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Compositional optimization of quantum circuits for quantum kernels of support vector machines

Elham Torabian and Roman V. Krems
Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1

and Stewart Blusson Quantum Matter Institute, Vancouver, British Columbia, Canada V6T 1Z4

(Received 14 March 2022; accepted 8 March 2023; published 28 March 2023)

While quantum machine learning (ML) has been proposed to be one of the most promising applications of
quantum computing, how to build quantum ML models that outperform classical ML remains a major open
question. Here, we demonstrate a Bayesian algorithm for constructing quantum kernels for support vector
machines that adapts quantum gate sequences to data. The algorithm increases the complexity of quantum
circuits incrementally by appending quantum gates selected with Bayesian information criterion as circuit
selection metric and Bayesian optimization of the parameters of the locally optimal quantum circuits identified.
The performance of the resulting quantum models for the classification problems considered here significantly
exceeds that of optimized classical models with conventional kernels.
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I. INTRODUCTION

Quantum machine learning (QML) has recently emerged
as a new research field aiming to take advantage of quan-
tum computing for machine learning (ML) tasks. It has been
shown that embedding data into gate-based quantum circuits
can be used to produce kernels for ML models by quantum
measurements [1–15]. A major question that remains open
is whether quantum kernels thus produced can outperform
classical kernels for practical ML applications. The advan-
tage of quantum kernels may manifest itself in reducing the
computational hardness of big data problems. For example,
it has been shown that a classification problem based on the
discrete logarithm problem, which is believed to be in the
NP and bounded-error quantum polynomial (BQP) complex-
ity classes, can be efficiently solved with quantum kernels
[16]. It has also been shown that ML models with quantum
kernels can efficiently solve a classification problem with the
complexity of the k-Forrelation problem [17], which is proven
to be promiseBQP-complete [18,19]. This proves that all clas-
sification problems with BQP (and promiseBQP) complexity
can be solved efficiently with QML. However, it is not yet
clear if classical big data problems of practical importance can
benefit from QML.

The opposite limit is relevant for applications where ob-
servations are exceedingly expensive. For such applications,
learning is based on small data. If quantum kernels can pro-
duce models with better inference accuracy for small data
problems than classical kernels, QML may offer a prac-
tical application of quantum computing for classification,
interpolation, and optimization of functions that are exceed-
ingly expensive to evaluate. However, the generalization
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performance of quantum kernels is sensitive to the quantum
circuit ansatz [1,20–22]. The choice of the ansatz is an open
problem in QML. For variational quantum optimization and
quantum simulation applications, a common strategy is to
choose a fixed ansatz and optimize the parameters of the
quantum circuit [23–35]. However, for most optimal ML
models, it is necessary to develop algorithms that adapt the
ansatz to data. Previous work has addressed this problem
by optimizing gate sequences using quantum combs [36] for
cloning, storage retrieving, discrimination, estimation, and to-
mographic characterization of quantum circuits, graph theory
[37] to develop quantum Fourier transforms and reversible
benchmarks, quantum triple annealing minimization [38] for
quantum annealing applications, reinforcement learning [39]
to solve the max-cut problem, a variable structure approach
[40] for the variational quantum eigensolver for condensed
matter and quantum chemistry applications, an adaptive vari-
ational algorithm [41] for molecular simulations, quantum
local search [42] for finding the maximum independent set of
a graph, layerwise learning [43] for quantum neural networks,
and multi-objective genetic algorithms [44] for quantum clas-
sification models.

The most general approach to identifying the best quantum
circuit (QC) for a given ML task involves (i) search in the
space of all possible permutations of quantum gates; and (ii)
optimization of quantum gate parameters for each QC during
the search. Both (i) and (ii) become quickly intractable as
the number of gates increases. Both (i) and (ii) also require a
circuit selection metric to guide the search and optimization.
Optimization of the architecture and parameters of quantum
kernels is further complicated by the complexity of quantum
measurements. Estimating the kernel matrix of a ML model
by measurements on a quantum computer scales with the
number of training points N as O(N3) [34]. Therefore, it is
important to develop algorithms for optimization of quantum
circuits with small N . Once found, and if robust, the quantum
kernels can then be used for nonparametric models with large
N , in order to make accurate predictions. Within the Bayesian
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approach, ML models can be discriminated by marginal likeli-
hood (see Sec. III below). However, computation of marginal
likelihood also becomes quickly intractable as the model com-
plexity increases. Marginal likelihood can be approximated by
the Bayesian information criterion (BIC) [45]. However, this
approximation is valid in the limit of large N . It is not known
if BIC can be used as a QC selection metric for small data
problems.

In the present paper, we demonstrate an algorithm that
builds performant quantum circuits for small data classifica-
tion problems using BIC as a circuit selection metric and a
compositional search that involves two stages: (i) incremental
construction of the quantum circuit by appending individual
quantum gates to K optimal QCs of lower complexity; and (ii)
Bayesian optimization of the parameters of M locally optimal
quantum circuits. This algorithm reduces to greedy search in
the limit of K = 1 and full search of the QC space in the large
K and M limit. The choice of K thus balances the efficiency of
greedy search with the volume of explored circuit space. By
limiting optimization of QC parameters to M locally optimal
circuits, this algorithm reduces the computational complex-
ity of simultaneous optimization of QC architecture and
parameters.

We demonstrate the approach by building an optimal
ansatz for quantum support vector machines (SVM). SVM is
a kernel method that can be used for both classification and
regression problems [45]. SVM kernels allow classification
of data that are not linearly separable. SVM is well suited
for small data problems. The quantum analog of SVM uses
quantum kernels. We show that the performance of quantum
SVM can be systematically enhanced by building quantum
kernels in a data-adaptable approach. In order to achieve this,
we convert the output of the SVM classifier to probabilistic
predictions and compute the Bayesian information crite-
rion [46,47]. Using two unrelated classification problems, we
show that quantum kernels thus obtained outperform standard
classical kernels and achieve enhanced inference accuracy for
small data problems. The method proposed here is inspired by
the work of Duvenaud et al. [48], that demonstrated the pos-
sibility of enhancing the performance of classical Gaussian
process models through compositional kernel search guided
by BIC.

II. QUANTUM CIRCUIT DESCRIPTORS

Supervised learning for classification uses N input-output
pairs {x, y}, with inputs x represented by multi-dimensional
vectors and outputs y encoding the class labels. We consider
binary classification problems with y = {0, 1}. For a QML
algorithm, the input vectors x must be encoded into quantum
states. Here, we use the following encoding of n-dimensional
vectors x ∈ Rn into states of n qubits, each initially in state
|0〉,

|�(x)〉 = exp

(
i
∑

k

xkZk

)
H

⊗
n |0〉

⊗
n (1)

where xk is the kth component of vector x, Zk is the Pauli Z
gate acting on kth qubit, and H represents the Hadamard gate
putting qubits into coherent superpositions. The state |�(x)〉 is

FIG. 1. Schematic diagram of a quantum circuit (upper) used for
quantum kernels of SVM and a matrix descriptor (lower) of the gate
sequence. Each gate is assigned a numerical descriptor, encoding the
type of gate and the index of qubits entangled for CNOT gates shown
by blue crosses in the upper diagram.

then operated on by a sequence of one- and two-qubit gates to
produce a general quantum state U (x) |�(x)〉. The measurable
quantities

k(x, x′) = |〈�(x′)|U†(x′)U (x)|�(x)〉|2 (2)

have the properties of the kernel of a reproducing kernel
Hilbert space and can thus be used as kernels of SVM.

Here, we propose and demonstrate an algorithm that sys-
tematically increases the complexity of U to enhance the
performance of quantum kernels (2). As depicted in Fig. 1, we
choose U to consist of L layers, each consisting of one-qubit
RZ gates and/or two-qubit CNOT gates. Each of the RZ gates
for qubit k is parametrized by θ as follows:

RZ,k (θ ) =
(

e−iθxk 0
0 eiθxk

)
. (3)

This yields a quantum circuit with the number of free param-
eters θ equal to the number of RZ gates.

Although not essential, it is convenient for the present
paper to represent QCs by numerical descriptors. The numer-
ical representation of QCs can also be used for the analysis
of QCs, such as their classification into performant and
nonperformant kernels. We adopt the following approach to
represent QC by numerical vectors. As illustrated in Fig. 1
(lower part), each QC is described by a numerical matrix
that encodes: “no gate”, Hadamard, CNOT, or RZ . Each row
and column correspond to qubits and layers, respectively.
We assign {1, 2, 3, 4, 5} to {Hadamard, RZ , CNOT(q, q − 1),
CNOT(q, q − 2) and CNOT(q, q − 3)}, respectively. The ar-
guments of CNOT(a, b) indicate the target (a) and control
(b) qubits. The numerical descriptors corresponding to n
qubits and g types of gates thus generated form a total of
[(g + n − 1)!/n!(g − 1)!]×K×L quantum circuits.

III. MARGINAL LIKELIHOOD FOR QC SELECTION

Within the Bayesian approach, we can assign probability
P(Qi|Data) to a quantum model Qi, which can be expressed
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using Bayes’ theorem as follows:

P(Qi|Data) = P(Data|Qi )P(Qi )

P(Data)
, (4)

where Data = {X , y}, X is the data matrix and y is a vector of
outputs in the training data set. For two QCs Q1 and Q2, we
can write

P(Q1|Data)

P(Q2|Data)
= P(Data|Q1)

P(Data|Q2)
× P(Q1)

P(Q2)
. (5)

Assuming no prior knowledge of circuit performance, we
choose all P(Qi ) to be the same, which shows that QCs can be
discriminated by P(Data|Qi). If a QC Qi is parametrized by a
set of parameters denoted collectively by θ, we can define the
likelihood function for the quantum model as

L(θ|Data,Qi ) = p(Data|θ,Qi ), (6)

where p(Data|θ,Qi ) is the probability that the quantum model
Qi with parameters θ yields the observations in the training set
{X , y}. This shows that marginal likelihood

P(Data|Qi) =
∫

θ

p(Data|θ,Qi )p(θ|Qi )dθ (7)

can be used to discriminate between quantum models with
different circuit architectures. As the number of circuit pa-
rameters grows, the integrals in Eq. (7) become intractable.
However, for a large number of training points N , they can be
approximated as [45]

log (P(Data|Qi )) ≈ log L̂(Qi ) − d

2
log(N ), (8)

where L̂(Qi ) = L(θ̂|Data,Qi ) is the maximum value of like-
lihood and d is the number of parameters in θ. The Bayesian
information criterion (BIC) is defined as

BIC = −2 log L̂ + d log N, (9)

which shows that it can be used to estimate the logarithm
of marginal likelihood, and hence serve as a model selection
metric. In the present paper, we only parametrize the RZ gates,
so d is equal to the total number of RZ gates in the QC. While
Eq. (8) is valid for N → ∞, in the present paper we provide
empirical evidence that BIC is a valid selection metric for
quantum models for classification problems with N ≈ 100.

In order to compute BIC, we convert the output f̂ (xi ) of
SVM with quantum kernels to a posterior class probability
pi(y = 1|xi ), approximated by a sigmoid function

pi = 1

1 + exp (a f̂ (xi ) + b)
. (10)

The parameters a and b are determined by maximizing the log
likelihood function log L̂ [49]. For the binary classification
problem with y = {0, 1}, we compute log L̂ as

log L̂ = −
∑
i=1

[yi log(pi ) + (1 − yi ) log(1 − pi )], (11)

where pi is the probability of observing class with label yi=1.
In the current implementation, SVM is trained by maximizing
Lagrange dual with a training set [45], while log L̂ used in
Eq. (9) is computed over a separate validation set. The coeffi-
cients a and b are found by fourfold cross-validation with the

training set. These coefficients are then used to calculate the
probabilities pi for the validation set, which yields log L̂ for
the computation of BIC.

IV. CIRCUIT GROWTH ALGORITHM

The purpose of the present algorithm for building QCs for
quantum kernels is to approximate the search of an optimal
QC architecture and an optimal set of parameters in the entire
space of parametrized circuits. The pseudo-code for this al-
gorithm is presented in the Supplemental Material (SM) [50].
As seen in the pseudocode, the algorithm is controlled by two
hyperparameters: K and M. The limit of M = 0 and K → ∞
corresponds to the purely compositional search. When M =
K , the algorithm optimizes the architecture and parameters of
QCs simultaneously.

The architecture of the circuit is built incrementally, start-
ing with all possible circuits with only one layer L = 1 of the
parametrized part of QC in Fig. 1. Using BIC, we identify K
preferred quantum kernels with L = 1 (i.e., K kernels yielding
quantum models with the lowest BIC values). The parame-
ters of M � K of those QCs are optimized using Bayesian
optimization (BO). Details of BO, including the choice of
kernels for Gaussian process regression and parameters of the
acquisition function, are given in the SM [50]. A new layer is
then added by appending all possible combinations of gates
for layer two to K selected circuits with L = 1. The algorithm
then selects K preferred kernels with L = 2, and the process is
iterated. This search strategy directs the algorithm to increase
the complexity of quantum circuits while improving the per-
formance of quantum kernels.

V. RESULTS

To illustrate the performance of the algorithm proposed
here, we use two independent four (4D) and three (3D) di-
mensional classification problems. For the first example, we
use the data from Ref. [51] to classify halide perovskites, with
the chemical formula A2BB′X6, into metals or nonmetals. The
four components of x correspond to the ionic radii of the four
atoms A, B, B′, and X . The second example is a 3D synthetic
data set implemented in the Qiskit ML module [52]. Hereafter,
we will refer to the two data sets as the perovskite dataset
and the ad hoc dataset, respectively. We split each data set
into 100 random training samples, a validation set with 100
random samples and a test set with 1442 and 4100 samples for
the perovskite and ad hoc datasets, respectively. The training
set is used to train the SVM model with a given quantum
kernel, and the validation set is used to select quantum cir-
cuits, while the test set is used to illustrate the final model
performance.

A. Quantum circuit search convergence

Figure 2 demonstrates the convergence of the classification
accuracy with K and M. The convergence is examined using
the lower value of the two class prediction accuracies over a
test set for the perovskite classification problem. The results
for M � 20 are obtained with K = 20. For M � 20, K = M.
The results indicate that convergence is achieved for K = 20
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FIG. 2. Convergence of Bayesian search of the quantum circuit
space quantified by the lowest test accuracy (lower of TPR and TNR
as defined in the text) with respect to the algorithm hyperparameters
K and M. The results for M � 20 are obtained with K = 20. For
M � 20, K = M.

and M = 15. Figure 2 shows that circuits with more layers
benefit from a larger value of M. Unless stated otherwise, we
use K = M = 20 for benchmark calculations in this paper.

The results of Fig. 2 suggest interesting extensions of the
present algorithm. For example, the computation complexity
can be reduced by introducing the dependence of both M and
K on the number of layers L, i.e., M → M(L) and K → K (L).
For example, the results of Fig. 2 suggest that convergence can
be reached with M = 10 for L = 1 and L = 2, M = 13 for
L = 3, and M = 15 for L > 3, which requires a much smaller
number of circuits to be optimized than in the present paper.
To understand the relative roles of parameter vs architecture
optimization, we will also compare below the performance
of the fully optimized search (K = M = 20) with the search,
where the architecture of QC is optimized first and the pa-
rameters of a single best QC are optimized at the final stage
of the kernel construction. Models obtained using this algo-
rithm are hereafter referred to as M = 0(1). Finally, we note
that the results of Fig. 2 indicate that the algorithm mono-
tonically converges to an optimal circuit with significantly
better performance than a randomly chosen quantum kernel.
The monotonic convergence indicates that an optimal search
algorithm can be determined by increasing K and M � K .

B. Quantum kernel selection metric

The performance of classification models such as SVM is
generally quantified by test accuracy over a holdout set or
equivalent metrics, such as the F score, often F1 [53]. It is
convenient to label the two classes as positive and negative
and define the true positive rate (TPR) and the true negative
rate (TNR) as the ratio of correct predictions to the total
number of test points for a given class. Unless otherwise
specified, the test/validation accuracy of the model is defined
here as the balanced average of TPR and TNR computed as
(TPR + TNR)/2 over the test/validation set. The test accuracy
for a specific class refers to TPR or TNR over the test set. The
lowest test accuracy refers to the lower of TPR and TNR over
the test set. Since the model performance is limited by the

class with the lower prediction accuracy, most of the results
show the lowest test accuracy. More details about different
model selection metrics used here are provided in SM [50].

To illustrate the importance of BIC for the present algo-
rithm, it is instructive to compare the performance of BIC as
a QC selection metric with other possible metrics. Figure 3
uses the perovskite dataset to compare the performance of the
quantum models with quantum circuits selected using three
different metrics: accuracy, F1 score and BIC, all computed
over the validation sets. The results demonstrate that the clas-
sification accuracy or F1 score cannot be used as metrics
for quantum circuit selection. On the other hand, BIC leads
to both better models for each layer L and significant im-
provement of the quantum classification models as the kernel
complexity increases. We observe a similar trend for the other
data set (provided in SM [50]).

BIC is known to be a rigorous model selection metric
asymptotically, in the limit of a large number of training points
[45]. For a family of K models, the probability of model m

FIG. 3. Upper: Quantum classification model accuracy averaged
over two classes over the holdout test set as a function of the number
of layers in U constructed using three model selection metrics: BIC
(circles), validation accuracy (squares), F1 score (triangles). The
models are trained with 100 training points. Lower: Improvement
of the quantum classification accuracy with the number of training
points by applying the best obtained quantum kernel using 100 train-
ing points (fixed kernel). Class-specific test accuracy represents TPR
and TNR, as defined in the text.
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being selected can be estimated as

P(Modelm) = e−BICm/2∑
i e−BICi/2

. (12)

If the family of models includes the true model, the probability
of selecting the correct model approaches one as N → ∞
[45]. In this limit, the integral yielding marginal likelihood
can be replaced with the maximized likelihood as shown in
Eq. (9). However, Eq. (9) may not be valid in the small data
limit. Our results in Fig. 3 show that BIC remains an effective
selection metric for quantum models trained with as few as
100 training points.

To further demonstrate the expressiveness of the quantum
kernels selected by BIC, we show in the lower panel of Fig. 3
the improvement of the quantum classification accuracy with
the number of training points for the perovskite data set. The
models illustrated in Fig. 3 are obtained with 100 training
points using K = 20 and M = 0, and are subsequently used
in SVM with a larger number of training points. The results
illustrate two important points: (i) quantum kernels obtained
by optimization of QC architecture with BIC based on a small
number of training points produce models that generalize well
for problems with larger training sets, as expected of any per-
formant kernel—this is a sanity test for the resulting quantum
models; (ii) performant quantum kernels can be obtained by
optimization of QC architecture without optimization of QC
parameters (i.e., with M = 0).

C. Classical vs quantum classification models

Figure 4 compares the results of the predictions of the
best quantum models with the classical models based on
commonly used optimized kernels. Specifically, we train four
classical models with the radial basis function (RBF), linear,
cubic polynomial, and sigmoid kernel functions. The models
are trained with the same number and distribution of training
points as for the quantum models and the parameters of each
kernel function are optimized to minimize the error over iden-
tical validation sets for all models.

There are three sets of quantum models shown:
(i) First, we construct the best quantum kernel for each

number of layers L, without any optimization of
the circuit parameters. These models correspond to
Bayesian search hyperparameters K = 20 and M = 0
and illustrate the improvement of quantum kernels
that can be achieved by optimizing only the circuit
architecture. The prediction accuracy of SVM models
with quantum kernels thus obtained is shown by cir-
cles. The circles in Fig. 4 thus represent the results of
purely compositional optimization.

(ii) Second, we vary the parameters θ of all RZ gates in
the best quantum kernel for a given L to minimize
error on the validation set. These models correspond
to Bayesian search hyperparameters K=20 and M=0,
but include parameter optimization for one best cir-
cuit at each layer. Hence, we label these results,
shown by triangles in Fig. 4, as M = 0(1). The
purpose of this calculation is to demonstrate the im-
provement due to optimization of the parameters of
the locally optimal circuits. The triangles in Fig. 4

FIG. 4. Lowest prediction accuracy (lower of TPR and TNR
as defined in the text) evaluated on the holdout test set for the
perovskite (upper) and ad hoc (lower) classification problems. The
horizontal broken lines show the best accuracy for SVM models with
the classical kernels indicated as labels. The classical kernels are
optimized using the validation set. The symbols show the results of
the best quantum model for each layer L: circles, quantum kernels
constructed using Bayesian search of QC architecture with fixed
parameters of all quantum gates; triangles, the K = 20, M = 0(1)
search, where architecture is optimized without any optimization
of circuit parameters, but the parameters of the best QC are opti-
mized to enhance performance; diamonds, quantum circuits from the
K = M = 20 Bayesian search involving simultaneous optimization
of both the QC architecture and QC parameters.

thus represent the results of purely compositional op-
timization followed by optimization of parameters of
the best QC of a given complexity.

(iii) Finally, the diamonds in Fig. 4 show the results of
the fully optimized search with K = M = 20. The
diamonds in Fig. 4 thus represent the results of
simultaneous optimization of QC architecture and
parameters.

For a binary classification problem, one can evaluate the
model test accuracy for each class separately. The perfor-
mance of classification models is generally limited by the
lower of the two prediction accuracies. Figure 4 shows the
lowest test accuracy of the best models trained with N = 100.
It can be seen that the performance of quantum models
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significantly exceeds the prediction accuracy achievable with
classical kernels considered. SM presents the detailed com-
parisons of classical and quantum model predictions for each
class separately.

It is interesting to observe that purely compositional opti-
mization followed by optimization of parameters of the best
QC (triangles in Fig. 4) produces quantum kernels yielding
test errors comparable with the test errors of the full si-
multaneous optimization of QC architecture and parameters
(diamonds in Fig. 4). Furthermore, the difference between the
diamonds and the triangles in Fig. 4 decreases with increasing
QC complexity. This trend is observed for both classification
problems considered here. This suggests that the most optimal
algorithm for constructing complex quantum kernels should
separate the compositional optimization and the optimization
of QC parameters.

VI. CONCLUSIONS

We have demonstrated an algorithm for constructing quan-
tum kernels for quantum SVM that adapts gate sequences and
gate parameters to data for classification problems. The quan-
tum kernels for SVM are built through compositional search
in the space of gate permutations and Bayesian optimization
of quantum circuits with locally optimal architecture. The
search algorithm is controlled by two hyperparameters (K
and M) that balance the greediness, and hence the efficiency,
of compositional search with the volume of quantum circuit
space explored. The algorithm is designed to approach the
complete search of the entire space of optimized quantum
circuits in the asymptotic limit of large K and M. We have
shown that quantum kernels with enhanced generalization
performance can be obtained through search restricted to a
small fraction (<0.5% for the present examples) of the total
space.

We have illustrated the performance of the resulting quan-
tum kernels by comparisons with classical models based on

several conventionally used kernels for two nonlinear classi-
fication problems. Our results show that optimized quantum
kernels yield models with significantly better classification
accuracy than the classical models considered here. It is im-
portant to note that we do not claim quantum advantage for
the quantum kernels obtained in this work. Although the pa-
rameters of the classical kernels were optimized, we did not
optimize the functional form of the classical models. More
importantly, we consider kernels based on a small number
of qubits. Such kernels are classically simulable. However,
the present paper offers approach to identify QML models
with enhanced performance, potentially making QML useful
for practical applications, including for interpolation, clas-
sification, and optimization of objective functions that are
exceedingly difficult to evaluate. We also conjecture that if
quantum kernels can be constructed to be expressive for low-
dimensional problems, they can also be constructed to be
expressive for high-dimensional problems, for which quantum
kernels are not classically simulable with existing classical
hardware resources.

Critical to any algorithm of automated quantum ansatz
construction is the quantum circuit selection metric. Our re-
sults show that performant quantum kernels for classification
problems can be selected by Bayesian information criterion,
while the validation error and F1 score fail as quantum model
selection metrics for the problems considered here. The choice
of the ansatz remains an open problem in QML. The present
paper offers an algorithm to identify subdomains of quantum
gate permutations that yield good kernels and bad kernels.
This can potentially be used to identify the essential elements
of quantum circuits that are responsible for the expressiveness
of the ensuing kernels.
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Lemr, and F. Nori, Experimental kernel-based quantum ma-
chine learning in finite feature space, Sci. Rep. 10, 12356
(2020).

[7] D. K. Park, C. Blank, and F. Petruccione, The theory of the
quantum kernel-based binary classifier, Phys. Lett. A 384,
126422 (2020).

[8] Y. Suzuki, H. Yano, Q. Gao, S. Uno, T. Tanaka, M. Akiyama,
and N. Yamamoto, Analysis and synthesis of feature map for
kernel-based quantum classifier, Quantum Mach. Intell. 2, 9
(2020).

[9] J. E. Park, B. Quanz, S. Wood, H. Higgins, and R. Harishankar,
Practical application improvement to Quantum SVM: Theory
to practice, arXiv:2012.07725.

[10] R. Chatterjee and T. Yu, Generalized coherent states, reproduc-
ing kernels, and quantum support vector machines, Quantum
Inf. Commun. 17, 1292 (2017).

[11] J. R. Glick, T. P. Gujarati, A. D. Corcoles, Y. Kim, A. Kandala,
J. M. Gambetta, and K. Temme, Covariant quantum kernels for
data with group structure, arXiv:2105.03406.

[12] C. Blank, D. K. Park, J. K. K. Rhee, and F. Petruccione, Quan-
tum classifier with tailored quantum kernel, npj Quantum Inf.
6, 41 (2020).

013211-6

http://arxiv.org/abs/arXiv:2101.11020
https://doi.org/10.1103/PhysRevLett.122.040504
https://doi.org/10.1103/PhysRevLett.113.130503
https://doi.org/10.1038/s41586-019-0980-2
https://doi.org/10.1007/s42484-019-00007-4
https://doi.org/10.1038/s41598-020-68911-5
https://doi.org/10.1016/j.physleta.2020.126422
https://doi.org/10.1007/s42484-020-00020-y
http://arxiv.org/abs/arXiv:2012.07725
http://arxiv.org/abs/arXiv:2105.03406
https://doi.org/10.1038/s41534-020-0272-6


COMPOSITIONAL OPTIMIZATION OF QUANTUM … PHYSICAL REVIEW RESEARCH 5, 013211 (2023)

[13] S. L. Wu, S. Sun, W. Guan, C. Zhou, J. Chan, C. L. Cheng, T.
Pham, Y. Qian, A. Z. Wang, R. Zhang, and M. Livny, Appli-
cation of quantum machine learning using the quantum kernel
algorithm on high energy physics analysis at the LHC, Phys.
Rev. Res. 3, 033221 (2021).

[14] T. Haug, C. N. Self, and M. S. Kim, Quantum machine learn-
ing of large datasets using randomized measurements, Mach.
Learn.: Sci. Technol. 4, 015005 (2023).

[15] M. Otten, I. R. Goumiri, B. W. Priest, G. F. Chapline, and
M. D. Schneider, Quantum machine learning using Gaussian
processes with performant quantum kernels, arXiv:2004.11280.

[16] Y. Liu, S. Arunachalam, and K. Temme, A rigorous and robust
quantum speed-up in supervised machine learning, Nat. Phys.
17, 1013 (2021).

[17] J. Jäger and R. V. Krems, Universal expressiveness of vari-
ational quantum classifiers and quantum kernels for support
vector machines, Nat Commun 14, 576 (2023).

[18] S. Aaronson, BQP and the polynomial hierarchy, Proc. Annu.
ACM Symp. Theory Comput., 141 (2010).

[19] S. Aaronson and A. Ambainis, Forrelation: A problem that
optimally separates quantum from classical computing, Proc.
Annu. ACM Symp. Theory Comput., 307 (2015).

[20] M. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin, S. Endo,
K. Fujii, J. R. McClean, K. Mitarai, X. Yuan, L. Cincio, and P. J.
Coles, Variational quantum algorithms, Nat. Rev. Phys. 3, 625
(2021).

[21] K. Nakaji, H. Tezuka, and N. Yamamoto, Quantum-enhanced
neural networks in the neural tangent kernel framework,
arXiv:2109.03786.

[22] E. Peters, J. Caldeira, A. Ho, S. Leichenauer, M. Mohseni, H.
Neven, P. Spentzouris, D. Strain, and G. N. Perdue, Machine
learning of high dimensional data on a noisy quantum proces-
sor, npj Quantum Inf. 7, 161 (2021).

[23] M. Schuld, R. Sweke, and J. J. Meyer, Effect of data encoding
on the expressive power of variational quantum-machine-
learning models, Phys. Rev. A 103, 032430 (2021).

[24] K. Mitarai, M. Negoro, M. Kitagawa, and K. Fujii, Quantum
circuit learning, Phys. Rev. A 98, 032309 (2018).

[25] M. Watabe, K. Shiba, M. Sogabe, K. Sakamoto, and T. Sogabe,
Quantum circuit parameters learning with gradient descent us-
ing backpropagation, arXiv:1910.14266.

[26] J. Qi, C. H. H. Yang, and P. Y. Chen, QTN-VQC: An
end-to-end learning framework for quantum neural networks,
arXiv:2110.03861.

[27] K. Terashi, M. Kaneda, T. Kishimoto, M. Saito, R. Sawada, and
J. Tanaka, Event classification with quantum machine learning
in high-energy physics, Comput. Softw. Big Sci. 5, 2 (2021).

[28] S. Y. C. Chen, C. M. Huang, C. W. Hsing, and Y. J. Kao,
Hybrid quantum-classical classifier based on tensor network
and variational quantum circuit, arXiv:2011.14651.

[29] A. Blance and M. Spannowsky, Quantum machine learning for
particle physics using a variational quantum classifier, J. High
Energy Phys. 2021, 212 (2021).

[30] Y. Kwak, W. J. Yun, S. Jung, J. K. Kim, and J. Kim, In-
troduction to quantum reinforcement learning: Theory and
pennylane-based implementation, Int. Conf. ICT Converg., 416
(2021).

[31] D. Sierra-Sosa, J. Arcila-Moreno, B. Garcia-Zapirain, C.
Castillo-Olea, and A. Elmaghraby, Dementia prediction apply-
ing variational quantum classifier, arXiv:2007.08653.

[32] S. Y. C. Chen, C. H. H. Yang, J. Qi, P. Y. Chen, X. Ma, and
H. S. Goan, Variational quantum circuits for deep reinforcement
learning, IEEE Access 8, 141007 (2020).

[33] S. Lloyd, M. Schuld, A. Ijaz, J. Izaac, and N. Killoran, Quantum
embeddings for machine learning, arXiv:2001.03622.

[34] T. Hubregtsen, D. Wierichs, E. Gil-Fuster, P. J. H. Derks, P. K.
Faehrmann, and J. J. Meyer, Training quantum embedding
kernels on near-term quantum computers, Phys. Rev. A 106,
042431 (2022).

[35] L. P. Henry, S. Thabet, C. Dalyac, and L. Henriet, Quantum evo-
lution kernel: Machine learning on graphs with programmable
arrays of qubits, Phys. Rev. A 104, 032416 (2021).

[36] G. Chiribella, G. M. D’Ariano, and P. Perinotti, Quan-
tum Circuit Architecture, Phys. Rev. Lett. 101, 060401
(2008).

[37] A. Shafaei, M. Saeedi, and M. Pedram, Optimization of
quantum circuits for interaction distance in linear nearest
neighbor architectures, 2013 50th ACM/EDAC/IEEE Design
Automation Conference (DAC), 1 (2013).

[38] L. Gyongyosi and S. Imre, Quantum circuit design for objec-
tive function maximization in gate-model quantum computers,
Quantum Inf. Process. 18, 225 (2019).

[39] T. Fösel, M. Y. Niu, F. Marquardt, and L. Li, Quan-
tum circuit optimization with deep reinforcement learning,
arXiv:2103.07585.

[40] M. Bilkis, M. Cerezo, G. Verdon, P. J. Coles, and L. Cincio,
A semi-agnostic ansatz with variable structure for quantum
machine learning, arXiv:2103.06712.

[41] H. R. Grimsley, S. E. Economou, E. Barnes, and N. J. Mayhall,
An adaptive variational algorithm for exact molecular sim-
ulations on a quantum computer, Nat. Commun. 10, 3007
(2019).

[42] T. Tomesh, Z. H. Saleem, and M. Suchara, Quantum local
search with quantum alternating operator ansatz, Quantum 6,
781 (2022).

[43] A. Skolik, J. R. McClean, M. Mohseni, P. van der Smagt,
and M. Leib, Layerwise learning for quantum neural networks,
Quantum Mach. Intell. 3, 5 (2021).

[44] S. Altares-López, A. Ribeiro, and J. J. García-Ripoll, Automatic
design of quantum feature maps, Quantum Sci. Technol. 6,
045015 (2021).

[45] T. Hastie, R. Tibshirani, and J. H. Friedman, The Elements of
Statistical Learning: Data Mining, Inference, and Prediction,
2nd edition (Springer-Verlag, Berlin, 2009).

[46] A. A. Neath and J. E. Cavanaugh, The Bayesian informa-
tion criterion: background, derivation, and applications, Wiley
Interdiscip. Rev. Comput. Stat. 4, 199 (2012).

[47] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. De
Freitas, Taking the human out of the loop: A review of Bayesian
optimization, Proc. IEEE 104, 148 (2015).

[48] D. Duvenaud, J. Lloyd, R. Grosse, J. Tenenbaum, and
G. Zoubin, Structure discovery in nonparametric regression
through compositional kernel search, Proceedings of the 30th
International Conference on Machine Learning Research 28,
1166 (2013).

[49] T. F. Wu, C. J. Lin, and R. Weng, Probability estimates for
multi-class classification by pairwise coupling, Adv. Neural Inf.
Process. Syst. 16 (2003).

[50] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevResearch.5.013211 for the proposed

013211-7

https://doi.org/10.1103/PhysRevResearch.3.033221
https://doi.org/10.1088/2632-2153/acb0b4
http://arxiv.org/abs/arXiv:2004.11280
https://doi.org/10.1038/s41567-021-01287-z
https://doi.org/10.1038/s41467-023-36144-5
https://doi.org/10.1145/1806689.1806711
https://doi.org/10.1145/2746539.2746547
https://doi.org/10.1038/s42254-021-00348-9
http://arxiv.org/abs/arXiv:2109.03786
https://doi.org/10.1038/s41534-021-00498-9
https://doi.org/10.1103/PhysRevA.103.032430
https://doi.org/10.1103/PhysRevA.98.032309
http://arxiv.org/abs/arXiv:1910.14266
http://arxiv.org/abs/arXiv:2110.03861
https://doi.org/10.1007/s41781-020-00047-7
http://arxiv.org/abs/arXiv:2011.14651
https://doi.org/10.1007/JHEP02(2021)212
https://doi.org/10.1109/ICTC52510.2021.9620885
http://arxiv.org/abs/arXiv:2007.08653
https://doi.org/10.1109/ACCESS.2020.3010470
http://arxiv.org/abs/arXiv:2001.03622
https://doi.org/10.1103/PhysRevA.106.042431
https://doi.org/10.1103/PhysRevA.104.032416
https://doi.org/10.1103/PhysRevLett.101.060401
https://doi.org/10.1145/2463209.2488785
https://doi.org/10.1007/s11128-019-2326-2
http://arxiv.org/abs/arXiv:2103.07585
http://arxiv.org/abs/arXiv:2103.06712
https://doi.org/10.1038/s41467-019-10988-2
https://doi.org/10.22331/q-2022-08-22-781
https://doi.org/10.1007/s42484-020-00036-4
https://doi.org/10.1088/2058-9565/ac1ab1
https://doi.org/10.1002/wics.199
https://doi.org/10.1109/JPROC.2015.2494218
http://link.aps.org/supplemental/10.1103/PhysRevResearch.5.013211


ELHAM TORABIAN AND ROMAN V. KREMS PHYSICAL REVIEW RESEARCH 5, 013211 (2023)

algorithm’s pseudocode in this research, technical details
of the Bayesian Optimization (BO) procedure, analysis of the
datasets, and a detailed comparison of classical and quantum
model predictions for each class individually.

[51] A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S.
Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, and K. A.
Persson, The Materials Project: A materials genome approach

to accelerating materials innovation, APL Mater. 1, 011002
(2013).

[52] Qiskit Machine Learning Development Team, Qiskit
machine learning, https://qiskit.org/documentation/machine-
learning.

[53] T. Fawcett, An introduction to ROC analysis, Pattern Recognit.
Lett. 27, 861 (2006).

013211-8

https://doi.org/10.1063/1.4812323
https://qiskit.org/documentation/machine-learning
https://doi.org/10.1016/j.patrec.2005.10.010

