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We extend the speed limit of a distance between two states evolving by different generators for quantum
systems [K. Suzuki and K. Takahashi, Phys. Rev. Res. 2, 032016(R) (2020)] to the classical stochastic processes
described by the master equation. We demonstrate that the trace distance between arbitrary evolving states is
bounded from above by using a geometrical metric. The geometrical bound reduces to the Fisher information
metric for the distance between the time-evolved state and the initial state. We compare the bound in relaxation
and annealing processes with a different type of bound known for nonequilibrium thermodynamical systems. For
dynamical processes such as annealing and pumping processes, the distance between the time-evolved state and
the instantaneous stationary state becomes a proper choice and the bound is represented by the Fisher information
metric of the stationary state. The metric is related to the counterdiabatic term defined from the time dependence
of the stationary state.
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I. INTRODUCTION

It is widely known that a certain type of inequalities on
time evolution generally holds in dynamical systems. When
the state of the system is described by a time-evolution law,
a distance measure for the time-evolved state and the initial
state is bounded from above by using a geometrical metric.
This speed-limit inequality was first studied for closed quan-
tum systems and is known as the Mandelstam-Tamm relation
[1]. From a general perspective, it was recently understood
that the speed-limit inequality holds not only for quantum
systems but also for classical stochastic systems [2,3]. The
inequality was further extended to nonequilibrium thermody-
namic processes [4]. The state distance is bounded from above
by nonequilibrium quantities such as the entropy production.
The thermodynamic speed limit is one of recent interests
on nonequilibrium thermodynamics and has been discussed
intensively. Thus, due to increasing interests on general prop-
erties of dynamical processes including quantum controls,
thermodynamical operations, computational cost, and infor-
mation processing, the speed limit has attracted renewed
attention in recent years [5].

Suppose that the state of a dynamical system is character-
ized by ρ(t ). It evolves as a function of time t according to
the time-evolution law. When the difference between the time-
evolved state and the initial state is characterized by a distance
measure D(ρ(t ), ρ(0)), we generally have an inequality

D(ρ(t ), ρ(0)) �
∫ t

0
ds v(s), (1)
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and the maximum velocity v(s) is determined from the ge-
ometrical property of the time evolution. For Schrödinger
dynamics, when the distance measure is defined by the Fubini-
Study metric, the velocity v(s) is represented by the variance
of the energy. This relation was generalized to give a similar
bound for a distance between arbitrary time-evolved states
D(ρ (1)(t ), ρ (2)(t )) [6,7].

The main aim of the present study is to understand
related formulas for classical stochastic systems systemat-
ically. We assume the Markovian dynamics and the time
evolution is described by the master equation. As we men-
tioned above, the speed-limit inequalities for classical systems
were discussed in previous studies [2–4]. Each study fo-
cused especially on the use of the Wigner function to
describe the quantum-classical correspondence [2], the for-
mal derivations of inequalities for several kinds of classical
stochastic equations [3], and the representation of the bound
by thermodynamic quantities [4]. In the present study, we
reformulate the relation from a geometrical perspective and
generalize it to a distance between arbitrary time-evolved
states.

The classical state is characterized by the probability dis-
tribution with nonnegative variables, which is contrasted to
the quantum state where each component is characterized
by a complex variable. In addition, the master equation ba-
sically describes a relaxation to the stationary state. These
properties are strongly reflected to the tightness of the
bound. We need to study the bound more closely in spe-
cific examples, which is one of our aims in the present
study.

The organization of the paper is as follows. First, in Sec. II,
we derive general inequality relations. Next, we apply the
derived inequalities to relaxation and annealing processes in
Secs. III and IV, and pumping processes in Sec. V. Finally,
we give a summary in Sec. VI.
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II. SPEED LIMITS FOR CLASSICAL
STOCHASTIC PROCESSES

A. General results

We discuss a speed-limit inequality generally written for a
distance measure D as

D(ρ (1)(t ), ρ (2)(t )) �
∫ t

0
ds v12(s), (2)

where ρ (1)(t ) and ρ (2)(t ) represent arbitrary states. The time
evolution of each state ρ (i)(t ), where i takes one or two, is
described by a continuous Markov process

ρ̇ (i)(t ) = K (i)[ρ (i)(t )], (3)

where the dot symbol denotes the time derivative. The explicit
form of K (i)[ρ] depends on the detail of the system. We
also set the initial condition ρ (1)(0) = ρ (2)(0). Then, v12(t ) in
Eq. (2) can be obtained by considering the infinitesimal time
evolution. We set D(ρ (1)(t ), ρ (2)(t )) = 0 to write

D(ρ (1)(t + dt ), ρ (2)(t + dt )) = v12(t )dt + O(dt2). (4)

v12(t ) is a nonnegative quantity and has a meaning of a state
distinguishable metric. Equation (2) is a generalization of
Eq. (1) and can be useful when we want to know the behavior
of the unknown state ρ (1)(t ) from the well-known state ρ (2)(t ).
Then, it is important to represent v12(t ) with respect to ρ (2)(t )
only.

The above formulation is applied to any quantum and
classical systems. The applications to Schrödinger dynam-
ics were discussed in Refs. [6–8]. In the present study, we
treat classical stochastic processes. The state of the system is
described by the probability distribution. We use the vector
representation

|p(t )〉 =
N∑

n=1

|n〉pn(t ) =

⎛
⎜⎜⎝

p1(t )
p2(t )

...

pN (t )

⎞
⎟⎟⎠, (5)

where N denotes the number of events. Each component
pn(t ) = 〈n|p(t )〉 (n = 1, 2, . . . , N) is a nonnegative quantity
and the normalization condition

∑N
n=1 pn(t ) = 1 is imposed.

We compare two different states |p(1)(t )〉 and |p(2)(t )〉 with
the initial condition |p(1)(0)〉 = |p(2)(0)〉. The time evolu-
tion of each state is described by the classical master
equation

| ṗ(i)(t )〉 = W (i)(t )|p(i)(t )〉 (6)

with i = 1 or 2. The offdiagonal components of the transition-
rate matrix W (i)(t ), 〈m|W (i)(t )|n〉 with m �= n, are nonnegative
and the diagonal components, 〈n|W (i)(t )|n〉, are determined
from the relation

∑N
n=1〈n|W (i)(t ) = 0.

The explicit form of v12(t ) depends on the definition of the
distance measure. When we use the trace distance

D(p(1)(t ), p(2)(t )) = 1

2

N∑
n=1

∣∣p(1)
n (t ) − p(2)

n (t )
∣∣, (7)

we obtain by using Eq. (4)

D(p(1)(t ), p(2)(t )) � 1

2

N∑
n=1

∫ t

0
ds |〈n|(W (1)(s)

− W (2)(s))|p(2)(s)〉|. (8)

We can also use the Cauchy-Schwartz inequality
∑

n anbn �√∑
n a2

n

∑
n b2

n to bound the right hand side from above as

D(p(1)(t ), p(2)(t )) � 1

2

∫ t

0
ds

×
[

N∑
n=1

p(2)
n (s)

(
〈n|(W (1)(s) − W (2)(s)

)|p(2)(s)〉
p(2)

n (s)

)2]1/2

.

(9)

This bound can also be derived by using the Bhattacharyya
angle as a distance measure. It is defined as

�(p(1)(t ), p(2)(t )) = arccos
N∑

n=1

√
p(1)

n (t )p(2)
n (t ). (10)

By using the infinitesimal time evolution, we can find that
�(p(1)(t ), p(2)(t )) is bounded from above by the quantity of
the right hand side in Eq. (9). Since we generally have the re-
lation D(p(1)(t ), p(2)(t )) � �(p(1)(t ), p(2)(t )), we can obtain
Eq. (9) as a result.

Equations (8) and (9) are the main general results of
the present study. We note that |p(2)(s)〉 on the right hand
side of these equations can be replaced by |p(1)(s)〉. We
can use the convenient choice depending on the prob-
lem. Although Eq. (9) gives a loose bound compared to
that in Eq. (8), we find in the following discussion that
the bound in Eq. (9) is used to obtain some geometrical
understanding.

To support the heuristic derivation of Eq. (8), we discuss
an explicit derivation in the following. It is also used to find
a different form of the bound. We start from the integral
representation

|p(1)(t )〉 = |p(2)(t )〉

+
∫ t

0
dsU (1)(t, s)(W (1)(s) − W (2)(s))|p(2)(s)〉,

(11)

where the time evolution operator U (1)(t, s) is defined
from the relation |p(1)(t )〉 = U (1)(t, s)|p(1)(s)〉 and
satisfies ∂tU (1)(t, s) = W (1)(t )U (1)(t, s), ∂sU (1)(t, s) =
−U (1)(t, s)W (1)(s), and U (1)(s, s) = 1. By taking the time
derivative of Eq. (11), we confirm that the equation is
consistent with Eq. (6). It is also consistent with the initial
condition |p(1)(0)〉 = |p(2)(0)〉. These properties justify
Eq. (11). We can write the trace distance as

D(p(1)(t ), p(2)(t )) = 1

2

N∑
m=1

∣∣∣∣
∫ t

0
ds 〈m|U (1)(t, s)

× (W (1)(s) − W (2)(s))|p(2)(s)〉
∣∣∣∣. (12)
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We insert
∑N

n=1 |n〉〈n| = 1 between the first line and the
second line of this equation and use the general inequality
| ∑n

∫ t
0 ds an(s)| � ∑

n

∫ t
0 ds|an(s)| to obtain

D(p(1)(t ), p(2)(t )) � 1

2

N∑
m,n=1

∫ t

0
ds |〈m|U (1)(t, s)|n〉

× 〈n|(W (1)(s) − W (2)(s))|p(2)(s)〉|.
(13)

Since 〈m|U (1)(t, s)|n〉 represents a probability, it is a nonneg-
ative quantity and satisfies

∑N
m=1〈m|U (1)(t, s)|n〉 = 1. Thus,

we obtain the bound in Eq. (8).
Using the exact relation in Eq. (12), we can obtain a differ-

ent bound [9]. We define

K (t ) =
∫ t

0
ds (W (1)(s) − W (2)(s)), (14)

and use the integration by parts as

|p(1)(t )〉 =
∣∣∣∣p(2)(t )〉 +

∫ t

0
dsU (1)(t, s)

dK (s)

ds

∣∣∣∣p(2)(s)〉

= |p(2)(t )〉 + K (t )|p(2)(t )〉 +
∫ t

0
dsU (1)(t, s)

× (W (1)(s)K (s) − K (s)W (2)(s))|p(2)(s)〉. (15)

Then, by using the same procedure as Eq. (13), we can elimi-
nate U (1) as

D(p(1)(t ), p(2)(t )) � 1

2

N∑
n=1

∣∣〈n|K (t )|p(2)(t )〉∣∣

+ 1

2

N∑
n=1

∫ t

0
ds |〈n|(W (1)(s)K (s)

− K (s)W (2)(s))|p(2)(s)〉|. (16)

This is a different representation of the bound of
D(p(1)(t ), p(2)(t )). Compared to Eq. (8), we expect that
the right hand side of Eq. (16) becomes smaller when the
transition-rate matrix is an oscillating function of time and
satisfies K (t ) = 0. Since the last term of the right hand
side in Eq. (15) takes a similar form as that in Eq. (11),
we can repeat the same calculation any number of times by
changing the definition of K (t ) to obtain different forms of the
bound.

B. Relaxation processes

The derived inequalities, Eqs. (8), (9), and (16), are ap-
plied to arbitrary sets of probability distributions, |p(1)(t )〉
and |p(2)(t )〉. The master equation basically describes a re-
laxation process. In that case, the time-evolved state is
compared to the initial state as in the standard speed-
limit analysis. By putting (p(1)(t ), p(2)(t )) = (p(0), p(t ))
and (W (1)(t ),W (2)(t )) = (0,W (t )) for the general inequality

derived in the previous subsection, we obtain

D(p(t ), p(0)) = 1

2

N∑
n=1

∣∣∣∣
∫ t

0
ds 〈n|W (s)|p(s)〉

∣∣∣∣
� 1

2

N∑
n=1

∫ t

0
ds |〈n|W (s)|p(s)〉|

� 1

2

∫ t

0
ds

√
J (s). (17)

The second line corresponds to the general relation in Eq. (8)
and the third line to Eq. (9). J (t ) represents the Fisher infor-
mation metric defined as

J (t ) =
N∑

n=1

pn(t )

(
ṗn(t )

pn(t )

)2

. (18)

The representation of the bound by the Fisher informa-
tion metric is well known as the form �(p(t ), p(0)) �
1
2

∫ t
0 ds

√
J (s). The Fisher information metric is a geometri-

cal quantity and is interpreted as the squared velocity in the
probability distribution space. The bound by the Fisher infor-
mation metric is known as the thermodynamic speed limit.
The statistical distances are defined in quantum and classical
stochastic systems and their bounds are characterized by a
Riemannian metric [10–13]. The thermodynamic speed limit
has been discussed recently in the context of the information
geometry [14,15].

It is instructive to see how the bound is dependent on t .
To treat relaxation processes, we consider the case that the
transition-rate matrix W is time independent. We write the
transition-rate matrix in the spectral representation

W =
N∑

n=1

�n|Rn〉〈Ln|. (19)

The right eigenstate |Rn〉 and the left eigenstate 〈Ln| satisfy
〈Lm|Rn〉 = δm,n and

∑N
n=1 |Rn〉〈Ln| = 1. The eigenvalue �n

takes a nonpositive value. One of them, we set it as �1,
must be equal to zero and the corresponding eigenstate |R1〉
represents the stationary state. We assume the stationary state
is unique, which implies �n < 0 for n = 2, 3, . . . , N . Then,
the solution of the master equation is written as

|p(t )〉 = |R1〉 +
N∑

n=2

cne�nt |Rn〉, (20)

where cn is determined from the initial condition. The bound
in Eq. (17) is written as

1

2

N∑
n=1

∫ t

0
ds |〈n|W |p(s)〉|

= 1

2

N∑
n=1

∫ t

0
ds

∣∣∣∣∣
N∑

m=2

cme�ms�m〈n|Rm〉
∣∣∣∣∣

� 1

2

N∑
n=1

N∑
m=2

(1 − e�mt )|cm〈n|Rm〉|. (21)
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As we expect, the largest nonzero eigenvalue basically deter-
mines the relaxation processes.

This result shows that the bound in Eq. (17) converges to
a finite value at the limit t → ∞. This property is contrasted
to the case of quantum systems where the integrand in Eq. (1)
or Eq. (2) does not vanish at t → ∞. In that case, the bound
exceeds the possible maximum value of the distance at the
limit.

C. Time-dependent stationary states

When the transition-rate matrix W (t ) is a function of t ,
we can define the instantaneous stationary solution satisfying
W (t )|pst (t )〉 = 0. When the system is operated slowly, the
system follows the instantaneous stationary solution. Then,
the mechanism of the dynamics is different from that of the re-
laxation process. We study implications from the speed-limit
inequalities.

When the system is coupled to an external reservoir char-
acterized by the inverse temperature β, the stationary state is
given by the Gibbs distribution

pst
n = e−βEn∑N

m=1 e−βEm
, (22)

where En denotes the energy of the state |n〉. Both β and En

can be time dependent.
We start the time evolution from the stationary state

|p(0)〉 = |pst (0)〉. The time derivative of the Gibbs state
|pst (t )〉 is formally written as

| ṗst (t )〉 = (
W (t ) + W cd

0 (t )
)|pst (t )〉, (23)

where

W cd
0 (t ) = |Ṙ1(t )〉〈L1| = | ṗst (t )〉

N∑
n=1

〈n|. (24)

We note that |R1(t )〉 = |pst (t )〉. As we give a generalized
discussion below, W cd

0 (t ) is interpreted as a counterdiabatic
term used in the method of shortcuts to adiabaticity [16–21].
It is introduced when we want to use the stationary state as the
solution of the master equation.

In the present setting, we can apply the bound in Eq. (17)
for D(p(t ), p(0)). By using the general formula in Eq. (8),
we can also examine the distance between the time-evolved
state and the instantaneous stationary state at each time. We
set (p(1)(t ), p(2)(t )) = (p(t ), pst (t )) to obtain

D(p(t ), pst (t )) � 1

2

N∑
n=1

∫ t

0
ds

∣∣ṗst
n (s)

∣∣
� 1

2

∫ t

0
ds

√
Jst (s), (25)

where Jst (s) represents the Fisher information metric for
|pst (s)〉. When we drive the system slowly in time, the state
|p(t )〉 is close to the instantaneous stationary state |pst (t )〉 and
Eq. (25) is used to evaluate the adiabatic error, the deviation
from the stationary state.

We note that the bound in Eq. (25) is represented by using
the stationary state only and is different from the bound in
Eq. (17) for relaxation processes. In Eq. (11), the relaxation

dynamics is reflected in the time-evolution operator U (1). It is
neglected in the course of the derivation of Eq. (25), which
becomes an origin of a loose bound as we discuss below.
Although the stationary state is used as the bound, Eq. (25)
is applicable to any state |p(t )〉.

The bound by the Fisher information metric of the station-
ary state is instructive since we can estimate the bound from
the nonequilibrium thermodynamic properties of the system.
When the system is driven slowly, the geometric thermody-
namic length is represented by the Fisher information metric
[10,11,22]. Suppose we discretize t into T time steps ti = i�t
(i = 0, 1, . . . , T ) with tT = t . The time step �t is taken so
that at each time ti, the system reaches the Gibbs state |pst (ti)〉,
Eq. (22). The Kullback-Leibler divergence between the Gibbs
distributions at ti and ti+1 is the total entropy production gen-
erated during this time step as

�σ (ti ) =
N∑

n=1

pst
n (ti ) ln

pst
n (ti )

pst
n (ti+1)

= S(pst (ti+1)) − S(pst (ti)) − β�Q(ti ), (26)

where S(p) = −∑N
n=1 pn ln pn is the Shannon entropy and

�Q(ti ) = ∑N
n=1(pst

n (ti+1) − pst
n (ti ))En(ti+1) is the heat ab-

sorbed from the environment. At the same time, by expand-
ing up to the leading order in �t , we obtain, �σ (ti) ∼
�t2Jst (ti )/2, where Jst (s) represents the Fisher information
metric for |pst (s)〉. Therefore, the total entropy production is

�σ =
T −1∑
i=0

�σ (ti ) ∼ �t

2

∫ t

0
ds Jst (s). (27)

Practically, �t is approximately the relaxation time. Thus, we
can estimate the bound of D(p(t ), pst (t )) from the entropy
production for quasistatic processes.

The bound of D(p(t ), pst (t )) is basically applicable to any
|p(t )〉 with the initial condition |p(0)〉 = |pst (0)〉. When the
initial state is not equal to the instantaneous stationary state,
it is convenient to use the quasistatic state instead of the
stationary one. The quasistatic state corresponds to the adi-
abatic state defined in closed quantum systems. We write the
transition-rate matrix as in Eq. (19). In the present case, the
eigenvalues and the eigenstates are time dependent. We use
the condition 〈Ln(t )|Ṙn(t )〉 = 0 to fix the gauge. Then, the
quasistatic state is written as

|pqs(t )〉 = |R1(t )〉 +
N∑

n=2

cne
∫ t

0 ds �n(s)|Rn(t )〉. (28)

The stationary state |pst (t )〉 is obtained as a special case by
setting cn = 0. The time evolution of the quasistatic state is
given by a similar form as Eq. (23):

| ṗqs(t )〉 = (W (t ) + W cd(t ))|pqs(t )〉. (29)

The counterdiabatic term is given by

W cd(t ) =
N∑

n=1

|Ṙn(t )〉〈Ln(t )|. (30)
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When we set (p(1)(t ), p(2)(t )) = (p(t ), pqs(t )), we obtain

D(p(t ), pqs(t )) � 1

2

N∑
n=1

∫ t

0
ds |〈n|W cd(s)|pqs(s)〉|

� 1

2

∫ t

0
ds

√
Jqs(s), (31)

where Jqs(s) represents a generalization of the Fisher infor-
mation metric

Jqs(s) =
N∑

n=1

pqs
n (s)

( 〈n|W cd(s)|pqs(s)〉
pqs

n (s)

)2

. (32)

This result is a classical counterpart of the quantum speed
limit derived in Ref. [6]. It is known that the counterdiabatic
term represents a geometrical contribution of dynamics [23].

III. DISTANCE FROM THE INITIAL STATE IN
RELAXATION AND ANNEALING PROCESSES

We discussed the bound of D(p(t ), p(0)) as in Eq. (17). It
is also bounded from above by thermodynamic quantities [4].
When we have the detailed balance condition

〈m|W |n〉 = e−β(Em−En )〈n|W |m〉, (33)

we can show

D(p(t ), p(0)) � 1

2

∫ t

0
ds

√
2σ̇ (s)A(s), (34)

where σ̇ is the entropy production rate

σ̇ = 1

2

∑
m �=n

(Wmn pn − Wnm pm) ln
Wmn pn

Wnm pm
(35)

and A is the activity

A = 1

2

∑
m �=n

(Wmn pn + Wnm pm). (36)

It is instructive to study which of Eqs. (17) and (34) gives a
tight bound. We study the simplest two-state system described
by the general form of the transition-rate matrix

W (t ) = k(t )

2

(−(1 − r(t )) 1 + r(t )
1 − r(t ) −(1 + r(t ))

)
, (37)

where k(t ) is a nonnegative function and r(t ) satisfies −1 �
r(t ) � 1. The stationary state is given by

|pst (t )〉 = 1

2

(
1 + r(t )
1 − r(t )

)
. (38)

When we consider a time-independent W , the system
shows a relaxation behavior to the stationary state. The eigen-
values of Eq. (37) are given by 0 and −k, and the nonzero
eigenvalue, −k, determines the relaxation scale. We show
numerical results in Fig. 1. As we see from the figure, the
bound in Eq. (17) can be better than that in Eq. (34), and vice
versa.

The equality condition of the Cauchy–Schwartz inequality
used in the last line of Eq. (17) is given by | ṗn(t )| ∝ pn(t ). In
panel (a) of Fig. 1, we start the time evolution from the dis-
tribution with p1 
 p2 toward the uniform distribution with

FIG. 1. Relaxation processes for two-state systems. We set
the time independent parameters for the transition-rate matrix
in Eq. (37). In each panel, we plot D(p(t ), p(0)) (black solid
line), the bound by the Fisher information metric in the right-
most side of Eq. (17) (red dashed line), and the thermodynamic
bound in the right hand side of Eq. (34) (blue dotted line). We
set the initial state (p1(0), p2(0)) = (1, 0) and the stationary state
(pst

1 , pst
2 ) = (0.5, 0.5) in panel (a), and (p1(0), p2(0)) = (0.5, 0.5)

and (pst
1 , pst

2 ) = (0.999, 0.001) in panel (b).

p1 ∼ p2. Since the relation | ṗ1| = | ṗ2| holds in the two-state
system, the equality condition can be satisfied only at large
t . Then, the bound gives a loose one at small t . On the other
hand, the initial distribution is given by the uniform one in
panel (b), and we observe a small deviation of the bound from
the distance for small t .

The thermodynamic bound in Eq. (34) depends on the
entropy production rate in Eq. (35). It becomes large when the
difference |Wmn pn − Wnm pm| for m �= n takes a large value. In
panel (b) of Fig. 1, W21/k = (1 − r)/2 takes a small value. As
a result, the thermodynamic bound gives a loose one.

We next study annealing processes. We set the instanta-
neous stationary state as Eq. (22) and start the time evolution
from |p(0)〉 = |pst (0)〉. We fix the energy levels and change
the inverse temperature β(t ) as function of time. We increase
the inverse temperature linearly in t from β(0) = 0 to β(tf ) =
βf .

The results are basically dependent on the scale k in the
transition-rate matrix. When the relaxation scale k is much
smaller than the annealing scale βf (E2 − E1)/tf , the state is
changed before the relaxation and |p(t )〉 significantly deviates
from the instantaneous stationary state |pst (t )〉. In the opposite
limit, the system quickly relaxes to the instantaneous station-
ary state and we find |p(t )〉 ∼ |pst (t )〉. As we see numerical
results in Fig. 2, the bound by the Fisher information metric
gives a tight bound at the former regime and that by the
thermodynamic quantities gives a tight bound at the latter.

Thus, we conclude that the bounds in Eqs. (17) and (34)
can be useful as different measures. The differences of their
bounds from the actual distance depend strongly on the con-
dition of the process. We note that the thermodynamic bound
in Eq. (34) is applicable only when we use the detailed balance
condition. The bound by the Fisher information metric is
applicable to any processes. It can be used when we study the
distance between |p(t )〉 and |pst (t )〉 as we discuss in the next
section. It is also known that the Fisher information metric is
related to the entropy production rate by an inequality [15].
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FIG. 2. Annealing processes for two-state systems. The instanta-
neous stationary state is given by pst

n (t ) = e−β(t )En/
∑

m e−β(t )Em and
the initial condition is |p(0)〉 = |pst (0)〉. We set the energy levels
βf (E1, E2) = (0, 20) and the protocol β(t )/βf = t/tf . See the caption
of Fig. 1 for plotted lines. (a) A nonadiabatic process with βf k = 1.
(b) An adiabatic process with βf k = 10.

IV. DISTANCE FROM THE STATIONARY STATE
IN ANNEALING PROCESSES

The speed-limit inequalities for D(p(t ), p(0)) in Eqs. (17)
and (34) are not practically useful since the bound is repre-
sented by using the time-evolved state |p(t )〉. When we study
D(p(t ), pst (t )), the bound is represented by |pst (t )〉 only and
becomes a convenient relation when we want to know the
behavior of the unknown state |p(t )〉 from the known state
|pst (t )〉. In this section, we treat annealing processes and ex-
amine the relation in Eq. (25). We note that the relation using
the thermodynamic quantities as Eq. (34) is not known in this
case.

The system takes N states and the set of energy levels
{En}n=1,2,...,N satisfies the relation E1 < E2 � E3 � · · · � EN .
We change the temperature of the reservoir from β(0) ∼ 0
to β(tf ) → ∞ monotonically as a function of t . The initial
state is given by the uniform distribution pn(0) = 1/N and we
expect pn(tf ) ∼ δn,1 at the processing time t = tf . When we
operate the system very slowly, the state at each t is close to
the Gibbs distribution in Eq. (22).

The bound of D(p(t ), pst (t )) is given by Eq. (25). The
right hand side of the first line is dependent on the mono-
tonicity of the Gibbs distribution. The ground state pst

1 (t ) is
a monotonically increasing function of t and the highest state
pst

N (t ) is a monotonically decreasing function. The other states
are dependent on each energy level. pst

n (t ) is an increasing
function when En is larger than the average value Ē (t ) =∑N

m=1 Em pst
m(t ), and decreasing when En < Ē (t ). Since Ē (t )

is a monotonically decreasing function, we have several pos-
sible patterns as shown in Fig. 3. The right hand side of the
first line in Eq. (25) is written as

1

2

N∑
n=1

∫ t

0
ds

∣∣ṗst
n (s)

∣∣ =
N∑

n=1

max
t∗
n (0�t∗

n �t )
pst

n (t∗
n ) − 1. (39)

In the simplest case E1 � Ē (t ) � E2 � E3 � EN , the bound
can be estimated by using the ground state as

1

2

N∑
n=1

∫ t

0
ds

∣∣ṗst
n (s)

∣∣ = pst
1 (t ) − pst

1 (0). (40)

FIG. 3. The instantaneous stationary distribution of Eq. (22) for
three-state systems. We use the linear protocol β(t )/βf = t/tf with
0 � t � tf . The behavior of each probability distribution is deter-
mined by the energy level. (a) We set βf (E1, E2, E3) = (0, 12, 20).
Each function is given by a monotonic function. (b) We set
βf (E1, E2, E3) = (0, 2, 20). pst

2 (t ) changes its behavior at t = t∗
2

where t∗
2 is determined from E2 = Ē (t∗

2 ).

In the other cases, we have additional positive contributions,
which gives a loose bound. This property is reasonable since
the annealing procedure works well when the ground state
energy is small enough compared to the other ones. The case
in panel (b) is interpreted as a hard problem compared to
that in panel (a). We note that this criterion is not related
to the structure of local minima presented by the quasifree
energy [24]. The structure is reflected to the detailed form
of the transition-rate matrix. The hardness of the problem
represented by the speed limit is determined by the energy
level structure.

We examine the bound in the second line of Eq. (25). It is
written as

1

2

∫ t

0
ds

√
Jst (s) = 1

2

∫ t

0
ds |β̇(s)|�E (β(s))

= 1

2

∫ β(t )

β(0)
dβ �E (β ), (41)

where �E represents the energy fluctuation

�E (β(s)) =

√√√√∑
n

E2
n pst

n (s) −
(∑

n

En pst
n (s)

)2

. (42)

The second line of Eq. (41) is obtained when β(s) is a
monotonously increasing function of s. It shows that the
bound is independent of the processing speed and is deter-
mined only by the initial and final values, which is consistent
with the fact that the bound is a geometrical quantity and is
independent on the details of the annealing procedure.

In the case of three-state systems, the transition-rate matrix
satisfying the stationary condition W (t )|pst (t )〉 = 0 with the
detailed balance condition is generally parametrized as

W =
⎛
⎝−(π2a + π3b) π1a π1b

π2a −(π1a + π3c) π2c
π3b π3c −(π1b + π2c)

⎞
⎠.

(43)
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FIG. 4. Annealing processes for three-state systems. We adopt
the energy levels and the protocols used in Fig. 3. We use the protocol
in Fig. 3(a) for the left panels, and the protocol in Fig. 3(b) for the
right panels. We generate random numbers for parameters a, b, and c
to plot 40 samples in each panel. We set atf , btf , ctf � 10 in the upper
panels with the caption “slow”, and atf , btf , ctf � 2 in the lower
panels with “fast”. In each panel, the lower thick solid line (blue)
represents Eq. (39) and the upper thick solid line (red) represents
Eq. (41). The thin solid lines (black) are plotted by solving the master
equation numerically with the transition-rate matrix in Eq. (43).

where we put πn = pst
n (t ), and the symbols a, b, and c repre-

sent nonnegative parameters.
We randomly generate the transition-rate matrix and calcu-

late the distance D(p(t ), pst (t )). The result is plotted in Fig. 4.
We see that Eq. (39) gives a tight bound for a small t while
we find a large deviation for a large t . We also see that the
fast driving with a small tf gives a tight bound compared to
the slow driving with a large tf . We note that the bounds
are independent on the choice of tf . The bound discussed in
the speed limit describes the worst case evaluation and the
distance becomes much smaller than the bound at a large t .
This is because the effect of the relaxation dynamics described
by the nonzero eigenvalues of W is completely neglected in
Eq. (25). Furthermore, each component of the state |p(t )〉 is
restricted to a nonnegative value. This is contrasted to the
quantum case where each component of the state takes a
complex value and shows an oscillating behavior as a function
of t .

V. PUMPING PROCESSES

A. General results for two-state systems

As a possible application of the derived bounds, we finally
treat pumping processes. The system is coupled to multi-
ple reservoirs and is driven periodically. When the driving
protocol satisfies a geometrical condition, especially at the
slow-driving regime, we have a nontrivial current, which
is known as the Thouless pumping [25,26]. In this system,
the state settles down to a periodic behavior after transient
evolutions at the first several periods. Since the speed-limit
inequality generally gives a loose bound at large process-

ing times, we need to devise an efficient method to treat
periodically-driven systems.

The property of the pumping processes can be understood
by using the two-state system. Before discussing the pumping
processes, we study the general properties of the two-state
system [27]. The transition-rate matrix is generally written as
Eq. (37). The solution of the master equation is written as

|p(t )〉 = 1

2

(
1 + r(t )
1 − r(t )

)
+

(
ce− ∫ t

0 ds k(s) + δ(t )
)(

1
−1

)
, (44)

where c is determined from the initial condition and δ(t ) is
obtained by solving the differential equation

δ̇(t ) = −k(t )δ(t ) − 1
2 ṙ(t ) (45)

with the initial condition δ(0) = 0. We note that δ(t ) satisfies
|δ(t )| � 1. The quasistatic state in Eq. (28) is obtained by
setting δ(t ) = 0 for Eq. (44), which shows the relation

D(p(t ), pqs(t )) = |δ(t )|. (46)

In the two-state system, the counterdiabatic term defined
generally by Eq. (30) is calculated to give

W cd(t ) = 1

2
ṙ(t )

(
1 1

−1 −1

)
. (47)

Then, we obtain the bound in the first line of Eq. (31) as

D(p(t ), pqs(t )) � 1

2

∫ t

0
ds |ṙ(s)|. (48)

This inequality is understood from the formal integral repre-
sentation of δ(t ):

δ(t ) = −1

2

∫ t

0
ds e− ∫ t

s du k(u)ṙ(s). (49)

This exact form involves an exponentially-decaying factor,
which is neglected in Eq. (48). As a result the bound is ex-
pected to give a tight bound when the parameter k(t ) takes a
small value. In the pumping processes, the situation is realized
when we operate the system rapidly.

When the system oscillates rapidly, it is expected that the
improved bound given generally in Eq. (16) gives a better
result. In the two-state case, it is given by

D(p(t ), pqs(t )) � 1

2
|r(t ) − r(0)|

+ 1

2

∫ t

0
ds k(s)|r(s) − r(0)|. (50)

B. Pump current

When the system is coupled to the left and the right reser-
voirs, the transition-rate matrix is decomposed as

W (t ) =
∑

α=L,R

(−k(α)
in (t ) k(α)

out (t )

k(α)
in (t ) −k(α)

out (t )

)
. (51)

k(α)
in and k(α)

out denote the incoming amplitude and the outgoing
amplitude from the system to the reservoir α, respectively,
when the first/second component of |p(t )〉 represents the
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probability that the state is empty/filled. Then, the current
from the system to the right reservoir is defined as

J = lim
T →∞

1

T

∫ T

0
dt

(
k(R)

out (t )p2(t ) − k(R)
in (t )p1(t )

)
. (52)

Substituting Eq. (44) to this expression, we find that the
current consists of the dynamical and the geometrical contri-
butions. The latter is given by

Jg = lim
T →∞

1

T

∫ T

0
dt k(R)(t )δ(t ), (53)

where k(R)(t ) = k(R)
out (t ) + k(R)

in (t ). It is represented by a flux
penetrating a surface in a parameter space [26,27].

When the system is driven periodically with the period T0,
δ(t ) is written as

δ(t ) = δ̃(t ) − δ̃(0)e− ∫ t
0 ds k(s), (54)

where the first term represents a periodic function satisfying
δ̃(t + T0) = δ̃(t ) and the second term describes a transient de-
caying behavior. δ̃(t ) obeys the same differential equation as
δ(t ) and the initial value δ̃(0) is obtained from

δ(T0) = δ̃(0)(1 − e− ∫ T0
0 dt k(t ) ). (55)

We can write the geometric current as

Jg = − 1

T0

∫ T0

0
dt k(R)(t )δ̃(t ). (56)

Combining Eqs. (49), (54), and (55), we obtain

δ̃(t ) = − 1

2

∫ t

0
ds e− ∫ t

s du k(u)ṙ(s)

− 1

2

e− ∫ T0
0 ds k(s)

1 − e− ∫ T0
0 ds k(s)

∫ T0

0
ds e− ∫ t

s du k(u)ṙ(s). (57)

This is upperbounded as

∣∣δ̃(t )
∣∣ � 1

2

(
1 + 1∫ T0

0 ds k(s)

) ∫ T0

0
ds |ṙ(s)|, (58)

and∣∣δ̃(t )
∣∣ � 1

2
|r(t ) − r(0)|

+ 1

2

(
1 + 1∫ T0

0 ds k(s)

) ∫ T0

0
ds |r(s) − r(0)|. (59)

The latter is obtained by using the integration by parts of
Eq. (57). By using these bounds, we can evaluate the geomet-
ric current as

|Jg| � 1

T0

∫ T0

0
dt k(R)(t )|δ̃(t )|. (60)

We show a numerical result in Fig. 5. The bound in
Eq. (58) is basically an increasing function with respect to
the frequency ω = 2π/T0. As a result the bound becomes
loose when we increase ω. On the other hand, it gives a
finite contribution at ω → 0. Since the geometric current is
known to vanish at the limit, bound 1 cannot be a good ap-
proximation to the geometric current. Concerning the second

FIG. 5. Geometric current Jg and its bounds as functions
of the frequency ω = 2π/T0. We set k(t ) = k as a constant,
r(t ) = 0.2 × [sin(ωt ) + cos(ωt )], and k(R)(t )/k = 0.5 × (1 + 0.8 ×
sin(ωt − 0.6π )). The red line (bound 1) denotes the bound (60) with
Eq. (58) and the blue line (bound 2) denotes that with Eq. (59). We
also show the trivial bound |Jg| � 1

T0

∫ T0
0 dt k(R)(t ) by the dotted line.

The dashed line Jad denotes the geometric current obtained by using
the adiabatic approximation.

bound in Eq. (59), we observe that the bound is a decreasing
function of ω. Although it gives a loose bound for small
ω, the asymptotic behavior for large ω gives a better result.
Since the function r(t ) is an oscillating function, it is not
possible for the bound to give a saturated result. We see that
the bound is several times larger than the actual value of the
current.

VI. SUMMARY AND DISCUSSIONS

We have discussed speed-limit inequalities for classical
stochastic processes described by the master equation. For
a distance between arbitrary time-evolved states, the bound
is constructed from a geometrical perspective. We find that
the bound is represented by using the Fisher information
metric and its generalization. Our main general results are
represented in Eqs. (8) and (9). By using these results, we can
obtain Eqs. (17), (25), and (31).

The distance D(p(t ), p(0)) is a useful measure when we
discuss relaxation dynamics. For thermodynamic systems
with detailed balance condition, the distance is also bounded
from above by the nonequilibrium thermodynamical quan-
tities. We compared the bound by the Fisher information
metric and that by the thermodynamic quantities in sim-
ple examples and found that no general inequality holds
between two bounds. The former can be larger or smaller
than the latter. It strongly depends on the condition of the
process.

We can also study the bound of the distance D(p(t ), pst (t ))
by using the Fisher information metric. It is useful when
we study annealing dynamics of the instantaneous stationary
state. When we change the stationary state as a function of
time, the state follows the instantaneous stationary state. We
show that the speed limit inequality gives the worst case
evaluation of the annealing processes.

Since the speed-limit inequality is universally applied to
any systems, the result often gives a loose bound. As we see
from the derivation of the inequality in Eq. (13), it is impos-
sible to realize the saturating condition in the inequality. The
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second term of the right hand side in Eq. (11) has components
with different signs, which is obstacle to the tight bound. This
is contrasted to the quantum speed limit inequality where
we can find nontrivial time evolutions keeping the saturat-
ing condition. In the present classical stochastic systems, the
state |p〉 represents a probability and each component cannot
be negative, which gives the difference from the quantum
case.

In spite of this problem, the derived speed limit for classical
stochastic systems is applied to a broad class of processes.
From a practical perspective, it is important to find a useful

bound which can be evaluated without knowing the details
of the system. Since our result is applicable to the distance
D(p(1)(t ), p(2)(t )) between arbitrary states, it is in principle
possible to find a more useful relation by choosing the states
in a proper way [8].
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