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Deterministic entanglement distribution on series-parallel quantum networks
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The performance of distributing entanglement between two distant nodes in a large-scale quantum network
(QN) of partially entangled bipartite pure states is generally benchmarked against the classical entanglement per-
colation (CEP) scheme. Improvements beyond CEP were only achieved by nonscalable strategies for restricted
QN topologies. This paper explores and amplifies a new and more effective mapping of a QN, referred to as
concurrence percolation theory (ConPT), that suggests using deterministic rather than probabilistic protocols for
scalably improving on CEP across arbitrary QN topology. More precisely, we implement ConPT via a deter-
ministic entanglement transmission (DET) scheme that is fully analogous to resistor network analysis, with the
corresponding series and parallel rules represented by deterministic entanglement swapping and concentration
protocols, respectively. The main contribution of this paper is to establish a powerful mathematical framework,
which is applicable to arbitrary d-dimensional information carriers (qudits), that provides different natural
optimality metrics in terms of generalized k-concurrences (a family of fundamental entanglement measures)
for different QN topologies. In particular, we conclude that the introduced DET scheme (a) is optimal over the
well-known nested repeater protocol for distilling entanglement from partially entangled qubits and (b) leads to
higher success probabilities of obtaining a maximally entangled state than using CEP. The implementation of the
DET scheme is experimentally feasible as tested on IBM’s quantum computation platform.
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I. INTRODUCTION

Most quantum communication technologies find their roots
in entanglement, a primordial quantum resource [1]. Yet, the
nonlocality of entanglement facilitating quantum communica-
tion becomes unrealistic at large space scales where faithful
quantum information is submerged in thermal incoherent
noise [2], making it very inefficient to directly establish point-
to-point long-distance entanglement. To overcome this limit
of classical locality and indirectly distribute entanglement
among arbitrary parties requires utilizing some intermediate
parties as “relays” and applying to them a variety of fun-
damental communication protocols, including entanglement
swapping [3,4] and entanglement concentration [5,6], as well
as composite protocols that are usually recursive and more
complex, such as the nested repeater protocol [7–9], etc.

Since all parties are physically separated from one another
so that locality holds, only local operations and classical com-
munication (LOCC) can be applied to the information carriers
(e.g., qubits) of different parties. Such consideration allows
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us to treat each party as a node that consists of a collection
of information carriers and treat each partially entangled bi-
partite (multipartite) state formed by internode information
carriers as a link (hyperlink), essentially giving rise to a
network representation of the structure of locality of entan-
glement resources, widely known as the quantum network
(QN) [10]. A number of QN-based protocols have since been
introduced, e.g., q-swapping [11] and path routing [12], com-
bining communication protocols with network science [13].
In practice, basic communication protocols for small-scale
QNs have been experimentally demonstrated using diamond
nitrogen-vacancy centers [14–16] and ion traps [17,18]. It is
believed that practical QNs are easier to scale than universal
quantum computing platforms, since the nonlocality of infor-
mation carriers only needs to be maintained within each node
and not across the global QN platform. The future of a world-
wide large-scale QN, namely, a “quantum Internet” [19], is
hence foreseeable. This, on the other hand, urgently demands
a more efficient design of QN-based communication protocols
that should be scalable with network size, be adaptable to
different network topologies, and align with well-developed
methods in complex network analysis [20,21].

The particular task of entanglement distribution [22] be-
tween two arbitrary nodes, which we coin as entanglement
transmission in the QN context, is of special interest. The
discovery of an exact mapping between entanglement trans-
mission and classical bond percolation theory [23] gives rise
to a straightforward entanglement transmission scheme, called
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FIG. 1. Demonstration of the deterministic entanglement transmission (DET) scheme for arbitrary series-parallel quantum network (QN)
with d-dimensional information carriers [e.g., qutrits (d = 3)]. Starting from an initial QN (i), a final pure state (viii) can be deterministically
produced between Alice (A) and Bob (B) by canonically applying the series and parallel rules (Table II).

classical entanglement percolation (CEP) [10], that greatly
reduces the task of distributing a singlet (i.e., a pair of
maximally entangled qubits) between two nodes to a pure
percolation problem. The CEP scheme is naturally scalable
and adaptable for arbitrary QN. However, immediately after it
was introduced, it was realized that the CEP does not give
the optimal success probability of obtaining such a singlet
[10]. The problem of calculating the optimal probability was
later proved to be extremely complicated even for a one-
dimensional (1D) chain [24,25]. Even just improving this
success probability for large-scale QN can only be system-
atically done for special network topology with a few other
limitations [24], making it difficult to find a better entan-
glement transmission scheme than CEP that is scalable and
adaptable in the same satisfactory way.

This difficulty eventually leads to the questioning of the
exclusivity of the classical-percolation-theory-based mapping
itself: It was only recently realized that another mapping
from entanglement transmission to a new statistical theory
called concurrence percolation theory (ConPT) [26,27] exists,
bearing its name due to its analogy to percolation theory yet
rooted not in probability but in concurrence, a fundamental
measure of bipartite entanglement [28,29]. The ConPT pre-
dicts a lower entanglement transmission threshold than the
classical percolation threshold, exhibiting a “quantum advan-
tage” that is purely structural, independent of nontopological
details. To achieve the ConPT threshold, it has been suggested
that deterministic communication protocols that only produce
outcomes with certainty (up to unitary equivalence) should be
used, so that the protocols can be applied recursively without
becoming involved with probabilistic distributions [26].

In light of this, here we formalize a specific determinis-
tic entanglement transmission (DET) scheme (Sec. III) that
works for two arbitrary nodes in a QN, provided that the
network topology between the two nodes is series-parallel,
i.e., can be decomposed into only two connectivity rules—
series and parallel rules—in accordance with resistor network
analysis. This DET scheme is built by explicitly expressing
the series and parallel rules as two functions—a swapping
function S and a concentration function P—which can be
implemented by two fundamental communication protocols:
entanglement swapping and concentration, respectively. This
is possible since, while both protocols are generically proba-
bilistic, they can also be implemented deterministically. Our
scheme has two features:

(1) The DET scheme is fully scalable and adaptable for
arbitrary series-parallel QN, as it reduces the entanglement
transmission task to a problem of calculating path con-
nectivity between two arbitrary nodes, fully analogous to
calculating the total resistance in a series-parallel resistor
network (Fig. 1).

(2) The DET scheme is defined for d-dimensional qudits
(qutrits [30], ququarts [31], etc.) in general, making the DET
an all-purpose scheme for more exotic design of quantum
information devices.

Unlike the CEP scheme, the DET exhibits different lev-
els of optimality (Sec. IV), given in terms of a family of d
concurrence monotones [29]. Using majorization theory, we
calculate inequalities for the S and P functions and their
recursive combinations, finding that the outcome of DET is
optimal (Table I) over that of probabilistic schemes. The pow-
erful mathematical treatment also allows us to show that, if

013225-2



DETERMINISTIC ENTANGLEMENT DISTRIBUTION ON … PHYSICAL REVIEW RESEARCH 5, 013225 (2023)

TABLE I. Optimality of DET in terms of k-concurrences Ck

(Appendix B) with different QN topologies (Fig. 2).

Network topology DET optimizes...

Simple series Average Cd

Simple parallel Average Ck (1 < k � d)
Parallel-then-series Average Cd

Series-then-parallel Worst-case Cd (d = 2 only)
Series-parallel Worst-case Cd (d = 2 only)

the deterministic outcome of DET is further converted to a
maximally entangled qudit state, then the success probability
of doing so is always higher than the CEP result.

Our results also suggest that the well-known nested quan-
tum repeater protocol [7] introduced for a 1D chain of parties
with multiple bipartite partially entangled qubits shared in
between—which is essentially a parallel-then-series QN—is
not a good strategy for optimizing concurrence. Instead of ap-
plying entanglement swapping and concentration in a nested
way, we argue that the best strategy is to apply entanglement
concentration once and for all between every two adjacent
nodes and then perform entanglement swapping along the
concentrated links. The proof of this result relies on a special
reverse arithmetic-mean–geometric-mean (AM-GM) inequal-
ity (which we will prove in Appendix D). The lack of a
necessity for nesting could greatly simplify communication
protocol design and make DET preferable practically.

For demonstration, we show that both the series and par-
allel rules are experimentally feasible (Sec. V), typically
performing with fidelities of 92.4% and 78.2%, respectively,
tested on IBM’s quantum computation platform QISKIT [32].
The performance could be further improved considering re-
cent breakthroughs in raising the fidelity of two-qubit gates
above 99% [33,34].

II. QUANTUM NETWORK

In this paper, we focus on a pure-state version of a QN
where each link is a d2-dimensional bipartite pure state shared
by the two connected nodes [10]. Such a bipartite pure state
can always be written as

∑
μ,ν �μν |μν〉 ∈ Cd×d , which al-

lows matricization, i.e., allows it to be mapped to a d×d
matrix � with elements �μν , μ, ν = 1, 2, . . . , d . Left or right
multiplication of � by a unitary matrix corresponds to a local
unitary transformation performed by either of the two parties,
respectively. Thus, up to unitary equivalence, the state can
always be locally transformed into a diagonal form |λ〉 =∑d

j=1

√
λ j | j j〉 by a singular value decomposition, so that

each link is exclusively represented by d positive Schmidt
numbers, λ ≡ (λ1, λ2, . . . , λd ). Additionally, note that λ is
always subject to the normalization constraint

∑d
j=1 λ j = 1.

Thus, when d = 2 (qubits), each link can be represented by
only one parameter [26].

This representation by a sequence of Schmidt numbers
is effective, since singular values are equipped with a built-
in majorization preorder (Appendix A). This obviously only
works for bipartite states. Tripartite states, for example, al-
though they can be completely classified by five parameters

including one phase and four moduli [35], are not compatible
with such a preorder, thus manifesting as a fundamentally dif-
ficult “(quantum) three-body problem.” Note that traditionally,
each link in a network is also a “bipartite” pairwise nota-
tion, always connecting two nodes. Hence it seems a perfect
match to study the statistics of a large number of bipartite
states using a “bipartite” network theory, namely, a “statis-
tical theory of (quantum) two-body problems.” In contrast, a
“complex” QN consisting of multipartite entangled states as
“hyperlinks” would be beyond the scope of this paper, since
the difficulties coming from both quantum many-body theory
and hypergraph theory are actually twofold.

A. Quantum communication protocols

We briefly review two LOCC protocols for bipartite states
that are often used in quantum communication.

1. Entanglement swapping

The motivation for the entanglement swapping protocol is
as follows: Suppose there are three parties, Alice, Relay, and
Bob (A, R, and B), who share two bipartite states, |λa〉 =∑d

j=1

√
λa, j | j j〉AR (shared between A and R) and |λb〉 =∑d

k=1

√
λb,k|kk〉RB (shared between R and B), respectively.

Since A and B do not directly share any entanglement, a
swapping protocol [4] must be performed, which requires a set
of quantum measurements to be conducted on R. The result,
which is probabilistic in general, is an ensemble of bipartite
states directly shared between A and B, entangled.

To be specific, if we matricize |λa〉 and |λb〉 and denote
them by two diagonal matrices diag(λa)1/2 and diag(λb)1/2,
then after R performs the measurements, the resultant (un-
normalized) state between A and B can be written in the
matrix form

�α = diag(λa)1/2Xαdiag(λb)1/2 (1)

for outcome α, subject to probability pα = ‖�α‖2
2 of the out-

come [36]. The quantum measurements are encoded by a set
of arbitrary matrices {Xα} constrained by the completeness
relation ∑

α

(
X α

μν

)∗
X α

μ′ν ′ = δμμ′δνν ′ , (2)

which is sufficient for {Xα} to denote a positive operator-
valued measure (POVM).

2. Entanglement concentration

Given |λ〉 =∑m
j=1

√
λ j | j j〉 for m ∈ Z+, what is the max-

imum probability of converting it to a new state |x〉 =∑m
j=1

√
x j | j j〉 by LOCC? Such a probability is well known

[37]:

pλ→x = min
0�k<m

1 −∑k
j=1 λ

↓
j

1 −∑k
j=1 x↓

j

. (3)

In particular, note that it is possible to obtain a new state
|x〉 of a different dimension d if d � m, since one can pad
x by zeros and build a new sequence of m Schmidt num-

bers, x′ = x ⊕ (

m−d︷ ︸︸ ︷
0, 0, . . . , 0), which when inserted into Eq. (3)
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yields the maximum probability pλ→x [38]. The motivation of
the entanglement concentration protocol is that, by treating
multiple partially entangled bipartite states together as one
tensor-product state of a much larger dimension m, one can
convert such a tensor-product state to a bipartite state of fewer
dimensions d but with potentially higher entanglement than
each previously individual bipartite state.A concentration pro-
tocol can be either probabilistic or deterministic, for pλ→x = 1
is clearly possible by Eq. (3).

B. Entanglement transmission schemes

A scheme is a (possibly infinite) number of protocols that
can be collectively applied to a QN. One of the well-known
entanglement transmission schemes is the classical entangle-
ment percolation (CEP) scheme for d = 2. The CEP scheme
consists of two steps [10]: (i) Use the concentration protocol
to convert each link to a singlet, the probability of which is
given by Eq. (3). (ii) Find a path of links connecting two arbi-
trary nodes A and B that have all been successfully converted
to singlets and apply the swapping protocol to them one by
one. The final state between A and B is guaranteed to be a
singlet by Eq. (1). The probability of finding such a path can
be considered as a measure of the entanglement transmission
ability between A and B, determined by the network topology.
This probability, however, is known to be nonoptimal, since
for some special topology, e.g., a honeycomb with double
links between every two connected nodes, adding a “prepro-
cessing” step of entanglement swapping to the CEP scheme
may change the network topology to a triangular type and
potentially increase the probability of establishing a singlet
between A and B [10].

A deterministic entanglement transmission (DET) scheme,
on the other hand, does not use generic probabilistic protocols
to increase the singlet conversion probability, but uses deter-
ministic protocols to produce a single highly entangled state
between A and B (demonstrated in Fig. 1). Note that after
performing each deterministic protocol, the new system is still
an intact QN, i.e., a pure state as a whole, not a probabilistic
ensemble. This makes DET purely “nonclassical” (without
mixing with probability measures) and easily scalable with
network size.

The specific DET scheme we introduce, which utilizes only
deterministic swapping and concentration protocols, can be
applied to arbitrary series-parallel QN.

III. A DETERMINISTIC ENTANGLEMENT
TRANSMISSION SCHEME

A. Series-parallel network topology

Whether a network is series-parallel or not depends on
which two nodes of interest are chosen [39]. Given two
nodes A and B, the network topology can be characterized
into different categories (Fig. 2). All topologies between A
and B given in Figs. 2(a)–2(e) are considered series-parallel,
but the topology in Fig. 2(f) is not, due to an existing
“bridge” compared with Fig. 2(e). It is worth noting that most
known realistic complex networks can be approximated as
series-parallel, since cycles can usually be ignored in infinite-
dimensional systems by the Bethe approximation [40].

FIG. 2. Different QN topologies between A and B. (a) Simple
series QN. (b) Simple parallel QN. (c) Parallel-then-series QN.
(d) Series-then-parallel QN. (e) Series-parallel QN. (f) General QN.

B. Series and parallel rules

The series and parallel rules of our DET scheme are given
in Table II, where ⊗ stands for the Kronecker product, and,
for simplicity, the infix notation is introduced for representing
binary operations, i.e., x f y ≡ f (x, y), which is left-grouping,
i.e., x f y f z ≡ (x f y) f z. The two functions, S (x, y) and P (x),
as well as the motivations for introducing them are given as
follows.

1. Swapping function S(x, y)

Definition. We define S : (Rd
+,Rd

+) → Rd
+ by

S (x, y) = d × σ 2(diag(x↓)1/2Vdiag(y↓)1/2), (4)

where σ (�) denotes the singular values of matrix � and
σ 2(�) denotes the entry-wise square of σ (�), both ar-
ranged in descending order so that S (x, y) ≡ [S (x, y)]↓.
The matrix V is constant and unitary, with elements Vμν =
d−1/2 exp(−2π iμν/d ), μ, ν = 1, 2, . . . , d .

Properties. S (x, y) has the following properties.
(i) Permutation invariance [x → perm(x)]:

S (x, y) = S (perm(x), y). (5)

(ii) Trace preserving:

tr(S (x, y)) = tr(x)tr(y). (6)

TABLE II. Series and parallel rules for DET.

DET

Series λ = λ1Sλ2S · · ·Sλn [Eq. (4)]
Parallel λ = P (λ1 ⊗ λ2 ⊗ · · · ⊗ λn) [Eq. (10)]

013225-4



DETERMINISTIC ENTANGLEMENT DISTRIBUTION ON … PHYSICAL REVIEW RESEARCH 5, 013225 (2023)

(iii) Isotone:

S (x, z) 
 S (y, z), ∀z if x 
 y. (7)

(iv) Commutativity:

S (x, y) = S (y, x). (8)

(v) Associativity:

S (S (x, y), z) = S (x,S (y, z)) for d � 3. (9)

Equations (5) and (8) hold because σ (�) is invariant under
Hermitian conjugate and unitary transformation of �. Equa-
tion (7) holds as a result of Theorem 5, given the facts that
S is permutation invariant [Eq. (5)] and convex (Lemma 1).
Equation (6) can be inferred from its validity for the special
case tr(x) = tr(y) = 1.

In particular, Eq. (9) is valid for d � 3 because both its
left-hand side and right-hand side have two constraints: trace
preserving [Eq. (6)] and determinant preserving (Lemma 2).
Additionally, employing the duality (Lemma 3) produces two
more constraints in terms of “dual” trace preserving and
“dual” determinant preserving. The latter, however, can be
shown to be equivalent to the original determinant preserving
constraint. Therefore there are three independent constraints
in total, and thus the left-hand side and right-hand side must
be equal when d � 3. When d > 3, counterexamples can be
easily found.

Implementability by LOCC. It remains to show that
S (λa,λb) can be implemented by the swapping proto-
col [Eq. (1)] in a deterministic manner. In short, given
a special set of matrices {Xα} each with elements X α

μν =
d−1e−α(dμ+ν)2π i/d2−2π iμν/d for α = 1, 2, . . . , d2, one can ver-
ify that {Xα} satisfies Eq. (2), thus denoting a POVM.
Hence, performing the swapping protocol and follow-
ing Eq. (1), the resultant (un-normalized) state �α is
obtained, for each outcome α, with elements �α

jk =
d−1
√

λ
↓
a, jλ

↓
b,ke−(αd j+αk+d jk)2π i/d2

. Now, as long as Alice and
Bob are shared by the Relay the classical information of
which α is obtained, they can always rotate their shared
state �α by some phase accordingly and transform it lo-
cally into a new α-independent state �′ with elements � ′

jk =
d−1
√

λ
↓
a, jλ

↓
b,ke−(2π i) jk/d , the Schmidt numbers of which are

then given by S (λa,λb) [Eq. (4)] after normalization of �′.
The independence of �′ on α confirms that the protocol is de-
terministic. An example of the full construction of S (λa,λb)
is given in Sec. V.

The construction above was first given in Ref. [29], behind
which the motivation is that under such a special choice of
{Xα}, the swapping protocol actually optimizes a determinant-
based entanglement measure (G-concurrence) of the final
state. This is made manifest by Theorem 1 in Sec. IV.

2. Concentration function P (x)

Definition. We define P : Rm
+ → Rd

+ (m � d) by the fol-
lowing pseudocode.

function P (x) : �x↓ = (x↓
1 , x↓

2 , . . . , x↓
m)

s ←
m∑

j=1

x j

for l ← 1, 2, . . . , d do

χl ← max{x↓
l , s/(d + 1 − l )}

s ← s − χl

end for

return χ � χ = (χ1, . . . , χd ).
(10)

The above definition implies that P (x) is always given in
descending order, P (x) ≡ [P (x)]↓, and

[P (x)] j � x↓
j , j = 1, 2, . . . , d. (11)

Moreover, if [P (x)]l > x↓
l for some l , then

[P (x)] j = [P (x)]l and [P (x)] j > x↓
j (12)

for all l � j � d .
Properties. P (x) has the following properties.
(i) Permutation invariance [x → perm(x)]:

P (x) = P (perm(x)). (13)

(ii) Trace preserving:

tr(P (x)) = tr(x). (14)

(iii) Isotone:

P (x) 
 P (y) if x 
 y. (15)

(iv) Commutativity:

P (x ⊗ y) = P (y ⊗ x). (16)

(v) Associativity:

P (P (x ⊗ y) ⊗ z) = P (x ⊗ P (y ⊗ z)). (17)

Equations (13), (14), and (16) all hold by definition
[Eq. (10)]. Again, Eq. (15) holds as a result of Theorem 5,
given the facts that P is permutation invariant [Eq. (13)] and
convex (Lemma 5).

In particular, Eq. (17) is valid because, on the one hand,
by Eq. (15), we have P (P (x ⊗ y) ⊗ z) 
 P (x ⊗ y ⊗ z); on

the other hand, since P (x ⊗ y ⊗ z) ⊕ (

d2−d︷ ︸︸ ︷
0, 0, . . . , 0) 
 P (x ⊗

y) ⊗ z, by Lemma 4 we have P (x ⊗ y ⊗ z) 
 P (P (x ⊗ y) ⊗
z). Thus we must have P (x ⊗ y ⊗ z) = P (P (x ⊗ y) ⊗ z)
since P is permutation invariant. The same is also true for
P (x ⊗ P (y ⊗ z)). Hence together we have P (P (x ⊗ y) ⊗
z) = P (x ⊗ P (y ⊗ z)) = P (x ⊗ y ⊗ z).

Implementability by LOCC. The definition [Eq. (11)] im-
mediately implies that

P (λ) ⊕ (

m−d︷ ︸︸ ︷
0, 0, . . . , 0) 
 λ. (18)

Thus any new bipartite state of Schmidt numbers P (λ) can be
produced deterministically (i.e., pλ→P (λ) = 1) from a bipartite
state of Schmidt numbers λ by the concentration protocol
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[Eq. (3)]. However, the full LOCC construction is compli-
cated, and only a sketch was originally given in Ref. [41]. An
example of the full construction of P (λ) is given in Sec. V.

The choice of x such that pλ→x = 1 is not unique. The
motivation behind our special choice of P (λ) [Eq. (10)] is
that it denotes the unique state that contains the maximum en-
tanglement to be concentrated deterministically from λ after
reducing the dimension. This is made manifest by Theorem 2
in Sec. IV.

IV. OPTIMALITY

We have shown that the series and parallel rules in Table II
can be implemented by the entanglement swapping and con-
centration protocols. Naturally, we are interested in how good
the DET scheme built by these rules is. Here, we proceed to
study the optimality of these rules. As we will see, the degree
of optimality of our series and parallel rules actually varies for
different series-parallel network topologies.

When discussing the optimality of the series and parallel
rules, we will compare our specific rules with generic prob-
abilistic protocols. We will show that, to some degree, the
deterministic outcomes by the series and parallel rules are still
the best, even when we relax the requirement of determinacy
and consider the average of general probabilistic ensembles
of outcomes. Since an entanglement-efficient protocol that
yields generic probabilistic outcomes would necessarily re-
quire more storage and more sophisticated algorithms to keep
track of every possible outcome, the complexity of the full
scheme would inevitably scale with the QN size, suggesting
that a DET scheme is more practical for entanglement trans-
mission over a large-scale QN.

Concurrence monotones. It is necessary to introduce a
proper entanglement measure on the Schmidt numbers λ. Al-
though λ only admits a preorder, the entanglement measure as
a real function admits a strict total order, which can be used to
quantify the amount of entanglement. We will adopt a special
family of entanglement monotones, called the concurrence
monotones [29], Ck , k = 1, 2, . . . , d (see Appendix B for
more details). We will show that the series and parallel rules
optimize the task of entanglement transmission for series-
parallel QNs when measured by the average or worst-case
k-concurrence, or G-concurrence (namely Cd ), depending on
the network topology.

A. Some lemmas

We first prove some lemmas for the swapping and concen-
tration functions, S (x, y) and P (x).

Lemma 1: Convexity. S (xα, z) is convex, i.e.,

∑
α

pαS (xα, z) 
 S
(∑

α

pαxα, z

)
, pα ∈ R+, z ∈ Rd

+.

Proof. Equation (4) can be rewritten as

S (x, y) = d × eig(diag(x↓)V†diag(y↓)V), (19)

where “eig” denotes the eigenvalues, arranged in descending
order. Thus

S
(∑

α

pαxα, z

)
≺ d

∑
α

pαeig(diag(x↓
α )V†diag(z↓)V)

=
∑

α

pαS (xα, z)

by Lidskii’s theorem on eigenvalues (Theorem III.4.1 of
Ref. [42]). �

Lemma 2: Determinant preserving.

det (S (x, y)) = dd det(x) det(y),

where det(x) ≡ det (diag(x)) = x1x2 · · · xd .
Proof. By Eq. (19), we directly have det (S (x, y)) =

dd det(x)| det(V)|2 det(y) = dd det(x) det(y). �
Lemma 3: Duality. Let z = S (x, y). Then,

adj(z)↓ = dd−2S (adj(x), adj(y)),

where adj(x) ≡ (det(x)/x1, det(x)/x2, . . . , det(x)/xd ).
Proof. By Eq. (19),

S (adj(x), adj(y))

= d×eig(diag(adj(x↓))V†diag(adj(y↓))V)

= d×eig(adj(diag(x↓))adj(V)adj(diag(y↓))adj(V†))

= d×eig(adj(V†diag(y↓)Vdiag(x↓)))

= d×adj(eig(V†diag(y↓)Vdiag(x↓)))↓

= d×adj(S (x, y)/d )↓ = d2−d adj(z)↓,

where we have used several properties of the adjugate of a ma-
trix �, e.g., adj(�) = det(�)�−1 and adj(c�) = cd−1adj(�)
for c ∈ R. �

Lemma 4: Majorization extremity. Let z′ ∈ Rd
+. If z′ ⊕

(

m−d︷ ︸︸ ︷
0, 0, . . . , 0) 
 x, then z′ 
 P (x).

Proof. We will prove this lemma by induction. Suppose
there exists [P (x)]l > x↓

l for some l , and

k∑
j=1

z′↓
j �

k∑
j=1

[P (x)] j, ∀k = 1, . . . , l − 1; (20)

we would like to prove

l∑
j=1

z′↓
j �

l∑
j=1

[P (x)] j . (21)
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Indeed,

l∑
j=1

z′↓
j =

l−1∑
j=1

z′↓
j + z′↓

l �
l−1∑
j=1

z′↓
j +

∑d
j=1 z′↓

j −∑l−1
j=1 z′↓

j

d + 1 − l

�
l−1∑
j=1

[P (x)] j +
∑d

j=1[P (x)] j −∑l−1
j=1[P (x)] j

d + 1 − l

=
l−1∑
j=1

[P (x)] j + (d + 1 − l )−1
d∑

j=l

[P (x)] j

=
l−1∑
j=1

[P (x)] j + [P (x)]l =
l∑

j=1

[P (x)] j, (22)

where the first inequality holds because the maximum is never
less than the mean and the second inequality holds because
tr(P (x)) = tr(z′) and 1 − (d + 1 − l )−1 � 0. Hence Eq. (21)
is proved.

Finally, choose the minimum l that satisfies [P (x)]l > x↓
l .

In other words, [P (x)] j = x↓
j for j < l . Hence

k∑
j=1

[P (x)] j =
k∑

j=1

x↓
j �

k∑
j=1

z′↓
j , ∀k = 1, . . . , l − 1,

which completes the induction. �
Lemma 5: Convexity. P (xα ) is convex, i.e.,∑

α

pαP (xα ) 
 P
(∑

α

pαxα

)
, pα ∈ R+.

Proof. Similar to Lemma 4, we will prove this lemma by in-
duction. Suppose there exists [P (

∑
α pαxα )]l > [

∑
α pαxα]↓l

for some l , and
k∑

j=1

[∑
α

pαP (xα )

]↓

j

�
k∑

j=1

[
P
(∑

α

pαxα

)]
j

, (23)

∀k = 1, . . . , l − 1; we can prove
l∑

j=1

[∑
α

pαP (xα )

]↓

j

�
l∑

j=1

[
P
(∑

α

pαxα

)]
j

(24)

the same way as in Eq. (22). Now, choose the minimum l
that satisfies [P (

∑
α pαxα )]l > [

∑
α pαxα]↓l . In other words,

[P (
∑

α pαxα )] j = [
∑

α pαxα]↓j for j < l . Hence

k∑
j=1

[
P
(∑

α

pαxα

)]
j

=
k∑

j=1

[∑
α

pαxα

]↓

j

�
k∑

j=1

[∑
α

pαx↓
α

]↓

j

�
k∑

j=1

[∑
α

pαP (xα )

]↓

j

,

∀k = 1, . . . , l − 1, which completes the induction. �
Lemma 6: A sum-product mixing majorization inequality.

Let x, y, z ∈ Rm
+. If

ln x↓ + ln y↓ 
w ln z↓,

then

lnP (x) + lnP (y) 
w lnP (z).

Proof. To begin with, without loss of generality we will
just assume m = d + 1, which means that P (x) is only one

dimension less than x. Indeed, for any m > d , the concentra-
tion process [Eq. (10)] can be equally constructed by applying
such a one-dimension-less P (x) to x recursively m − d times.
Thus, if our statement holds for m = d + 1, then it holds for
general m too.

First, we would like to prove the following inequality:⎛
⎝ d∏

j=1

[P (x)] j

⎞
⎠
⎛
⎝ d∏

j=1

[P (y)] j

⎞
⎠ �

d∏
j=1

[P (z)] j . (25)

By the definition of P (x) [Eq. (12)], we have

d∏
j=1

[P (z)] j =
⎛
⎝ l−1∏

j=1

z↓
j

⎞
⎠
⎡
⎣d+1∑

j=l

z↓
j /(d + 1 − l )

⎤
⎦d+1−l

,

where l separates P (z) and satisfies [P (z)] j = z↓
j for j < l

and [P (z)] j > z↓
j for l � j � d .

Now we take advantage of a special reverse AM-GM in-
equality which we will introduce and prove in Appendix D.
Let 
 = z↓

d+1, ε j = z↓
d+1− j , and Ek = 
 +∑k

j=1 ε j , k =
1, 2, . . . , d + 1 − l . We can see that εk � εk+1 � Ek/k, ∀k
[implied by Eq. (10)]. Thus, using Corollary 2,⎡
⎣d+1∑

j=l

z↓
j /(d + 1 − l )

⎤
⎦d+1−l

� exp(z↓
d+1/z↓

d )
d∏

j=l

z↓
j

� (1 +
√

z↓
d+1/z↓

d )2
d∏

j=l

z↓
j ,

where the second inequality holds since z↓
d+1 � z↓

d . Thus

d∏
j=1

[P (z)] j � (1 +
√

z↓
d+1/z↓

d )2
d∏

j=1

z↓
j

= (z↓
d + z↓

d+1 + 2
√

z↓
d z↓

d+1)
d−1∏
j=1

z↓
j

� (x↓
d y↓

d + x↓
d+1y↓

d+1 + 2
√

x↓
d y↓

d x↓
d+1y↓

d+1)
d−1∏
j=1

x↓
j y↓

j

� (x↓
d + x↓

d+1)(y↓
d + y↓

d+1)
d−1∏
j=1

x↓
j y↓

j

�

⎛
⎝ d∏

j=1

[P (x)] j

⎞
⎠
⎛
⎝ d∏

j=1

[P (y)] j

⎞
⎠,

where in the third step we use Theorem 6, in the fourth step we
use the usual AM-GM inequality, and in the last step we use
the definition of the concentration process [Eq. (10)]. Hence
Eq. (25) is proved.

Now we will complete the proof by induction. Suppose
there exists [P (z)]l > z↓

l for some l , and

k∑
j=1

ln[P (x)] j +
k∑

j=1

ln[P (y)] j �
k∑

j=1

ln[P (z)] j, (26)
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∀k = 1, . . . , l − 1; we would like to prove

l∑
j=1

ln[P (x)] j +
l∑

j=1

ln[P (y)] j �
l∑

j=1

ln[P (z)] j . (27)

The proof structure is the same as in Eq. (22), while the only
difference is that, for the second inequality in Eq. (22) to hold,
we need to show that tr( lnP (x)) + tr( lnP (y)) � tr(lnP (z)).
This has been proved by Eq. (25). Hence Eq. (27) is proved.

Finally, choose the minimum l that satisfies [P (z)]l > z↓
l .

In other words, [P (z)] j = z↓
j for j < l . Hence

k∑
j=1

ln[P (z)] j =
k∑

j=1

ln z↓
j �

k∑
j=1

ln x↓
j +

k∑
j=1

ln y↓
j

�
k∑

j=1

ln[P (x)] j +
k∑

j=1

ln[P (y)] j,

∀k = 1, . . . , l − 1,

which completes the induction. �

B. Simple series

For simple series network topology [Fig. 2(a)], the swap-
ping protocol is responsible for entanglement transmission.
What is the maximum of the final average k-concurrence
[from Eq. (1)]∑

α

pαCα
k =

∑
α

‖�α‖2
2Ck
(
σ 2
(‖�α‖−1

2 �α
))

between A and B that can be obtained by the swapping proto-
col? How does it compare with the deterministic series rule?
This is answered by the following theorem.

Theorem 1. Given a simple series QN, compared with
generic entanglement swapping protocols of probabilistic out-
comes, the series rule (Table II) produces the optimal average
G-concurrence between A and B.

Proof. It suffices to investigate two links λa and λb in series.
The proof can be easily generalized to n links.

Let {Xα} denote a set of quantum measurements as used
in the entanglement swapping protocol [Eq. (1)]. In general,
given probability pα and the corresponding k-concurrence
Cα

k of outcome α, the maximum average k-concurrence
max{Xα}

∑
α pαCα

k is intractable, and the corresponding opti-
mal {Xα} should implicitly depend on λa and λb. However,
this is not the case for G-concurrence. To see this, let k = d;
then,∑

α

pαCα
d = d

∑
α

| det(�α )|2/d

= d
∑

α

det(λa)1/d | det(Xα )|2/d det(λb)1/d

= d−1Cd (λa)Cd (λb)
∑

α

| det(Xα )|2/d

� d−2Cd (λa)Cd (λb)
∑

α

tr(Xα†Xα )

= Cd (λa)Cd (λb), (28)

where the AM-GM inequality is used in the second-to-last
step and Eq. (2) is used in the last step. Equation (28) indicates
that the final average G-concurrence will never be greater than
the product of the G-concurrences of λa and λb.

Note that this proof was originally given by Gour in
Ref. [29]. The validity of the proof comes from the unique
feature of the multiplicity of determinants, which is not
applicable to other k-concurrence monotones [29]. A sum-
mary of the use of determinant-based entanglement measures
compared with other probabilistic measures for certain QN
topologies can be found in Ref. [24].

It remains to be shown that the equality in Eq. (28) holds
for S (λa,λb). By Lemma 2,

Cd (S (λa,λb)) = d det (S (λa,λb))1/d

= d2 det(λa)1/d det(λb)1/d

= Cd (λa)Cd (λb). (29)

Thus ∑
α

pαCα
d � Cd (S (λa,λb)), (30)

which completes the proof. �
Remark. Note that Eq. (30) says nothing about the ma-

jorization preorder. In fact, usually there is∑
α

pασ 2(�α/‖�α‖2)↓ =
∑

α

σ 2(�α )↓ � S (λa,λb). (31)

Would the inequality in Eq. (31) hold, one could prove
Eq. (30) for not only k = d but k < d as well. Unfortunately,
this is not true.

C. Simple parallel

For simple parallel network topology [Fig. 2(b)], the
concentration protocol is responsible for entanglement trans-
mission. Similarly, we ask: What is the maximum of the final
average k-concurrence

∑
α pαCα

k between A and B that can be
obtained by the concentration protocol? How does it compare
with the deterministic parallel rule? The answer is given by
the following theorem.

Theorem 2. Given a simple parallel QN, compared with
generic entanglement concentration protocols of probabilistic
outcomes, the parallel rule (Table II) produces the optimal
average k-concurrence between A and B for k = 1, 2, . . . , d .

Proof. Again, it suffices to look at two links λa and λb in
parallel. The proof can be easily generalized to n links.

If we can obtain an ensemble of outcomes λ′
α , each with

probability pα , from λa ⊗ λb, then, by the fundamental limit
of LOCC [38],⎛

⎜⎝∑
α

pαλ′↓
α ⊕ (

d2−d︷ ︸︸ ︷
0, 0, . . . , 0)

⎞
⎟⎠ 
 λa ⊗ λb.

Hence, by Lemma 4,∑
α

pαλ′↓
α 
 P (λa ⊗ λb), (32)
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and thus

∑
α

pαCk (λ′
α ) � Ck

(∑
α

pαλ′↓
α

)
� Ck (P (λa ⊗ λb))

for k = 1, 2, . . . , d . �
Remark. Note that unlike Eq. (31) for the series rule,

Eq. (32) does hold. Therefore the optimality of the parallel
rule is for all k-concurrence, not just G-concurrence. This
implies that P (λa ⊗ λb) always contains the maximum allow-
able entanglement that can be concentrated from λa ⊗ λb on
average.

D. Parallel-then-series

For parallel-then-series network topology [Fig. 2(c)], both
the swapping and concentration protocols are responsible for
entanglement transmission. We prove the following theorem.

Theorem 3. Given a parallel-then-series QN, compared
with generic entanglement swapping and concentration pro-
tocols of probabilistic outcomes, the series and parallel rules
(Table II) produce the optimal average G-concurrence be-
tween A and B.

Proof. It suffices to prove the theorem for four links: λa

and λb are connected in parallel, λc and λd are connected in
parallel, and then the two parallel groups are connected in se-
ries. Now, let �α = diag(λa ⊗ λb)1/2Xαdiag(λc ⊗ λd )1/2, as
used in the entanglement swapping protocol [Eq. (1)]. The
difference, however, is that �α is not a d×d matrix, but a
d2×d2 matrix. This is because we are considering a generic
swapping protocol, which must be applied to the full d2 di-
mensions. Then, the final d-dimensional outcome α will be
given by P (σ 2(�α )).

By the Gelfand-Naimark theorem on singular values
(Theorem III.4.5 of Ref. [42]), we have

ln σ 2(�α ) ≺ ln (λa ⊗ λb)↓ + ln σ 2(Xα ) + ln (λc ⊗ λd )↓.

(33)

Thus, by Lemma 6, we have, in particular,

det(P (σ 2(�α ))) � det(P (λa ⊗ λb)) det(P (σ 2(Xα )))

× det(P (λc ⊗ λd )).

Hence, similar to Eq. (28),∑
α

pαCα
d = d

∑
α

det(P (σ 2(�α )))1/d

� d−2Cd (P (λa ⊗ λb))Cd (P (λc ⊗ λd ))

×
∑

α

tr(P (σ 2(Xα )))

= d−2Cd (P (λa ⊗ λb))Cd (P (λc ⊗ λd ))

×
∑

α

tr(Xα†Xα )

= Cd (P (λa ⊗ λb))Cd (P (λc ⊗ λd )), (34)

where the AM-GM inequality is used in the second step,
Eq. (14) is used in the third step, and Eq. (2) is used in
the last step. Again, Eq. (34) indicates that the final average
G-concurrence will never be greater than the product of the

G-concurrences of P (λa ⊗ λb) and P (λc ⊗ λd ), which is

equal to Cd (S (P (λa ⊗ λb),P (λc ⊗ λd ))) [Eq. (29)]. �
Remark. At first glimpse, it seems that we would have more

degrees of freedom to design a swapping protocol directly on
the full d2-dimensional λa ⊗ λb and λc ⊗ λd , and we would
get a better result in terms of G-concurrence. Interestingly
though, Theorem 3 says that the best strategy is to first re-
duce them to d-dimensional P (λa ⊗ λb) and P (λc ⊗ λd ) and
then apply a swapping protocol on them. Our result implies
a strong practical convenience in entanglement transmission
and that it is in fact unnecessary to store all dm dimensions
for m parallel links. We can safely concentrate and produce a
d-dimensional link from the m parallel links and then swap it
with other links connected in series. The final G-concurrence
is guaranteed to be optimal.

Note particularly that the nested repeater protocol [7] is
designed to swap λa ⊗ λb and λc ⊗ λd using two independent
swapping protocols on a, c and b, d , respectively, before ap-
plying concentration protocols on the outcomes. However, the
tensor product of the two swapping protocols is just a special
case of a d2-dimensional swapping protocol. Thus the nested
concentration protocol is neither the optimal nor the conve-
nient approach to produce the final average G-concurrence.

E. Series-then-parallel

For series-then-parallel network topology [Fig. 2(d)], the
final average k-concurrence between A and B is not max-
imized by the series and parallel rules but instead by
some generic nondeterministic swapping and concentration
protocols.

A counterexample can be easily constructed. Let d = 2 and
λa = λb = λc = (0.9, 0.1). λa and λb are connected in series
and then with λc in parallel. The series and parallel rules
(Table II) yield a deterministic final outcome λ = (9(25 +
4
√

34)/500, 1 − 9(25 + 4
√

34)/500) ≈ (0.870, 0.130), the
G-concurrence of which is ≈0.673. However, applying a spe-
cial nondeterministic swapping protocol (the ZZ basis [24])
on λa and λb, we derive four probabilistic outcomes, λ1 =
λ2 = (81/82, 1/82) and λ3 = λ4 = (1/2, 1/2), with prob-
abilities p1 = p2 = 0.41 and p3 = p4 = 0.09, respectively.
The final average G-concurrence is 2p1Cd (P (λc ⊗ λ1)) +
2p3Cd (P (λc ⊗ λ3)) ≈ 0.695. Thus the series and parallel
rules are not optimal. The reason behind this is that the
inequality in Eq. (31) does not hold in general. For this
example, we clearly have p1λ

↓
1 + p2λ

↓
2 + p3λ

↓
3 + p4λ

↓
4 =

(0.819, 0.181) � S (λa,λb) ≈ (0.966, 0.034).

F. Series-parallel

Finally, for arbitrary series-parallel network topology
[Fig. 2(e)], we already know from the above that no opti-
mality can be observed for the final average k-concurrence.
That being said, for qubits (d = 2), a special theorem of
optimality can indeed be made in terms of the final worst-
case G-concurrence (Appendix B). We prove the following
theorem.

Theorem 4. (This theorem is for d = 2 only.) Given
a series-parallel QN, compared with generic entangle-
ment swapping and concentration protocols of probabilistic
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TABLE III. Series and parallel rules for generalized CEP.

Generalized CEP

Series p = pλ1→λmax pλ2→λmax · · · pλn→λmax

Parallel (1 − p) = (1 − pλ1→λmax ) · · · (1 − pλn→λmax )

outcomes, the series and parallel rules (Table II) produce the
optimal worst-case G-concurrence between A and B.

Proof. From Theorems 1 and 2 we know that, for simple
series and simple parallel network topologies, given a generic
ensemble of probabilistic outcomes α, there must be at least
one λα of which the G-concurrence is less than (at most
equal to) the G-concurrence which the series and parallel rules
would produce, respectively. Since d = 2, this λα majorizes
what the series and parallel rules would produce. Then, given
that the series and parallel rules are isotone [Eqs. (7) and (15)],
the final probabilistic outcome related to λα will remain as the
worst case when the series and parallel rules are applied over
the full series-parallel network. �

Remark. This special optimality on the worst-case G-
concurrence for arbitrary series-parallel network topology
with d = 2 was first discussed in Ref. [26]. When d > 2,
Theorem 4 does not hold. This is because other deterministic
series or parallel rules different from those in Table II can
exist, and such a rule can sometimes deterministically produce
a λ with greater G-concurrence (which is only possible when
the series-then-parallel network topology is involved); hence
the worst-case G-concurrence is also greater.

G. Comparison with generalized CEP

After obtaining a partially entangled state as the DET out-
come, it is always possible to further convert it to a maximally
entangled state λmax = (1/d, 1/d, . . . , 1/d ) with the help of
probabilistic entanglement concentration [Eq. (3)], of which
the success probability represents another useful figure of
merit than concurrences for QN. We adopt this figure of
merit to directly compare the DET scheme with the bench-
mark result of the classical entanglement percolation (CEP)
(Sec. II B). For qubits, it has been proved that deterministic
protocols yield higher success probability than CEP [26].
However, for general qudits this is not obvious. Here, as our
first step, we generalize the idea of CEP to qudits, denoting
pλ→λmax [Eq. (3)] as the success probability of converting each
QN link λ into λmax. The overall probability of connecting two
distant nodes by a path of maximally entangled states depends
on the network topology, which, if series-parallel, allows the
probability to be decomposed and calculated by similar series
and parallel rules (Table III) [26].

To compare it with DET, note that for any λa and λb,

pλa→λmax � pλb→λmax if λa 
 λb. (35)

Also, for any pλ→λmax [Eq. (3)], it is easy to check that

λ ≺ (pλ→λmax )λmax + (1 − pλ→λmax )λmin, (36)

where λmin = (1, 0, . . . , 0). Now without loss of generality
considering the series rule of DET applied to two links λa and

λb, Eq. (36) leads to

S (λa,λb) ≺ S ((pλa→λmax )λmax + (1 − pλa→λmax )λmin,

(pλb→λmax )λmax + (1 − pλb→λmax )λmin)

≺ (pλa→λmax )(pλb→λmax )S (λmax,λmax)

+(pλa→λmax )(1 − pλb→λmax )S (λmax,λmin)

+(1 − pλa→λmax )(pλb→λmax )S (λmin,λmax)

+(1 − pλa→λmax )(1 − pλb→λmax )S (λmin,λmin)

= pλa→λmax pλb→λmaxλmax

+(1 − pλa→λmax pλb→λmax )λmin, (37)

where used in the first step is the isotone property of the
swapping function S [Eq. (7)], used in the second step is con-
vexity (Lemma 1), and used in the last step are the facts that
S (λmax,λ) = λ and S (λmin,λ) = λmin. Hence, by Eq. (35),
the probability of converting the left-hand side of Eq. (37)
to λmax is never less than the probability of doing so for the
right-hand side, which is exactly the generalized CEP result
pλa→λmax pλb→λmax (Table III).

For the parallel rule of DET applied to two links λa and
λb, the proof is almost identical by noticing that the con-
centration function P has the same isotone [Eq. (15)] and
convexity (Lemma 5) properties and that P (λmax ⊗ λ) = λmax

and P (λmin ⊗ λ) = λ. Thus we have

P (λa ⊗ λb) ≺ (1 − pλa→λmax )(1 − pλb→λmax )λmin

+(pλa→λmax + pλb→λmax

−pλa→λmax pλb→λmax )λmax. (38)

Together, Eqs. (37) and (38) indicate that the DET yields
higher success probability in terms of both the series and
parallel rules. Since both S and P are isotones, it is not
difficult to extrapolate the proof to any series-parallel QN
by iteration, thereby showing that the DEP improves on CEP
across arbitrary series-parallel network topology.

V. QUANTUM CIRCUIT IMPLEMENTATION

In this section, we demonstrate the experimental feasibility
of the DET scheme using IBM’s quantum computing platform
QISKIT [32], showing how to design quantum circuits for the
corresponding protocols on qubits (d = 2). The performance
of the circuits is numerically tested on a five-qubit noisy
simulator with its parameters matching the realistic scenario
of IBM’s quantum hardware.

Compared with Bell-state-based schemes, the partially-
entangled-state-based DET scheme has notable pros and cons:
On the one hand, all inputs in DET are only partially entangled
and likely easier to generate, and hence the fidelity will be, in
general, higher than using Bell states; on the other hand, the
circuit parameters explicitly depend on the inputs, and thus
the initial states must be properly estimated by, e.g., heralding
[15] or tomography [43] before executing the scheme. Since
we have shown that any obtained partially entangled qubits
can be converted into a singlet for Bell-state-based tasks
with higher conversion probability than CEP, we believe that
our demonstration of DET, representing a thorough study of
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FIG. 3. Deterministic entanglement swapping protocol that im-
plements the series rule (Table II). Different stages are separated
by dashed lines. From left to right: preparation stage (preparing
two partially entangled pure states as inputs), measurement stage
(transforming into a set of new basis), and communication stage
(where Alice and Bob apply local transformations according to the
measurement results of the Relay).

general operations on partially entangled states, is not only a
proof of principle but also practically useful.

A. Series rule

The circuit that implements the swapping function S (x, y)
resembles the common design of the Bell-state-based swap-
ping protocol [3]. The main difference is that the Relay (R)
measures its qubits in, instead of the Bell basis, a different set
of maximally entangled basis,⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
2 (+|↑↑〉 + |↑↓〉 + |↓ ↑〉 − |↓↓〉)
1
2 (+|↑↑〉 − |↑↓〉 + |↓ ↑〉 + |↓↓〉)
1
2 (+|↑↑〉 + |↑↓〉 − |↓ ↑〉 + |↓↓〉)
1
2 (+|↑↑〉 − |↑↓〉 − |↓ ↑〉 − |↓↓〉),

which can be implemented by a controlled-NOT (CX) gate
plus two Hadamard gates. Here, we use the convention |↑〉
and |↓〉 to denote a physical qubit’s two states, keeping the
physical convention distinguishable from the logical con-
vention of the Schmidt numbers. According to the Relay’s
measurement results, Alice (A) and Bob (B) choose whether
to apply a Z gate to their own qubits, originally prepared as
partially entangled with the Relay’s qubits given by λa =
(λa,1, λa,2) and λb = (λb,1, λb,2), respectively, now resulting
in a new state

√
λa,1λb,1|↑↑〉 +√λa,1λb,2|↑↓〉 +√λa,2λb,1

|↓↑〉 −√λa,2λb,2|↓↓〉 deterministically shared by A and B.
The next step is for A and B to apply local unitary transfor-
mations U † and V † to transform the new deterministic state
into a diagonal form with Schmidt numbers λ = S (λa,λb) =
(

1+
√

1−16λa,1λa,2λb,1λb,2

2 ,
1−

√
1−16λa,1λa,2λb,1λb,2

2 ), given by the sin-
gular value decomposition (SVD),(√

λa,1λb,1
√

λa,1λb,2√
λa,2λb,1 −√λa,2λb,2

)
= Udiag(λ)1/2V †.

The full circuit diagram is shown in Fig. 3, where the
input states shared within A–R and R–B are prepared as
two partially entangled states, λa = (cos2 π

7 , sin2 π
7 ) and λb =

(cos2 π
6 , sin2 π

6 ), produced by a Y -rotation (RY) gate followed
by a CX gate on the four qubits which are initially all in

FIG. 4. Outcome of the series rule (by Fig. 3). (a) The noise-
less outcome is given by a deterministic pure state ρAB = (0.932
|↑↑〉 + 0.363|↓↓〉)(0.932〈↑ ↑| + 0.363〈↓ ↓|). (b) The noisy out-
come differs from the theoretical value by a fidelity of 92.4%, tested
on an IBM quantum computation model (“Manila”). The imaginary
part of ρAB is zero.

|↑〉 (preparation stage). The noiseless deterministic outcome
is λ = S (λa,λb) ≈ (0.868, 0.132), a partially entangled pure
state as expected [Fig. 4(a)].

Testing the circuit on QISKIT, we find that the noisy out-
come differs from the theoretical value by a fidelity of 92.4%
[Fig. 4(b)]. Note that the mismatch in the outcomes also in-
cludes the noise introduced in the preparation stage, which is
not part of the swapping protocol. We are convinced that an
experimental demonstration of the protocol with similar high
fidelity should be possible.

The swapping protocol is relatively mature due to its sim-
plicity, as optimally only one two-qubit gate (CX gate) is
needed during the measurement stage. In contrast, the con-
centration protocol requires more two-qubit gates, as we will
see below.

B. Parallel rule

The circuit that implements the concentration function
P (x) should deterministically convert the tensor product
of the two bipartite states λa ⊗ λb = (λ11, λ12, λ21, λ22)
≡ (λa,1λb,1, λa,1λb,2, λa,2λb,1, λa,2λb,2) shared by A and B
(without loss of generality, λa,1 > λb,1) to a new state
that is equal to (i) P (λa ⊗ λb) = (λ11, 1 − λ11) when λ11 �
1/2 or (ii) simply P (λa ⊗ λb) = (1/2, 1/2) when λ11 < 1/2
[Eq. (10)]. Nielsen’s original protocol [41], based on a series
of T transforms to interchange two Schmidt numbers at a time,
must be constructed differently for the above two cases. For
case (i), two T transforms are required:

(λ11, λ12, λ21, λ22)
T−→ (λ11, λ12 + λ22, λ21, 0)
T−→ (λ11, λ12 + λ21 + λ22, 0, 0).

For case (ii), three T transforms are required:

(λ11, λ12, λ21, λ22)
T−→ (1/2, λ12, λ21, λ11 + λ22 − 1/2)
T−→ (1/2, λ11 + λ12 + λ22 − 1/2, λ21, 0)
T−→ (1/2, λ11 + λ12

+ λ21 + λ22 − 1/2, 0, 0).
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FIG. 5. Deterministic entanglement concentration protocol that implements the parallel rule (Table II). Different stages are separated by
dashed lines. From left to right: preparation stage (cf. Fig. 3), first T -transform stage, and second T -transform stage. The final entanglement is
concentrated between the qubits |b〉A and |b〉B, which constitute either a partially entangled state or a singlet (in which case a third T transform
is needed) depending on the initial inputs.

The above arrangements are to guarantee that after each T
transform, the Schmidt numbers are still arranged in descend-
ing order.

For simplicity, we only show the circuit diagram for case (i)
(Fig. 5). During the first T transform (stage I), A and B begin
by applying U I

1 and V I
1 to their qubits, respectively, given by

the SVD

⎛
⎜⎜⎜⎜⎝

√
λ11 √

λ12+λ22
2 √

λ21
λ12−λ22√
2(λ12+λ22 )

√
2λ12λ22
λ12+λ22

⎞
⎟⎟⎟⎟⎠

= U I
1diag((λ11, λ12, λ21, λ22))1/2V I†

1 .

Next, A applies a POVM (see below) that probabilistically
transforms the above matrix into either a diagonal-ready
matrix, diag((λ11, λ12 + λ22, λ21, 0))1/2, or

⎛
⎜⎜⎜⎝

√
λ11

0 √
λ21

λ12−λ22√
λ12+λ22

2
√

λ12λ22
λ12+λ22

⎞
⎟⎟⎟⎠

= U I
2diag((λ11, λ12 + λ22, λ21, 0))1/2V I†

2 ,

which requires extra transformations U I†
2 and V I†

2 applied to
A and B before transforming into a diagonal matrix. The two
resultant diagonal matrices are identical, indicating that the
outcome is deterministic.

Our design of the POVM is as follows. By adding an ancilla
qubit initially in |↑〉, A can implement the desired POVM by
unitarily transforming all her three qubits (|c〉, |b〉A, and |a〉A)

according to

U I
POVM =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√
2

0 0 0 − 1√
2

0 0 0

0 1 0 0 0 0 0 0

0 0 1√
2

0 0 0 1√
2

0

0 0 0 0 0 0 0 −1
1√
2

0 0 0 1√
2

0 0 0

0 0 0 0 0 −1 0 0

0 0 1√
2

0 0 0 − 1√
2

0

0 0 0 1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and then measuring the ancilla qubit |c〉 and recording the
result. Note that the local unitary transformation U I

POVM is not
unique. We choose the above U I

POVM because we find that its
most efficient implementation requires only two 2-qubit gates,
thus easily realizable.

The second T transform (stage II) follows the same pro-
cedure, except that the unitary transformations U II

1 , V II
1 , U II†

2 ,
and V II†

2 are now given by

⎛
⎜⎜⎜⎜⎝

√
λ11 √

λ12+λ22+λ21
2

λ12+λ22−λ21√
2(λ12+λ22+λ21 )

√
2(λ12+λ22 )λ21
λ12+λ22+λ21

0

⎞
⎟⎟⎟⎟⎠

= U II
1 diag((λ11, λ12 + λ22, λ21, 0))1/2V II†

1

and

⎛
⎜⎜⎜⎜⎜⎝

√
λ11

0

λ12+λ22−λ21√
λ12+λ22+λ21

2
√

(λ12+λ22 )λ21
λ12+λ22+λ21

0

⎞
⎟⎟⎟⎟⎟⎠

= U II
2 diag((λ11, λ12 + λ21 + λ22, 0, 0))1/2V II†

2 .
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FIG. 6. Outcome of the parallel rule (by Fig. 5). (a) ρAB =
(0.780|↑↑〉 + 0.625|↓↓〉)(0.780〈↑↑| + 0.625〈↓ ↓|) (cf. Fig. 4).
(b) Fidelity: 78.2%.

The POVM is given by, accordingly,

U II
POVM =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√
2

0 0 0 − 1√
2

0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 −1 0

0 0 0 1√
2

0 0 0 1√
2

1√
2

0 0 0 1√
2

0 0 0

0 0 0 0 0 −1 0 0

0 0 1 0 0 0 0 0

0 0 0 1√
2

0 0 0 − 1√
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Given two initial states λa = (cos2 π
7 , sin2 π

7 ) and λb =
(cos2 π

6 , sin2 π
6 ) shared between A and B (the same as used

in the series rule, Fig. 3), the noiseless deterministic outcome
is given by λ = P (λa ⊗ λb) ≈ (0.609, 0.391), as expected
[Fig. 6(a)].

We further decompose all unitary transformations and
POVMs into single-qubit gates and CX gates only. The overall
decomposition produces only 13 CX gates in total: (1) De-
composing the combination of V I

1 , V I†
2 , V II

1 , and V II†
2 yields

only two CX gates, since their POVM-dependent operations
are carried out by adjusting the rotation angles of some
single-qubit gates only, not involving two-qubit gates. (2) U I

1
requires two CX gates. (3) The specific form of U I

POVM that
we choose warrants only two CX gates as well. (4) U I†

2 and
U II

1 together require two CX gates [for the same reason as
given in item (1)]. (5) U II

POVM requires four CX gates, since it is
equivalent to adding a CX gate to |b〉A and |a〉A before U I

POVM

and a CX gate after. (6) U II†
2 requires one CX gate.

Requiring 13 two-qubit gates at maximum, we find that
the noisy outcome of the circuit differs from the theoretical
value by a fidelity of 78.2% [Fig. 6(b)]. Case (ii), however,
would be more complicated and require more two-qubit gates,
which is not considered here. Note also that an alternative
design of the concentration protocol is available [44], which,
although arguably simpler to build than Nielsen’s [41], must
use generalized Toffoli gates.

VI. DISCUSSION

What makes the formulation of deterministic entanglement
transmission (DET) scalable with network size and adaptable
to different (at least series-parallel) network topologies is the
use of deterministic quantum communication protocols [26].
One may wonder if the specific DET scheme based on the
series and parallel rules (Table II) that we have introduced is
the only possible scheme using deterministic protocols. The
answer is negative: For example, the matrix V in the recipe of
S (λa,λb) [Eq. (4)] that makes it deterministic is not unique if
V(λa,λb) can generally depend on λa and λb. When properly
chosen, the new swapping function can even produce a better
k-concurrence (k �= d) than our proposed swapping function
[29]. Moreover, if quantum catalysts [45] are allowed, then
it is also possible to have a new concentration function P (λ)
that is deterministic without satisfying the majorization rela-
tion [Eq. (18)]. These new functions can be used to build a
different set of series and parallel rules.

What remains is the question of whether we can also
find deterministic protocols that are scalable for non-series-
parallel QN. The complexity of answering this lies in the
fact that multipartite protocols [46] and multilink-based QN
routing [12] may have to be used for producing deterministic
outcomes. The existence of such deterministic protocols can
help us achieve entanglement transmission for a more general
QN.

We also find it interesting to apply our scheme to an infinite
series-parallel QN. We expect that percolation-like criticality
in terms of λ of each link can be observed for entanglement
transmission in the thermodynamic limit. However, note that
to each QN link we have assigned not a single number but a se-
quence of Schmidt numbers which have more than one degree
of freedom when d > 2. This prohibits us from establishing
an exact one-to-one mapping from λ to a real temperature-like
parameter. It is unknown how criticality behaves in such case.

ACKNOWLEDGMENTS

X.M. was supported by the NetSeed: Seedling Research
Award of the Network Science Institute at Northeastern Uni-
versity. J.G. acknowledges the support of National Science
Foundation under Grant No. 2047488. A.E.R. was partially
supported by a grant from the Innovation Institue of the Mas-
sachusetts Technology Collaborative.

APPENDIX A: BASIC NOTATIONS

We briefly recall some basic notions in matrix analysis and
majorization theory [42].

Let x = (x1, x2, . . . , xn) ∈ Rn
+. Note that some notations

for matrices can also be defined for x. Given the diagonal
matrix of x,

diag(x) ≡

⎛
⎜⎝x1 0 . . .

0 x2 . . .
...

...
. . .

⎞
⎟⎠,

we can simply define the trace of x as tr(x) ≡
tr(diag(x)) =∑n

j=1 x j , the determinant of x as det(x) ≡
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det (diag(x)) = x1x2 · · · xn, and the adjugate of x as
adj(x) ≡ ( det(x)/x1, det(x)/x2, . . . , det(x)/xn).

Let x↓ and x↑ be the sequences given by rearranging the
coordinates of x in decreasing order and increasing order,
respectively. In other words, x↓

1 , x↓
2 , . . . , x↓

n as the coordinates
of x↓ satisfy x↓

1 � x↓
2 � · · · � x↓

n . Similarly, for x↑ there is
x↑

1 � x↑
2 � · · · � x↑

n .
Let x, y ∈ Rn

+. We say that x is weakly submajorized by y,
or x ≺w y [42], if

k∑
j=1

x↓
j �

k∑
j=1

y↓
j , ∀k = 1, . . . , n. (A1)

In particular, if x is weakly submajorized by y and
n∑

j=1

x↓
j =

n∑
j=1

y↓
j , or tr(x) = tr(y), (A2)

then we say that x is majorized by y, or x ≺ y [42].
For example, when x ∈ Rn

+ and tr(x) = 1, we always have
(1/n, . . . , 1/n) ≺ x ≺ (1, 0, . . . , 0). On the other hand, given
two arbitrary x, y ∈ Rn

+ with tr(x) = tr(y) = 1, we may have
both x ⊀ y and x � y. Thus the majorization relation is not
a total order. It is not a partial order either, because x 
 y
and y 
 x do not necessarily imply x = y, since they may
differ by a permutation [42]. The majorization relation is only
a preorder on Rn

+.
In this paper, our attention is mostly focused on d2-

dimensional normalized states with d Schmidt numbers λ

satisfying tr(λ) ≡ 1. We exclusively use the symbol λ when-
ever we implicitly know that it has a trace of unity and d − 1
degrees of freedom. For general vectors, we use the symbols
x, y, z, . . . ∈ Rn

+ instead.

APPENDIX B: THE k-CONCURRENCE FAMILY
OF ENTANGLEMENT MONOTONES

Given a (d×d )-dimensional bipartite pure state, up to
unitary equivalence, |λ〉 =∑d

j=1

√
λ j | j j〉, there are d concur-

rence monotones, as developed in Ref. [29],

Ck (λ) ≡
[

Sk (λ)/Sk

((
1

d
,

1

d
, . . . ,

1

d

))]1/k

, tr(λ) ≡ 1,

(B1)

k = 1, 2, . . . , d , where Sk (λ) is the kth elementary symmetric
polynomial [42], e.g.,

S0(λ) = 1,

S1(λ) =
∑

1�i�d
λi,

S2(λ) =
∑

1�i< j�d
λiλ j,

S3(λ) =
∑

1�i< j<k�d
λiλ jλk,

· · ·
Sd (λ) = λ1λ2 · · · λd .

Note that Ck is named k-concurrence since the whole mono-
tone family is nothing but a generalization of C2(λ), the
“concurrence” which is more commonly referred to in the

context of quantum information theory. Another special con-
currence of the family is Cd (i.e., k = d), the G-concurrence,
as it stands for the geometric mean of the Schmidt numbers
[29]. The importance of G-concurrence can be understood
from the main text.

All k-concurrences have the following properties [29].
(i) Permutation invariance [λ → perm(λ)]:

Ck (λ) = Ck (perm(λ)). (B2)

(ii) Unit measure:

0 � Ck (λ) � 1, and Ck (λ) = 1 if λ =
(

1

d
,

1

d
, . . . ,

1

d

)
.

(B3)

(iii) Isotone:

Ck (λa) � Ck (λb) if λa 
 λb. (B4)

(iv) Concavity:

Ck

(∑
α

pαλα

)
�
∑

α

pαCk (λα ), pα ∈ R+. (B5)

In particular, if
∑

α pα = 1, then pα and λα can be explained
as a probabilistic ensemble. The average k-concurrence is
then defined as the right-hand side of Eq. (B5),

∑
α pαCk (λα ),

and the worst-case k-concurrence is defined as minα Ck (λα ),
accordingly.

APPENDIX C: SOME USEFUL THEOREMS

Theorem 5. Let F : Rm
+ → Rn

+ be convex, i.e.,∑
α pαF (xα ) 
 F (

∑
α pαxα ), pα ∈ R+. If, for all x,

F (perm(x)) = F (x), (C1)

then F is isotone, i.e., F (x) 
 F (y) if x 
 y.
Proof. Let x 
 y in Rm

+. By Theorem II.1.10 of Ref. [42]
there exist a set of m×m-dimensional permutation matrices
P1, P2, . . . and a set of p1, p2, . . . ∈ R+ with

∑
α pα = 1 such

that y =∑α pαPαx. Thus

F (y) = F

(∑
α

pαPαx

)
≺
∑

α

pαF (Pαx) =
∑

α

pαF (x),

(C2)

i.e., F (x) 
 F (y). �
Theorem 6. Let x, y ∈ Rn

+. If ln x 
w ln y, then⎛
⎝ l−1∏

j=1

x↓
j

⎞
⎠ k∑

j=l

(x↓
j )s �

⎛
⎝ l−1∏

j=1

y↓
j

⎞
⎠ k∑

j=l

(y↓
j )s, (C3)

∀k = 1, 2, . . . , n and ∀l = 1, 2, . . . , k, given that 0 � s �
k − l + 1.

Proof. Let c =∏l−1
j=1(y↓

j /x↓
j ) � 1. Then,

k∏
j=l

x↓
j � c

k∏
j=l

y↓
j � c(k−l+1)/s

k∏
j=l

y↓
j =

k∏
j=l

(c1/sy↓
j ), (C4)
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∀k = l, l + 1, . . . , n. Therefore, by Example II.3.5(v) of
Ref. [42], we have

k∑
j=l

(x↓
j )s � c

k∑
j=l

(y↓
j )s, (C5)

which holds because f (et ) = (et )s is convex and monotone
increasing in t [42]. �

APPENDIX D: A REVERSE AM-GM INEQUALITY

We will prove the following inequality.
Theorem 7. Let ε ∈ Rn

+ and 
 � 0. Let Ek = 
 +∑k
j=1 ε j , k = 1, 2, . . . , n. If εk � εk+1 � Ek/k, ∀k, then(

En

n

)n

� εnεn−1 · · · ε1

(
1 + 
/ε1

n

)n

(D1)

with equality if and only if εn = εn−1 = · · · = ε1.
Proof. To start with, note that Ek/k = εk/k + Ek−1/k �

Ek−1/(k − 1). Therefore the following inequality holds:

En

n
� En−1

n − 1
� · · · � E1

1
. (D2)

Now we will prove Eq. (D1) by induction. Suppose(
Ej−1

j − 1

) j−1

� ε j−1ε j−2 · · · ε1

(
1 + 
/ε1

j − 1

) j−1

; (D3)

we would like to prove(
Ej

j

) j

� ε jε j−1 · · · ε1

(
1 + 
/ε1

j

) j

. (D4)

To do so, define f j (ε j, ε j−1, . . . , ε1) as the right-hand side
minus the left-hand side of Eq. (D4). Taking the derivative
of f j with respect to εk for k = 2, . . . , j yields

∂ f j

∂εk
= ε jε j−1 · · · ε1

εk

(
1 + 
/ε1

j

) j

−
(

Ej

j

) j−1

� ε j−1 · · · ε1

(
1 + 
/ε1

j

) j

−
(

Ej−1

j − 1

) j−1

� ε j−1 · · · ε1

(
1 + 
/ε1

j − 1

) j−1

−
(

Ej−1

j − 1

) j−1

� f j−1 � 0 (D5)

with equality if and only if ε j = ε j−1 = · · · = ε1. Thus, fixing
ε1 and noticing that ε2 is constrained by ε1 only, we conclude
that, since ∂ f j/∂ε2 � 0, f j takes the minimum if and only if
ε2 � ε1 actually takes the equality; next, fixing ε1 and ε2 =
ε1 and noticing that ε3 is constrained by ε1 and ε2 only, we
conclude that f j takes the minimum if and only if ε3 � ε2

actually takes the equality; ....
Taken together, we conclude that f j takes the minimum

if and only if ε j = ε j−1 = · · · = ε1, which put back into f j

yields f j (ε1, ε1, · · · , ε1) = 0. Hence f j � 0. The induction is
thus completed given f1 = 0. �

We note that, despite being a reversed inequality of the
AM-GM type, Theorem 7 is tight. This is because 
 can
take any non-negative value. The two independent constraints
εk+1 � εk and εk+1 � Ek/k in Theorem 7 together imply that
the deviations between the coordinates of ε cannot be too
large, which are controlled by 
. In particular, if 
 = 0, then
Eq. (D1) just becomes the reverse of the usual AM-GM in-
equality. However, 
 = 0 also requires εk+1 = εk = · · · = ε1

given the constraints. Therefore Eq. (D1) will not be violated
since it can only take the equality.

Corollary 1. (This corollary has the same prerequisites as
in Theorem 7.)(

Ej

j

) j

� ε jε j−1 · · · ε1

(
1 + 
/ε1

j

) j

, j = 1, 2, . . . , n

(D6)

with equality if and only if ε j = ε j−1 = · · · = ε1.
Proof. This has been proved in the proof of Theorem 7,

which is a special case ( j = n) of this corollary. �
Corollary 2. (This corollary has the same prerequisites as

in Theorem 7.)

(
Ej

j

) j

� ε jε j−1 · · · ε1e
/ε1 , j = 1, 2, . . . , n, (D7)

with equality if and only if 
 = 0.
Proof. This is because

(
1 + 
/ε1

j

) j

� e
/ε1 , j > 0, (D8)

with equality if and only if 
 = 0. �
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