biological [213,214], robotic
[215], social [216], and economic systems [217]. It is known
that these systems can all enter chaotic or strongly fluctuat-
ing states; however, it would be interesting to study whether
under certain limited conditions there could be situations in
which, when some type of periodic driving is applied, time
repeating or nearly time repeating states could emerge. This
could occur if the stochastic terms in the models are small.
Future studies could focus on mathematical models of such
systems to determine whether partial reversibility can oc-
cur or whether there is a diverging timescale near a critical
point.

X. SUMMARY

We have given an overview of the recent work examining
transitions from chaotic irreversible states to time periodic
or reversible states for systems under periodic driving. In
these systems, the locations of the particles are compared to
their positions on the previous driving cycle. For irreversible
states, the particles do not return to the same positions,
and over multiple cycles they exhibit diffusive motion away
from their initial positions. In a reversible state, the particles
return to the same positions after one or an integer num-
ber of driving cycles, and there is no long time diffusion.
Reversible-irreversible (R-IR) transitions were initially stud-
ied for periodically sheared dilute colloids, in which a process
termed random organization produces reversible states where
particle-particle collisions no longer occur, while the irre-
versible states have continuous collisions. R-IR transitions

021001-17



C. REICHHARDT et al. PHYSICAL REVIEW RESEARCH 5, 021001 (2023)

have also been studied in strongly interacting systems such
as amorphous solids and jammed systems. Another hallmark
of the R-IR transition is that there is a critical drive or density
above which the system remains in an irreversible state, and
there is a power-law divergence on either side of the transition
for the time required for the system to settle into a steady
irreversible state or organize into reversible motion. In dilute
systems, the R-IR transition is consistent with directed per-
colation but could also fall in the class of conserved directed
percolation. For amorphous solids, similar R-IR behavior is
found but the transition appears to fall into a different uni-
versality class, and for dense systems, the critical amplitude
coincides with the yielding transition. On the reversible side
of the R-IR transition, it is possible to store a series of
memories by applying training pulses. Such memory effects
have been observed in both dilute and dense systems. R-IR
transitions have also been studied in solid state systems such
as periodically driven superconducting vortices and magnetic
skyrmions, both of which show similar behavior to that found
in dilute sheared colloidal systems.

We highlight how the general features of the R-IR transi-
tion could be applied to much broader classes of soft matter,
hard matter, and dynamical systems. For example, many
solid state systems show hysteretic behavior, and systems
of this type would be fertile ground for studying transitions
to reversible states under repeated cycling. The impact of
repeatable noise, avalanches, or return point memory could
be studied, as well as the number of cycles required to reach
the reversible state, which could show critical behavior similar
to that found in colloidal systems. Such studies could be
performed for magnetic systems, metal-insulator transitions,
charge ordering systems, and semiconductors. Other classes

of systems in which to look for R-IR transitions include
commensurate-incommensurate systems, frustrated systems,
crumpled and corrugated sheets [218,219], and even active
matter systems. These systems may also be able to store
more complex memories. For example, amorphous solids or
colloids could be sheared with a periodic but increasingly
complex protocol to see if the system can still reach a re-
versible state. We also discuss some other possible states that
are not time periodic but that show no long time diffusion,
enabling quasiperiodic dynamics to be explored, as well as
systems that do not follow the same path on each cycle but
only trace out a limited number of cycles, which could arise
for frustrated states.

We discuss how the R-IR framework could be applied
to classical and quantum discrete time crystals where the
transitions to time periodic or harmonically entrapped states
could be an example of an R-IR transition. Power-law diver-
gences in time could appear for the formation of time crystal
states. Other systems to consider include more general cyclic
systems such as pulsars, coupled oscillators, social systems,
economics, biological systems, and particle flow dynamics
on complex networks where the reversible state could arise
through the formation of loop currents.
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