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Shifts in global network dynamics due to small changes at single nodes
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Understanding the sensitivity of a system’s behavior with respect to parameter changes is essential for many
applications. This sensitivity may be desired—for instance, in the brain, where a large repertoire of different dy-
namics, particularly different synchronization patterns, is crucial—or may be undesired—for instance, in power
grids, where disruptions to synchronization may lead to blackouts. In this paper, we show that networks of cou-
pled phase oscillators with nonlinear interactions can acquire a very large and complicated sensitivity to changes
made in either their units’ parameters or in their connections. Even modifications made to a parameter of a single
unit can radically alter the global dynamics of the network in an unpredictable manner. This occurs over a wide
parameter region, around the network’s transitions to phase synchronization. We argue that this is a widespread
phenomenon that can be expected in real-world systems, extending even beyond networks of oscillators.
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I. INTRODUCTION

Several systems of practical and theoretical importance are
composed of, or can be modeled as, networks of interacting
units. Examples from different research areas include power
grids (networks of producers and consumers of electrical en-
ergy) [1], food webs [2], networks of electronic elements [3],
coupled lasers [4], and neurons in the brain [5]. An impor-
tant question is how the dynamics of single units impact the
network’s overall dynamics and what happens if these units
are modified. What happens to the dynamics if the units’
parameters change? For instance, in ecological systems, what
happens if the reproduction rate of a prey increases? In power
grids, can a change in the parameters of a single generator
cause a large disruption, such as a blackout? Also, what
happens if the units’ dynamical states are modified, e.g., by
shocking the units into a different state? In the brain, how can
an epileptic seizure be stopped by employing a current pulse
in one particular brain region? These questions highlight the
idea that a regime in which single-unit-changes can alter the
whole network’s behavior can be either dangerous or advanta-
geous and is an important topic of research which we address
in this paper.

In both power grids and the brain, an important phe-
nomenon is synchronization, i.e., the coherence of frequencies
or even phases of oscillations. For example, it is crucial
for power grids to have their elements synchronized in the
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50/60 Hz regime [6]. Moreover, several functional roles have
been ascribed to synchronization in the brain [5,7,8]. For
systems in which synchronization is an essential process
for functioning, the question of sensitivity with respect to
perturbations becomes particularly important. This has been
recognized in the literature, and various types of perturbations
have been considered to study the vulnerability either of the
synchronized state itself or of the transition to synchroniza-
tion [9,10].

In this paper, we show that systems become very sensitive
to changes in parameters during transitions to synchroniza-
tion, such that even changes to parameters of single units can
radically alter the dynamics of the whole system. We call this
phenomenon dynamical malleability [11], characterized by
the fluctuations in network behavior caused by changes in the
units’ parameters or connections. Dynamical malleability can
cause problems in real-world systems in two major ways: (i)
the fluctuations in the dynamics can have a large magnitude,
which can lead to drastic changes in the system’s spatiotem-
poral dynamics and (ii) fluctuations are complicated and hard
to predict, so it is unclear which units or new parameter val-
ues can keep the networks in a similar synchronization state,
and which others cannot. Indeed, no method available in the
literature to describe phase synchronization (PS) worked sat-
isfactorily to predict the fluctuations we observe. This clearly
important issue for the design and control of systems moti-
vates our study to analyze the mechanisms that lead to these
large fluctuations.

To address it concretely, we study networks of Ku-
ramoto oscillators organized in ring lattices. They constitute
a paradigmatic model for synchronization [12–14] and have
been established as a model for real-world systems like the
brain [14–16], Josephson junctions [3,17], and chemical oscil-
lators [18,19]. The Kuramoto oscillators are phase oscillators
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FIG. 1. Sketch to illustrate the dynamical malleability in a typ-
ical transition to phase synchronization. Each realization of the
system’s parameters leads to a different transition to synchronization,
i.e., a different curve in the figure. Realizations may differ from the
others, for instance, in the parameter of a single unit. We see that
the transitions to synchronization are different, as both the critical
value of the coupling strength and the profile of the transitions differ,
with the magnitude of malleability peaking during the transitions.
Fixing the coupling strength, we can also look at the distribution of
the degree of phase synchronization across samples (purple inset).

coupled through a sine function of their phase differences.
Networks with these units are well-known to have a transi-
tion from desynchronization (incoherent phases) to frequency
synchronization (i.e., phase locking, meaning constant phase
differences [9]) and to PS (small phase differences) [20] as the
coupling strength between units increases [13,14].

In this paper, we connect the oscillators in either of two
classes of network topologies, which are of theoretical and
practical importance [21]: Watts-Strogatz (WS) [22–24] and
distance dependent (DD) [25,26]. They have very distinct
properties, but in both a change in the topology from short-
range to long-range connections leads to a transition to PS in
the networks [25,27]. During the transitions to PS, when the
systems are only partially phase synchronized, they become
dynamically malleable (i.e., sensitive to parameter changes),
as illustrated in Fig. 1.

Furthermore, we also show that the number of attractors
of the WS networks increases during their transitions to PS,
meaning that these systems also become especially sensitive
to perturbations made to their units’ states. This is in line with
recent studies for Kuramoto oscillators with identical frequen-
cies [28–30] and for Kuramoto oscillators with inertia [31].
This increased multistability acts as a dynamical mechanism
that can further increase the dynamical malleability.

Therefore, despite the wide literature and importance of
synchronization, this phenomenon we describe of increased
sensitivity to parameter changes, with complicated, hard-to-
predict consequences to the synchronization, and which can
be accompanied by multistability, has been underexplored in
the literature. Although reported sporadically in some recent

works [32–35], it has not been the focus, and thus has not been
fully explored. This becomes especially relevant when we
note that the behavior is widespread, extending well beyond
the Kuramoto networks studied here, as supported by our
observations in a variety of topologies, by similar observations
in spiking [11] and bursting [35] neural networks, in cellular
automata (which we exemplify in the Appendix), and, impor-
tantly, by the statistical physics theory of finite-size effects on
phase transitions, which we discuss later in the paper.

We therefore hope to demonstrate the importance of dy-
namical malleability and to encourage further theoretical
advancements in this area, which are needed to properly
describe the wide range of behaviors and to offer tools for
practical applications.

II. METHODOLOGY

In the Kuramoto model [12,36], each oscillator is described
by a phase which evolves in time according to

θ̇i = ωi + ε

N∑

j=1

Ai j sin (θ j − θi ), (1)

where θi(t ) is the phase of the ith oscillator at time t , ωi

is its natural frequency, ε is the coupling strength, N is the
number of oscillators, and Ai j is the (i, j)th element of the
adjacency matrix A. Throughout this paper, we initially draw
each frequency randomly from a Gaussian distribution with
mean μ = 0.0 and standard deviation σ = 1.0, generating
a sequence {ωi}, i = 1, · · · , N . Then, different realizations
can (i) shuffle these frequencies, generating another sequence
{ωi}shuffled = shuffle({ωi}), or (ii) switch the frequency of one
selected unit to another value ωnew.

The networks in this work are coupled in a ring lattice of
N = 501 units with periodic boundary conditions and follow
one of two classes of topology. The first class is the WS [22],
which interpolates between regular and random topologies
with a parameter p, the rewiring probability. At one extreme
(p = 0), the topology is a k-nearest-neighbor lattice. From it,
connections are randomly chosen according to probability p
and rewired to another randomly chosen connection. In doing
this, the networks have a significant decrease in the mean
distance between nodes but remain very clustered, generating
small-world topologies. The other extreme (p = 1) is then a
random topology. These networks are unweighted, so their ad-
jacency matrix’s elements are Ai j = 1 if i and j are connected,
and 0 otherwise.

The second class of networks follows a DD power-law
scheme, in which any given node receives connections with
weights decaying based on the distance to it. Each element
of the adjacency matrix is Ai j = 1

η(α)(di j )α
, where di j is the

edge distance between oscillators i and j, defined as di j =
min(|i − j|, N − |i − j|), and η(α) is a normalization term
given by η(α) = ∑N ′

j=1
2
jα , such that the temporal evolution

of the phases can be written as

θ̇i = ωi + ε

η(α)

N ′∑

j=1

1

jα
[sin (θi+ j − θi ) + sin (θi− j − θi )], (2)

where N ′ = N−1
2 denotes half the amount of units to which

i is connected to (one-half of the ring’s length, discounting
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the unit i itself). The equation explores the symmetry in the
network to switch the summation across the network to a sum-
mation across only half, multiplied by 2. The power-law decay
is thus controlled by α, the locality parameter. For α = 0, the
network is globally coupled with equal weights between every
node. As α increases, the weights are redistributed, so closer
units (in terms of edge distance) have bigger weights. At the
extreme of α → ∞, only first neighbors are connected.

The two classes have similarities: they have topologies
dominated by short-range connections at one extreme and by
long-range connections at another [37,38]. They also have
differences: the first class is sparsely connected, the other
densely; the first has link-disorder (different rewirings lead to
different networks), the second does not.

Integration was performed using the Tsitouras 5/4 Runge-
Kutta (Tsit5) method for WS networks, and an adaptive order
adaptive time Adams Moulton (variable-coefficient Adams-
Bashforth-Moulton) method for DD networks. The integrator
method was chosen for DD networks for increased simula-
tion speed, and results were robust to different integration
schemes. All methods used the DifferentialEquations.jl pack-
age [39], written in the Julia language [40]. Additional
computational packages used were PyPlot [41] for plotting
and DrWatson.jl [42] for code management. The code used
for simulations is accessible in the repository [43], with the
parameters used in the simulations. In particular, the control
parameters we used (α, p and ε) were generated from a
uniform distribution in the range of parameters showing inter-
esting behaviors (e.g., the transitions to synchronization), then
rounded to five decimal places and used in the simulations
(in the case of p, the distribution was uniform in the log
scale). These values are reported in all figures and text, and
we emphasize that no value was chosen specifically by hand:
the behaviors we show in the figures are typical of the systems
and can be obtained by randomly generating other values for
the parameters.

We quantify the degree of PS of the network through the
standard Kuramoto order parameter [12,13,36], which is the
circular average of the units’ phases,

r(t ) = 1

N

∣∣∣∣∣∣

N∑

j=1

exp (iθ j (t ))

∣∣∣∣∣∣
, (3)

with i = √−1. The quantifier ranges from 0 to 1: if r(t ) = 1,
all the phases are the same and the system is completely
globally phase synchronized; if r(t ) = 0, each oscillator has
a pair that is completely out of phase and the system can
be completely globally phase desynchronized or in a twisted
state with units having distinct but linearly spaced phases.
We typically describe networks by the temporal average R :=
1
T

∑
t r(t ) of their PS, with T being the total simulation time

excluding transients.

III. RESULTS

A. Introduction to dynamical malleability

The networks we study here, described in Eq. (1), follow
the basic phenomenology of transitions to synchronization
in Kuramoto networks [12,13]. For very small coupling

strengths ε, the oscillators are effectively uncoupled, and the
phases oscillate without any significant correlation. As this
ε increases, the instantaneous frequencies θ̇i align first and
the units’ phases become locked but not aligned: the system
becomes frequency but not phase synchronized [9].

Then, whether the phases can align or not depends on
the topology [27,44]. In a two-nearest-neighbor lattice, where
only four nearby units are connected (two on each side), there
is a topological limitation in the spread of interactions across
the network that makes the oscillators arrange themselves in
shorter-range patterns [Fig. 2(a)] (an exception might occur if
the coupling strength is extremely high, much bigger than the
relevant values studied here). If the short-range connections
are randomly rewired to long-range connections, following,
for instance, the WS algorithm, the shorter-range patterns give
way to longer-range patterns and the oscillators start to phase
synchronize [Figs. 2(b) and 2(c)], until eventually a strong
(though not complete) PS is reached [Fig. 2(d)]. This occurs
at different stages for each realization: for instance, Figs. 2(c)
and 2(k) reach a high degree of PS, with the longer-range
patterns, but Fig. 2(g) does not.

In Fig. 2, the natural frequencies {ωi}(i = 1, · · · , N ) were
kept constant across panels (a)–(d). Changing the frequencies,
keeping the initial conditions {θi(0)}(i = 1, · · · , N ) fixed,
leads to a different realization (also called sample), with
possibly different dynamics. If the frequency of a single
unit ωi is changed to an arbitrary new value, for instance,
ωnew = 3, the network’s behavior can be significantly altered
[Figs. 2(e)–2(h)]. This is especially the case for networks with
intermediate rewiring probabilities p, in which this single unit
frequency change can bring the network from high to very
low PS [Figs. 2(c)–2(g)]. The instantaneous frequencies typi-
cally remain synchronized, though their values might change.
For random networks, PS is always maintained, though the
instantaneous frequency values may also change.

Figure 2 thus illustrates that the long-term dynamics and
PS differ in each realization. The realizations, created by
changing the natural frequency of one unit, are distinct dy-
namical systems, so it is not surprising to observe distinct
long-term dynamics. It is, however, interesting to observe
how large these changes in dynamics can be and how they
depend on the topology. For instance, in networks of interme-
diate p (second and third columns of Fig. 2, the PS changes
drastically. In random networks (p = 1, fourth column), they
preserve the PS but alter the instantaneous frequencies of the
oscillators (seen in the figure by the number of vertical lines).
We also note that the behavior we describe is typical of the
systems, and the values of p and ε used here were generated
as described in Sec. II. Since the fluctuations in the phase
patterns (reflected in the PS) are clearer and more pronounced
than the instantaneous frequency patterns, we now focus on
the PS of the networks.

B. Comprehensive view of dynamical malleability

To obtain a comprehensive picture, we now study an
ensemble of samples obtained by shuffling the frequencies
[{ωi}original → {ωi}shuffled = shuffle({ωi}original )] or by chang-
ing the frequency of only a single unit to a new value
(ωi,original → ωnew). We show in Fig. 3 the transitions to phase
synchronization with increasing coupling strength or with
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FIG. 2. Transition to phase synchronization and the effect of a single-unit change. The figure shows the color-coded phases θ of all
oscillators in the network and degree of phase synchronization r(t ) (green line) across time for Watts-Strogatz networks. The coupling strength
ε is fixed at ε = 4.51282 and the natural frequencies ωi in the first row are the same, generated by randomly drawing from a Gaussian
distribution with zero mean and unitary standard deviation. Networks in the left column are two-nearest-neighbor lattices (rewiring probability
p = 0); the short-range connections in these networks are then rewired in the following columns, with probability p = 0.08733 in the second
column, p = 0.19684 in the third, and p = 1.0 in the fourth (leading to random networks). Increasing the proportion of long-range connections
thus leads generally to more phase-synchronized networks. In the second and third rows, the natural frequency ωi of a single unit i (indicated
by the gray arrows) is changed to a new value ωi → ωnew = 3.0, with all other parameters being kept fixed. The units shown in the figure were
those which led to the smallest (second row) or highest (third row) degree of phase synchronization R out of all N = 501 units in the network
for each value of p. Initial conditions were the same for all simulations, and were randomly drawn between 0 and 2π .

switching from short-range to long-range connections. As ex-
pected from Fig. 2, we also find a large dynamical malleability
(sometimes simply called malleability) during the transitions.

We study two classes of topology, WS (small world) and
DD, described in Sec. II. We consider ensembles as collec-
tions of networks with fixed coupling strength ε and topology
(fixed rewiring probability p or locality parameter α) but
distinct realizations of the natural frequencies {ωi} [45]. Each
ensemble in the figure contains 501 samples (realizations). We
present the results using the mean degree of PS R for each
realization and the gap 	 := Rmax − Rmin between the most
and least phase synchronized realizations in each ensemble.
The gap 	 is chosen simply to illustrate the wide range of
R values clearly and we remark that very similar curves are
observed by using the standard deviation over samples.

In Fig. 3, thicker lines represent an original sequence of
frequencies {ω}original from which other realizations (light
lines) are created by shuffling all frequencies or changing
the frequency of one unit to a new value ωnew = 3.0. Each
sample is a different dynamical system and has a different
transition to PS, which occurs at different values of ε, p, or
α, and with a different profile (some have a small region of
desynchronization while others do not, for instance).

This means that changing samples can lead to large
changes in the behavior of the system, as we see throughout
Fig. 3. First, we study the transitions induced by increasing
the coupling strength ε for four representative types of net-
works [Figs. 3(a)–3(d)], characterized by four specific values
of rewiring probability p and locality parameter α.

In the red curves, networks are dominated by long-range
connections, with p = 1 (random) and α = 0 (all to all) and
have a complete transition to PS (reaching R ∼ 1), with the
dynamical malleability (measured by 	) increasing during
the transition and returning to zero after. The all-to-all case
is the finite-size version of the system originally studied by
Kuramoto [36], and the critical ε values, when the transition
occurs in each sample, are close to the εc = 2

g(0)π = 2
√

2√
π

≈
1.596 predicted in the thermodynamic (infinite network size)
limit. Its finite-size scaling properties and behavior have also
been studied in Refs. [32,46]. It is worth mentioning that this
parallel between random networks and all-to-all networks,
which have similar phenomenology, has been described in
other works. Both have the same scaling exponents, belonging
to the mean-field type [37,38].

In the green curves (p = 0.19684 and α = 1.538463),
some connections have been rewired in the WS networks,
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FIG. 3. Transitions to phase synchronization and dynamical malleability. Networks under Watts-Strogatz (WS) and distance-dependent
(DD) topologies reach phase synchronization through either an increase in coupling strength ε (given the topology has a sufficient amount of
long-range connections) or by switching short-range connections to long-range. Fluctuations in the degree of phase synchronization R between
samples increase during the transitions, as can be seen by the differences in the same-colored curves and by 	 := Rmax − Rmin. Starting from a
natural frequency sequence originally drawn from a Gaussian distribution (thicker lines), the other samples (thinner lines) can be generated by
shuffling the natural frequencies or by switching the natural frequency of one unit to ωnew = 3. For intermediate networks (purple and green
curves), the increase in the fluctuations (i.e., in dynamical malleability) extends for a wide range of parameters and becomes considerably large.
Each panel contains 501 = N realizations, with rewiring probabilities fixed for the coupling transition, with values shown in the legend, and
coupling strength fixed in the topology transition at ε = 4.51282 for WS and ε = 6.46154 for DD. The initial conditions are the same across
all realizations and are randomly distributed from 0 to 2π . The curves of 	 are qualitatively similar with other dispersion measures, such as
standard deviation, a possible difference being that the curves may be slightly shifted, as the measures can peak at slightly different values of
the control parameter. We remark that the parameter values used in the simulations were generated as described in Sec. II and correspond to
the typical behaviors in the system.

and weights redistributed for DD networks, from long-range
to effectively short-range connections. On average, PS R de-
creases, though still remaining high. Some samples of WS
networks also start to display regions of desynchronization:
after the initial transition to high R, a further increase in ε can
desynchronize them (visible in panels Figs. 3(a) and 3(c), for
ε, roughly, in Refs. [[6,7]]). Therefore, the huge changes in
R (	 ∼ 0.99) due to changing samples can be attributed to
two effects: the difference in their critical coupling strength
(when the transition begins) [47] and also in their different
post-transition behaviors (such as the desynchronization gaps
that occur at different intervals of ε.)

In the purple curves (p = 0.08733 and α = 1.76923), even
more short-range connections become present. PS R on aver-
age decreases, while the fluctuations 	 remain high and occur
more evenly spread across samples.

Finally, for cyan curves (p = 0, two-nearest-neighbor
chains and α = 3, close to nearest-neighbor chains), the con-
nections are short range. Their PS is much smaller and they do
not reach a high degree of PS for any value ε we tested. These
networks with short-range connections still have some degree
of malleability, but not as high as the previous two cases.

Returning to frequency synchronization, we mention that
for weak coupling strengths (roughly below ε ≈ 3), most of

the samples in any ensemble are not frequency synchronized
(see Appendix 1). Above this value, frequency synchroniza-
tion becomes more common, especially for networks with
more long-range connections, such that for sufficiently high
coupling all samples become frequency synchronized. This is
not the case for networks with mostly short-range connections
(p � 0.01), in which some samples do not reach frequency
synchronization even despite strong coupling. The presence
of frequency synchronization in the short-range networks is
consistent with the literature [13,48] showing that frequency
synchronization in first-nearest-neighbor chains is possible
for sufficiently high ε in strictly finite systems. There are
therefore also sample-to-sample fluctuations in the frequency
synchronization of Kuramoto networks. They occur similarly
to the fluctuations in PS but are somewhat harder to visualize
and have a less interesting dependence on parameters, justify-
ing our focus on PS in this paper.

We now move to the topology-induced transitions, which
occur by switching from short-range to long-range connec-
tions (varying p and α) while keeping the coupling strength
ε fixed [Figs. 3(e)–3(h)]. A similar scenario occurs with a
transition to PS, induced by changing either p or α. The dy-
namical malleability increases during the transitions, reaching
significant values for both shuffled realizations and single-unit
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FIG. 4. Dynamical malleability increases around the regions of transition to phase synchronization. The surface on the left shows the
average degree of phase synchronization R across the ensemble (1000 realizations of shuffled natural frequencies). The region of high phase
synchronization is clearly seen for sufficiently high coupling strength ε and rewiring probability p. The colored lines correspond to the
parameter values shown in Fig. 3. The right panel displays 	, the difference between the most and least synchronized realizations for each pair
(p, ε), and we see that the fluctuations from sample to sample increase during the transitions to phase synchronization. The green and purple
curves remain close to the region of transition for all ε � 1, such that their fluctuations do not decrease with an increase in ε. The figure uses
Gouraud interpolation to ease visualization by smoothing the curves with a linear interpolation.

changes. The nearest-neighbor networks show some mal-
leability, while the long-range dominated ones (random or all-
to-all) show no malleability. We note here that the transition
for WS occurs at p ∼ 0.1, so we plot the figures on logarith-
mic scale to show the full transition to synchronization. This
transition was already reported for WS networks in [27], but
the authors used a linear scale for p and missed the full details
of the transition that we see here, especially the sample-to-
sample fluctuations; for DD power-law networks, a transition
in phase and frequency was reported in [25]. However, none
of these references studied the sample-to-sample fluctuations.

We conclude that either shuffling or changing a single unit
can significantly alter the behavior of these systems, leading
to a large dynamical malleability, in some cases over a very
large range of parameters. This is particularly strong for WS
networks, reaching 	 ∼ 0.99, close to the maximum possible
value of 	 = 1.0. The DD networks have weaker fluctuations,
though still significant, reaching up to 	 ∼ 0.7.

Furthermore, we note that the networks with intermediate
p or α and the short-range networks have dynamical mal-
leability even for high ε. This is consistent with the known
increase in the fluctuations near a phase transition [46,49,50]
because the networks with these parameters remain close to
the topology-induced transition. This is illustrated for WS
networks in Fig. 4. It shows, in the p—ε parameter space,
the average PS across samples R on the first panel and the
dynamical malleability measured by 	 on the second panel.
Figure 4 provides a comprehensive view on both the coupling
strength and the topology-induced transitions. The samples
are realized here as shuffles, though a similar figure would
be obtained by changing one unit. There is a single region
of PS for sufficiently high coupling strength ε and rewiring
probability p [Fig. 4(a)]. Around the borders of this region,
where the system is transitioning, the dynamical malleability
is much higher [Fig. 4(b)]. It then becomes clear that the
intermediate networks (green and purple lines) are near the
topology-induced transition (for instance, black line) for all
ε � 1. As ε increases, the networks remain near this p tran-
sition, and so their dynamical malleability does not decrease.
For the regular networks, we first note that the p axis is shown
on a logarithmic scale, such that these networks, with p = 0,

are still relatively close to the transition at pc ≈ 0.1, and thus
they also present significant malleability.

Figure 4 also illustrates the existence of two qualitatively
different types of transitions: one induced by increasing cou-
pling strength (for sufficiently high p), and another induced by
increasing p (for sufficiently high ε). The difference between
both is in their starting points. Both are globally phase desyn-
chronized, but in the former (red, green, and purple lines)
the weak coupling strength regimes have mostly uncorrelated
oscillators, with no discernible structures in the phases or even
synchronization in the frequencies. In the latter (black line),
there are shorter-range structures with frequency synchroniza-
tion for most samples.

C. Unpredictability of dynamical malleability

For WS networks, samples can be generated by resam-
pling the topology instead of changing the natural frequencies.
Since they are generated by a random rewiring process, dif-
ferent realizations generate different networks (there is link
disorder [38]). Therefore, different samples can also be gen-
erated by resampling the network while keeping the natural
frequencies fixed. This generates a profile of dynamical mal-
leability similar to that shown in Fig. 3(e), where the network
was fixed and the natural frequencies were changed (see Ap-
pendix 2 for details).

Now we wish to illustrate that no network, nor natural
frequency sequence, is alone responsible for leading to more,
of less, synchronized states. Instead, the samples depend
sensitively on both, especially in the region of large STS
fluctuations. Figure 5(a) shows the degree of PS for differ-
ent realizations of the networks and different shuffles of the
natural frequencies, all for ε = 4.51282 and p = 0.08733
with fixed initial conditions. To aid the visualization, red rect-
angles indicate the network with the largest R for each shuffle.
No network synchronizes more (or less) for any sequence of
natural frequencies and no sequence of natural frequencies
synchronizes more for any network. Furthermore, if the ε,
p, or initial condition are changed, the whole profile of the
figure also changes. Another way to illustrate the complicated
sensitivity in the region of high sample-to-sample fluctuations
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FIG. 5. Fluctuations in dynamically malleable systems are unpredictable. (a) shows the average phase synchronization R for fixed coupling
strength ε = 4.51282 and rewiring probability p = 0.08733 for different 20 shuffles of the natural frequencies {ωi} and samples of networks
generated by the Watts-Strogatz algorithm. For ease of visualization, the networks are ordered such that the highest network ids correspond to
higher synchronization for Shuffle id = 1. For each shuffle, the network with the highest R is marked with a red rectangle. We thus see that no
network synchronizes more for all shuffles: R is a function of both the specific frequency and topology samples. (b) shows the changes δR in
the phase synchronization R when the natural frequency of each unit is changed by an amount δω, such that ωi → ωi + δω. Other parameters
are fixed, in particular p = 0.1145 and ε = 4.51282. There is a rough threshold (indicated by the black dashed lines), below which changing ωi

does not significantly alter R (δR < 0.1 for the figure). Furthermore, changing the frequency does not have a monotonic impact on the change
in R: small alterations in ωi, above the threshold, can have the same impact on R as bigger alterations.

is by now fixing the network, and changing the frequency of a
single unit by an amount δω. Figure 5(b) illustrates the change
δR in the PS compared to the synchronization of the original
(δω = 0) frequency realization. There is a rough threshold
at |δω| � 0.1, below which perturbations in one unit do not
significantly affect the network’s PS. Above this threshold,
however, large changes occur. They are asymmetric on δω and
occur nonmonotonically (increasing |δω| does not necessarily
lead to bigger changes). This complicated pattern we observe
could make the design and control of these systems quite
difficult in practice.

D. Ratio of short to long-range connections

As we have seen, the rewiring of connections in WS net-
works, or the redistribution of weights in DD networks, from
short-range to long-range connections leads to a transition
toward globally phase-synchronized regimes. During these
transitions, the dynamical malleability peaks for some ratio of
short-range to long-range connections. To quantify this ratio,
we first define the short-range connections to/from a node i as
all existing connections to/from other nodes j within an edge
distance d (with index j ∈ [i − d, i + d]), with d being the
range of short connections (d = 2 here). For WS networks,
we calculate the average degree (number of connections) for
short-range (Ks) and long-range connections (Kl ). For DD
networks, we define an analogous measure of topological
influence, which is

Ks := 2

η(α)

d∑

j=1

1

jα
(4)

Kl := 2

η(α)

N ′∑

j=d+1

1

jα
. (5)

Note that due to the symmetry of the DD networks, nodes
share the same value of Ks and of Kl . The ratio κ of short-

range to long-range connections is then defined as

κ := Ks − Kl

Ks + Kl
, (6)

so κ = 1 if only short-range connections exist and κ = −1
if only long-range connections exist, with intermediate cases
in between. In WS networks, the number of connections is
K = kN (k being the amount of neighbors of each node), with
the number of long connections approximately Kl = pK and
short-range approximately Ks = (1 − p)K . Therefore, the ra-
tio κ can be easily calculated to be approximately κ = 1 − 2p.
For DD networks, the ratio κ is given as

κ =
∑d

i=1 i−α − ∑N ′
i=d+1 i−α

∑N ′
i=1 i−α

. (7)

Figure 6 shows this ratio κ calculated for the same setup
of Figs. 3(e) and 3(f), shuffling natural frequencies with fixed
coupling strength and changing p or α. The dynamical mal-
leability is measured here by standard deviation χ across the
samples, instead of 	. The former makes the figure clearer,
but the same analysis also works using 	. A remark when
comparing with Fig. 3 is that the two measures may peak at
slightly different values of p or α. For both types of networks,
the malleability peaks when there is a relatively small number
of long-range connections present in a short-range-dominated
network. It is more extreme for WS, as the ratios are closer
to 1 than in the DD networks. This discrepancy in the ratios
leading to higher malleability shows that κ is not an universal
feature for any topology but can still be important to under-
stand their behavior.

E. Multistability

So far, we have changed natural frequencies while keeping
initial conditions fixed. Now we invert this and shuffle initial
conditions to study the system’s multistability. We continue
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FIG. 6. Dynamical malleability peaks within a narrow interval in the relation of short-range to long-range connections. (a) illustrates
the short-range (blue) and long-range (red) connections from the yellow unit for d = 2. (b) shows the sample-to-sample fluctuations in the
phase synchronization measured as the standard deviation χ of the distribution function of R against the ratio κ of short-range to long-
range connections calculated for several distinct topologies p and α. The green curve corresponds to the distance-dependent networks, with
ε = 6.46154 and 501 realizations per α; purple corresponds to Watts-Strogatz networks, ε = 4.51282 and 1501 realizations per p. The bottom
axis show the values of p and α for the respective ticks in κ (note that values of α are not equally spaced).

examining PS R, although we know that R is only a rough
measure of multistability. Being a mean value, the same R
could represent different attractors. Therefore, the number of
attractors estimated based on R can only be considered as a
lower bound. To remedy this, we also verified the findings
by comparing several other features of the dynamics. These
included the standard deviation of PS in time, the PS be-
tween each unit and its neighbors, the PS between sections of
100 units, the time-averaged instantaneous frequencies θ̇i of
units, and the standard deviation, inter-quartile interval and
gap between the unit’s instantaneous frequencies. Realiza-
tions with unique values of all these features were considered
as a distinct attractor. The number of such attractors agrees
qualitatively with the dispersion we see in R, increasing during
the transition.

The PS is thus shown in Fig. 7. Random networks (p = 1,
red) are multistable only during their transition to PS. Inter-
mediate networks (p = 0.19684, green; p = 0.08733, purple)
have a high degree of multistability, meaning coexistence of
several attractors, with very distinct degrees of PS. No shuffle
of the initial conditions leads here to the same attractor, so
the system has at least 501 attractors, the number of different
realizations tested. The second-nearest-neighbor lattice has
significant multistability for ε � 4. This is consistent with the
literature for first-nearest neighbors, in which multistability
occurs after the transition to phase locking [51].

This multistability can enhance the sensitivity of the
system to parameter changes and help explain the large fluc-
tuations we observe. In this case, a parameter change needs
only to change the boundaries of the basins of attraction for
the same initial condition to land on a completely different
attractor. Attractors do not have to be necessarily drastically
changed for the large dynamical malleability to be observed.
However, multistability is not, in principle, required for STS
fluctuations; in fact, the DD networks appear to be monostable
(not shown), though they are malleable.

F. Distributions of samples

As we have seen, shuffling initial conditions can also
generate realizations with widely different dynamics, simi-
larly to shuffling natural frequencies. But the two methods
to create an ensemble of samples have different effects, and
can generate samples with distinct distributions. As shown in
Fig. 8 for WS networks, shuffling frequencies leads usually
to a broader, and smoother, distribution of R. This increased
broadness shows that new attractors are indeed created by
shuffling the frequencies, so multistability itself cannot ac-
count for the dynamical malleability we discussed previously.
Furthermore, the transitions to PS occur through an increase
in the distribution’s average. The accompanying increase in
the width of the distribution shows an increase in dynam-
ical malleability, which goes to zero only for long-range
networks (p = 1).

Specifically, the distributions for the two nearest-neighbor
lattices (p = 0, Figs. 8(a)–8(e)] are quite different: shuffling
frequencies leads to a smooth distribution, whose average
shifts to the right as ε is increased; for shuffling initial con-
ditions, there is also a slight increase in the distribution’s
average as ε is increased, but the distribution itself is dom-
inated by several peaks. For intermediate networks (p =
0.08733 and p = 0.19684, panels (f)-(o)), the skewness of the
distribution becomes negative, and shuffling initial conditions
has a smoother behavior, more similar to shuffling frequen-
cies. Interestingly, the distribution can be bi-modal, with the
two modes being separated on either extreme of R (panels (n)
and (o)). For p = 1 (random network), the two first coupling
strengths (panels (p)-(q)) occur during the narrow interval of
significant malleability, during the transition to PS. Soon after
ε > εc ≈ 1.6, the distribution becomes extremely narrow.

It is worth mentioning that very similar distributions are
obtained if, instead of shuffling the frequencies or initial con-
ditions, we resample them from the distribution (i.e., change
the seed in the random number generator). Interestingly, the
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FIG. 7. Multistability in WS networks. Phase synchronization
and its dispersion for 501 different shuffles (thinner lines) of the
initial conditions, taken from the original initial conditions (thicker
lines) used throughout the rest of this paper. All other parameters
are fixed, including the natural frequencies as the original frequency
distribution. The coupling strength ε (left panel) and rewiring prob-
abilities p (right panel) are the same ones used for WS networks
in Fig. 3. The multistable behavior is thus very similar to what we
observed before by changing the frequencies [Figs. 3(a) and 3(e)],
and so shuffling the initial conditions for this network also leads to
large fluctuations in the phase synchronization.

distributions are not Gaussian, which is inconsistent with the
assumptions made in other works [38,46]. In those works,
the authors argued that the fluctuations must be normally
distributed for sufficiently large networks and many samples
due to the central limit theorem. This inconsistency is likely
generated by the finite size of the networks studied here. Even
in all-to-all networks, in which there is no topological disor-
der, the distributions are not Gaussian for N = 501. Results
(not shown) indicate that the distributions approach Gaussian
distributions as N is increased to 5000.

IV. DISCUSSIONS AND CONCLUSIONS

A. Summary

In this paper, we have studied the sensitivity of networks to
changes in their units’ parameters or connections, which we
call their dynamical malleability, and showed that, near tran-
sitions to PS, this behavior acquires (i) a large magnitude, as
changes to single units can radically alter the spatiotemporal
dynamics, and (ii) a complicated sensitivity, as no analytical
method we have tried was able to satisfactorily describe the
changes to the dynamics. Parts of this behavior have been
observed in isolation previously [11,27,32–35] but this work
focuses specifically on it and shows its full phenomenology.

To study this concretely, we have chosen ring networks of
Kuramoto phase oscillators and connected the units in two dis-

tinct classes of topology, WS and DD. We have either changed
the frequency of a single unit or changed the frequencies of
all units by shuffling (i.e., redistributing) the values of the
frequencies across units. The first has allowed us to verify
the impact of relatively small changes, which are still not
small enough to be described in the linear regime; the latter
allowed us to verify the impact of redistributing the values
in the network while keeping the distribution of parameters
exactly the same, which is helpful for identifying mechanisms
for the fluctuations.

B. Mechanisms for dynamical malleability

The two classes of topology we used have different char-
acteristics (see Sec. II) but are similar in that they lead to
networks that have two distinct types of transition to PS: One
induced by increasing the coupling strength and another by
increasing the dominance of long-range connections. They
also have differences, mostly notably that (i) the WS networks
acquire a large number of attractors during their transitions to
PS (i.e., become highly multistable), while the DD networks
remain with one main attractor (and possible other attractors
that would have very small basins of attraction), and that
(ii) the WS networks have a larger magnitude of dynamical
malleability. We believe that this larger magnitude is caused
by two effects: the increased number of attractors and the
topology’s link disorder.

First, we remark that the dynamical malleability is mani-
fested in the networks’ transitions to PS in two distinct ways.
The first is through diverse onsets of the transition, as different
realizations start their transitions at different values of the
control parameter. This is the well-known blurriness of phase
transitions described in studies of finite-size effects [49,52].
This effect is clearly present in both networks [see, e.g.,
Figs. 3(a) and 3(b)]. The second manifestation of malleability
is in the post-transition fluctuations, i.e., in the sudden changes
of synchronization that occur after the network has seemingly
transitioned to synchronization [see, e.g., Figs. 3(a) and 3(c)].
This effect is present here mostly in the WS networks but is
also known in other systems of finite size [see, e.g., Figs. S5(b)
and S5(d)] for the case of cellular automata). It is caused at
least partly by the system’s multistability, as increasing the
parameter can change the shape of the attractors’ basins of
attraction, making the same initial condition suddenly go to
another attractor. So the WS networks, which have a much
larger number of attractors, exhibit this additional effect that
increases their malleability, while the DD networks do not.

We further remark that multistability could have an even
more pronounced impact on malleability if the basins of at-
traction were complexly interwoven. Then, even very small
changes could lead to significant fluctuations. But this does
not appear to be the case in any of the networks we stud-
ied, all of which seem to have smooth basin boundaries (see
Appendix 3)–it is thus noteworthy that the already high dy-
namical malleability we have described can occur even with
smooth basin boundaries. It can even occur in the absence of
multistability, as seen in the DD networks.

The second mechanism for the increased malleability in
WS networks is their link disorder [38]: different realizations
lead to different topologies for a same parameter and we
observe a very similar phenomenology by comparing different
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FIG. 8. Distributions of R due to shuffling frequencies or initial conditions. Each panel contains the distribution of the mean degree of
phase synchronization R across 20000 shuffles of natural frequencies (in purple) or initial conditions (orange) for Watts-Strogatz networks.
The rewiring probabilities p are indicated on the right of each row, and are the same as used in Fig. 3(a); the coupling strengths ε are indicated
on the top of each column. Bin size is 0.005, and the probability for each bin is calculated as the occupation of the bin divided by the total
occupation across all bins, and is shown in logarithmic scale.

realizations of these topologies (see Appendix 2). This is a
source of disorder, and thus of fluctuations, that is not present
in the DD networks.

C. Mechanisms for the fluctuations

As we have mentioned, the fluctuations in the malleable
networks are also hard to predict. The behavior of the systems
is clearly a complicated function that involves the coupling
strength, topology, natural frequencies, and initial conditions
all together. For instance, we have not found a sequence of fre-
quencies, nor a specific network realization, that always leads
to more (or less) synchronized networks [Fig. 5(a)]. Even for
fixed frequencies and topology, the most phase synchronized
realization changes depend on the initial condition or the
coupling strength. Changes in the natural frequency of single
units also lead to nonmonotonic changes in the network’s PS:
the change in frequency can either increase or decrease the
synchronization level, depending on the chosen unit, coupling
strength, and topology [Fig. 5(b)].

As a consequence, we are unable to identify a specific
unit, or magnitude of perturbation, that is always responsible
for the greatest disruption. That is, no available theory in
the literature that we have tried revealed a mechanism for
the fluctuations capable of predicting them. This is a surpris-
ing result, considering the quality of the available theories,
the amount of research and important advancements in the
description of networks similar to the ones studied
here [32,53–55]. We believe that this is mainly caused by the
networks’ multistability, which cannot be handled by some
theories, and by the wide range of synchronization patterns.

The first theory we tried is the synchrony alignment func-
tion, which depends on the topology and natural frequencies

and was shown analytically to be related to the degree of PS in
the limit of strong synchrony [53]. It does not work satisfac-
torily for any dynamically malleable network that we tested.
One reason for this is the weak PS in some realizations, which
breaks the assumption of the method. Another, even stronger,
reason is that our networks are multistable, such that the rela-
tion between the synchrony alignment function and the degree
of PS given by the method cannot be satisfied for all attractors
of the system. Indeed, it only worked perfectly in the strongly
phase synchronized regime, which is also monostable.

The second theory we tried is from Peter and
Pikovsky [32], who showed in all-to-all networks that
different realizations of the natural frequencies synchronize
differently depending on the kurtosis of the distribution.
This mechanism cannot even be expected to work for
the shuffling scenarios we study since they conserve the
frequency distributions and thus the kurtosis as well, but
we have verified that it also does not work when the units’
frequencies are changed. An additional reason why this does
not seem to apply in our systems may be in the topologies,
which are not all to all.

Third, we have tested other measures that have been ob-
served in the literature to correlate to PS, and they do not work
in the malleable networks. These are (i) the proportion p− of
links connecting nodes with natural frequencies of different
signs [54]; (ii) the correlation cω between the oscillators’
natural frequencies, taking into account the connectivity of the
network [54,55]; (iii) the correlation between natural frequen-
cies and the node’s number of connections [53]; and (iv) the
correlation between the average frequency between neighbors
of a node and the node’s own frequency [53,56]. These results
also cannot be expected to work in multistable networks, and
indeed did not work in our networks.
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D. Relation to statistical physics and scaling

As noted previously, there is a relation between our dy-
namical study here and studies on the statistical physics
of networks. The transitions to PS that we see correspond
to nonequilibrium phase transitions [32,36], such that we
can connect the dynamical malleability we analyze with the
well-known sample-to-sample (STS) fluctuations in statisti-
cal physics. These are usually described in finite systems,
in which different samples have different statistical proper-
ties that lead to distinct phase transitions—the transitions are
usually said to be shifted between samples [46,57,58], which
is one of the mechanisms we described for the malleability.
As seen in these studies, the size N of the system (i.e., the
number of nodes) influences the magnitude of the dynamical
malleability as well as the interval of parameters in which it
occurs. The networks we have presented in the results have
N = 501 oscillators, and scaling analysis (see Appendix 4)
reveals that the intervals of high malleability decrease with the
size N , as expected from other studies. For instance, the au-
thors of Ref. [46] describe the range of ε for high malleability
as scaling with N−2/5 for all-to-all networks.

For the WS networks, malleability is still significant for
even up N = 5000 oscillators. Moreover, the maximum mag-
nitude of the fluctuations does not decrease significantly, and
networks with N = 5000 can still reach 	 = 0.9. This sug-
gests that the malleability gets restricted to a smaller region
in parameter space, but might not decrease significantly in
magnitude for bigger networks. In the limit of infinite-size
networks, it would get restricted to a single line, defining the
two types of transitions to PS, and remain nonzero there. This
is consistent with a study in all-to-all networks of Kuramoto
oscillators, where this behavior was observed [47]. In fact, this
behavior is well-known for phase transitions with quenched
disorder (heterogeneous parameters), when systems are said
to be non-self-averaging [59]. In any case, networks of N =
5000 units can be regarded as rather large in several real-world
applications [32], so the STS fluctuations we describe here
occur for a significant range of system sizes.

E. Generality of the behavior

Additionally, we show that the increase in dynamical mal-
leability is widespread in the parameter space of the systems.
Looking at this space, spanned by coupling strength and
the parameter controlling the topology, the dynamical mal-
leability remains high over a wide parameter range around
the two types of transitions to PS. In particular, networks
with an intermediate amount of long-range connections are
highly malleable for any coupling strength ε we tested
(e.g., green and purple lines in Fig. 3). This is because
the topology is fixed, so the networks remain close to the
topology-induced-transition even though they are far from the
coupling-strength-induced-transition.

We also remark that the phenomenology we describe also
occurs for wide ranges of topology and coupling strength
values, for distinct frequency distributions, such as Cauchy-
Lorenz (not shown), and for other dynamical models. For
instance, previous works on spiking [11] and bursting [35]
neural networks have revealed a very similar phenomenology.
We also show similar behavior for cellular automata (see

Appendix 5). We have observed (not shown) similar behav-
ior in small-world networks generated by adding long-range
connections and keeping the short-range ones [60]. Other
works have also observed dynamical malleability in Kuramoto
oscillators coupled under both human-connectome structural
networks and hierarchical-modular networks [61,62]. Ad-
ditionally, of course, the theory of phase transitions and,
consequently, of sample-to-sample fluctuations is known to
apply for a variety of distinct systems.

F. Practical importance of malleability

The discussions lead to an interesting question: Is dy-
namical malleability good or bad? On the one hand, large
fluctuations can be undesired. For instance, a large fluctuation
could take power grids from a phase synchronized regime to
a desynchronized one and lead to blackouts. On the other
hand, fluctuations can be desired due to the increased flexi-
bility in the systems. They could be a useful mechanism for
adaptation, learning, or memory formation in neural circuits.
More specifically, an important property of the brain is that
it can separately process information from different types of
input in segregated areas and then integrate them all into a
unified representation [63–65]. For this reason, Tononi et al.
conjectured that the brain needs to have an optimal balance
between segregation and integration of areas [63]. In this
optimal balance, the synchronization between different brain
regions needs to fluctuate from low synchronization to high
synchronization [66]. Therefore, having a large dynamical
malleability can be an advantageous feature, allowing for this
high variability to be achieved through small changes in the
neurons, e.g., their firing rate or their connections. There is
also interesting evidence for this in Ref. [67], which reported
that high-frequency firing of neurons can drive changes in the
global brain state.

G. Future research and conclusions

An interesting line of research opened here is to understand
ways to quench or to explore the fluctuations between real-
izations, using the framework we establish here, for practical
applications. Another interesting line of research is to consider
the effects of noise or time-dependent forcing on malleable
systems: since they have a wider range of dynamical states
available by changing parameters, a time-dependent change
in the parameters, induced by the noise or forcing, can lead to
transitions between several different states. The complicated
and sensitive dependence on the parameters would mean that
even small amplitude changes could lead to drastic fluctua-
tions. For the WS networks, multistability can complicate the
dependence on external inputs and make the effects depen-
dent on the timing of perturbations, as different states, all of
which coexist, can react differently to the parameter changes.
Understanding these behaviors is important, for instance, in
the context of neural systems, where external influences are
common and where temporal fluctuations are essential.

Future research is also needed to fully describe the mecha-
nism for the fluctuations between realizations. An interesting
possibility could be to extend the synchrony alignment func-
tion [53] to weakly synchronized regimes or to multistable
systems. Another promising approach would also be to apply
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the formalism introduced in Refs. [68,69]. A third possibility
would also be to use the model reduction method by Ref. [70].
These would be important theoretical contributions for the
understanding of PS in oscillator networks and for the role
of each unit in a network.

To summarize, the increased magnitude and complexity of
dynamical malleability shown here is a general phenomenon
in finite-size systems that can be expected to occur in real-
world systems.
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FIG. 9. Frequency synchronization in parameter surface. The panels show additional quantifiers for the same setup as Fig. 4: They are
color-coded over the same parameter space p—ε and analyzed over the same 1000 simulations. Within each panel, the left part shows the
average over the simulations, while the right shows the standard deviation. (a) shows quantifier FSI := 〈IQI({θ̇ (t )})〉, the temporal average
over the interquartile interval of the instantaneous frequencies θ̇i, a measure of dispersion of the bulk frequencies (difference between 75th and
25th percentile); (b) shows FSs := 〈std({θ̇ (t )})〉, the standard deviation over the instantaneous frequencies; (c) shows FSg := 〈gap({θ̇ (t )})〉, the
gap (difference between extremes) of the instantaneous frequencies. All are thus measures of the synchronization of instantaneous frequencies,
with the latter two more sensitive to the behavior of outliers.
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APPENDIX

1. Frequency synchronization and temporal fluctuations

We have focused in this paper mainly on the synchroniza-
tion of the phases θ and not on the instantaneous frequencies
θ̇ . As stated in the main text, this is because the arrangement of
the phases, measured by the degree of PS, is the quantity that
changes most and more clearly. To understand this, we can
look at measures of the degree of frequency synchronization
in the same parameter space as in Fig. 4. Commonly, the
instantaneous frequencies θ̇ are distributed across different
orders of magnitude, with several units having θ̇ close to the
average, at 0, and a few outliers with |θ̇ | ∼ 10. Because of
this, we use three different dispersion quantifiers, measur-
ing different aspects of the distribution: (i) the interquartile
interval IQI measures the difference between the 75th and
25th percentile of the distribution, and so is a measure of
dispersion of the bulk frequencies, excluding outliers; (ii) the
standard deviation, calculated as usual, which thus considers
the bulk and the outliers; and (iii) the gap of the distribution,
meaning the difference between the maximum and minimum
values, which thus only considers the outliers. Each of these
quantifiers is applied at each time step of the time series and
then averaged over time so we obtain FSk := 〈k({θ̇ (t )})〉, in
which k = {IQI, std, gap}. This value, averaged over 1000
samples, is shown on the left part of the panels of Fig. 9. On
the right part, we see the standard deviation of these values
across samples. We thus see, as expected, that for very small
coupling strengths ε (roughly, ε � 0.8), there is no frequency
synchronization, as all dispersion measures are high, and there
are none or very little sample-to-sample fluctuations. As the
coupling gets stronger, the instantaneous frequencies get more
synchronized. But the quantifiers start to decrease (toward
zero, meaning frequency synchronized) at different values of
ε. We see that FSI decreases first, meaning the bulk frequen-
cies start to synchronize first; then FSs decreases and later FSg

decreases, meaning the outlier units are the last to synchronize
their frequencies. For these averages across samples, there is
a weak dependence on the topology, as networks with more
shorter-range connections tend to reach frequency synchro-
nization later.

The sample-to-sample fluctuations of the frequency syn-
chronization also increase during the transition from fre-
quency desynchronization to frequency synchronization, and
peak right before the samples reach frequency synchroniza-
tion, similarly to the behavior for PS [see Fig. 3(e), for
instance]. Therefore, the frequency synchronization has a sim-
ilar phenomenology as the PS, but the latter has a stronger
dependence on the topology, which is more interesting. The
sample-to-sample fluctuations for PS are also clearer, moti-
vating our choice to focus on it.

2. Malleability due to changes on the topology

In the main text, we focus on the dynamical changes
arising from changing natural frequencies of the oscillators.
However, similar changes occur if the natural frequencies
are kept fixed and the topology is changed instead. To show
this, we study the dynamical malleability during the topology-
induced transition in WS networks. Since the WS networks
are generated by a random rewiring of connections with prob-

FIG. 10. Resampling topology has very similar effects to shuf-
fling frequencies. Analogous to Fig. 3(e), keeping the original
frequencies and initial conditions, but simulating networks generated
via the Watts-Strogatz algorithm with a different seed for the random
rewiring. Resampling topology has a similar effect to resampling the
natural frequencies by shuffling, for instance.

ability p, different realizations of the rewiring (i.e., of the
link-disorder) lead to different networks. In Fig. 10, we show
the result for 500 distinct realizations for each value of p,
and we see an increase in the dynamical malleability during
the transition to PS, very similarly to the results for shuffling
natural frequencies. These results corroborate the generality
of the increased dynamical malleability near synchronization
transitions—networks are similarly sensitive to disorder in
both parameter types, frequency and topology.

3. Boundaries of basins of attraction are smooth

As we demonstrate in Fig. 7 of the main text, the WS
networks possess a large number of coexisting attractors
(multistability) during the transition to PS. A possible
behavior would be that the boundaries separating the basins
of attraction are fractal. This would mean that arbitrarily small
changes in the basin boundaries, for fixed parameter changes,
or even arbitrarily small noise, could have a large consequence
for the network. We chose initial conditions inspired by
findings in Ref. [73], which suggested that fractal boundaries
are obtained when the initial conditions of units whose
degree differ most are changed. Even with this procedure,
we obtained a few distinct attractors, each with very distinct
degrees of PS and distinct instantaneous frequencies, and
plotted the cross section of the basins of attraction. As we
see in Fig. 11, we obtain complicated patterns, but still with
seemingly smooth basin boundaries. This is also consistent
with our results in Fig. 5(b), which show that there is a rough
minimum threshold for changes in parameters to lead to
significant changes in the network’s dynamics.

4. Scaling of malleability

How does the amplitude of dynamical malleability (i.e.,
the sample-to-sample fluctuations) depend on the size of the
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FIG. 11. Cross sections of basins of attraction for WS networks. Varied initial condition of two units, keeping all others fixed. These are
surfaces of section of the full basins. Attractors here are considered different if their R and other features of the dynamics are different, and the
same if all are equal, up to several decimal places (see discussion in Sec. III D for the features). This criterion could be extended to include
other comparison features and results would be the same. Units on the y axis have the highest degree in the network (10) and on the x axis
have the lowest degree (3). They were chosen following findings in Ref. [73], which suggested that the cross sections taken from units with
more distinct degrees tended to be fractal. Even with these choices, basins boundaries seem to be smooth. Parameters are for high malleability,
ε = 4.51282, p = 0.13111.

networks? To study this, we repeat in Fig. 12 the parameter
space shown in Fig. 4 of the main text for smaller and bigger
networks. Smaller networks have significant dynamical mal-
leability spread over a wider region of the parameter space,
which is consistent with the fact that phase transitions become
more blurred in smaller networks, meaning the transitions
occur over wider regions. As the network size increases, the
region with dynamical malleability decreases, as the transition
curves move closer to the transition in the thermodynamic
limit. This is qualitatively consistent with calculations made
in Ref. [46] for all-to-all networks. The amplitude of the
malleability is extremely large for smaller networks, and
the difference 	 between the most and least synchronized
samples for N = 25 can reach 	 = 0.99. Interestingly, this
amplitude does not decrease rapidly with network size and
remains high for even N = 5000. In this case, 	 = 0.88 was
reached in the most malleable cases. This suggests that the
dynamical malleability remains nonzero in the vicinity of the
transition (the critical line) for networks with size N → ∞, a
phenomenon called non-self-averaging. Indeed, all-to-all net-

works were suggested to be non-self-averaging in Ref. [47].
The results point out qualitative consistency in the scaling for
WS and all-to-all networks already reported in the literature,
and show that the behavior we observe here can occur for a
wide range of network sizes.

5. Malleability in simple excitable units

As an example of the generality of the phenomenon we
describe in the main text, we show here a very similar phe-
nomenology in a very different type of unit: excitable units
(cellular automata). Networks with these units have analyt-
ically proven phase transitions from a quiet to an active
network state. During these transitions, we observe malleabil-
ity, very similarly to the Kuramoto networks.

The results we show are inspired by Ref. [74], in which
the analytical argument for the phase transition is also shown.
The excitable units are inspired by neuronal dynamics, but
very simplified: the units’ states and time are discretized.
The units have two states: excited or not, and time evolves

013220-14



SHIFTS IN GLOBAL NETWORK DYNAMICS DUE TO … PHYSICAL REVIEW RESEARCH 5, 013220 (2023)

FIG. 12. Scaling of malleability with system size. For each network size N , the left panel shows the time-averaged degree of phase
synchronization averaged over 501 samples of the natural frequencies and over five samples of topology, while the left panel shows the
standard deviation over the samples, averaged over the topologies. The region of significant sample-to-sample (STS) fluctuations decreases
with network size N , but the peak of fluctuations (measured through either standard deviation of gap 	) decreases only slightly up to N = 5000,
reaching 	 = 0.9 there. The decrease in the size of the STS fluctuation region is described by Ref. [46] for all-to-all networks as scaling with
N−2/5. The scaling in the magnitude of the STS fluctuations seems to suggest the networks are non-self-averaging.

only in integer numbers. An excited unit at a time step t
becomes silent at time t + 1. To become excited, a unit has
to be excited by others. This occurs in the following way:
an excited unit has a probability p of exciting the units it
is connected to. The units are connected in a network with
randomly chosen connections—for our simulations, an Erdos-
Renyi network—of size N and average connectivity z an
undirected connections.

An initial activation state (initial condition) can evolve
toward a silent state (a fixed point) or toward an active state.
This evolution depends on the parameters—the higher the
average probability of exciting other units, the higher the
chance that activation persists in the network. The system can
be analytically shown to have a phase transition from the silent
to the active states as the average connectivity z increases—a
phase transition of onset of activity. The order parameter for
measuring the transition is, naturally, the average activation
A: it is the time average of the network average activation.
The transition occurs at a critical z value of zc = 1/p. For
finite systems, the transition is blurred (different realizations
transition at different z values) and shifted toward the right
(for higher z values).

These behaviors can clearly be seen in the simulations, as
illustrated in Fig. 13. In (a) and (b), the transition is clearly
shifted toward the right of zc = 1/p = 10. Increasing N to
N = 500 shifts the transition toward the left, closer to zc

[panels (c) and (d)]. For panels (a) and (c), we see the mal-
leability: from the topology there is already disorder on the
connections, so we can expect malleability by changing the
topology realization, which is what we indeed see. Note the

FIG. 13. Phase transition and malleability in excitable units
(a) and (c) show malleability in the mean activation of networks
of size N = 100 and N = 500, respectively. There, 500 topology
samples were simulated with the same initial conditions. As in the
main text, malleability is measured via either 	, the gap between
the maximum and minimum values of A, and with std, the standard
deviation over all values of A. In (b) and (d), we see multistability:
keeping the topology fixed and changing 500 initial conditions. We
see that increasing the system size toward the thermodynamic limit
reduces both the system’s malleability and multistability.
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large fluctuations, very similar to what is seen in the Kuramoto
networks. Besides malleability, we also see a similar profile

for multistability by keeping the topology fixed and changing
initial conditions [panels (b) and (d)].
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