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Symmetries such as gauge invariance and anyonic symmetry play a crucial role in quantum many-body
physics. We develop a general approach to constructing gauge-invariant or anyonic-symmetric autoregressive
neural networks, including a wide range of architectures such as transformer and recurrent neural network, for
quantum lattice models. These networks can be efficiently sampled and explicitly obey gauge symmetries or
anyonic constraint. We prove that our methods can provide exact representation for the ground and excited states
of the two- and three-dimensional toric codes, and the X-cube fracton model. We variationally optimize our
symmetry-incorporated autoregressive neural networks for ground states as well as real-time dynamics for a
variety of models. We simulate the dynamics and the ground states of the quantum link model of U(1) lattice
gauge theory, obtain the phase diagram for the two-dimensional Z2 gauge theory, determine the phase transition
and the central charge of the SU(2)3 anyonic chain, and also compute the ground-state energy of the SU(2)
invariant Heisenberg spin chain. Our approach provides powerful tools for exploring condensed-matter physics,
high-energy physics, and quantum information science.
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I. INTRODUCTION

In recent years, there has been a growing interest in ma-
chine learning approaches to simulating quantum many-body
systems [1–23]. An important step in this direction is the
use of neural networks, e.g., restricted Boltzmann machines,
to represent variational wave functions. However, many neu-
ral networks do not automatically enforce the symmetries
of physical models. A considerable amount of work has
been devoted to remedy the deficiency for several classes of
global symmetries, such as translational symmetry [3], dis-
crete rotational symmetry [3], global U(1) symmetry [4], and
antisymmetry [5–7].

In addition to global symmetries, local symmetries can
be encoded through gauge invariance. The notion of gauge
invariance is crucial in quantum mechanics. In high-energy
physics, theory is required to be invariant under the action
of gauge symmetry groups [24]. Gauge invariance appears
naturally in various condensed matter physics models. For
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example, topological states of toric code and double-semion
models arise as the ground states of their gauge-invariant
Hamiltonians [25,26]. Also, novel quantum matter such as
fracton is the ground state of a Hamiltonian where the sub-
system symmetry is gauged [27]. In quantum information,
various quantum error correction codes can be viewed as
eigenstates in a certain gauge-invariant code space [28]. Aside
from gauge symmetries, anyonic symmetry is another im-
portant local constraint that arises in exotic phases of matter
[29,30] and topological quantum computation [31]. The study
of quantum lattice models with gauge or anyonic symmetries
is significant to enhance our understanding of high-energy
physics, condensed-matter physics, and quantum information
science.

Simulating quantum many-body gauge theory is exponen-
tially costly. There has been much effort to efficiently simulate
quantum lattice gauge theory with both digital and analog
quantum computers [32], but more effort is required experi-
mentally to achieve good fidelity. Two standard approaches to
simulating gauge theory classically are stochastic, integrating
an effective Lagrangian by sampling, and variational. When
simulating gauge theory, the stochastic approach naturally
obeys gauge invariance but is plagued with exponential costs
associated with the sign problem in models with finite density
of fermions or involving quantum dynamics [33]. The varia-
tional approach overcomes the difficulty by being constrained
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to an approximate variational space. Imposing gauge sym-
metries in the variational approach is particularly important
and challenging as, otherwise, lower-energy states can exist
in the gauge-violating part of a Hilbert space. Therefore,
gauge symmetries must be explicitly constrained. While the
stochastic approach has been well studied, there have been
limited attempts at using the variational approach for gauge
theory. Tensor networks can be readily applied to gauge theory
in one dimension and ongoing efforts are required to work
with challenges in higher dimensions [32,34]. A variational
approach based on gauge-equivariant networks has been in-
troduced very recently [35–37].

We develop a general approach to constructing gauge-
invariant or anyonic-symmetric (such as the fusion rule for
anyons) autoregressive neural networks (AR-NN) for quan-
tum lattice models. Autoregressive neural networks, such
as recurrent neural networks (RNN) [38,39], pixel convo-
lutional neural networks (pixelCNN) [40], and transformers
[41], have revolutionized the fields of computer vision and
language translation and generation, among many others. Au-
toregressive neural networks quantum states have recently
been introduced in quantum many-body physics [4,42,43]
and shown to be capable of representing volume law states
(as one generically needs in dynamics) with a number of
parameters that scale sublinearly [44]. A central feature of
AR-NN is their capability of exactly sampling configurations
from them. This is to be contrasted with the standard approach
of sampling configurations by doing a random walk over a
Markov chain, which is often plagued with long equilibration
times and nonergodic behaviors. We construct gauge-invariant
AR-NN for the quantum link model of U(1) lattice gauge
theory [24], ZN gauge theory, and anyonic-symmetric AR-NN
for SU(2)k anyons. We demonstrate the exact representation
of gauge-invariant AR-NN for the ground and excited states
of the two-dimensional (2D) [26] and three-dimensional (3D)
[45] toric codes, and the X-cube fracton model [46]. We
optimize our symmetry-incorporated AR-NN for the quantum
link model, the 2D toric code in a transverse field, the one-
dimensional (1D) Heisenberg chain with SU(2) symmetry,
and the SU(2)3 anyonic chain [29,30,47], to obtain ground
states accurately and extract phase diagrams and various dy-
namic properties.

II. CONSTRUCTION FOR GAUGE
OR ANYONIC SYMMETRIES

Our goal in this work is to generate autoregressive neu-
ral networks (AR-NN) which variationally represent wave
functions of quantum lattice models and explicitly obey their
gauge symmetries, i.e., given a set of gauge symmetry oper-
ators {Gi} with local support, we would like to construct a
wave function |ψ〉 such that Gi|ψ〉 = |ψ〉 for each i. To do
this, we will work within the “gauge basis” {|x〉} which is di-

agonal in the gauge 〈x|ψ〉 = 〈x|Gi|ψ〉. A sufficient condition
of gauge invariance of the wave function is to ensure that the
gauge-violating basis elements |x〉 have zero amplitude in |ψ〉.
Throughout this work, we will primarily work with gauges Gi

which are local, i.e., Gi|x〉 only affects a compact range of
sites within the vicinity of site i.

While we would typically want our AR-NN to take
as input the configuration {x1, x2, . . . , xn} and evaluate
ψ (x1, x2, . . . , xn), we will find it useful to instead evaluate
ψ (̃x) where x̃ ≡ {̃x1, x̃2, . . . , x̃n}, x̃i ≡ (xi1 , xi2 , . . . , xiv ) is a
composite particle specifying the configuration of not only
site i but also some number of nearby sites. The motivation
for working with composite particles is that a particular local
gauge constraint Gi might only depend on composite particle
x̃i (and potentially x̃i+1), making it easier to apply the gauge
constraints. Different composite particles can naturally over-
lap in physical sites and we will simply augment our gauge
constraints to require that the configurations of the composite
particles agree on the state of a physical site, i.e., basis states
of composite particles which map to disagreeing physical
states should also have zero amplitude.

AR-NN perform two functions: sampling and evaluation.
AR-NN can sample configurations x̃ from |ψ (̃x)|2. This is
done sequentially (in some predetermined order) one com-
posite particle x̃i at a time; the probability to sample x̃i is
equal to a2 (̃xi |̃x<i ) where a(̃xi |̃x<i ) is a function which returns
the conditional amplitude. Evaluation of the AR-NN gives
a value ψ (̃x) = ∏n

i=1 a(̃xi |̃x<i )eiθ (̃xi |̃x<i ) where θ (̃xi |̃x<i ) is a
function which returns the conditional phase. Both evaluation
and sampling rely on the existence of a gauge block which
takes x̃1, . . . , x̃k−1 and outputs the possible values {̃z i} of x̃k

along with their respective amplitudes a(̃z i |̃x<k ) and phases
θ (̃z i |̃x<k ), ensuring that the amplitude of any configuration
which is going to violate the gauge constraint is set to zero. To
build this gauge block, we start with an autoregressive neural
network block which returns a list of amplitudes which do not
constrain the gauge (such blocks are standard in autoregres-
sive models such as transformers and RNN); we then zero
out those partial configurations which break the gauge (on
the already established composite particles) and renormalize
the probabilities in this list [see Fig. 1(a)]. Given the gauge
block it is then straightforward to both sample and evaluate
[see Figs. 1(b) and 1(c)]. Note the probability induced by
our AR-NN is different from the probability induced by the
AR-NN with only the autoregressive neural network block
even if one projects out the gauge-breaking configurations
from the latter network.

It is worth noticing that the construction is not limited to
gauge theory, but can be generalized to wave functions with
either local or global constraints which are checked in the
same way as gauge constraints are checked. This will be help-
ful for describing constraints from certain global symmetries
or special algebraic structure, such as the SU(2) symmetry
for the Heisenberg model and the SU(2)k fusion rules for
non-Abelian anyons.

III. OPTIMIZATION ALGORITHMS

We use AR-NN to calculate both ground states and real-
time dynamic properties. In both cases, we need to optimize
our AR-NN. For ground states, an AR-NN is optimized with
respect to energy and for real-time dynamics, we optimize an
AR-NN at time step t + 2τ given a network at time t . We
describe the details of these optimizations. As these op-
timization approaches are general, we use x to denote a
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FIG. 1. Autoregressive parametrization of wave function with n composite particles. (a) Gauge block. The input {̃x1, x̃1, . . . , x̃k−1} is
processed through the autoregressive neural network block (see Appendix E for details) to output amplitude and phase parts. The amplitude part
goes through gauge checking, which removes the gauge-breaking terms. Afterwards, the square of the amplitude is normalized. (b) Evaluation
process. The evaluation process can be performed in parallel for all the input sites. Given the input {̃xk}, the gauge block simultaneously
generates amplitudes and phases for all sites. We then select the correct amplitudes and phases based on the input configuration for each site
and construct the wave function from the selected amplitudes and phases. (c) Sampling process. The sampling is done sequentially for each
site. We begin with no input and generate the amplitude and phase for the first site. The configuration of the first site is then sampled from the
square of the amplitude. Afterwards, we feed the first sample into the gauge block to obtain the second sample. This process continues until
we obtain the whole configuration.

configuration, but for the context of the paper, x should be
viewed as a composite particle configuration.

For the ground-state optimization, we stochastically min-
imize the expectation of energy for a Hamiltonian H and a
wave function |ψθ 〉 as

〈ψθ |H |ψθ 〉 ≈ 1

N

N∑
x∼|ψθ |2

Hψθ (x)

ψθ (x)
≡ 1

N

N∑
x∼|ψθ |2

Eloc(x), (1)

where N is the batch size and the gradient is given by

∂

∂θ
〈ψθ |H |ψθ 〉 ≈ 2

N

N∑
x∼|ψθ |2

�
{

Eloc(x)
∂

∂θ
ln ψ∗

θ (x)

}
. (2)

We further control the sampling variance [48] by sub-
tracting from Eloc(x) the average over the batch, Eavg ≡
1/N

∑
x∈batch Eloc(x), and define the stochastic variance re-

duced loss function as

Lg = 2

N

N∑
x∼|ψθ |2

�{[Eloc(x) − Eavg] ln ψ∗
θ (x)}, (3)

where the gradient is taken on ln ψ∗
θ using PYTORCH’s [49]

automatic differentiation.
With this loss function, we also use transfer learning

techniques [50,51]. We train our neural networks in smaller
systems and use these parameters as the initial starting points
for optimizing for larger systems (see Appendix E for details).

For the dynamics optimization, we use a stochastic version
of the logarithmic forward-backward trapezoid method [52],
which can be viewed as a higher-order generalization of IT-

SWO [53] and the logarithmic version of the loss functions
in Refs. [9,42]. We initialize two copies of the neural net-
work ψθ (t ) and ψθ (t+2τ ). At each time step, we train ψθ (t+2τ )

to match (1 + iHτ )|ψθ (t+2τ )〉 ≡ |�θ 〉 and (1 − iHτ )|ψθ (t )〉 ≡
|�〉 by minimizing the negative logarithm of the overlap,
− ln (〈�θ |�〉〈�|�θ 〉)/(〈�θ |�θ 〉〈�|�〉). [Since we only take
the gradient on θ (t + 2τ ), for simplicity, we write θ for
θ (t + 2τ ) and neglect θ (t ).] The inner products related to θ

can be evaluated stochastically as

〈�θ |�〉 ≈ 1

N

N∑
x∼|ψθ |2

�∗
θ (x)�(x)

|ψθ (x)|2 ≡ 1

N

N∑
x∼|ψθ |2

α(x), (4)

〈�θ |�θ 〉 ≈ 1

N

N∑
x∼|ψθ |2

|�θ (x)|2
|ψθ (x)|2 ≡ 1

N

N∑
x∼|ψθ |2

β(x). (5)

The gradient of the negative logarithm of the overlap can be
evaluated stochastically as

∂

∂θ

(
− ln

〈�θ |�〉〈�|�θ 〉
〈�θ |�θ 〉〈�|�〉

)

≈ 2

N

N∑
x∼|ψθ |2

�
{[

β(x)

βavg
− α(x)

αavg

]
∂

∂θ
ln �∗

θ (x)

}
, (6)

where αavg and βavg are, respectively, the average values of
α(x) and β(x) over the batch of samples. We can then define
the loss function as

Ld ≈ 2

N

N∑
x∼|ψθ |2

�
{[

β(x)

βavg
− α(x)

αavg

]
ln �∗

θ (x)

}
, (7)

013216-3



LUO, CHEN, HU, ZHAO, HUR, AND CLARK PHYSICAL REVIEW RESEARCH 5, 013216 (2023)

where the gradient is taken on ln �∗
θ using PYTORCH’s [49]

automatic differentiation.
For both optimizations, ψθ (x) is evaluated as described

in Fig. 1(a) and x is sampled from |ψθ |2 as described in
Fig. 1(b). The full derivations of the stochastic gradients for
both optimizations are in Appendix G.

In addition, we extensively use the transfer learning tech-
nique by training on small system sizes before moving on to
large system sizes. The transfer learning technique provides
a good initialization for neural networks that are trained on
large system sizes. We observe that the transfer learning tech-
nique in general significantly reduces the number of iterations
needed. The details of usage of this technique are described in
the captions of each figure. (See more details in Appendix E.)

IV. APPLICATIONS IN QUANTUM LATTICE MODELS

A. U(1) quantum link model

The quantum link model (QLM) of U(1) lattice gauge
theory in 1 + 1 dimensions in the Hamiltonian formulation
with staggered fermions [24] is defined as

HQLM = −
∑

i

[ψ†
i Ui,i+1ψi+1 + ψ

†
i+1U

†
i,i+1ψi]

+ m
∑

i

(−1)iψ
†
i ψi + g2

2

∑
i

E2
i,i+1, (8)

where m is the staggered fermion mass, g is the gauge cou-
pling, i = 1, 2, . . . labels the lattice site, ψi is the fermion
operator, Ui,i+1 is the link variable, and Ei,i+1 the electric
flux for the U(1) gauge field on link (i, i + 1) [24]. We de-
note by |qi〉 the basis state at site i, and by |ei,i+1〉 the basis
at link (i, i + 1). Each unit cell is defined to include two
sites and two links. The operators Ei,i+1 and Ui,i+1 satisfy
the following commutation relations: [Ei,i+1,Ui,i+1] = Ui,i+1,
[Ei,i+1,U †

i,i+1] = −U †
i,i+1, and [Ui,i+1,U †

i,i+1] = 2Ei,i+1. The
gauge constraint is given by the Gauss’s law operator G̃i =
ψ

†
i ψi − Ei,i+1 + Ei−1,i + 1

2 [(−1)i − 1] such that the ground
state |ψ〉 satisfies G̃i|ψ〉 = 0 for each i. The QLM has
gained growing interests and been studied in different settings
in recent years [32,34,54–56]. We focus on the (1 + 1)-
dimensional [(1 + 1)D] QLM with the S = 1

2 representation
for the link operators Ui,i+1 and Ei,i+1. Under the Jordan-
Wigner transformation, Eq. (8) becomes [57]

H = −
∑

i

[S+
i S+

i,i+1S−
i+1 + H.c.] + m

∑
i

(−1)i

(
S3

i + 1

2

)

+ g2

2

∑
i

1

4
, (9)

where S± ≡ S1 ± iS2, S1, S2, S3 are the Heisenberg matrices,
and the Gauss’s law operator becomes Gi = S3

i − S3
i,i+1 +

S3
i−1,i + 1

2 (−1)i. For the S = 1
2 representation, the last term

on the right side of Eq. (9) is constant and, hence, can be
discarded.

We define the composite particles of our gauge-invariant
AR-NN as in Fig. 2 and choose an order from left to right.
Each composite particle |σi〉 consists of a fermion |qi〉, which
can be either |•〉 or |◦〉, and a gauge field in the link |ei,i+1〉,

...

...

...

...

FIG. 2. Composite particles for the quantum link model. Each
composite particle is defined as |σi〉 ≡ |qi, ei,i+1〉. We check Gauss’s
law between |σi〉 and |σi+1〉.
which can be either |→〉 or |←〉. Note that in this case the
composite particles do not overlap. The Gauss’s law operator
Gi acts on |σi〉 and |σi+1〉 to determine allowed configurations
and so can be checked in the gauge block which generates
the composite particle at site i + 1. For example, given |σi〉 =
|• →〉, |σi+1〉 can only be |• →〉 or |◦ ←〉 if i is even, and
|◦ →〉 if i is odd.

We implement and variationally optimize this AR-NN for
the ground state of Eq. (9). Figure 3 shows the results for 6
unit cells (i.e., 12 particles) which closely match the energy
of the exact solution. More importantly, the gauge-invariant
construction guarantees that the solution is in the physical
space, while the neural network without gauge constraint (i.e.,
removing the gauge checking from the AR-NN) finds a lower
energy but nonphysical state.

We in addition compute the ground state for 40, 80, 120,
and 160 unit cells with both transformer and RNN (Fig. 4).
The average electric fields are compared with tensor network
(TN) results [58]. We find that our results (for matching sys-
tem sizes) are similar to the TN results for both transformer
and RNN. In addition, we extrapolated the ground-state en-
ergy for the 160-unit-cell model at m = 0.7 (see Fig. 18 in
Appendix A) by linearly extrapolating in variance vs en-
ergy. We find that the extrapolated ground-state energy is
−199.7923, while our lowest energy is −199.7803 ± 0.0005,
giving us a relative error of only 6 × 10−5.

We also consider the real-time dynamics for m = 0.1 and
2.0 for 6 and 12 unit cells starting with an initial product

FIG. 3. Variational ground-state optimization for the 6-unit-cell
(12 sites and 12 links) open-boundary QLM for m = 0 with and
without gauge-invariant construction. The gauge-invariant autore-
gressive neural network reaches an accurate ground state while the
Ansatz without gauge constraints arrives at a nonphysical state in
the optimization. We use the transformer neural network with 1
layer, 32 hidden dimensions, and the real-imaginary parametrization
(see Fig. 24). The neural network is randomly initialized and is
trained for 1000 iterations with 12 000 samples in each iteration. The
neural network architecture and optimization details are discussed in
Appendix E.
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FIG. 4. Variational ground-state optimization for the open-
boundary QLM of different system sizes and different m’s with
gauge-invariant construction. (a) The expectation value of the electric
fields averaged over all links, (b) energy and (inset) energy variance
per unit cell. We compare our results with the tensor network (TN)
results [dashed lines in (a)] from Ref. [58]. The transformer neural
network has 1 layer and 32 hidden dimensions, whereas the RNN has
2 layers and 40 hidden dimensions. For both neural networks, we
use the amplitude-phase parametrization (see Fig. 24). The neural
networks are randomly initialized. Then they are trained for 3000
iterations with 12 000 samples on 40 unit cells. Then, we use transfer
learning technique and train the transformer for 1000 iterations on
80 unit cells and 600 iterations on 120 unit cells. The RNN is then
trained for 1000 iterations on 80 and 120 unit cells and 600 iterations
on 160 unit cells. The neural network architecture and optimization
details are discussed in Appendix E.

state with |• → ◦ →〉 for each unit cell. Figure 5(a) shows
the conservation of energy for different Ansätzes. The total
energy is −1.2 for m = 0.1, and −24 for m = 2.0. We find
that our gauge-invariant AR-NN captures the correct electric
field oscillation and has a lower per-step infidelity compared
with the nongauge Ansatz [see Figs. 5(b) and 5(c)], and, addi-
tionally, the anticipated string inversion of the electric flux for
small mass (and respectively the static electric flux for large
mass) (see Fig. 6).

While this work focuses on the S = 1
2 representation,

our construction can be generalized to an arbitrary S
representation. For a higher spin S, composite particles can be
defined similarly (see Fig. 2) except that the degree of freedom
for each ei,i+1 increases to 2S + 1 as S increases.

B. 2D ZN gauge theory

For the 2D toric code [26], consider an L × L periodic
square lattice, where each edge has the basis {|0〉, |1〉}. Let

FIG. 5. Dynamics for the 6- and 12-unit-cell (12–24 sites and
12–24 links) open-boundary QLM for m = 0.1 and 2.0 with and
without gauge-invariant construction. The dashed curves are the ex-
act results from the exact diagonalization for 6 unit cells. (a) The
change in the energy during the dynamics. (b) The expectation value
of the electric field averaged over all links. (c) The per-step infi-
delity measure, where |�〉 and |�〉 are defined in Sec. III. We use
the transformer neural network with 1 layer, 16 hidden dimensions
for 6 unit cells, and 32 hidden dimensions for 12 unit cells, and
the real-imaginary parametrization (see Fig. 24). The initial state
is |• → ◦ →〉 for each unit cell and we train the neural network
using the forward-backward trapezoid method with the time step
τ = 0.005, 600 iterations in each time step, and 12 000 samples in
each iteration. The neural network architecture, initialization, and
optimization details are discussed in Appendix E.

V, P, E denote the sets of vertices, plaquettes, and edges of the
lattice, respectively, such that |V | = L2, |P| = L2, |E | = 2L2.
Here we consider the toric code with a transverse magnetic
field

H = HTC − h
∑
e∈E

σ z
e , (10)
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FIG. 6. Dynamics of the gauge-invariant AR-NN for the 12-
unit-cell QLM with (a) m = 0.1 and (b) m = 2.0. The Ansatz,
initialization, and optimization are the same as in Fig. 5 and are
discussed in Appendix E.

where HTC is the toric code Hamiltonian

HTC = −
∑
v∈V

Av −
∑
p∈P

Bp, (11)

Av ≡ �evσ
z
e (the star operator), Bp ≡ �epσ

x
e , and h is the

strength of the transverse field. Note that Av is the gauge
constraint such that the ground state |ψ〉 of Eqs. (A1) and (11)
satisfies Av|ψ〉 = |ψ〉 for each v.

The composite particle construction is illustrated in Fig. 7.
We order our consecutive particles by an “S” shape going up
one row and down the next [see Fig. 29(b) in Appendix E].
Two constraints must be checked in the gauge-checking
process of a gauge block.

When working on the gauge block associated with compos-
ite particle x̃v , we check that Av |̃xv〉 = |̃xv〉 (despite Av acting
on an entire state, this can be checked locally on a single
composite particle). In addition, composite particles overlap
with their four immediately adjacent composite particles. The
gauge block for the composite particle at v therefore checks
consistency of the physical sites with the first v − 1 compos-

FIG. 7. Composite particles for the 2D toric code. (a) Physical
structure of 2D toric code with red circles specifying composite
particles. Note multiple composite particles share the same physical
sites. (b) Composite particles. We define each star as a composite
particle (red circle) and check bond consistency for physical sites
shared by adjacent composite particles (blue dashed ovals).

ite particles. For example, given the configuration
∣∣1

0

0
1
〉

for

a composite particle, the composite particle to the right can
only be

∣∣1
0

0
1
〉
,
∣∣1

1

0
0
〉
,
∣∣1

0

1
0
〉

or
∣∣1

1

1
1
〉
, as the |1〉 on the right of the

left particle must also be on the left of the right particle. In
the “S” ordering, there always exist valid choices for each
composite particle. For a composite particle that is not the
last one, there is an unchosen site which provides freedom
of choices to be valid. For the last composite particle, though
all sites are fixed, the fixed configuration must be valid be-
cause the product of all the Gauss’s law constraints is 1 and
all previous Gauss’s law constraints have been satisfied to
be 1.

We begin by showing that we can analytically generate
an AR-NN for the ground state of HTC. One ground state
of Eq. (11) is |ψ〉 = �v∈V (1 + Av )|+〉⊗n where |+〉 = (|0〉 +
|1〉)/

√
2, i.e., an equal superposition of all configurations in

the gauge basis which do not violate the gauge constraint. In
our construction, if we use an autoregressive neural network
block which gives equal weight to all the configurations (this
is straightforward to arrange by setting the last linear layer’s
weight matrices to zero and bias vectors to equal amplitudes),
we exactly achieve this state. Checking the Av does not af-
fect the relative probabilities because it is not conditional
involving only one composite particle. On the other hand,
the “gauge constraints” which verify consistency of the un-
derlying state of the sites leave equal probability between
all consistent states. To see this, we examine the effect of
the gauge constraint on |a(̃xk |̃x<k )|2 for any given k, which
is the conditional probability of the composite particle x̃k .
Due to the conditioning from previous composite parti-
cles {̃x<k}, some sites of the composite particle x̃k are
fixed. For the Gauss’s law gauge constraints to be 1, the
product of all the unchosen site configurations in x̃k must
be either 1 or −1, depending on the chosen site con-
figurations. Let S1 = {b1, . . . , b j |� j

r=1br = 1} and S−1 =
{c1, . . . , c j |� j

r=1cr = −1} be the two possible sets of uncho-
sen site configurations, where br and cr are the configurations
of the unchosen sites in x̃k . Consider a function f : S1 → S−1

such that f (b1) = −c1 and f (br ) = cr otherwise. Notice that
f is bijective and thus S1 and S−1 have the same cardinality,
implying that after normalization |a(̃xk |̃x<k )|2 will have the
same amplitude for any {̃x�k}. We can also generate excited
states by changing the Av for a fixed (even) number of vertices
to constrain this local eigenvalue to be −1 instead of 1. We
provide a numerical verification of this by computing the
energy for an exactly represented tower of ground and excited
states in Fig. 8.

With a nonzero value of the external field h, the ground
state of Eq. (A1) is no longer exactly representable, and we
variationally optimize our AR-NN to compute the ground-
state energy. Figure 9 shows the minimum energy for Eq. (A1)
for different h and the energy derivative, computed using the
Hellman-Feynman theorem [59]. The toric code is expected
to exhibit a quantum phase transition between the topolog-
ical and trivial phases at an intermediate value of h, and
the sharp change of the energy derivative around h = 0.34
is an indicator of this phase transition, which is consistent
with the quantum Monte Carlo prediction of h = 0.328 474
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FIG. 8. Energies of the analytical constructions of the ground and
excited states of the 11 × 11 2D and 4 × 4 × 4 3D toric code, and the
4 × 4 × 4 X-cube fracton model. Here Nbreak is the number of Gauss’
law violations. The dashed lines are the exact values for each model.
The analytical construction generates the same values as the exact up
to stochastic errors from sampling.

in the thermodynamic limit [61]. We can additionally identify
the transition by considering the Wilson loop operator WC =
�e∈Cσ x

e for a closed loop C. It is predicted that the topological
order phase follows an area-law decay, 〈WC〉 ∼ exp(−αAC ),

FIG. 9. (a) Energy, (inset) energy variance, and (b) energy
derivative (computed by the Hellman-Feynman theorem [59] as
d〈H〉/dh = 〈dH/dh〉 = −∑

e∈E 〈σ z
e 〉) versus h. We use the 2D RNN

with 3 layers, 32 hidden dimensions, and the amplitude-phase
parametrization (see Fig. 24). We use the transfer learning technique
where we first train the neural network on a 6 × 6 model for 8000
iterations and then we transfer the neural network to the 10 × 10
model for another 1000 iterations. In each iteration, we use 12 000
samples. The neural network architecture, initialization, and opti-
mization details are discussed in Appendix E.

FIG. 10. Perimeter and area laws for the 10 × 10 2D toric code.
The expectation value of the Wilson loop operator with respect to
the (a) perimeter and (b) area of the loop in a logarithm-y scale for
h = 0.34 and 0.35. (c) The fitting of the correlation coefficient R2

for the perimeter and area laws for different h. The Ansatz, initial-
ization, and optimization are the same as in Fig. 9 and discussed in
Appendix E.

and the trivial phase follows a perimeter-law decay, 〈WC〉 ∼
exp(−βPC ), where AC, PC are the enclosed area and perime-
ter of the loop C [62]. Figure 10 shows the values of 〈Wc〉
using our variationally optimized AR-NN. By comparing the
respective fits to the area and perimeter laws we again see
the transition at h = 0.34. Finally, we compare the nonlocal
string correlation operators Sγ = �e∈γ σ z

e of our variational
states which could be viewed as a measure of the correlation
of a pair of excited particle and antiparticle along a path γ . In
the topological order phase the nonlocal string operators will
decay to zero while they will remain constant at the trivial
phase [63]. In Fig. 11, this is seen clearly on both sides of the
transition.

At h = 0.36, we additionally benchmark our results
with the infinite system size infinite projected entangled
pair states (iPEPS) results [60] and the gauge-equivariant
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FIG. 11. (a) Nonlocal string correlation function for the 10 × 10
2D toric code between a pair of particle and antiparticle with a
distance of Ly apart. (b) The correlation of a pair of particle and
antiparticle at a distance of Ly = 5

√
2 for different h. The Ansatz, ini-

tialization, and optimization are the same as in Fig. 9 and discussed
in Appendix E.

results [35] (Fig. 12). Here we use an improved Ansatz with
180◦ rotation symmetry defined by ln ψnew(x) = ln[|ψ (x)|2 +
|ψ (R(x))|2]/2, where R(x) rotates configuration x by 180◦.
We find that our results (at least up to L = 12) are lower in en-
ergy density than the gauge-equivariant results and the iPEPS
results, which indicates that our approach is very competitive
with the state-of-the-art methods.

Our approach can be naturally generalized to 2D ZN gauge
theory, which can be described in the language of Kitaev’s
D(G) model with group G = ZN (see Appendix B). In this
case, the basis at each edge becomes a group element in
ZN . Similarly to Fig. 7, one can define a composite particle
over four edges from a vertex and impose gauge invariance.
We can also extend our approach to the (1 + 1)D ZN lattice
quantum electrodynamics (QED) model, which is discussed
in Appendix C.

C. 3D toric code and fracton model

We turn to gauge-invariant AR-NN for the ground and
excited states of the 3D toric code [45] and the fracton model
[46,64]. The 3D toric code generalizes the 2D toric code to
an L × L × L periodic cube where each edge has the basis
{|0〉, |1〉}. The Hamiltonian takes the same form as the 2D
model [see Eq. (11)] except that for each Av ≡ �evσ

z
e there

are six edges e associated with each vertex v. A ground state
of the 3D toric cube similarly satisfies Av|ψ〉 = Bp|ψ〉 = |ψ〉
for each v, p. One of the degenerate ground states can also be
expressed as |ψ〉 = �v∈V (1 + Av )|+〉⊗n. The excited states

FIG. 12. (a) Energy per site and (b) variance of energy per site for
L × L toric code model with h = 0.36. We compare our results (blue
squares) with the iPEPS results of infinite system size (dashed lines)
from Ref. [60] and the gauge-equivariant neural network results from
Ref. [35]. Notice that due to the difference in the definition of h, the h
here is twice as large as in Ref. [60]. We use the 2D RNN with 3 lay-
ers, 32 hidden dimensions, and the amplitude-phase parametrization
(see Fig. 24). The neural network is randomly initialized and trained
for 8000 iterations with 12 000 samples on 6 × 6 system. Then,
we used the transfer learning technique to train the neural network
on 8 × 8 and 10 × 10 systems for another 8000 iterations and on
12 × 12 system for 4000 iterations. The neural network architecture,
initialization, and optimization details are discussed in Appendix E.

can be generated by breaking certain constraints from Av and
Bp as in the 2D case.

The X-cube fracton model [46] is also defined on an L ×
L × L periodic cube where each edge has the basis {|0〉, |1〉}.
The Hamiltonian takes the form

Hfracton = −
∑
v∈V,i

Ai
v −

∑
c∈C

Bc, (12)

where Bc ≡ �e∈cσ
z
e over the edges in a small cube. The gauge

constraint, i.e., Gauss’s law, is Bc|ψ〉 = |ψ〉. There are three
Ai

v ≡ �eivσ
x
ei for three choices of i = zy, xy, xz, depending

on which 2D plane Ai
v acts on. The operators are illustrated

in Fig. 13. A ground state of the X-cube fracton model satis-
fies Ai

v|ψ〉 = Bc|ψ〉 = |ψ〉 for each i, v, c. One of the ground
states can be expressed as |ψ〉 = �c(1 + Bc)|+〉⊗n. The

FIG. 13. Ai
v and Bc for the X-cube fracton model.
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FIG. 14. Composite particles of the 3D toric code and X-cube
fracton model. The colors are to help identify how composite par-
ticles are defined [i.e., which parts of (a) map to (b) and (c)].
(a) Physical structure of the 3D toric code and X-cube fracton model.
(b) Composite particles of the 3D toric code. We define each star as a
composite particle and check bond consistency for adjacent particles
similarly to the 2D toric code. (c) Composite particles of the X-cube
fracton model. We define each cube as a composite particle and check
bond consistency on faces of adjacent particles.

excited states break some constraints such that Ai
v|ψ〉 = −|ψ〉

or Bc|ψ〉 = −|ψ〉 for certain Ai
v, Bc.

The composite particles for the 3D toric code and the
X-cube fracton model are illustrated in Fig. 14. For the 3D
toric code, a composite particle is made up of six particles
associated with a vertex. The ground state can be constructed
by initializing the bias of the autoregressive neural network
to be all the |+〉 state and imposing gauge checking on each
composite particle to be 1. The excited states can be con-
structed by forcing even numbers of composite particles to
have gauge-checking value −1. For the X-cube fracton model,
a composite particle consists of 12 particles on each mini
cube. The ground state comes from initializing all biases of
the autoregressive neural network to be |+〉 and requiring all
composite particles to have the gauge-checking value 1. The
excited states break the gauge-checking value on sets of four
nearby composite particles to be −1. We numerically verify
the exact representations of ground and excited states of the
3D toric code and the X-cube fracton model in Fig. 8, where
the energy is shown to be exactly the same as the theoretical
predictions.

Our approach can be naturally generalized to the Haah’s
code fracton [64] and checkerboard fracton [46] models. Sim-
ilarly to 2D ZN gauge theory (see Sec. IV B), one can consider
applying gauge-invariant AR-NN to study the 3D ZN gauge
theory in the context of the 3D toric code or the X-cube fracton
model [27] with an external field.

D. SU(2)k anyonic chain and SU(2) symmetry

Non-Abelian anyons play a crucial role in universal topo-
logical quantum computation. Here we consider a chain of
Fibonacci anyons, which can be regarded as an SU(2)k=3
deformation of the ordinary quantum spin- 1

2 chain [47]. In
this model, there is one type of anyon τ and a trivial vacuum
state 1 for each site. The constraint from symmetry requires

that τ and 1 satisfy the following fusion rule: τ ⊗ τ = τ ⊕ 1,
τ ⊗ 1 = 1 ⊗ τ = τ . We work directly in this basis where
each site is either 1 or τ , generating an anyonic-symmetric
AR-NN. We then proceed to work out the entire phase dia-
gram of the Fibonacci anyons. This can be done particularly
efficiently compared with standard Monte Carlo sampling
[13] thanks to the exact sampling of the AR-NN.

Our anyonic-symmetric AR-NN is constructed so that it
obeys the anyon fusion rule directly by checking two adja-
cent input configurations and imposing zero amplitude when
both are τ . Each anyon is a composite particle and the
gauge-checking implements the constraint from the anyon
fusion rule.

We consider the Hamiltonian [30]

H (θ ) = − cos θ
∑

i

H (2)
i − sin θ

∑
i

H (3)
i , (13)

where the two-anyon interactions can be described by the
golden chain Hamiltonian [29,30]

H (2)
i = |1τ1〉〈1τ1| + φ−2|τ1τ 〉〈τ1τ | + φ−1|τττ 〉〈τττ |

+ φ−3/2(|τ1τ 〉〈τττ | + H.c.), (14)

and the three-anyon interactions can be described by the
Majumdar-Gosh chain Hamiltonian [30]

H (3)
i = |1ττ1〉〈1ττ1| + (1 − φ−2)|ττττ 〉〈ττττ |

+ (1 − φ−1)(|ττ1τ 〉〈ττ1τ | + |τ1ττ 〉〈τ1ττ |)

− φ−5/2(|τ1ττ 〉〈ττττ | + |ττ1τ 〉〈ττττ | + H.c.)

+ φ−2(|ττ1τ 〉〈τ1ττ | + H.c.), (15)

φ = (
√

5 + 1)/2 is the golden ratio.
This model is predicted to exhibit five phases with respect

to different θ [30]. Figure 15 shows the optimized energies
of the Hamiltonian in Eq. (13) for different θ and the energy
derivative computed using the Hellman-Feynman theorem
[59]. The nondifferentiable points of the energy derivative
indicate the phase transition points, which agree with the
conformal field theory prediction. In the special case of θ = 0,
the model reduces to the Fibonacci anyons in a golden chain,
which has a gapless phase [30]. Using our optimized AR-NN,
we compute the second Renyi entropy S2 [4]. Since the second
Renyi entropy S2 is related to the central charge c under
the periodic boundary condition as S2 ∼ c

4 ln(L) with system
size L [65], we then extract the central charge finding a value
c = 0.703 ± 0.005 very close to the exact result of 0.7 (see
Fig. 16).

This can be generalized to the SU(2)k formulation of anyon
theory, for which there are k + 1 species of anyons labeled
by j = 0, 1

2 , 1, . . . , k/2 with the fusion rule of SU(2)k [29].
The Hamiltonian can be expressed with operators from the
representation of the Temperley-Lieb algebra [29]. To con-
struct an anyonic-symmetric autoregressive neural network
for the general SU(2)k anyonic chain, one works in the an-
gular momentum basis {|. . . , ji−1, ji, ji+1, . . .〉} where ji ∈
{0, 1

2 , 1, . . . , k/2}. Since each ji is included as the SU(2)k
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FIG. 15. Phase diagram for 40 anyons with the periodic bound-
ary condition. (a) Energy, (inset) energy variance, and (b) energy
derivative, computed using the Hellmann-Feynman theorem [59] as
d〈H〉/dθ = 〈dH/dθ〉 = sin θ

∑
i〈H (2)

i 〉 − cos θ
∑

i〈H (3)
i 〉, versus θ .

Phase transitions occur when the energy function is not differen-
tiable. Vertical lines in orange are located at the exact phase transition
points [30]. We use the 1D RNN with 3 layers, 36 hidden dimensions,
and the real-imaginary parametrization. We use the transfer learning
technique where we first train the neural network on a 32-anyon
model for 3000 iterations and then we transfer the neural network to
the 40-anyon model for another 3000 iterations. In each iteration, we
use 12 000 samples. The neural network architecture, initialization,
and optimization details are discussed in Appendix E.

FIG. 16. The second Renyi entropy S2 versus the system size L
for the optimized AR-NN for the Fibonacci anyons in a golden chain
(θ = 0) with the periodic boundary condition. The inset shows the
variance of energy of the AR-NN. The slope of the fitted line is
the central charge c. The AR-NN is the 1D RNN with 3 layers, L
hidden dimensions, and the amplitude-phase parametrization. The
neural network is trained for 8000 iterations with a sample size of
12 000. The neural network architecture, initialization, and optimiza-
tion details are discussed in Appendix E.

fusion rule outcome of ji−1 and an extra 1
2 angular momentum,

one can view ji as a composite particle and gauge checking is
the fusion rule.

The Fibonacci anyon is a special case of the SU(2)k=3
formulation, considering the mapping τ �→ j = 1 and 1 �→
j = 0 and applying 3

2 × j = 3
2 − j from the SU(2)3 fusion

rule to the even-number sites [29]. Note that this gives a
slightly different AR-NN from what is described above. Aside
from the Fibonacci anyon, one can consider the Yang-Lee
anyon, which follows the SU(2)3 fusion rule [66].

Using this framework, one can also consider the Heisen-
berg spin chain with SU(2) symmetry since it can be
considered as the SU(2)k deformation of the ordinary quantum
spin- 1

2 chain [47] as k → ∞. In Appendix D, we provide
the detailed construction of an SU(2)-invariant autoregres-
sive neural network for the Heisenberg model, which can be
viewed as the case of SU(2)k=∞, and obtain accurate results
for the 1D Heisenberg model.

V. CONCLUSION

We have provided a general approach to constructing
gauge-invariant or anyonic-symmetric autoregressive neural
network wave functions for various quantum lattice models.
These wave functions explicitly satisfy the gauge or algebraic
constraints, allow for perfect sampling of configurations, and
are capable of explicitly returning the amplitude of a config-
uration including normalization. To accomplish this, we have
upgraded standard AR-NN in such a way that the constraints
can be autoregressively satisfied.

We have given explicit constructions of AR-NN which
exactly represent the ground and excited states of several mod-
els, including the 2D and 3D toric codes as well as the X-cube
fracton model. For those models for which exact representa-
tions are unknown, we variationally optimize our symmetry-
incorporated AR-NN to obtain either high-quality ground
states or time-dependent wave functions. This has been done
for the U(1) quantum link model, ZN gauge theory, the SU(2)3
anyonic chain, and the SU(2) quantum spin- 1

2 chain. For these
systems we are able to measure dynamical properties, produce
phase diagrams, and compute observables accurately.

Our approach opens up the possibility of probing a larger
variety of models and the physics associated with them. For
example, the higher spin representation S > 1

2 in the (1 + 1)D
QLM models would allow one to probe the quantum chromo-
dynamics related physics of confinement and string breaking
[67]. For the (3 + 1)D QLM models, there is the Coulomb
phase which manifests in pyrochlore spin liquids [68]. For
ZN gauge theory, it will be interesting to consider the general
ZN toric code with transverse field or disorder, with a goal
of understanding its phase diagram. Recently, there have been
proposals to understand the ZN X-cube fracton model with
nontrivial statistical phases [27]. For non-Abelian anyons, the
general SU(2)k formulation exhibits rich physics for different
k and one can study the corresponding topological liquids and
edge states [47]. Our approach can also be extended to study
the phase diagram for the 2D Heisenberg models with SU(2)
symmetry.

Aside from exploring various models in condensed-matter
physics and high-energy physics, our approach can also be
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further applied to quantum information and quantum com-
putation. Fibonacci anyons are known to support universal
topological quantum computation, which is robust to local
perturbations [69]. It will be interesting to see how well one
can approximately simulate topological quantum computation
or different braiding operations with anyonic-symmetric au-
toregressive neural networks. As toric codes are an important
example of quantum error correction code, our approach can
be used to approximately study the performance of a toric
code under different noise conditions. With respect to the
recent efforts on simulating lattice gauge theories with quan-
tum computation, our approach also provides an alternative
method to compare to and benchmark quantum computers.
In summary, the approach we have developed is versatile and
powerful for investigating condensed-matter physics, high-
energy physics, and quantum information science.
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APPENDIX A: ADDITIONAL RESULTS FOR QUANTUM
LINK MODEL AND TORIC CODE MODEL

In this Appendix, we present additional results. Figure 17
is a 6-unit-cell quantum link model dynamics, which we can
exactly diagonalize. We observed that the gauge-invariant
AR-NN matches the exact results up to t = 4, while the non-
gauge Ansatz quickly fails to capture the electric fields even
with the sign gradient (SG) optimizer [73] [Fig. 17(b)]. In
addition, the gauge-invariant AR-NN in general has a lower
per-step infidelity [Fig. 17(c)]. In Fig. 18, we extrapolate
the ground state energy using variance extrapolation method
for the 160 unit cell QLM. We find that our RNN produces
variational answer close the the extrapolated result whithin
�E ∼ 0.01.

In Fig. 19, we measure the local observables of the 12 × 12
toric code model. We show that even though the neural net-
work does not automatically preserve translational symmetry,
the optimization drives the neural network to a translationally

FIG. 17. Dynamics for the 6-unit-cell (12 sites and 12 links)
open-boundary QLM for m = 0.1 and 2.0 with and without gauge-
invariant construction. The dashed curves are the exact results from
the exact diagonalization for 6 unit cells. The “6-cell Gauss SG” is
the same as the “6-cell Gauss” in Fig. 5. (a) The change in the energy
during the dynamics. (b) The expectation value of the electric field
averaged over all links. (c) The per-step infidelity measure, where
|�〉 and |�〉 are defined in Sec. III. We use the transformer neural
network with 1 layer, 16 hidden dimensions, and the real-imaginary
parametrization (see Fig. 24). The initial state is |• → ◦ →〉 for
each unit cell and we train the neural network using the forward-
backward trapezoid method with the time step τ = 0.005, 600
iterations in each time step, and 12 000 samples in each iteration.
For the results labeled with SG, we used the sign gradient (SG)
optimizer [73] for 15–30 iterations (depending on the resulting fi-
delity) before switching to the regular optimizer. The neural network
architecture, initialization, and optimization details are discussed in
Appendix E.

symmetric state. In addition, the weights of RNN are trans-
lationally invariant, which, although not guaranteed, could be
potentially useful for preserving translational symmetry.
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FIG. 18. Ground-state energy extrapolation at m = 0.7 for 160
unit cells. The energies and variances are obtained from the training
output of RNN in Fig. 4. We used a linear fit for variances smaller
than 0.2 and obtained a y intercept of −199.7923. Our variational
ground-state energy is −199.7803 ± 0.0005. The Ansatz, initializa-
tion, and optimization are the same as in Fig. 4 and are discussed in
Appendix E.

Furthermore, we benchmark our method on the following
model:

H = −
∑
v∈V

Av −
∑
p∈P

Bp − h
∑
e∈E

σ z
e − jy

∑
p∈P

∏
e∈p

σ y
e , (A1)

With the additional
∑

p∈P

∏
e∈p σ

y
e , the Hamiltonian ex-

hibits a sign problem compared to the original toric model,
which would be challenging for the Monte Carlo method. We
further test our method first on small systems (3 × 3 to com-
pare against exact diagonalization) and find relative energy
differences on the order of 10−5 suggesting good agreement
(see Fig. 20). We further apply our method on a 10 × 10
lattice. Although it is not clear what to benchmark exactly
against here, we measure the energy difference from a vari-
ance extrapolated result, and find our variational answer is
close to it within �E ∼ 0.1 (see Fig. 21).

APPENDIX B: KITAEV’S D(G) MODEL AND EXACT
REPRESENTATION OF GROUND STATE

We generalize our gauge-invariant autoregressive construc-
tion for the 2D Z2 toric code. Kitaev’s D(G) model [26] is
defined on an L × L periodic square lattice where each edge
has a basis {|g〉, g ∈ G} for some group G. Here we focus on
finite groups, in particular G = ZN for ZN theory. Without
loss of generality, we attach an upward arrow for each edge
in the y direction and a right arrow for each edge in the x
direction. We employ the notation of Sec. IV B and introduce
operators Ag

v and Bhu,hd ,hl ,hr
p as in Fig. 22. The Hamiltonian

defined on H(G)⊗E is

H = −
∑
v∈V

Av −
∑
p∈P

Bp, (B1)

where Av = 1
|G|

∑
g∈G Ag

v is Gauss’s law and the gauge con-

straint, and Bp = ∑
huhr hd hl =1G

Bhu,hr ,hd ,hl
p .

Let |+〉 = 1√|G|
∑

g∈G |g〉, and |ψ〉 = �p∈PBp|+〉⊗E is the
ground state. This is because |ψ〉 is a ground state for each Av

FIG. 19. Local observables: (a) Expectation value of 〈σx〉,
(b) 〈σz〉, (c) vertex operator 〈Av〉, and (d) plaquette operator 〈Bp〉
[defined in Eq. (11)] for the 12 × 12 toric code model with h = 0.36.
The neural network is the same as in Fig. 12. The neural network
architecture, initialization, and optimization details are discussed in
Appendix E.

and Bp. It is easy to verify that Bp|ψ〉 = |ψ〉. To see Av|ψ〉 =
|ψ〉, notice that Av and Bp commute and Av|+〉⊗E = |+〉⊗E .
Similarly to the Z2 toric code, the ground state can be con-
structed using gauge-invariant autoregressive neural networks
by defining each star as a composite particle and checking
Gauss’s law and bond consistency.
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FIG. 20. (a) Relative error in energy and (b) variance of en-
ergy for 3 × 3 toric code model with an additional term described
in Eq. (A1). Here we choose h = 0.36 and run the neural net-
work for different Jy’s. We use the 2D RNN neural network with
real-imaginary parametrization. The neural network is trained using
Adam optimizer for 10 000 iterations with 12 000 samples in each
iteration. The neural network architecture, initialization, and opti-
mization details are discussed in Appendix E.

APPENDIX C: (1 + 1)D ZN LATTICE QED MODEL

Our approach in Sec. IV A can be applied to the (1 + 1)D
ZN lattice quantum electrodynamics (QED) model, which is
a discretization of the Schwinger model for the continuous-
space QED in 1+1 dimensions [74]. The (1 + 1)D ZN

model takes a similar form as the (1 + 1)D QLM, which has
fermions on sites and electric fields on links between two sites.
Let {|ei,i+1〉} for 1 � ei,i+1 � N denote the orthonormal basis
on each link (i, i + 1). The (1 + 1)D ZN gauge theory can
take the form [74]

H = −
∑

i

[ψ†
i Ui,i+1ψi+1 + ψ

†
i+1U

†
i,i+1ψi]

+ m
∑

i

(−1)iψ
†
i ψi + g2

8

∑
i

(Vi,i+1 − 1)(V †
i,i+1 − 1),

(C1)

where Ui,i+1|ei,i+1〉 = |(ei,i+1 + 1)mod N〉, and Vi,i+1|ei,i+1〉
= e−i2πm/N |ei,i+1〉 for m = ei,i+1. The Gauss’s law operator Gi

of the model can be written as

Gi = e
i2π
N [ψ†

i ψi+ 1
2 (−1)i− 1

2 ]Vi,i+1V
†

i−1,i (C2)

such that Gi|ψ〉 = |ψ〉 for each i [74].
Similarly to the (1 + 1)D QLM, one can construct the

gauge-invariant autoregressive neural network as Fig. 2 and
perform gauge checking with Gi in Eq. (C2).

FIG. 21. Ground-state energy extrapolation at h = 0.36 and
Jy = 0.3 for 10 × 10 modified toric code model. The energies and
variances are obtained from the training output. We used a lin-
ear fit for variances smaller than 0.2 and obtained a y intercept
of −213.938. Our variational ground-state energy is −213.802 ±
0.003. We use the 2D RNN neural network with real-imaginary
parametrization. The neural network is trained using the transfer
learning technical for 5000 iterations after the 3 × 3 result with
12 000 samples in each iteration. The neural network architecture,
initialization, and optimization details are discussed in Appendix E.

APPENDIX D: SU(2)-INVARIANT AUTOREGRESSIVE
NEURAL NETWORK FOR HEISENBERG MODEL

The 1D Heisenberg Model is described as

H =
∑

i

σ x
i σ x

i+1 + σ
y
i σ

y
i+1 + σ z

i σ z
i+1. (D1)

We work in the angular momentum basis {| j1, j2, j3, . . . , jn〉}
similarly to [47], instead of the spin basis, to construct an
SU(2)-invariant autoregressive wave function. Each ji is the
total angular momentum quantum number for spins from 1 to
i and jn ≡ J is the total angular momentum quantum number
for all spins. For the ground state of the Heisenberg model,
the total angular momentum is zero, so jn = 0. We define the
first composite particle as j1 and the ith composite particle
as the difference ji − ji−1. Note that this uniquely defines
a physical state. We then autoregressively enforce ji<n � 0
and jn = 0 as gauge checking, to achieve the SU(2)-invariant
property.

Figure 23 demonstrates the performance of our SU(2)-
invariant autoregressive neural network on the Heisenberg
model with SU(2) symmetry.

FIG. 22. Ag
v and Bhu,hr ,hd ,hl

p operators. Ag
v = Lg

+,uLg
+,rL

g
−,d Lg

−,l and

Bhu,hr ,hd ,hl
p = T hu−,uT hr+,rT

hd
+,d T hl

−,l , where Lg
+|z〉 = |gz〉, Lg

−|z〉 = |zg−1〉,
T h

+|z〉 = hδh,z|z〉, and T h
−|z〉 = h−1δh,z|z〉.
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FIG. 23. Relative error of variational ground-state energy for the
1D Heisenberg model with SU(2) symmetry for 22, 24, and 100
spins. We use the 1D RNN with 3 layers, L hidden dimensions,
and the real-imaginary parametrization. We train the neural network
for 5000 iterations with 12 000 samples in each iteration. The exact
solutions for 22 spins and 24 spins are computed with the exact
diagonalization, and the exact solution for 100 spins is the density
matrix renormalization group (DMRG) result in Ref. [4].

APPENDIX E: NEURAL NETWORK ARCHITECTURE

1. Complex parametrization

Wave functions are complex in general but both the trans-
former network and 1D/2D RNN are real. We use two
approaches [Fig. 24(a) (amplitude phase) and Fig. 24(b)
(real-imaginary phase)]to parametrize complex wave func-
tions from real neural networks. In both parametrizations, the
input configuration x̃, together with a default configuration x̃0,
is embedded (i.e., each state of a composite particle is mapped

FIG. 24. Two parametrizations of complex wave functions
from autoregressive neural networks. (a) The amplitude-phase
parametrization. The raw output is used as the input of both the
amplitude branch and the phase branch. (b) The real-imaginary
parametrization. The raw output is used as the input of both the
real branch and the imaginary branch, which later is converted to
the amplitude branch and the phase branch.

FIG. 25. A single-layer transformer network. The embedded in-
put is fed into the transformer and the positional encoding is added.
After a masked multihead self-attention is applied, a feed-forward
layer produces the raw output.

to a unique vector) before fed into the transformer or 1D/2D
RNN. Certain gauge blocks in an AR-NN take a default state
x̃0 as opposed to any state of the composite particles; the
embedded vector of this default state has arbitrary parameters
which are trained during optimization.

2. Transformer

The transformer used in this work (Fig. 25) is the same
as the transformer used in Ref. [8], which can be viewed
as the standard transformer encoder with masked multihead
attention from Ref. [41] but without an additional add and
norm layer. The transformer consists of a standard positional
encoding layer, which uses sinusoidal functions to encode
the positional information of the embedded input. After po-
sitional encoding, the input is fed into the standard masked
multihead attention mechanism. The mask here is crucial for
autoregressiveness, as it only allows each site to depend on
the previous sites. The output of the attention layer is then
passed through a standard feed-forward layer. The detailed
explanation of the transformer can be found in Refs. [8,41].
This transformer is essentially equivalent to the standard
PYTORCH implementation [49], but was implemented indepen-
dently because that implementation did not exist at the start of
our work.

3. RNN cells

For all RNNs in this work, we used the gated recurrent unit
(GRU) cell [38] (Fig. 26) in PYTORCH [49], which takes one
input vector xk , the hidden input hk−1, and computes

r = σ (Wxrxk + bxr + Whrhk−1 + bhr ),

z = σ (Wxzxk + bxz + Whzhk−1 + bhz ),

n = tanh[Wxnxk + bxn + r � (Whnhk−1 + bhn)],

hk = (1 − z) � n + z � hk−1,

yk = hk, (E1)

where σ is the sigmoid function and � means elementwise
product.
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FIG. 26. The GRU cell [38] on which different RNNs are
constructed. This is the same GRU cell as the PYTORCH [49]
implementation.

We then build 1D and periodic 2D RNN cells (Fig. 27)
based on the GRU cell. The 1D RNN cell computes

(yraw, hnew) = GRU cell (xk, hold), yk = yraw + xk, (E2)

whereas the periodic 2D RNN cell computes

(yraw, hraw) = GRU cell (xk, [hold1, hold2, hold3, hold4]),

[hnew1, hnew2, hnew3, hnew4] = hraw + xk,

hnew = 1
4 (hnew1 + hnew2 + hnew3 + hnew4),

yk = yraw + xk . (E3)

4. RNNs

With the RNN cells, we can build 1D and periodic 2D
RNNs.

The 1D RNN (Fig. 28) has a multilayer design and shares
the same structure as the PYTORCH [49] GRU [38]. The em-
bedded input configuration is fed into the cells one at a time
through multiple layers and produces a raw output. In our
work, the cells at different layers share the weight matrices
and bias vectors.

The periodic 2D RNN has a more complicated design to
capture the most correlations and can be viewed as a periodic
extension of the 2D RNN in Ref. [4]. In each layer, the hidden
vector h is passed around according to Fig. 29(a), where each

GRU Cell

Avg
PoolingGRU Cell

(a) (b)

FIG. 27. (a) 1D RNN cell. A ResNet (skip connection) [75] is
added between the input xk and output yk . To be noted that xk ,
yk , hold, and hnew have the same dimension. (b) 2D RNN cell with
periodic boundary condition. This cell requires four hidden inputs
holdi (i = 1, 2, 3, 4) and generates one hidden output hnew. Skip con-
nections are added for both output yk and hidden output hnew. The
average pooling reduces the hidden output to have the same dimen-
sion as each hidden input. To be noted that the dimension of xk and
yk is four times the dimension of each holdi and hnew.

FIG. 28. 1D RNN built from 1D RNN Cells. The neural network
has a multilayer design similar to PYTORCH GRU implementation
[38,49]. The weight matrices and biases are shared between different
layers.

cell receives a maximum number of four hidden vectors and
concatenates them according to Fig. 27(b). When the number
of hidden vectors received is less than four, zero vectors are
used to pad the concatenated hidden vector to the correct
length. The configuration is evaluated and sampled in a zigzag
S path [Fig. 29(b)] to ensure autoregressiveness.

Before the first layer of the periodic 2D RNN, a special
concatenation of the embedded input needs to be performed.
At each location, the concatenation layer takes the four sur-
rounding inputs (periodically) and concatenates them into a
single vector. If any (or all) of the surrounding inputs lie
later in the conditioning order in Fig. 29(b), the corresponding
input is replaced with a default input x0. For a 4 × 4 2D input
array shown in Fig. 30(a), some concatenation examples are
shown in Fig. 30(b). After the first layer, the output of a
previous layer can be directly fed into the next layer similar
to a regular RNN without any further process.

A multilayer periodic 2D RNN consists of one input con-
catenation layer and several 2D RNN layers as shown in
Fig. 31.

FIG. 29. (a) The hidden information path for 2D RNN with pe-
riodic boundary condition for a 3 × 3 system. Blue arrows show the
nonboundary information path whereas the green arrows show the
periodic boundary information path. When there are less than four
hidden inputs, zero vectors are used for padding. (b) The condition-
ing and sampling order of the 2D RNN.
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FIG. 30. 2D RNN input concatenation layer. For (a) a 3 × 3 input
array with a default input x0, (b) the concatenation layer takes the
four input vectors surrounding each site with periodic boundary con-
dition and outputs the concatenated vector of the four surrounding
vectors. x0 is used when the surrounding inputs appear later in the
conditioning order.

5. Initialization and optimization

We use different initialization techniques for different
models. For the QLM model, the initialization is done
through tomography, minimizing − ln |ψ (x)|2 for a de-
sired configuration x (|• → ◦ →〉 for each unit cell in
this case). For the 2D toric code model, we set the
weight matrix in the last linear layer to be 0 and the
bias such that the wave function for each composite
particle is

√
0.23

∣∣0
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+

√
0.11

∣∣1
1
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0
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√
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1
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+

√
0.11
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1
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√
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1
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+

√
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∣∣1
0

0
1
〉
+

√
0.11

∣∣0
1

1
0
〉
+

√
0.11

∣∣1
1

1
1
〉
, which em-

pirically produces a very low initial energy. We used a transfer
learning technique, where we first train our neural network on
a 6 × 6 model before training it on the 10 × 10 model. When
transferred to the larger system, the weight and bias in the
last linear layer is dropped and replaced with the initialization
scheme described above. In Fig. 32, we show the effect of
transfer learning on a 10 × 10 toric code model. With transfer
learning, the energy is clearly lower than the energy without
transfer learning.

For the anyon model, we set the weight matrix in the
last linear layer to be 0 and the bias to be the state of
1/

√
2|1〉 + 1/

√
2|τ 〉 for each particle. When producing

FIG. 31. The 2D RNN is built from one input concatenation layer
and multiple 2D RNN layers. The weight matrices and biases are
shared between different layers.

FIG. 32. Per-site energy with and without transfer learning dur-
ing the training process for the 10 × 10 toric code model. The first
10 iterations are not included as they are too large and outside the
range of the figure. The energy with transfer learning is clearly lower
than the energy without transfer learning.

the phase diagram, we used a transfer learning technique,
where we first train the neural network on 32 anyons with
θ = 0, π/4, π/2, 3π/4, π, 5π/4, 3π/2, 7π/4, and 2π for
3000 iterations, and then transfer the model with θ that
is closest to the desired value of θ for 40 anyons for
another 3000 iterations. Similar to the toric code case, when
transferred to the larger system, the weight and bias in the
last linear layer are dropped and replaced by the initialization
described above. In all models, except the last layer, the
weights and biases are initialized using PYTORCH’s [49]
default initialization.

For optimization, we used the Adam [76] optimizer with
an initial learning rate of 0.01. For the QLM dynamics, the
learning rate is halved at iterations 100, 200, 270, 350, and
420, for the QLM ground-state optimization; the learning
rate is halved at iterations 300, 600, 900, 1200, 1800, 2400,
3000, 4000, 5000, 6000, and 7000; and for the ground-state
optimization of other models, the learning rate is halved at
iterations 100, 500, 1000, 1800, 2500, 4000, and 6000. In
addition, for the 6-unit-cell cases and 12-unit-cell m = 0.1
case with Gauss’s law, we use the sign gradient (SG) opti-
mizer [73] for 15–30 iterations (depending on the resulting
fidelity) before switching to the regular optimizer, and for the
12-unit-cell m = 2.0 case with Gauss’s law, we modified the
loss function by adding an energy penalty term described in
Appendix F.

6. Computational complexity

In this section, we explain the computational complexity of
the neural networks used in this work. In terms of scaling, the
total cost per sweep is as follows:

(i) transformer: O(N2h3) (evaluation complexity), O(N3

h3) (sampling complexity);
(ii) RNN: O(Nh2) (computational complexity),
where h is the hidden dimension and N is the size of

the system. Note that the memory complexity is bounded
by the computational complexity. In the training process, we
used 2–4 GPUs depending on the availability of GPUs in the
cluster and never experienced any memory issue with a total
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of 64GB GPU memory. To give a sense for computational
difficulty, generating Fig. 12 takes six GPU days using Tesla
V100 GPUs.

APPENDIX F: ENERGY PENALTY

While quantum dynamics should exactly preserve the en-
ergy, as a practical matter when a variational state cannot fully
represent the exact dynamics, there can be a tension between
maximizing fidelity per step and preserving the energy. In
some cases, it may be desirable to better preserve the total
energy at some cost in fidelity per step. Toward that end,
we show one can introduce an additional term into the lost
function which acts as a penalty toward the drift in energy. We
demonstrate this for the m = 2.0 12-unit-cell QLM in Fig. 5.
The energy penalty term

Lp =
∣∣∣∣ 1

N

N∑
x∼|ψθ |2

Eloc(x) − E0

∣∣∣∣2

, (F1)

where Eloc(x) is defined in Eq. (1) and E0 is the initial energy.
This term is added to the dynamics loss function Ld [Eq. (7)]
to obtain the total loss function as

L = Ld + αLp, (F2)

with α is a hyperparameter which we choose to be 0.01. We
show in Fig. 33 this simulation with and without the energy
penalty. We find the dynamics as measured by the observables
largely stays the same (and may be better), but the drift in the
energy is significantly attenuated.

APPENDIX G: DERIVATION OF STOCHASTIC
GRADIENTS FOR VARIATIONAL
AND DYNAMICS OPTIMIZATION

In Sec. III, we presented stochastic gradients of the varia-
tional and dynamics optimizations. This section includes their
derivations. The variational optimization has been widely
used and derived many times in other works [1,4]. Here we
present the derivation for the sake of completeness:

∂〈ψθ |H |ψθ 〉
∂θ

=
〈
∂ψθ

∂θ

∣∣∣∣H
∣∣∣∣ψθ

〉
+

〈
ψθ

∣∣∣∣H
∣∣∣∣∂ψθ

∂θ

〉

= 2
∑

x

�
{

∂ψ∗
θ (x)

∂θ
Hψθ (x)

}

= 2
∑

x

�
{

1

ψ∗
θ (x)

∂ψ∗
θ (x)

∂θ
ψ∗

θ (x)Hψθ (x)

}

= 2
∑

x

�
{
ψ∗

θ (x)Hψθ (x)
∂

∂θ
ln ψ∗

θ (x)

}

≈ 2

N

N∑
x∼|ψθ |2

�
{

Hψθ (x)

ψθ (x)

∂

∂θ
ln ψ∗

θ (x)

}

≡ 2

N

N∑
x∼|ψθ |2

�
{

Eloc(x)
∂

∂θ
ln ψ∗

θ (x)

}
, (G1)

where the local energy is Eloc(x) ≡ Hψθ (x)/ψθ (x). We can
further control the variance by subtracting from the Eloc(x)

FIG. 33. Dynamics for the 6- and 12-unit-cell (12–24 sites and
12–24 links) open-boundary QLM for m = 2.0 with and without
energy penalty. The dashed curves are the exact results from the
exact diagonalization for 6 unit cells. The “12-cell Gauss EP” is
the same as the “12-cell Gauss” in Fig. 5. (a) The change in the
energy during the dynamics. (b) The expectation value of the electric
field averaged over all links. (c) The per-step infidelity measure,
where |�〉 and |�〉 are defined in Sec. III. We use the transformer
neural network with 1 layer, 16 hidden dimensions for 6 unit cells,
and 32 hidden dimensions for 12 unit cells, and the real-imaginary
parametrization (see Fig. 24). The initial state is |• → ◦ →〉 for each
unit cell and we train the neural network using the forward-backward
trapezoid method with the time step τ = 0.005, 600 iterations in each
time step, and 12 000 samples in each iteration. The neural network
architecture, initialization, and optimization details are discussed in
Appendix E.

the average energy Eavg ≡ ∑N
x∼|ψθ |2 Eloc(x)/N over the batch

of samples [48] as we did in Sec. III and use the stochastic
variance reduced gradient as

2

N

N∑
x∼|ψθ |2

�
{

[Eloc(x) − Eavg]
∂

∂θ
ln ψ∗

θ (x)

}
, (G2)

which has the same expectation as Eq. (G1).
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For the dynamics optimization gradient, as in Sec. III, we define |�θ 〉 = (1 + iHτ )|ψθ (t+2τ )〉 and |�〉 = (1 − i
Hτ )|ψθ (t )〉, and we drop θ (t ) and name θ ≡ θ (t + 2τ ). We start by splitting the negative logarithm overlap:

− ln
〈�θ |�〉〈�|�θ 〉
〈�θ |�θ 〉〈�|�〉 = − ln〈�θ |�〉 − ln〈�|�θ 〉 + ln〈�θ |�θ 〉 + ln〈�|�〉. (G3)

We then compute the gradient term by term. The first term on the right side of Eq. (G3) becomes

∂
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where α(x) = �∗
θ (x)�(x)/|ψθ (x)|2 and αavg = ∑N

x∼|ψθ |2 α(x)/N as in Sec. III. The second term on the right side of Eq. (G3) is
just the complex conjugate of the first term, whereby
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The third term on the right side of Eq. (G3) becomes
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where β(x) = |�θ (x)|2/|ψθ (x)|2 and βavg = ∑N
x∼|ψθ |2 β(x)/N as in Sec. III. The last term on the right side of Eq. (G3) is θ

independent such that

∂

∂θ
ln〈�|�〉 = 0. (G7)

Combining all the terms together,

∂

∂θ

(
− ln

〈�θ |�〉〈�|�θ 〉
〈�θ |�θ 〉〈�|�〉

)
≈ 2

N

N∑
x∼|ψθ |2

�
{[

β(x)

βavg
− α(x)

αavg

]
∂

∂θ
ln �∗

θ (x)

}
. (G8)

[1] G. Carleo and M. Troyer, Solving the quantum many-body
problem with artificial neural networks, Science 355, 602
(2017).

[2] X. Han and S. A. Hartnoll, Deep Quantum Geometry of Matri-
ces, Phys. Rev. X 10, 011069 (2020).

[3] K. Choo, T. Neupert, and G. Carleo, Two-dimensional frus-
trated j1 − j2 model studied with neural network quantum states,
Phys. Rev. B 100, 125124 (2019).

[4] M. Hibat-Allah, M. Ganahl, L. E. Hayward, R. G. Melko, and
J. Carrasquilla, Recurrent neural network wave functions, Phys.
Rev. Res. 2, 023358 (2020).

[5] D. Luo and B. K. Clark, Backflow Transformations via Neu-
ral Networks for Quantum Many-Body Wave Functions, Phys.
Rev. Lett. 122, 226401 (2019).

[6] J. Hermann, Z. Schätzle, and F. Noé, Deep neural network
solution of the electronic schrödinger equation, Nat. Chem. 12,
891 (2020).

[7] D. Pfau, J. S. Spencer, A. G. D. G. Matthews, and W. M. C.
Foulkes, Ab initio solution of the many-electron Schrödinger
equation with deep neural networks, Phys. Rev. Res. 2, 033429
(2020).

[8] J. Carrasquilla, D. Luo, F. Pérez, A. Milsted, B. K. Clark,
M. Volkovs, and L. Aolita, Probabilistic simulation of quan-
tum circuits with the transformer, Phys. Rev. A 104, 032610
(2021).

[9] I. L. Gutiérrez and C. B. Mendl, Real time evolu-
tion with neural-network quantum states, Quantum 6, 627
(2022).

[10] S. Lu, X. Gao, and L.-M. Duan, Efficient representation of topo-
logically ordered states with restricted Boltzmann machines,
Phys. Rev. B 99, 155136 (2019).

[11] X. Gao and L.-M. Duan, Efficient representation of quantum
many-body states with deep neural networks, Nat. Commun. 8,
662 (2017).

013216-18

https://doi.org/10.1126/science.aag2302
https://doi.org/10.1103/PhysRevX.10.011069
https://doi.org/10.1103/PhysRevB.100.125124
https://doi.org/10.1103/PhysRevResearch.2.023358
https://doi.org/10.1103/PhysRevLett.122.226401
https://doi.org/10.1038/s41557-020-0544-y
https://doi.org/10.1103/PhysRevResearch.2.033429
https://doi.org/10.1103/PhysRevA.104.032610
https://doi.org/10.22331/q-2022-01-20-627
https://doi.org/10.1103/PhysRevB.99.155136
https://doi.org/10.1038/s41467-017-00705-2


GAUGE-INVARIANT AND ANYONIC-SYMMETRIC … PHYSICAL REVIEW RESEARCH 5, 013216 (2023)

[12] I. Glasser, N. Pancotti, M. August, I. D. Rodriguez, and
J. I. Cirac, Neural-Network Quantum States, String-Bond
States, and Chiral Topological States, Phys. Rev. X 8, 011006
(2018).

[13] T. Vieijra, C. Casert, J. Nys, W. De Neve, J. Haegeman, J.
Ryckebusch, and F. Verstraete, Restricted Boltzmann Machines
for Quantum States with Non-Abelian or Anyonic Symmetries,
Phys. Rev. Lett. 124, 097201 (2020).

[14] Y. Nomura, A. S. Darmawan, Y. Yamaji, and M. Imada,
Restricted Boltzmann machine learning for solving strongly
correlated quantum systems, Phys. Rev. B 96, 205152
(2017).

[15] M. Schmitt and M. Heyl, Quantum Many-Body Dynamics in
Two Dimensions with Artificial Neural Networks, Phys. Rev.
Lett. 125, 100503 (2020).

[16] J. Stokes, J. R. Moreno, E. A. Pnevmatikakis, and G. Carleo,
Phases of two-dimensional spinless lattice fermions with first-
quantized deep neural-network quantum states, Phys. Rev. B
102, 205122 (2020).

[17] F. Vicentini, A. Biella, N. Regnault, and C. Ciuti, Variational
Neural-Network Ansatz for Steady States in Open Quantum
Systems, Phys. Rev. Lett. 122, 250503 (2019).

[18] G. Torlai, G. Mazzola, J. Carrasquilla, M. Troyer, R. Melko,
and G. Carleo, Neural-network quantum state tomography,
Nat. Phys. 14, 447 (2018).

[19] K. A. Nicoli, S. Nakajima, N. Strodthoff, W. Samek, K.-R.
Müller, and P. Kessel, Asymptotically unbiased estimation of
physical observables with neural samplers, Phys. Rev. E 101,
023304 (2020).

[20] K. A. Nicoli, C. J. Anders, L. Funcke, T. Hartung, K. Jansen,
P. Kessel, S. Nakajima, and P. Stornati, Estimation of Ther-
modynamic Observables in Lattice Field Theories with Deep
Generative Models, Phys. Rev. Lett. 126, 032001 (2021).

[21] N. Yoshioka and R. Hamazaki, Constructing neural stationary
states for open quantum many-body systems, Phys. Rev. B 99,
214306 (2019).

[22] M. J. Hartmann and G. Carleo, Neural-Network Approach to
Dissipative Quantum Many-Body Dynamics, Phys. Rev. Lett.
122, 250502 (2019).

[23] A. Nagy and V. Savona, Variational Quantum Monte Carlo
Method with a Neural-Network Ansatz for Open Quantum Sys-
tems, Phys. Rev. Lett. 122, 250501 (2019).

[24] J. Kogut and L. Susskind, Hamiltonian formulation of wilson’s
lattice gauge theories, Phys. Rev. D 11, 395 (1975).

[25] M. A. Levin and X.-G. Wen, String-net condensation: A physi-
cal mechanism for topological phases, Phys. Rev. B 71, 045110
(2005).

[26] A. Kitaev, Fault-tolerant quantum computation by anyons,
Ann. Phys. 303, 2 (2003).

[27] W. Shirley, K. Slagle, and X. Chen, Foliated fracton order from
gauging subsystem symmetries, SciPost Phys. 6, 041 (2019).

[28] S. X. Cui, D. Ding, X. Han, G. Penington, D. Ranard, B. C.
Rayhaun, and Z. Shangnan, Kitaev’s quantum double model as
an error correcting code, Quantum 4, 331 (2020).

[29] A. Feiguin, S. Trebst, A. W. W. Ludwig, M. Troyer, A. Kitaev,
Z. Wang, and M. H. Freedman, Interacting Anyons in Topolog-
ical Quantum Liquids: The Golden Chain, Phys. Rev. Lett. 98,
160409 (2007).

[30] S. Trebst, E. Ardonne, A. Feiguin, D. A. Huse, A. W. W.
Ludwig, and M. Troyer, Collective States of Interact-

ing Fibonacci Anyons, Phys. Rev. Lett. 101, 050401
(2008).

[31] B. Field and T. Simula, Introduction to topological quantum
computation with non-abelian anyons, Quantum Sci. Technol.
3, 045004 (2018).

[32] M. C. Bañuls, R. Blatt, J. Catani, A. Celi, J. I. Cirac, M.
Dalmonte, L. Fallani, K. Jansen, M. Lewenstein, S. Montangero
et al., Simulating lattice gauge theories within quantum tech-
nologies, Eur. Phys. J. D 74, 165 (2020).

[33] C. Rebbi, Lattice Gauge Theories and Monte Carlo Simulations
(World Scientific, Singapore, 1983).

[34] G. Magnifico, T. Felser, P. Silvi, and S. Montangero, Lat-
tice quantum electrodynamics in (3+1)-dimensions at finite
density with tensor networks, Nat. Commun. 12, 3600
(2021).

[35] D. Luo, G. Carleo, B. K. Clark, and J. Stokes, Gauge Equiv-
ariant Neural Networks for Quantum Lattice Gauge Theories,
Phys. Rev. Lett. 127, 276402 (2021).

[36] G. Kanwar, M. S. Albergo, D. Boyda, K. Cranmer, D. C.
Hackett, S. Racanière, D. J. Rezende, and P. E. Shanahan,
Equivariant Flow-Based Sampling for Lattice Gauge Theory,
Phys. Rev. Lett. 125, 121601 (2020).

[37] D. Boyda, G. Kanwar, S. Racanière, D. J. Rezende, M. S.
Albergo, K. Cranmer, D. C. Hackett, and P. E. Shanahan, Sam-
pling using su(n) gauge equivariant flows, Phys. Rev. D 103,
074504 (2021).

[38] K. Cho, B. van Merriënboer, C. Gulcehre, D. Bahdanau, F.
Bougares, H. Schwenk, and Y. Bengio, Learning phrase repre-
sentations using RNN encoder–decoder for statistical machine
translation, in Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP) (Asso-
ciation for Computational Linguistics, Doha, Qatar, 2014),
pp. 1724–1734.

[39] S. Hochreiter and J. Schmidhuber, Long short-term memory,
Neural Comput. 9, 1735 (1997).

[40] A. Van den Oord, N. Kalchbrenner, L. Espeholt, O. Vinyals, A.
Graves et al., Conditional image generation with pixelcnn de-
coders, in Advances in Neural Information Processing Systems
(MIT Press, Cambridge, MA, 2016), pp. 4790–4798.

[41] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, Attention is all you need,
Adv. Neural Inf. Process. Syst. 30, 5998 (2017).

[42] D. Luo, Z. Chen, J. Carrasquilla, and B. K. Clark, Autoregres-
sive neural network for simulating open quantum systems via a
probabilistic formulation, arXiv:2009.05580.

[43] O. Sharir, Y. Levine, N. Wies, G. Carleo, and A. Shashua, Deep
Autoregressive Models for the Efficient Variational Simulation
of Many-Body Quantum Systems, Phys. Rev. Lett. 124, 020503
(2020).

[44] Y. Levine, O. Sharir, N. Cohen, and A. Shashua, Quantum
Entanglement in Deep Learning Architectures, Phys. Rev. Lett.
122, 065301 (2019).

[45] A. Hamma, P. Zanardi, and X.-G. Wen, String and membrane
condensation on three-dimensional lattices, Phys. Rev. B 72,
035307 (2005).

[46] S. Vijay, J. Haah, and L. Fu, Fracton topological order, general-
ized lattice gauge theory, and duality, Phys. Rev. B 94, 235157
(2016).

[47] C. Gils, E. Ardonne, S. Trebst, A. W. W. Ludwig, M. Troyer,
and Z. Wang, Collective States of Interacting Anyons, Edge

013216-19

https://doi.org/10.1103/PhysRevX.8.011006
https://doi.org/10.1103/PhysRevLett.124.097201
https://doi.org/10.1103/PhysRevB.96.205152
https://doi.org/10.1103/PhysRevLett.125.100503
https://doi.org/10.1103/PhysRevB.102.205122
https://doi.org/10.1103/PhysRevLett.122.250503
https://doi.org/10.1038/s41567-018-0048-5
https://doi.org/10.1103/PhysRevE.101.023304
https://doi.org/10.1103/PhysRevLett.126.032001
https://doi.org/10.1103/PhysRevB.99.214306
https://doi.org/10.1103/PhysRevLett.122.250502
https://doi.org/10.1103/PhysRevLett.122.250501
https://doi.org/10.1103/PhysRevD.11.395
https://doi.org/10.1103/PhysRevB.71.045110
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.21468/SciPostPhys.6.4.041
https://doi.org/10.22331/q-2020-09-24-331
https://doi.org/10.1103/PhysRevLett.98.160409
https://doi.org/10.1103/PhysRevLett.101.050401
https://doi.org/10.1088/2058-9565/aacad2
https://doi.org/10.1140/epjd/e2020-100571-8
https://doi.org/10.1038/s41467-021-23646-3
https://doi.org/10.1103/PhysRevLett.127.276402
https://doi.org/10.1103/PhysRevLett.125.121601
https://doi.org/10.1103/PhysRevD.103.074504
https://doi.org/10.1162/neco.1997.9.8.1735
http://arxiv.org/abs/arXiv:2009.05580
https://doi.org/10.1103/PhysRevLett.124.020503
https://doi.org/10.1103/PhysRevLett.122.065301
https://doi.org/10.1103/PhysRevB.72.035307
https://doi.org/10.1103/PhysRevB.94.235157


LUO, CHEN, HU, ZHAO, HUR, AND CLARK PHYSICAL REVIEW RESEARCH 5, 013216 (2023)

States, and the Nucleation of Topological Liquids, Phys. Rev.
Lett. 103, 070401 (2009).

[48] E. Greensmith, P. L. Bartlett, and J. Baxter, Variance reduction
techniques for gradient estimates in reinforcement learning,
J. Mach. Learn. Res. 5, 1471 (2004).

[49] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G.
Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al.,
Pytorch: An imperative style, high-performance deep learning
library, in Advances in Neural Information Processing Systems
(MIT Press, Cambridge, MA, 2019), pp. 8026–8037.

[50] C. Roth, Iterative retraining of quantum spin models using
recurrent neural networks, arXiv:2003.06228.

[51] K. Sprague, J. F. Carrasquilla, S. Whitelam, and I. Tamblyn,
Watch and learn–a generalized approach for transferrable learn-
ing in deep neural networks via physical principles, Mach.
Learn.: Sci. Technol. 2, 02LT02 (2020).

[52] A. Iserles, Euler’s method and beyond, A First Course in the
Numerical Analysis of Differential Equations, Cambridge Texts
in Applied Mathematics, 2nd ed. (Cambridge University Press,
Cambridge, 2008), pp. 8–13.

[53] D. Kochkov and B. K. Clark, Variational optimization in the AI
era: Computational graph states and supervised wave-function
optimization, arXiv:1811.12423.

[54] Y.-P. Huang, D. Banerjee, and M. Heyl, Dynamical Quantum
Phase Transitions in U(1) Quantum Link Models, Phys. Rev.
Lett. 122, 250401 (2019).

[55] P. Karpov, R. Verdel, Y. P. Huang, M. Schmitt, and M. Heyl,
Disorder-Free Localization in an Interacting 2D Lattice Gauge
Theory, Phys. Rev. Lett. 126, 130401 (2021).

[56] R. Verdel, M. Schmitt, Y.-P. Huang, P. Karpov, and M. Heyl,
Variational classical networks for dynamics in interacting quan-
tum matter, Phys. Rev. B 103, 165103 (2021).

[57] D. Luo, J. Shen, M. Highman, B. K. Clark, B. DeMarco, A. X.
El-Khadra, and B. Gadway, Framework for simulating gauge
theories with dipolar spin systems, Phys. Rev. A 102, 032617
(2020).

[58] E. Rico, T. Pichler, M. Dalmonte, P. Zoller, and S. Montangero,
Tensor Networks for Lattice Gauge Theories and Atomic Quan-
tum Simulation, Phys. Rev. Lett. 112, 201601 (2014).

[59] R. P. Feynman, Forces in molecules, Phys. Rev. 56, 340
(1939).

[60] S. P. G. Crone and P. Corboz, Detecting a Z2 topologically
ordered phase from unbiased infinite projected entangled-pair
state simulations, Phys. Rev. B 101, 115143 (2020).

[61] F. Wu, Y. Deng, and N. Prokof’ev, Phase diagram of the toric
code model in a parallel magnetic field, Phys. Rev. B 85, 195104
(2012).

[62] K. Gregor, D. A. Huse, R. Moessner, and S. L. Sondhi, Diag-
nosing deconfinement and topological order, New J. Phys. 13,
025009 (2011).

[63] M. H. Zarei, Ising order parameter and topological phase transi-
tions: Toric code in a uniform magnetic field, Phys. Rev. B 100,
125159 (2019).

[64] J. Haah, Local stabilizer codes in three dimensions without
string logical operators, Phys. Rev. A 83, 042330 (2011).

[65] A. Bazavov, Y. Meurice, S.-W. Tsai, J. Unmuth-Yockey, L.-P.
Yang, and J. Zhang, Estimating the central charge from the
Rényi entanglement entropy, Phys. Rev. D 96, 034514 (2017).

[66] E. Ardonne, J. Gukelberger, A. W. W. Ludwig, S. Trebst, and M.
Troyer, Microscopic models of interacting Yang–Lee anyons,
New J. Phys. 13, 045006 (2011).

[67] D. Banerjee, M. Dalmonte, M. Müller, E. Rico, P. Stebler, U.-J.
Wiese, and P. Zoller, Atomic Quantum Simulation of Dynam-
ical Gauge Fields Coupled to Fermionic Matter: From String
Breaking to Evolution after a Quench, Phys. Rev. Lett. 109,
175302 (2012).

[68] U. Wiese, Ultracold quantum gases and lattice systems: Quan-
tum simulation of lattice gauge theories, Ann. Phys. 525, 777
(2013).

[69] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das
Sarma, Non-Abelian anyons and topological quantum compu-
tation, Rev. Mod. Phys. 80, 1083 (2008).

[70] http://iaifi.org/
[71] V. Kindratenko, D. Mu, Y. Zhan, J. Maloney, S. H. Hashemi,

B. Rabe, K. Xu, R. Campbell, J. Peng, and W. Gropp, Hal:
Computer system for scalable deep learning, in Practice and
Experience in Advanced Research Computing, PEARC ’20
(Association for Computing Machinery, New York, 2020),
pp. 41–48.

[72] A. Reuther, J. Kepner, C. Byun, S. Samsi, W. Arcand, D. Bestor,
B. Bergeron, V. Gadepally, M. Houle, M. Hubbell, M. Jones,
A. Klein, L. Milechin, J. Mullen, A. Prout, A. Rosa, C. Yee,
and P. Michaleas, Interactive supercomputing on 40,000 cores
for machine learning and data analysis, in 2018 IEEE High
Performance extreme Computing Conference (HPEC) (IEEE,
Piscataway, NJ, 2018), pp. 1–6.

[73] L. Otis and E. Neuscamman, Complementary first and second
derivative methods for ansatz optimization in variational Monte
Carlo, Phys. Chem. Chem. Phys. 21, 14491 (2019).

[74] S. Notarnicola, E. Ercolessi, P. Facchi, G. Marmo, S. Pascazio,
and F. V. Pepe, Discrete abelian gauge theories for quantum
simulations of QED, J. Phys. A: Math. Theor. 48, 30FT01
(2015).

[75] K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning
for image recognition, in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (IEEE, Piscatawy,
NJ, 2016), pp. 770–778.

[76] D. Kingma and J. Ba, Adam: A method for stochastic optimiza-
tion, International Conference on Learning Representations,
2014 (unpublished).

013216-20

https://doi.org/10.1103/PhysRevLett.103.070401
https://www.jmlr.org/papers/volume5/greensmith04a/greensmith04a.pdf
http://arxiv.org/abs/arXiv:2003.06228
https://doi.org/10.1088/2632-2153/abc81b
http://arxiv.org/abs/arXiv:1811.12423
https://doi.org/10.1103/PhysRevLett.122.250401
https://doi.org/10.1103/PhysRevLett.126.130401
https://doi.org/10.1103/PhysRevB.103.165103
https://doi.org/10.1103/PhysRevA.102.032617
https://doi.org/10.1103/PhysRevLett.112.201601
https://doi.org/10.1103/PhysRev.56.340
https://doi.org/10.1103/PhysRevB.101.115143
https://doi.org/10.1103/PhysRevB.85.195104
https://doi.org/10.1088/1367-2630/13/2/025009
https://doi.org/10.1103/PhysRevB.100.125159
https://doi.org/10.1103/PhysRevA.83.042330
https://doi.org/10.1103/PhysRevD.96.034514
https://doi.org/10.1088/1367-2630/13/4/045006
https://doi.org/10.1103/PhysRevLett.109.175302
https://doi.org/10.1002/andp.201300104
https://doi.org/10.1103/RevModPhys.80.1083
http://iaifi.org/
https://doi.org/10.1039/C9CP02269D
https://doi.org/10.1088/1751-8113/48/30/30FT01

