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Universal preference for low-energy core-shifted grain boundaries at the surfaces of fcc metals
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Grain boundaries (GBs) with [111] tilt axes are common in polycrystalline face-centered cubic (fcc) metals.
For copper (111) films, emergent GBs close to the surface have tilt axes that are shifted away from [111] that are
lower in energy than the corresponding truncated bulk boundaries. Geometrical analysis and atomic calculations
were used to study the driving force for this same relaxation phenomenon in representative fcc elemental metals.
We show that the reduction in boundary energy scales with the elimination of energetically costly boundary
core facets. We find that, for a wide range of misorientation angles, low-energy core-shifted boundaries are also
favored in Al, Ni, Au, and Pt and discuss the significance for electromigration and other metal properties.
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I. INTRODUCTION

The structure and stability of grain boundary (GB) defects
at surfaces and interfaces control material properties such
as corrosion, catalysis, and mechanical strength [1–8]. The
defect or reduced binding energy relative to the bulk is respon-
sible for electromigration-induced failure at GBs in metals [9].
While strategies to stabilize GBs via the dopant incorporation
have been developed, we recently showed that it is possible
to generate anomalously stable boundaries at the surfaces
of nanoscale polycrystalline copper (111) films and bicrys-
tals [10–12]. Experiments show these emergent GBs (eGBs)
have tilt axes that are locally shifted away from [111], which
are made possible by an out-of-plane rotation of the adjoin-
ing grains [11]. Simulations revealed a significant reduction
(∼20%) in the boundary energy and the formation of struc-
tures with boundary cores that lie along close-packed planes.
Small out-of-plane rotations lead to significant reductions in
the boundary energy. The balance between boundary-energy
reduction and the elastic energy cost due to grain rotation
determines the depth of the low-energy core-shifted boundary
(CSB) [11]. For copper, CSBs can extend to many nanometers
beneath the surface, approaching the dimensions of current
metal interconnect technologies [13]. The formation of CSBs
in the near surface region is facilitated by the increased ca-
pacity for relaxation at free surfaces. However, it remains to
be established whether it is possible to engineer CSBs over
larger length scales.
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In this paper, we show that this same GB relaxation phe-
nomenon occurs in other face-centered cubic (fcc) metals,
and we determine the degree of energy stabilization and the
length scales of the CSBs in each case. To do so, we devel-
oped a generalized methodology to calculate the change in
boundary geometric structure during the relaxation process.
We considered symmetric [111] tilt boundaries with in-plane
misorientation angle θ and a (11̄0) mean boundary plane. We
calculated the boundary energy as a function of the angular
shift of the combined rotation axis (CRA)—due to combining
the in-plane and out-of-plane rotations—along the trajectory
from the original [111] tilt axis of the film [as it shifts across
the (11̄0) boundary plane] toward [112], which lies in the
[111̄] close-packed plane. We then elucidated the relationship
between structure change and the change in the boundary
energy. Our analyses clearly show that CSBs are energetically
preferred in fcc elemental metals, and we discuss the origin of
this behavior and its wider importance.

II. BICRYSTAL GEOMETRY WITH/O
OUT-OF-PLANE ROTATION

We begin by constructing, in the xyz coordinate system,
the reference lattice from a perfect fcc lattice with its ori-
entation x ‖ [1̄1̄2], y ‖ [11̄0], and z ‖ [111], as shown in
Fig. 1(a). Then the black and white lattices are generated
by rotating the reference lattice by ±θ/2 along the rotation
axis [111], respectively, where θ is the in-plane misorientation
angle. To create the bicrystal, we choose the xz plane as the
boundary plane, keeping the upper half of the black lattice
and similarly keeping the lower half of the white lattice [see
Fig. 1(b)]. This process creates a symmetric tilt GB with
tilt axis [111], misorientation angle θ , mean period vector
[1̄1̄2], and mean boundary plane (11̄0). If the axis of the
symmetrical tilt GBs is along vector e3 = [111], the mean
period vector direction is along vector e1 = 1

4 [1̄1̄2], and the
Burgers vector direction is along vector e2 = 1

4 [11̄0]. The
mean period vector can be written as −→q = ke1, and the half
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FIG. 1. Boundary geometry. (a) Reference lattice adhering to
the xyz coordination system. (b) Bicrystals and their own coordina-
tion system. (c) Out-of-plane rotation ϕ, the combined rotation axis
(CRA) l , and the new period vector p in the new bicrystal.

Burger vector is
−→
B /2 = le2, where k and l are integers. The

period vectors in the white and black crystals are then writ-
ten as follows, respectively: pb = −→q − −→

B /2 = ke1 − le2 =
1
4 [−k−l,−k + l, 2k] and pw = −→q + −→

B /2 = ke1 + le2 =
1
4 [−k + l,−k−l, 2k], where 1

2 [1̄1̄2] and 1
2 [11̄0] are shortest

lattice vectors along their corresponding directions. Since the
Burgers vector is pw − pb = l · 1

2 [11̄0], l with integer values
represents full dislocations. This implies that there are l full
Burgers vectors every k/4 [1̄1̄2] spacing. Note that, if k ± l
are even integers, the period vector is a lattice vector. Oth-
erwise, two times this distance is taken as the period vector.
The misorientation angle is then given by Frank’s formula in
the form below [14] tan(θ/2) = l/(

√
3k). Using the surface

basis of 1
4 [1̄1̄2] and 1

4 [11̄0], the period vector can be rewrit-
ten as [k, l] in surface notation [11]. The reciprocal density
of coincidence sites � is calculated as � = (3k)2 + (

√
3l )2

with any factors of 2 canceled out [15]. The GB normal is
along −→e3 ×−→p ∝ [111]×−→p . For the white and black crystals,

respectively, the boundary normals are −→nb = 1
4 [3k − l,

−3k − l, 2l] and −→nw = 1
4 [3k + l, −3k + l, −2l]. Selected

geometrical parameters are listed in Table I.
To include out-of-plane rotation, we further rotate the black

and white lattices by ±ϕ/2 along the x axis, respectively.
The bicrystals before and after the out-of-plane rotation are
shown as black and red in Fig. 1(c). The CRA (also the
direction of boundary cores) is still in the xz plane, shown
in red. Note that the out-of-plane rotation axis is also in the
boundary plane and parallel to the valley or ridge on the
top and bottom, respectively. The resulting inclination angle
ψ , shown in Fig. 1(c), is the angle between [111] in the
bicrystal after the out-of-plane rotation and the CRA. From
the two vectors in the boundary plane, the out-of-plane ro-
tation axis and the CRA, the boundary normal is calculated.
Then we calculated a new period vector of the bicrystal from
the cross-product of the CRA and the boundary normal. The
geometry specifications for the boundaries with in-plane angle
θ = 26.01◦ (GB26.01) with different CRAs, together with the
corresponding inclination angles, are listed in Table II. This
method leads to much smaller unit cell sizes, making massive
calculations feasible, compared with the linear combination
method in our previous paper [10]. Taking the boundary with
the in-plane angle θ = 3.89◦ and out-of-plane angle 0.79 as
an example, the boundary normal is [58 61 2]. In our previous
analysis, the period vector is [9̄ 8̄17], and the rotation axis is
[1021 1004 1013] [10]. Using the present approach based on
the minimum unit cell, the two vectors are [223] (the direction
of boundary cores) and [187 170 238]. The boundary area and
cell volume in each cell are then ∼ 25 times smaller.

III. INCLINATION ANGLE-DEPENDENT BOUNDARY
ENERGY AND STRUCTURE

We calculated the boundary energies in the bulk for a
range of fcc metals as a function of the inclination angle of
the CRA away from [111] for different misorientation an-
gles. In all cases, the mean boundary planes are in the (11̄0)
plane. Boundaries were calculated with LAMMPS software, the
molecular statics method, and the widely used embedded-
atom method (EAM) interatomic potentials for Cu, Ni, Al, Au,
and Pt [16–18]. To explore the effect of different potentials,
we used the third-generation charge-optimized many-body
(COMB3) potential for Pt, to capture the effects of its high

TABLE I. [111] ST-GB with mean boundary plane (11̄0) and mean period vector [1̄1̄2].

Period vectors Boundary normal
[k, l] tan θ

2 θ (◦) � black–white black–white

[1,1] 1/
√

3 60.00 3 1
2 [1̄01] 1

2 [01̄1] 1
2 [21̄1̄] 1

2 [12̄1]

[2,1]/[4,2] 1/2
√

3 32.20 39 1
2 [3̄1̄4] 1

2 [1̄3̄4] 1
2 [57̄2] 1

2 [75̄2̄]

[5,2]/[10,4] 2/5
√

3 26.01 237 1
2 [7̄3̄10] 1

2 [3̄7̄10] 1
2 [13174] 1

2 [1713 4̄]

[3,1] 1/3
√

3 21.79 21 1
2 [2̄1̄3] 1

2 [1̄2̄3] 1
2 [45̄1] 1

2 [54̄1̄]

[5,1] 1/5
√

3 13.17 57 1
2 [3̄2̄5] 1

2 [2̄3̄5] 1
2 [78̄1] 1

2 [87̄1̄]

[17,1] 1/17
√

3 3.89 651 1
2 [9̄8̄17] 1

2 [8̄9̄17] 1
2 [25 26 1] 1

2 [26 25 1̄]

013223-2



UNIVERSAL PREFERENCE FOR LOW-ENERGY … PHYSICAL REVIEW RESEARCH 5, 013223 (2023)

TABLE II. Geometrical specification of GB [111] 26.01 with different composite rotation axis.

Composite ψ Boundary normal Period vector
axis l (◦) black–white black–white

[552] −19.47 [14 16 5] [16 14 5̄] [19 1̄ 50] [1̄ 19 50]

[221] −15.79 [23 27 8] [27 23 8̄] [43 7̄ 100] [7̄ 43 100]

[332] −10.02 [9 11 3] [11 9̄ 3̄] [31 9̄ 60] [9̄ 31 60]

[111] 0 [13 17 4] [17 13 4̄] [7̄3̄10] [3̄7̄10]

[334] 8.05 [21 29 6] [29 21 6] [67 33 75] [33 67 75]

[223] 11.42 [29 41 8] [41 29 8̄] [139 71 140] [71 139 140]

[335] 14.42 [45 65 12] [65 45 12] [361 189 330] [189 361 330]

[112] 19.47 [4 6̄ 1] [6 4̄ 1̄] [13 7̄ 10] [7̄ 13 10]

[225] 25.24 [35 55 8] [55 35 8̄] [97 53 60] [53 97 60]

[113] 29.50 [19 31 4] [31 19 4̄] [97 53 50] [53 97 50]

stacking faulting energy [19–21]. We built each repeat cell
with a pair of parallel GBs of equal and opposite misorienta-
tion and used periodic boundary conditions in three directions
[16,19,22]. Fully relaxed configurations were obtained by en-
ergy minimization with respect to both the atomic coordinates
and the cell size along the boundary normal via a conjugate-
gradient method. Structure searching with hundreds of initial
configurations with different relative displacements parallel
to the boundary plane was performed, and only the lowest
energy structures are reported in this paper [23]. Considering
the threefold inversion symmetry of the [111] tilt axis in fcc
lattices, only boundaries with misorientations from 0◦ to 60◦
are considered [24].

Results for misorientation angles between 0◦ and 32.20◦
are shown in Figs. 2(a)–2(f), with higher angle boundaries
shown in Figs. 2(g)–2(l). The misorientation angle 32.20◦
corresponds to the boundary [2,1] in surface notion, which
has one full dislocation every two [11̄0]-atomic-line spacings
in the Burgers vector loop. For all calculated fcc metals, the
boundary energy increases monotonically with the in-plane
angle from 0◦ to ∼ 32.20◦. Boundaries with [112] tilt axis
(ψ = 19.47) are always lowest in energy, and the boundary
energy decreases nearly linearly as the CRA shifts from [111]
toward [112], i.e., CSBs with a [112] tilt axis are a global
energy minimum regardless of the direction of the original tilt
axis. The same trends are clearly seen for Pt in Figs. 2(e)–2(f)
regardless of whether the EAM or COMB3 potentials were
employed. These results indicate that CSBs with [112] tilt
axes in fcc metals are energetically preferred, and there is
no thermodynamic barrier to grain rotation. Figures 2(g)–2(l)
show the inclination-dependent boundary energy with in-
plane misorientation angles above 32.20◦. We find that
boundaries with [112] tilt axis are still preferred energetically.
However, the transition is neither linear nor smooth. For ex-
ample, the dependence for GB38.21 shows a barrier between
[111] and [112]. Moreover, at negative inclination angles, the
inclination energy dependences are no longer monotonic.

Figure 3(a) visualizes the core structure for GB26.01 with
different inclination angles and the corresponding boundary
energies (mJ m−2). The length along the CRA shown in each
case is three times that of the vector shown in red below
each panel. The boundary cores facet into segments along

[112] that lie in the close-packed (111̄) plane and evenly
distributed 1

2 [110] segments that lie out of the plane, indicated
by red arrows [25]. The CRA shift toward [112] reduces the
boundary energy and, at the same time, reduces and even-
tually eliminates these energetically unfavorable jogs within
the boundary core. For low-angle boundaries, the segments
along [112] prefer to dissociate into stacking fault ribbons that
are a balance between decreasing the repulsive interactions
between partials and minimizing the stacking fault area and
energy [26]. On the other hand, each 1

2 [110] segment is es-
sentially a jog within the boundary core, shifting one stacking
fault ribbon into a neighboring slip plane, and in doing so, it
constrains the stacking fault dissociation and hence increases
the total dislocation line energy.

To establish the relationship between changes in GB struc-
ture and energy, we analyzed the energy variation and the
density of jogs at several inclination angles. We write, ac-
cording to our calculated structures, the CRA vector or the
effective boundary core direction as n/2[112] + 1

2 [110] with
content:

l =
√

(n + 1)2 + 2n2

√
2

, (1)

where n � 1 and positive integers are taken in our atomic
calculation. For example, n = 1 corresponds to [111], n = 2
to [334], n = 3 to [223], n = 5 to [335], and n = ∞ to [112].
For a given value of n, the calculated jog line density, which
is the number of jogs per unit length, is

ρl = 1

la
, (2)

and the inclination angle is

cosψ = 2n + 1√
3l

(3)

where a is the lattice constant. During the out-of-plane rota-
tion process, the initial spacing between two boundary cores
is changed since, for any given boundary area, the dislocation
line length varies as 1/cosψ , which is ∼ 1, since the angle
ψ is small. Our analysis in Fig. 3(b) shows that the boundary
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FIG. 2. Inclination angle-dependent grain boundary (GB) energy for different face-centered cubic (fcc) metal with misorientation angles
from 0 to 32.20 for (a) copper, (b) nickel, (c) aluminum, (d) gold, (e) platinum with EAM potential, and (f) platinum with COMB3 potential.
Inclination angle dependent GB energy for different fcc metal with misorientation angles from 32.20 to 60.00 for (g) copper, (h) nickel, (i)
aluminum, (j) gold, (k) platinum with embedded-atom method (EAM) potential, and (l) platinum with charge-optimized many-body (COMB)
potential.

energy variation is nearly proportional to the jog density (the
jog number per unit area) so that

�γ ∝
√

3

2n + 1
(4)

The proportional coefficients (standard error) from Fig. 3(b)
for GB3.89 and GB26.01 in copper are 136(5) and 209(9),
respectively. This excellent scaling suggests that the interac-
tion between jogs both within and between cores is small. The
standard error is <5% of the slope for calculated boundaries

013223-4
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FIG. 3. Relationship between grain boundary (GB) energy variation and the jog density. (a) Change of the boundary cores with in-plane
angle 26.01◦ at different tilt axes in the (11̄0) plane, with histogram of the boundary energy (mJ m−2). The boundaries are viewed along the
x direction shown in Fig. 1(c). The length along the tilt axis is three times the vector below each graph. Atoms are colored by energy, and the
arrows point to jogs. (b) Plot of GB energy variation and the jog density.

with different misorientation angles in all metals, except for
high-angle boundaries in Pt and Al. For Pt using the COMB3
potential and Al with EAM potential, our calculated stacking
fault energies (321 and 146 mJ/m2, respectively) are high,
preventing relaxation of the stresses within the cores and
hence the presence of long-range elastic interactions among
jogs and neighboring cores [17,21]. As the CRA shifts in the
(11̄0) plane from [110] toward [111] (ψ < 0 in Fig. 2), the
1
2 [110] segments are close to each other, and the dependence
shifts away from being proportional since their interaction
must then be considered. As the CRA shifts from [112] toward
[001] with ψ > 19.47◦, different segments or jogs are now
involved, highlighted in Fig. 3(a) using black arrows, and
hence, different coefficients are expected.

IV. MISORIENTATION DEPENDENT ENERGY VARIATION
AND RESTRUCTURING DEPTH

The linear relationship in Fig. 3(b) clearly shows that
the energy reduction that drives CSB formation is achieved
through removing energetically unfavorable boundary-core
facets, i.e., a preference for boundary cores to lie along close-
packed planes. The normalized ratios of the CSB energy
variation compared with that of the original [111] boundaries
are shown in Fig. 4. For copper, nickel, and gold, the energy
reduction ranges from ∼30% at low-angle boundaries and
decreases to ∼10% before increasing to >40% for GB60
twin boundaries. The corresponding ratios for aluminum are
reduced, while the behavior of platinum depends on potential
used, consistent with higher stacking fault energies and a

FIG. 4. Misorientation-dependent grain boundary (GB) energy variation and their ratio for (a) copper, (b) nickel, (c) aluminum, (d) gold,
(e) platinum with embedded-atom method (EAM) potential, and (f) platinum with charge-optimized many-body (COMB) potential.
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FIG. 5. Misorientation-dependent restructuring depth. (a) Dots
and line show the misorientation angle-dependent restructuring
depth. (b) The same dependence for all calculated face-centered
cubic (fcc) metals.

reduced stabilization of dissociated boundary cores (see
Fig. 4). In all cases, simulations predict an energy stabilization
that is particularly significant for low-angle boundaries.

Figure 4 shows the boundary energy difference for differ-
ent metals and their normalized ratios, defined as the energy
difference divided by the energy of the original boundary with
[111] tilt axis. For all metals, the energy difference is seen to
increase with the in-plane angle up to 16.43◦, corresponding
to the boundary [4,1]. At higher misorientation angles, there
are three main peaks located at 21.79◦ for boundary [3,1],
32.20◦ for boundary [2,1], and 60◦ for boundary [1,1]. These
peaks are at boundaries with lower geometrical parameters
k = 1, 2, 3 and l = 1, rather than those with low �, which
in essence describes the lattice properties. In addition, we find
that there are smaller peaks among the l = 1 peaks, which
correspond to l = 2 at different k = 3, 5, 7. We note that the
level of hierarchy related to the delimiting boundary was pre-
viously discussed in the structure unit model of GBs [27,28].
We attribute this similarity to the boundary geometry that both
analyses are based on. In contrast with the energy difference,
the variation in the normalized ratio in Fig. 4 decreases with
the in-plane angle up to 16.43◦. It also shows l hierarchical
related oscillations that range from 10% to 25% for in-plane
angles <32.20◦. We note that the normalized ratio for alu-
minum is ∼5% and that for Pt using the COMB potential
∼10%, which are smaller than for other fcc metals and for
Pt using the EAM potential (see Fig. 4).

To estimate the extended depth of CSBs beneath the sur-
face, we calculated the energy difference �γgb between a bulk
GB with a tilt axis [111] and its corresponding bulk boundary
with its CRA shifted to [112]. We then estimated the CSB
depth h as

h = �γgb

2cGϕ2
(5)

by balancing the energetic driving force −�γgb · h and the
elastic energy cost c · Gϕ2h2, where ϕ is the out-of-plane
angle, the coefficient c is related to Poisson ratio, and G
is the shear modulus [11]. Figure 5(a) shows a plot of the
CSB depth h for copper as a function of the misorientation
angle with cG = 4.35 GPa. A close-up view of the plot with

misorientation angle >15◦ is shown as an inset. Clearly,
while the CSB depth can be many nanometers for low-angle
boundaries, it decreases with misorientation angle and is ulti-
mately reduced to atomic layer thicknesses beyond ∼32.20◦.
At higher angles, while there is a modest increase in the CSB
depth, it is still limited to several atomic layers, so it remains
a surface effect.

The CSB depth for other fcc metals shown in Fig. 5(b)
was estimated neglecting the misorientation-related elastic
anisotropy. The same value c was used for all metals, and
the value for G along the metal (111) plane was obtained
using elastic parameters calculated for each metal [29,30].
We see from Fig. 5(b) that the variation of the CSB depth
with misorientation angle is like that found in copper. The
transition from a many-nanometer scale tilted boundary to a
surface effect still occurs at misorientation angle of ∼30◦.
The notable exception is Al, where the variation ratio of
the boundary energy is reduced [see Fig. 4(c)], and hence,
the curve is uniformly shifted to reduced depths so that, in
this case, the transition occurs at ∼20◦. Recognizing that the
distribution of GBs in polycrystalline and nanocrystalline ma-
terials is inversely correlated with the boundary energy [31],
the predominance of lower angle GBs suggests that most of
the emergent boundaries at the free surfaces of fcc metals are
CSBs with depths of several to many nanometers. Moreover,
since these dominant low-angle CSBs also exhibit the greatest
level of energy stabilization (see Fig. 4), there is significant
potential to mitigate against electromigration in metals by
optimizing GB structure.

V. CONCLUSIONS

In summary, our geometrical analysis and calculations
show that CSB formation is driven by the systematic removal
of energetically unfavorable boundary-core facets that ulti-
mately results in eGB with cores that lie along close-packed
planes. Even small levels of boundary tilting result in signif-
icant reductions in boundary energy. The energy stabilization
is significant for all fcc metals, regardless of the material
differences, elastic constants, and stacking fault energies.
Collectively, these results demonstrate that the elimination
of core facets is a fundamental thermodynamic principle
that drives CSB formation at the free surfaces of all fcc
materials. The core-shifting phenomenon is expected to be
particularly important for nanoscale metals since the CSB
depth approaches the physical dimensions of these materials.
In additional to electromigration, eGB structure and stabil-
ity are known to impact a wide range of phenomena—grain
coalescence and thin film formation, mechanical strength,
electrical conductivity, and catalytic activity [1,3,4,32–38]—
so that additional research is needed to elucidate the role of
CSBs in controlling metal properties and performance on the
nanoscale [38].
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