
PHYSICAL REVIEW RESEARCH 5, 013221 (2023)

Optomechanical two-photon hopping
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The hopping mechanism plays a key role in collective phenomena emerging in many-body physics. The ability
to create and control systems that display this feature is important for next generation quantum technologies. Here
we study two cavities separated by a vibrating two-sided perfect mirror and show that, within currently available
experimental parameters, this system displays photon-pair hopping between the two electromagnetic resonators.
In particular, the two-photon hopping is not due to tunneling, but rather to higher-order resonant processes.
Starting from the classical problem we quantize the system and show this purely quantum feature. This opens
the possibility to investigate a new mechanism of photon-pair propagation in optomechanical lattices.
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I. INTRODUCTION

The mastery of manipulating quantum mechanical sys-
tems by means of radiation pressure has opened the door
to fundamental tests of quantum theory [1,2], to precision
measurements [3–5], and to novel quantum technologies
[6–8]. For instance, laser cooling techniques [9–11] allow
us to observe quantized vibrational modes of macroscopic
objects and even the possibility to reach their ground state
[12–14]. This has paved the way to the realization of entan-
gled macroscopic states and, in turn, new ways to process
and store quantum information [15–18]. Notably, with these
techniques optomechanical crystals [19–21] can be scaled to
form optomechanical arrays where, using hopping mecha-
nisms, applications for quantum information processing have
been proposed [22,23].

Cavity optomechanics, in particular, lies at the cross-
roads of wide research lines that are currently under active
investigation. In experiments [8,17,24,25], only radiation
pressure effects have been considered, as the cavity fre-
quencies far outweigh the mirror ones. On the other hand,
ultra-high-frequency mechanical oscillators [26,27] coupled
to microwave ones offer the potential to observe, for instance,
dynamical Casimir effects [28–33]. The case of one such mir-
ror interacting with a single cavity mode was first considered
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in Ref. [34], and this study was later extended to include an
incoherent excitation of the mirror [35,36]. In the same setup,
back-reaction and dissipation effects have also been studied
[37,38]. Finally, the case of a cavity with two moving walls
was addressed [39–41]; in this case, the cavity field mediates
an effective interaction between the two mirrors leading to a
phonon hopping.

A suitable platform to experimentally reproduce these pre-
dictions is circuit optomechanics. In fact, the addition of artifi-
cial atoms in a superconducting microwave setup strengthens
the coupling with the mechanical resonator [27,42,43], and the
introduction high-frequency mirrors makes it a very promis-
ing setup. A valuable alternative would be to use a quantum
simulator [44,45] with two LC circuits playing the role of the
cavities and a superconducting quantum interference device
(SQUID) playing the role of the high-frequency vibrating
mirror.

The availability of these experimental platforms led us
to design a system that, under certain resonance conditions,
allows for a simultaneous hopping of a photon pair. The
system consists of two noninteracting electromagnetic res-
onators separated by a movable two-sided perfect mirror. The
vibrational modes of the mirror act as a mediator between
the two resonators, making the photon-pair hopping possible.
Even though the vibrating mirror separates both cavities, at
the classical level a cavity-cavity interaction is still activated
unless one of the two cavities is empty (see Appendix A). This
hopping mechanism has purely quantum mechanical features.
In fact, it gets activated also when classically forbidden, e.g.,
in the absence of the field on one side of the cavity. The
quantum vacuum is filled with virtual particles.

Our Hamiltonian, obtained by quantizing the classical
problem, generalizes the results in Ref. [46]. It accounts also
for generic equilibrium positions of the mirror even though, in
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FIG. 1. Proposal sketch. Two noninteracting electromagnetic
cavities separated by a movable two-sided perfect mirror.

what follows, we consider only the symmetric case. Similar
setups have been studied, for instance, in Ref. [47], where
the authors analyzed the dressing of the ground state and the
correlation functions between the two separated regions, and
in Ref. [48], where the two resonators are separated by a di-
electric. In our treatment the two-photon hopping mechanism
appears as a spontaneous coherent process in a second-order
effective dynamics. Note that the optomechanical hopping
described here does not involve photon tunneling, which is the
usual photon hopping mechanism studied elsewhere [49–53].

Our interest in these hopping effects stems from the pos-
sibility to envision optomechanical lattices, with unit cells as
in Fig. 1, and to study their thermodynamic and information
properties. Thus, extended optomechanical lattices would dis-
play an interesting interplay between the Casimir photon-pair
creation and the lattice intersite hopping.

In Sec. II, we give the quantum Hamiltonian for the sys-
tem (see Appendix B), and provide an effective resonant
description by applying the generalized James’ method (see
Appendix C). In Sec. III we report both analytical and numer-
ical results for the dissipative system dynamics by using the
Monte Carlo wave function approach (see Appendix D). The
evolution of the wave function is studied, along one quantum
trajectory and averaging over 500 quantum trajectories, by ini-
tializing the system with a Fock state. In a second simulation
the evolution of the wave function is studied by initializing the
system with a Gaussian coherent pulse. Finally, in Sec. IV, we
give our conclusions.

II. THE QUANTUM MODEL

Consider two noninteracting electromagnetic cavities sep-
arated by a vibrating two-sided perfect mirror as sketched in
Fig. 1. Following Ref. [46] we quantized (see Appendices A
and B) the classical system obtaining the Hamiltonian (h̄ = 1)

Ĥ = ωaâ†â + ωbb̂†b̂ + ωcĉ†ĉ

+ g

2

[
(ĉ + ĉ†)2 −

(
ωa
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)2

(â + â†)2

]
(b̂ + b̂†). (1)
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FIG. 2. (a) The lowest energy levels of the system Hamiltonian
versus the ratio between the two cavity frequencies. For a coupling
g = 0.06 ωb, the position of the avoided-level crossing is contained
in the black rectangular. (b) An enlarged view of the latter is given.
The presence of the labels stresses the hybridization of the two states
|2, 0, 0〉 and |0, 0, 2〉. The frequency mirror was conveniently set as
ωb = 3/4 ωc.

Here, b̂ (b̂†) is the creation (annihilation) operator of the
moving mirror, and â (â†) and ĉ (ĉ†) are the creation (anni-
hilation) operators of the left and right cavity, respectively.
The parameters ωa, ωb, and ωc are the corresponding bare
energies of the three boson modes. The coupling strength
g = ω2

c xzpf/π = ωc xzpf/(I − q0) (I and q0 having the same
units of xzpf , as reported in Appendix A) depends both on
the zero-point-fluctuation amplitude of the mirror xzpf , and
on the bare energy of a cavity ωc, taken for convenience as
the right one. The weight ω2

a/ω
2
c accounts for asymmetrical

configurations. The linear approximation implicit in Eq. (1)
does not lead to instabilities of the ground state as long as
gωa < ω2

c , i.e., ωaxzpf < π . The sought-after hopping mecha-
nism occurs at the resonance ωa = ωc. We consider the case
when the bare frequency of the mirror is lower than the cav-
ity frequency. This choice of parameters identifies a set of
avoided-level crossings in the Hamiltonian spectrum, and thus
a particular closed subdynamics, as can be seen from Fig. 2.
Indeed, Fig. 2(a) shows the lowest energy levels obtained by
numerically diagonalizing the full Hamiltonian Eq. (1) (blue
dash-dotted curves), while Fig. 2(b) is an enlarged view of the
avoided-level crossing inside the black rectangle. The gap is a
trademark of the hybridization of the two states |ψ1〉 and |ψ2〉,
eigenstates of the full Hamiltonian Eq. (1). A local effective
description (red dashed curves) is possible through the gener-
alized James’ effective approach [54] (see Appendix C), with
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resonance conditions ωc = ωa:

Ĥ (2)
eff = Ĥ (2)

shift + Ĥ (2)
hop,

Ĥ (2)
shift =

[
ωa + g2(4ωa + ωb)

8ω2
a − 2ω2

b

]
(ĉ†ĉ + â†â)

+ g2
(
3ω2

b − 8ω2
a

)
(
8ω2

a − 2ω2
b

)
ωb

[(ĉ†ĉ)2 + (â†â)2]

+
[
ωb + 4g2ωa

4ω2
a − ω2

b

(â†â + ĉ†ĉ + 1)

]
b̂†b̂

+ 2g2

ωb
â†âĉ†ĉ + g2

2ωa − ωb
1,

Ĥ (2)
hop = − g2ωb

8ω2
a − 2ω2

b

(â2ĉ†2 + â†2
ĉ2). (2)

The first term, Ĥ (2)
shift , contains the bare Hamiltonians and

both cross- and self-Kerr nonlinearities. The second term,
Ĥ (2)

hop, is the one responsible for the two-photon hopping.

Since [â†â, Ĥ (2)
shift] = [b̂†b̂, Ĥ (2)

shift] = [ĉ†ĉ, Ĥ (2)
shift] = 0 we can

still choose as an unperturbed base the states |na, nb, nc〉,
where na (nc) is the number of photon in the left (right) cavity,
and nb the number of phonons in between; all of these three
are considered with shifted energies due to interaction with
the fields.

III. RESULTS

A. Analytical approach

The two states |ψ1,2〉 = (|2, 0, 0〉 ± |0, 0, 2〉)/
√

2 are
eigenstates of the full (effective) Hamiltonian. To have a
simple analytical description, we limit our analysis to the
subspace spanned by {|2, 0, 0〉, |0, 0, 2〉} around the avoided-
level crossing. If we initialize the system in either |2, 0, 0〉 or
|0, 0, 2〉, we witness a coherent oscillatory dynamics between
the two maximally entangled photon-pair states. Neglecting
dressing energy shifts, which have been reabsorbed by an
appropriate choice of the coefficients, the effective interaction
Hamiltonian Ĥ (2)

hop in Eq. (2) can be used to solve the stochastic
evolution of the system wave function (see Appendix D).
By projecting the time-evolution operator Û (t ) = exp(−iĤt )
onto the 2D subspace {|2, 0, 0〉, |0, 0, 2〉}, with

Ĥ = Ĥ (2)
hop − i(γaâ†â + γbb̂†b̂ + γcĉ†ĉ)/2, (3)

in the interaction picture we obtain

Û (t ) = e−2γ t [cos (g̃t )(|2, 0, 0〉〈2, 0, 0| + |0, 0, 2〉〈0, 0, 2|)
− i sin (g̃t )(|2, 0, 0〉〈0, 0, 2| + |0, 0, 2〉〈2, 0, 0|)],

(4)

where we choose γ = γa = γc and g̃ = g2ωb/2(4ω2
a − ω2

b ). If
we initialize the system in the state |2, 0, 0〉, its evolution at
time t , before a quantum jump takes place, is

|ψ (t )〉 = e−2γ t [cos (g̃t )|2, 0, 0〉 − i sin (g̃t )|0, 0, 2〉]. (5)

By appropriately renormalizing the wave function, we obtain
the mean photon number for the left and right cavities and for
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〈ĉ†ĉ〉

FIG. 3. Panel (a) shows an example of a single quantum trajec-
tory, numerically obtained by studying the open quantum dynamics.
It shows the time evolution of the mean photon number of the
left cavity 〈â†â〉 (blue curve), right cavity 〈ĉ†ĉ〉 (black dash-dotted
curve), and of the phonon number of the movable mirror 〈b̂†b̂〉 (red
dashed curve). The system is initialized in |2, 0, 0〉 at the resonant
condition ωc = ωa and ωb = 3ωa/4. The numerical simulation ini-
tially displays the oscillation predicted by Eq. (5) until a quantum
jump occurs in the right cavity. The measure collapses the state into
−i|0, 0, 1〉. Even though the two cavities are in resonance, the state
|0, 0, 1〉 is locked: the photon remains confined in the right cavity.
This is an optomechanical feature of our system. After the second
jump occurs, the system reaches the state |0, 0, 0〉. In panel (b) an
average over 500 trajectories is shown. Clearly, there is a coherent
evolution of two photon-pair states. Such results can be attained
as well with a master equation approach, but the locking feature is
lost in the average. In both panels, the parameters are g = 0.06 ωb,
ωa = ωc = 4ωb/3, and γa = γb = γc = γ = 10−4ωb.

the mechanical resonator:

〈â†â〉 = 2 cos2 (g̃t ),

〈b̂†b̂〉 = 0,

〈ĉ†ĉ〉 = 2 sin2 (g̃t ). (6)

B. Numerical approach

1. Initial Fock state

We observe that Eq. (6) can be used to reproduce the
numerical results shown in Fig. 3. The expectation value
on a single quantum trajectory [see Fig. 3(a)] for a generic
operator Ô is denoted as 〈Ô(t )〉, while average quantities
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obtained over an ideally infinite number of quantum trajecto-
ries [500 trajectories in the case of the Fig. 3(b)] are indicated

as 〈Ô(t )〉. In particular, Fig. 3(a) shows an example of a
single quantum trajectory, obtained by solving numerically
the stochastic evolution of the system wave function. It shows
the time evolution of the mean photon number 〈â†â〉 (blue
curve) and 〈ĉ†ĉ〉 (black dash-dotted curve), of the left and
right cavity, respectively, and the phonon number 〈b̂†b̂〉 (red
dashed curve). The system is initialized in the state |2, 0, 0〉,
as in the analytical case. Before a quantum jump occurs,
the numerical simulation displays the oscillation predicted
by Eq. (6). When the right detector clicks, one photon has
escaped from the right cavity. Therefore, the state in Eq. (5)
collapses to −i|0, 0, 1〉 = ĉ|ψ (t )〉/[〈ψ (t )|ĉ†ĉ|ψ (t )〉]1/2. This
state is preserved until a second jump occurs; i.e., the photon
remains locked in the right cavity. This is an optomechanical
feature of our system. Indeed, the absence of linear interaction
terms in Eq. (2) denies a one-to-one conversion among the
subsystems. Hence, when the second photon jump occurs, it
is certain that the state collapses to |0, 0, 0〉 = ĉ|0, 0, 1〉.

In Fig. 3(b) the dynamics is shown averaged over 500
trajectories. Clearly, we see a coherent oscillation of a photon
pair. Of course, in the presence of decoherence, such result
can be obtained also adopting a master equation approach,
but the locking feature emerges only under a postselection
procedure or by studying a single quantum trajectory [55,56].
Note that with the parameters used we obtain an effective
coupling g̃ ≈ 3 × 10−4ωb, which is almost three times greater
than the loss rate γ (the latter related to the cavity quality
factor Q). This regime, defined as strong coupling, allows the
photon pairs to flow from one cavity to the other for a certain
time before one photon is lost to the environment.

2. Driven by a Gaussian coherent pulse

Finally, we consider the case of an incoming Gaussian
coherent pulse driving the left cavity while the system is
initially in its ground state. For simplicity we present a nu-
merical simulation for the closed dynamics. Figure 4 shows
the first matrix elements of the density operator at the end
of the dynamics. The state of the right cavity contains only
even occupation numbers: in a closed dynamics no loss is
possible and the hopping mechanism always involves photon
pairs.

IV. CONCLUSIONS

We have carried out a theoretical analysis of an optome-
chanical system consisting of two electromagnetic resonators
separated by a vibrating two-sided perfect mirror. The Hamil-
tonian of the system is obtained starting from its canonical
quantization, as shown in Appendices A and B, and it ac-
counts also for generic equilibrium positions of the mirror.
Our main result is the discovery of a photon-pair hopping
mechanism, in a coherent second-order effective resonant
dynamics.

This effect has been described analytically through the
generalized James’ approach (Appendix C) under the con-
dition ωa = ωc. The numerical analysis of the lowest energy
levels showed an avoided-level crossing around the resonant
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FIG. 4. Density matrix elements of the right cavity. It is obtained
partially tracing over the left cavity and the mirror. Only even-
number states are filled when the right cavity is initially empty and
a coherent incoming pulse enters the left cavity. This is in full agree-
ment with the hopping mechanism we proposed. The parameters
used here are g = 0.09 ωb, ωa = ωc = 1.1ωb, and γa = γb = γc = 0.

condition [see Fig. 2(c)]. This gap is a trademark of the hy-
bridization of two photon-pair states. We have performed a
stochastic evolution of the system wave function in which we
witnessed a coherent oscillatory dynamics between the states
|2, 0, 0〉 and |0, 0, 2〉.

The effects described here could be experimentally repro-
duced, with the chosen parameters, in circuit-optomechanical
systems by using ultra-high-frequency mechanical micro- or
nano-resonators in the GHz spectral range; alternatively, using
two LC circuits bridged by a SQUID. Moreover, in arrays of
nonlinearly coupled cavities [57], where the photon crystal
associated to a periodic modulation of the photon blockade
can emerge, the optomechanical system proposed here allows
investigating a new mechanism of photon-pair propagation in
optomechanical lattices [58,59].
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APPENDIX A: DERIVATION OF THE CLASSICAL
HAMILTONIAN

We begin by considering two noninteracting electromag-
netic cavities separated by a perfect movable mirror. For
simplicity, following Ref. [46], we conduct our analysis in 1D
and generalize it to our case. To set the notation, ±I denotes
the extremes of the cavity, M and q(t ) the mass and the posi-
tion of the movable mirror, respectively. The electromagnetic
field, in absence of charges, obeys the wave equation; the
motion of the movable mirror is influenced by the radiation
pressure of the fields in the two cavities [see Fig. 2(a) in the
main text], so that it satisfies the Newton’s equation (c = 1)

�A = 0, x ∈ (−I, q) ∪ (q, I ),
Mq̈ = −∂qV + 1

2 [(∂−A)2 − (∂+A)2]|q, (A1)

where � := ∂2
t − ∂2

x and ∂−, ∂+ are the left and right deriva-
tives. The potential V (q) is designed to have infinite walls
at the two mirror positions ±I . The two radiation pressures
(∂±A)2/2 come with opposite signs and in the form of lateral
derivatives, because of the negligible thickness of the movable
mirror.

By defining Lk and Rk as the Fourier components on the left
and right cavity, respectively, the completeness of the mode

functions enables us to write (from now on, we adopt the
Einstein summation convention)

A(t, x) =
{

Lk (t ) ϕk (t, x), x ∈ (−I, q),
Rk (t ) φk (t, x), x ∈ (q, I ),

(A2)

where the summation in k is understood, and

ϕk =
√

2

q + I
sin [ωk (x + I )],

φk =
√

2

I − q
sin [
k (x − I )], (A3)

with ωk = kπ/(q + I ), 
k = kπ/(I − q). We can still fix a
normalization for ϕk and φk , choosing

δi j =
∫ q

−I
ϕiϕ j =

∫ I

q
φiφ j, (A4)

as the Kronecker delta. The wave equation Eq. (A1) can be
projected along one Fourier component, and the equation of
motion of the movable mirror becomes

L̈k + ω2
k Lk − gkm(2q̇L̇m + q̈Lm)

I + q
+ q̇2

(
gkm + gk jg

j
m
)
Lm

(I + q)2
= 0,

R̈k + 
2
kRk − γkm(2q̇Ṙm + q̈Rm)

I − q
− q̇2

(
γkm − γk jγ

j
m
)
Rm

(I − q)2
= 0,

Mq̈ + ∂qV + (−1)k+m

(

k
mRkRm

I − q
− ωkωmLkLm

q + I

)
= 0, (A5)

with

gkm = (q + I )
∫ q

−I
∂q(ϕk )ϕm = −γkm = −(I − q)

∫ I

q
∂q(φk )φm, (A6)

that satisfy

gk jg
j
m = −(q + I )2

∫ q

−I
∂qϕk∂qϕm = γk jγ

j
m = −(I − q)2

∫ I

q
∂qφk∂qφm, (A7)

and ∫ q

−I
ϕk∂

2
q ϕm = 1

(q + I )2

(
gk jg

j
m − gkm

)
,

∫ I

q
φk∂

2
q φm = 1

(I − q)2

(
γk jγ

j
m + γkm

)
. (A8)

The system of equations Eq. (A1) can be derived from the following Lagrangian,

L(q, q̇, L, L̇, R, Ṙ) = 1

2

(
L̇kL̇k − ω2

k LkLk + ṘkṘk − 
2
kRkRk

) − q̇

(
gkm

L̇kLm

q + I
+ γkm

ṘkRm

I − q

)

− q̇2

2

[
gk jg

j
m

LkLm

(q + I )2
+ γk jγ

j
m

RkRm

(I − q)2

]
+ 1

2
Mq̇2 − V, (A9)

and the corresponding Hamiltonian is

H(q, p, L,�, R,W ) = 1

2M

(
p + gkm

�kLm

q + I
+ γkm

W kRm

I − q

)2

+ V + 1

2

(
�k�

k + ω2
k LkLk

) + 1

2

(
WkW

k + 
2
kRkRk

)
. (A10)
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Before quantizing the classical Hamiltonian in Eq. (A10),
let us consider the classical system of equations in Eq. (A5).
The equations for Lk and Rk are homogeneous and the coef-
ficients are nontrivial functions of q, q̇, q̈; an initial condition
Rk (0) = Ṙk (0) = 0, representing the absence of the field on
the right cavity side at the initial time, would be indeed satis-
fied by the trivial solution Rk (t ) = 0 at all times. Since this is
a well-posed Cauchy problem, the solution of the equation is
unique and thus Rk (t ) remains identically zero no matter the
values of Lk . Furthermore, if we consider the energy of the
right electromagnetic field,

U = 1

2

∫ I

q
[(Ȧ)2 + (∂xA)2]dx

= 1

2

[
ṘkṘk − q̇2

(I − q)2
γkiγ

i
j R

kR j

]
, (A11)

by virtue of Eq. (A2), Eq. (A3), Eq. (A4), and Eq. (A7)
(the sum over k, i, and j is understood). Clearly, this energy
depends on the states of the mechanical mirrors allowed by
the equations of motion. If the right cavity is empty, then the
energy is constantly zero and the left electromagnetic field
cannot be transferred to the right side. These properties reflect
the perfection of the mirror and the fact that classical vacuum
is empty.

APPENDIX B: QUANTIZATION OF THE CLASSICAL
SYSTEM HAMILTONIAN

Consider the operators {q̂, p̂, L̂k, �̂k, R̂k,Ŵk} and
impose the commutation relations (h̄ = 1) [q̂, p̂] = i,
[L̂k, �̂m] = iδkm, and [R̂k,Ŵm] = iδkm, while [q̂, L̂m] =
[q̂, R̂m] = [L̂k, R̂m] = [ p̂, L̂m] = [ p̂,Ŵm] = [�̂k,Ŵm] = 0.
Using the ladder operators,

âk = 1√
2ωk

(ωkL̂k + i�̂k ),

ĉk = 1√
2
k

(
kR̂k + iŴk ), (B1)

the Hamiltonian Eq. (A10) becomes

Ĥ ′ = ( p̂ + 
̂ )2

2M
+ V̂ +

∑
k

ωkâ†
k âk

+
∑

k


k ĉ†
k ĉk − πq1̂

6(q + I )(q − I )
, (B2)

where we have already resummed the vacuum point fluctua-
tions, and


̂ = i

2

√
m

k

[
gkm(â†

k − âk )(â†
m + âm)

q + I

+ γ km(ĉ†
k − ĉk )(ĉ†

m + ĉm)

I − q

]
. (B3)

This is the full Hamiltonian of the problem. To obtain Eq. (1)
in the main text we need to linearize it and consider the
unimodal case. To linearize, first consider 
 ≈ 
0 constant
and then introduce a variation from the expected position of

the mirror q = q0 + δq, and expand all the terms accordingly,

ωk = kπ

q0 + I

(
1 − δq

q0 + I

)
+ O

[
δq2

(q0 + I )2

]
,


k = kπ

I − q0

(
1 + δq

I − q0

)
+ O

[
δq2

(I − q0)2

]
, (B4)

which in turn, from Eq. (B1), induces

âk ≈ (â0)k − δq

2(q0 + I )
(â†

0)k,

ĉk ≈ (ĉ0)k + δq

2(I − q0)
(ĉ†

0)k . (B5)

Performing the unitary transformation Û = exp(iδq
̂0) on
Eq. (B2) proves that

Ĥ = Û Ĥ ′Û † = p̂2

2M
+ V̂ +

∑
k

[(ω0)k (â†
0)k (â0)k

+ (
0)k (ĉ†
0)k (ĉ0)k] − δq(Ĝ0 + F̂0), (B6)

where V̂ = V̂ − πq1̂/6(q + I )(q − I ) and

F̂0 =
∑
k, j

(−1)k+ j

2(q0 + I )

√
(ωkω j )0 (â†

k + âk )(â†
j + â j ),

Ĝ0 =
∑
k, j

(−1)k+ j+1

2(I − q0)

√
(
k
 j )0 (ĉ†

k + ĉk )(ĉ†
j + ĉ j ). (B7)

Finally, we consider a quadratic potential V and introduce
the vibrating mirror ladder operators {b, b†} in a way that
δq = xzpf (b + b†), where xzpf is the zero-point-fluctuation am-
plitude of the vibrating mirror. By reducing all the modes to
one (k = j = 1), the system Hamiltonian in Eq. (B2) can be
written as

Ĥ = ωaâ†â + ωbb̂†b̂ + ωcĉ†ĉ

+ xzpf

2π

[
ω2

c (ĉ + ĉ†)2 − ω2
a(â + â†)2

]
(b̂ + b̂†). (B8)

Defining a coupling strength g = ω2
c xzpf/π = ωc xzpf/(I −

q0) the Eq. (1) in the main text is obtained. Note that since
h̄ = 1 the coupling strength g has the right units.

APPENDIX C: EFFECTIVE HAMILTONIAN WITH THE
GENERALIZED JAMES’ METHOD

For interacting quantum systems that are strongly detuned,
an effective Hamiltonian can be derived using the general-
ized James’ effective Hamiltonian method [54]. To apply this
method to Eq. (1) in the main text, we first rewrite it in the
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interaction picture,

ĤI(t ) = g

[
ĉ†ĉ − ω2

a

ω2
c

â†â

]
b̂ e−iωbt + g

2

[
(ĉ)2b̂ e−i(ωb+2ωc )t − ω2

a

ω2
c

(â)2b̂ e−i(ωb+2ωa )t

]

+ g

2

[
(ĉ†)2b̂ ei(2ωc−ωb)t − ω2

a

ω2
c

(â†)2b̂ ei(2ωa−ωb)t

]
+ H.c. (C1)

This can be rewritten as

ĤI(t ) =
∑

k

[ĥke−iωkt + ĥ†
keiωkt ], (C2)

where now the ωk are a combination of the bare transition frequencies. It turns out that a photon-pair hopping mechanism already
appears with a second-order generalized James’ effective Hamiltonian method [54]. This accounts for calculating

Ĥ (2)
I (t ) =

∑
j,k

1

ωk
[ĥ j ĥ

†
kei(ωk−ω j )t − ĥ†

j ĥkei(ω j−ωk )t ]. (C3)

In the rotating-wave approximation, all frequency contributions which are different from zero can be neglected. Since the
frequencies ωk are all different, we only keep the terms in Ĥ (2)

I (t ) where the sum of the exponent is zero.
Starting from Eq. (C1) and considering the resonant condition ωa = ωc, only three terms need to be considered,

ĥ1 = g

2
(ĉ†2 − â†2

)b̂†, ω1 = 2ωa + ωb,

ĥ2 = g

2
(ĉ†2 − â†2

)b̂, ω2 = 2ωa − ωb,

ĥ3 = g

2

({ĉ, ĉ†} − {â, â†})b̂†, ω3 = ωb. (C4)

From the canonical commutation relations it follows that

[ĥ1]ĥ†
1 =g2

4
[â2ĉ†2 + â†2

ĉ2 − ĉ†2
ĉ2 − â†2

â2 + 2b̂†b̂({ĉ, ĉ†} + {â, â†})],

[ĥ2]ĥ†
2 =g2

4
[ĉ†2

ĉ2 + â†2
â2 − ĉ†2

â2 − â†2
ĉ2 + 2b̂b̂†({ĉ, ĉ†} + {â, â†})],

[ĥ3]ĥ†
3 = − g2(ĉ†ĉ − â†â)2, (C5)

so James’ effective Hamiltonian is

Ĥ (2)
eff =

[
ωa + g2(4ωa + ωb)

8ω2
a − 2ω2

b

]
(ĉ†ĉ + â†â) + g2

(
3ω2

b − 8ω2
a

)
(
8ω2

a − 2ω2
b

)
ωb

[(ĉ†ĉ)2 + (â†â)2] + 2g2

ωb
â†âĉ†ĉ + g21̂

2ωa − ωb

+
[
ωb + 4g2ωa

4ω2
a − ω2

b

(ĉ†ĉ + â†â + 1̂)

]
b̂†b̂ − g2ωb

8ω2
a − 2ω2

b

(â2ĉ†2 + â†2
ĉ2). (C6)

All the terms but the last one are energy shifts. The latter is
the desired hopping mechanism.

APPENDIX D: MONTE CARLO WAVE FUNCTION
APPROACH: QUANTUM TRAJECTORY

Following Refs. [60,61], in order to describe the Monte
Carlo wave function (MCWF) approach, we introduce the
non-Hermitian Hamiltonian,

Ĥ = Ĥ − i

2

∑
m

γm 
̂†
m
̂m, (D1)

describing the effect of the environment between two quan-
tum jumps. Here, Ĥ represents the Hamiltonian part of the
dynamics, and one can either use the full or the effective
Hamiltonian, while 
̂m are the jump operators. The evolution
of a quantum trajectory is thus dictated by a non-Hermitian

evolution via Ĥ interrupted by random quantum jumps. The
algorithm to obtain such a dynamics reads as follows:

(i) |ψ (t )〉 is the normalized wave function at the initial
time t .

(ii) The probability that a quantum jump occurs through
the mth dissipative channel in a small amount of time dt is

δpm(t ) = dtγm 〈ψ (t )|
̂†
m
̂m|ψ (t )〉, (D2)

such that δpm(t ) 	 1.
(iii) One randomly generates a real number ε ∈ [0, 1].
(iv) If

∑
m δpm(t ) < ε, no quantum jump occurs, and the

system evolves as

|ψ (t + dt )〉 = exp(−iĤdt ) = 1 − idtĤ|ψ (t )〉 + O(dt2).
(D3)

(v) Otherwise, if
∑

m δpm(t ) > ε, a quantum jump occurs.
To decide which channel dissipates, a second random number
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ε′ is generated, and each quantum jump is selected with prob-
ability δpm(t )/[

∑
n δpn(t )]. The wave function then becomes

|ψ (t + dt )〉 = 
̂m|ψ (t )〉. (D4)

(vi) At this point, independently of whether a quan-
tum jump took place, the wave function |ψ (t + dt )〉 is

renormalized and used for the next step of the time evolution.
Any quantum jump corresponds to the projection of the wave
function associated with a generalized measurement process
(wave-function collapse through a positive operator-valued
measure) [62]. Although the results of MCWF recover those
of the Lindblad master equation, by averaging over an infinite
number of trajectories, noise effects determine the conver-
gence rate.
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