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Islands of chiral solitons in integer-spin Kitaev chains
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An intriguing chiral soliton phase has recently been identified in the S = 1
2 Kitaev spin chain. Here we show

that for S = 1, 2, 3, 4, 5 an analogous phase can be identified, but contrary to the S = 1
2 case the chiral soliton

phases appear as islands within the sea of the polarized phase. In fact, a small field applied in a general direction
will adiabatically connect the integer spin Kitaev chain to the polarized phase. Only at sizable intermediate fields
along symmetry directions does the soliton phase appear centered around the special point h�

x = h�
y = S where

two exact product ground states can be identified. The large-S limit can be understood from a semiclassical
analysis, and variational calculations provide a detailed picture of the S = 1 soliton phase. Under open boundary
conditions, the chain has a single soliton in the ground state, which can be excited, leading to a proliferation of
in-gap states. In contrast, even length periodic chains exhibit a gap above a twice-degenerate ground state. The
presence of solitons leaves a distinct imprint on the low-temperature specific heat.
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I. INTRODUCTION

Shortly after a microscopic mechanism to realize the
exactly solvable S = 1

2 Kitaev model defined on the two-
dimensional honeycomb lattice [1] was proposed [2], intense
research in generalizations of Kitaev’s original model started,
including other interactions, higher-spin models, and/or ex-
ternal magnetic field. From a materials perspective, Kitaev
materials, broadly defined as materials with dominant bond-
dependent interactions, possess surprisingly rich and intricate
phase diagrams [3–9]. Notably, in the presence of an applied
field, Kitaev models lead to a phase diagram not only de-
pending on field strength but also on field direction, with
a resulting proliferation of competing phases. Of particular
interest are field-induced spin liquid phases, where intriguing
results been suggested in recent experiments on the S = 1

2 ma-
terial α-RuCl3 when an in-plane field [10–14] or out-of-plane
field [15] is applied. In theoretical studies of S = 1

2 antifer-
romagnetic (AFM) Kitaev honeycomb models, signatures of
possible spin liquid phases under a magnetic field have also
been reported [16–23]. Near the ferromagnetic (FM) Kitaev
regime, a field-induced intermediate phase was found when
the magnetic field is at or close to the out-of-plane direction
[24–27].
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Another focus has been higher spin Kitaev models with
S > 1

2 [28,29]. Initially an academic problem, a microscopic
theory showed that utilizing Hund’s coupling in transition
metal cations and spin-orbit coupling at anions led to a

FIG. 1. iDMRG results for the S = 1(blue), 2 (red), 3 (green),
4 (purple), 5 (orange) Kitaev spin chain. Points indicate peaks in
χ e

h or χ e
φxy

. The dashed red line indicate the classical value for the
transition to the polarized state, and the dotted red line are results
for S = 1

2 from Ref. [37]. The red cross indicates h�
xy = S

√
2 with

h�
x/S = h�

y/S = 1. The blue dotted line indicates the path in the hx ,
hy plane used in Fig. 4.
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higher-spin Kitaev interaction [30]. In particular, S = 1 mod-
els [31–35] where the presence of a gapless spin liquid phase
for AFM Kitaev model at finite field has been suggested [36].
While these field-induced magnetically disordered phases in
S = 1

2 and higher-S are fascinating, the precise nature of these
phases and the physical mechanisms giving rise to them is
still not completely understood. One challenge is associated
with the size of the systems that one can access in numerical
studies.

To gain insight into the field-induced phases, a differ-
ent route was recently taken, instead starting with low-
dimensional versions of the Kitaev model such as chains and
ladders under a magnetic field where highly precise results can
be obtained for very large systems or in the thermodynamic
limit. While geometrically restricted, interesting chiral phases
near AFM Kitaev region in a perpendicular field have been
identified [38] in S = 1

2 ladder models. An extended soliton
phase induced by the field in the S = 1

2 Kitaev spin chain was
also recently discovered [37].

An early paper by Sen et al. [39] showed that spin-S Kitaev
chains have an analog of the Z2 conserved quantities present
in Kitaev’s honeycomb model and demonstrated that there is
a qualitative difference between the integer and half-integer
spin due to their different commutation relations. They also
showed that the S = 1 chain exhibits a unique ground state
with local excitations of the Z2 conserved quantities, which
was later confirmed by numerical studies [40]. It is then nat-
ural to ask if the field-induced soliton phase arise in Kitaev
spin chains with integer spins, a question we answer in the
affirmative here.

The rest of the paper is organized as follows. We define the
model Hamiltonian for the Kitaev spin chain and discuss our
numerical methods in Sec. II. Before presenting detailed re-
sults in Secs. IV–VII we present in Sec. III an overview of our
results for the phase diagram in a field and discuss the central
mechanism behind the soliton phase at the phenomenological
level. The latter can be achieved by largely restricting the
discussion to a special field value where exact ground states
are known. In Sec. IV we present our iDMRG and DMRG re-
sults used for determining the phase diagram, excitation gaps,
chiral ordering as well as the soliton mass and size. Section V
describes the uniform product states approximating the two
ground states within the soliton phase for any S with periodic
boundary conditions. A variational picture based on previous
results for the S = 1

2 model in Ref. [37] is then developed in
Sec. VI, and in Sec. VII we discuss how signatures of the
solitons can be detected in the specific heat, in particular for
open boundary conditions. Finally, in Sec. VIII we present a
discussion of our results and remaining open problems.

II. MODEL AND NUMERICAL METHODS

The spin-S Kitaev spin chain is described by the Hamilto-
nian

H = K
∑

j

(
Sx

2 j+1Sx
2 j+2 + Sy

2 j+2Sy
2 j+3

) −
∑

j

h · S j, (1)

where we set g = h̄ = μB = 1 and consider the
AFM model with K = 1 and consider integer S.
Furthermore, we parametrize the field term as h =

h(cos φxy cos θz, sin φxy cos θz, sin θz ) and define |h| as the
field strength. We use N to denote the number of sites in the
model, and we shall refer to the KSxSx coupling as a x bond
( ) and the KSySy coupling as a y bond ( ).

In the following we present results for Eq. (1) mainly
obtained from finite size density matrix renormalization group
[41–46] (DMRG) using both periodic (PBC) and open (OBC)
boundary conditions as well as from infinite DMRG [46,47]
(iDMRG) techniques. For the iDMRG calculations, we use a
unit cell of either 12 or 24 sites. We note that well converged
iDMRG results should yield results in the thermodynamic
limit free of finite-size effects independent of the size of the
unit cell. Typical precision for both DMRG and iDMRG are
ε < 10−11 with a bond dimension in excess of 1000. In order
to establish the phase diagram, we focus on the following
susceptibilities. With e0 the ground-state energy per spin, we
define the energy susceptibilities

χ e
h = −∂2e0

∂h2
, χ e

φxy
= −∂2e0

∂φ2
xy

, χ e
θz

= −∂2e0

∂θ2
z

(2)

where h is the field strength and φxy and θz the field angles.
Here, χ e

h is effectively a magnetic susceptibility. At a quantum
critical point (QCP) it is known [48] that, for a finite system
of size N , the energy susceptibility diverges as

χ e ∼ N2/ν−(d+z). (3)

Here ν and z are the correlation and dynamical critical expo-
nents and d is the dimension. We see that χ e only diverges at
the phase transition if the critical exponent ν is smaller than
2/(d + z). In the present case d = 1 and we assume z = 1, so
ν < 1 if a divergence is observed.

In Sec. VII we present thermodynamic results for the spe-
cific heat as a function of temperature. The results are obtained
using purification [49–55] where the density matrix ρ acting
on a physical Hilbert space HP is represented as a pure state
|ψ〉 in an enlarged space HP ⊗ HA,

ρ = TrA|ψ〉〈ψ |, (4)

where the ancillary space HA can be taken to be identical
to HP. This gives the thermofield double purification [56,57]
(TFD)

|ψβ〉 = 1√
Z

∑
n

e−βEn/2|n〉P|n〉A, (5)

where |n〉 are the eigenvectors and En the eigenvalues of
H and thermal expectation values of an operator O can be
obtained from 〈ψβ |O|ψβ〉. The TFD can be obtained by using
imaginary-time evolution |ψβ〉 ∼ e−βH/2|ψ0〉 starting from
a state |ψ0〉 = ∏

i
1√
d

∑
σi

|σi〉P|σi〉A, where σi runs over the
local Hilbert space of dimension d . On a given site, the
physical and ancillary degrees of freedom are then maximally
entangled in the state |ψ0〉. For the calculations presented in
Sec. VII imaginary time evolution with a time step of 0.001 is
used.

III. PHASE DIAGRAM AND PHENOMENOLOGY

In the absence of a field, the S > 1
2 Kitaev chain was

considered in Ref. [39] and the S = 1 model in zero field has
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been the subject of several studies [40,58–60]; however, to our
knowledge the phase diagram in the presence of a magnetic
field has not previously been investigated, likely since it has
been assumed that the model would transition to the polarized
phase without any intervening nontrivial phases as has been
shown to be the case for the S = 1

2 chain in a transverse mag-
netic field [61]. However, it turns out that if more general field
directions are considered a highly nontrivial soliton phase can
be identified in the S = 1

2 chain [37], appearing along the field
directions φxy = π

4 + n π
2 .

As we show in Secs. III A and IV A, for integer S, the
soliton phase appears as an unusual reentrant island rising out
of the sea of the polarized state (PS). If the magnetic field
already has forced the chain to enter the polarized phase, the
appearance of a nontrivial soliton phase as the magnetic field
is further increased may at first sight seem counterintuitive.
However, at the unique field strength h�

xy we identify two
exact ground states for any S with periodic boundary condi-
tions (PBC), which allows us to develop variational arguments
showing that such a soliton phase indeed must exist in the
vicinity of h�

xy. Furthermore, the existence of such a soliton
phase appears to rely on the presence of a gap for periodic
boundary conditions, while open boundary conditions should
give rise to numerous in-gap states. We mainly focus on the
integer spin case since the low-field physics of the half integer
spin chains is subtly different [37] but we expect many of our
results, in particular the existence of the soliton phase, to be
valid for any S.

Our main results for the phase diagram of the integer
spin Kitaev chain, Eq. (1), are summarized in Fig. 1 where
the soliton phase is shown in the first hx, hy quadrant for
S = 1, 2, 3, 4, and 5. By symmetry, a similar phase diagram
applies to the other three quadrants in the hx, hy plane with
φxy = π

4 + n π
2 . As discussed in Sec. V, in the classical limit

we expect solitons to be present for any hxy/K < 2S along
the line hx = hy and the fact that the size of the soliton phase
is growing with S is consistent with this. On the other hand,
it is clear that the soliton phase shrinks as S is decreased.
Surprisingly, as was shown in [37], it survives in the S = 1

2
limit as indicated in Fig. 1 by the dotted red line.

Solitons in spin chains have been studied from the late
seventies starting with the work of Mikeska [62,63] and
Fogedby [64,65] and several reviews and monographs are now
available [66–69]. At the same time, solitons in conducting
polymers have been investigated [70]. Initially, classical fer-
romagnetic (FM) models with an easy-axis Ising symmetry
were considered, where two equivalent ground states can
be identified. It is then straightforward to see that domain
walls can be formed between the ground states, which should
be regarded as topological solitons linking distinguishable
ground states [69] as opposed to hydrodynamic or nontopo-
logical solitons that cannot exist at rest [69]. In the continuum
approximation, the sine-Gordon model is then applicable,
leading to the well-known kink solutions describing the do-
main walls. Experiments on the 1D easy-plane ferromagnetic
chain system CsNiF3 [71] confirmed the presence of soli-
tons and subsequent studies of 1D antiferromagnetic materials
TMMC [72,73], CsCoBr3 [74,75], and CsMnBr3 [76–78] also
validated the existence of solitons excitations. Domain walls
between degenerate ground states in dimerized spin chains,

such as the S = 1
2 , J1-J2 model, have also been viewed as

solitons [79–84] and observed experimentally in BiCu2PO6

above a critical field [85] as well as in CuGeO3 [86]. However,
in all cases one associates a positive mass, �s > 0, with the
soliton, which appear as an excitation above the ground state
and never as the unique ground state as we find here. One
might argue against this on the grounds that for N odd a single
soliton is always present in the dimerized chains; however,
the energy is still higher than the comparable even N system
indicating a positive mass of the soliton.

Before turning to a detailed presentation of our results
in Secs. IV, V, VI, and VII it is useful to give a largely
phenomenological overview of the central mechanism and
physics behind the soliton phase, which we do in the
following.

A. Phenomenological description of the soliton phase

At the phenomenological level, we may understand the ap-
pearance of the soliton phase along the hx = hy field direction
in the following way. At high fields, all the spins align with the
field, and we are in the polarized state (PS). Since the spins on
all the bonds are aligned in a parallel manner, there is a large
energy cost arising from the Ising Kitaev terms on each bond
that has to be overcome to sustain the polarized state. As the
field is lowered the Zeeman term is not enough to overcome
this energy cost, instead the chain enters one of the following
two product states:

|XY 〉 = |xyxy . . .〉, |Y X 〉 = |yxyx . . .〉. (6)

Here |x〉 and |y〉 refer to eigenstates of Sx and Sy and |XY 〉
is shorthand for the state with |x〉 on odd sites and |y〉 on
even sites. These two degenerate states are selected because
the contribution to the energy from the Kitaev terms is iden-
tically zero. On the other hand, the spins are still partially
aligned with the field, so the Zeeman term lowers the energy.
Crucially, as we discuss further in Sec. V, the |XY 〉 and
|Y X 〉 states are exact ground states for the chain at a field
h�

x = h�
y = KS and consequently h�

xy= SK
√

2 for any S under
periodic boundary conditions (PBC) with energy −NKS2 as
long as N is even as dictated by the two site unit cell. This
follows from the fact that at h�

xy the Hamiltonian, Eq.(1), can
be written in the following form:

H = Hp − NKS2,

Hp = K
∑

j

[(
S − Sx

2 j+1

)(
S − Sx

2 j+2

)
+ (

S − Sy
2 j+2

)(
S − Sy

2 j+3

)]
.

(7)

From the form of Eq. (7), it is clear that |XY 〉 and |Y X 〉
are the only eigenstates of Hp with an eigenvalue of zero.
Furthermore, Hp is positive semidefinite proving that |XY 〉
and |Y X 〉 are ground states. The field value h�

xy is indicated as a
green dotted line in Figs. 2, 6, 7 and 9. At other field strengths
hxy �= h�

xy, within the soliton phase, the twofold degeneracy
of the ground state remain exact even for finite N but the
degenerate states are now distorted from the simple |XY 〉 and
|Y X 〉 forms.
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FIG. 2. Variational estimates with OBC, N = 100 and S = 1 of
the soliton mass �b and antisoliton mass �B as a function of field hxy

shown with the resulting estimate of the spin gap, �b + �B. Only for
a finite range of fields is the spin gap positive and the soliton phase
stable. The dotted red lines are the critical fields hc1

xy and hc1
xy obtained

from iDMRG, the green dotted line is h�
xy.

1. Open boundary conditions, soliton mass �b

Let us now consider the case of open boundary conditions
(OBC) where the first bond is a x bond ( ). We want to see if
there are other simple product states with even lower energy
than the |XY 〉 and |Y X 〉 states that can be considered with
OBC. To that end, we consider states of the form

|ψb(i)〉 = |Y X . . . ↗i . . . XY 〉, (8)

transitioning from |y〉 on odd and |x〉 on even sites to the
opposite pattern at site i where the spin is aligned with the
field, thereby maximizing the Zeeman term at that site. We
then need to consider what happens to the Kitaev terms neigh-
boring the ↗ defect. There are two possibilities,

, (9)

and

, (10)

we immediately see that due to the highly bond dependent
interaction and the fact that the chain starts with a x bond ( ),
the energy cost of the two bonds neighboring the defect con-
tinue to be zero, since the ↗i x occurs on a y bond with Sy

acting on |x〉 yielding zero and the y ↗i on a x bond with Sx

acting on |y〉. The ψb state therefore lowers the energy with
respect to the |Y X 〉 state without incurring an energy penalty.
We emphasize that this effect applies equally well to odd and
even N . A state such as ψb, transitioning between two ground
states, is a typical example of a topological soliton linking dis-
tinguishable ground states [68,69,87]. One may consider other
forms than the states Eq. (9) and Eq. (10) for the transition
between the two ground states, and in Ref. [37] we considered
conceptually simpler bond defects, which are convenient for S
= 1/2. However, since all such states are nonorthogonal, this
only leads to minor differences in the final results.

Having successfully found a low-energy product state with
a single defect, it is natural to consider two defects. However,
if the defects are on neighboring sites, ↗i↗i+1, it is clear

that a large energy cost is associated with the [i, i + 1] bond
since the spins are aligned across an antiferromagnetic bond.
A second defect therefore needs to be separate from the first,
creating a transition back to the Y X pattern. In order to gain
intuition about such a transition, let us consider “antidefect”
states of the form,

|B〉 = |XY . . . ↗i . . .Y X 〉, (11)

transitioning from |x〉 on odd and |y〉 on even sites to the
opposite pattern at site i where the spin is aligned with the
field. As before, such a state lowers the energy by aligning
the spin with the field at site i. However, something rather
extraordinary happens when we consider the bond dependent
Kitaev terms neighboring this antidefect. They can take one
of the two generic forms

, (12)

and

, (13)

in this case transitioning from the XY to the Y X pattern at
bond i. However, in this case the antidefect incurs a high
energy penalty from the Kitaev terms since the y ↗i now
occurs on a y bond and the ↗i x′ on a x bond. Remarkably,
we see that if the chain starts with a x bond, there is no way to
introduce an antidefect from |Y X 〉 to |XY 〉 without incurring
a large energy penalty. On the other hand, a single defect from
|Y X 〉 to |XY 〉 clearly lowers the energy. It follows that in the
ground state with OBC a single soliton is present and the
presence of several spatially separated solitons is energetically
prohibited. However, as we discuss in Sec. VI excited states
of a single soliton exists leading to a proliferation of low-lying
excitations.

We note that, starting the chain with a y bond ( ) with
a defect, transitioning from the |XY 〉 to the |Y X 〉 pattern
merely interchanges the roles of ψb and ψB. Furthermore,
the ψb and ψB states are not eigenstates of the Hamiltonian
but, considering all possible states of the form, |ψb(i)〉 leads
to a good description of the low-energy subspace for OBC.
In Sec. VI we discuss variational calculations within such a
subspace, and for clarity we reserve the name “soliton” for
linear combinations of the states �b = ∑

ai|ψb(i)〉. For OBC,
within such a variational subspace, we can then determine by
how much the presence of the soliton lowers the energy with
respect to the |Y X 〉 state, which we define as the soliton mass
�b. From the above, we expect that within the soliton phase,

�b < 0, (14)

otherwise the ground state would not be a single soliton state.
On the other hand, the |ψB(i)〉 are high energy states that in
isolation presumably are of little relevance. However, it is still
very useful to consider linear combinations �B = ∑

ci|ψB(i)〉
thereby estimating the energy cost of an antisoliton. In an
analogous manner we can then define the antisoliton mass �B

and, within the soliton phase, we expect �B > 0, reflecting
the energy cost associated with the antisoliton. Even though
a state such as �B is not expected to be close to an eigen-
state, �B should still be a good estimate of the energy cost
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of an antisoliton and soliton antisoliton bB states could be
of low-energy and therefore relevant for periodic boundary
conditions, which we discuss next.

2. Periodic boundary conditions—Spin gap

If we now consider periodic boundary conditions (PBC)
it is clear that excitations out of the |XY 〉, |Y X 〉 states must
involve both a defect and antidefect, which we refer to as bB
states. Another remarkable feature of the soliton phase in the
Kitaev chain is that there is no symmetry relation between the
defect and antidefect. In other systems where related physics
can be observed such as the dimerized phase of the S = 1

2 ,
J1-J2 model, where S = 1

2 domain walls between degenerate
ground states have been viewed as solitons [79–84], the soli-
ton and antisoliton are effectively indistinguishable and both
raise the energy and both carry a spin of S = 1

2 . Here, the
opposite is true, the defect and antidefect are clearly dis-
tinguishable with the defect lowering the energy while the
antidefect raises the energy (�b < 0, �B > 0). The defect and
antidefect are also not eigenstates of the spin operators and a
definite spin cannot be associated, and we cannot ascribe the
presence of the soliton to an unpaired spin. Furthermore, it
turns out that the antidefect raises the energy more than the
defect lowers it. If we now imagine a defect and antidefect
well enough separated in a periodic system that their interac-
tion can be neglected, this asymmetry in the energy cost then
leads to a spin-gap above the two degenerate ground states.
Even though the antidefect is rather costly, the combination
of the defect and antidefect has a much smaller energy cost,
creating a modest spin-gap. Not surprisingly, the maximum of
the spin-gap appears to coincide with h�

xy where the |XY 〉 and
|Y X 〉 product states are exact ground states. In fact, it is clear
that we must have

�b + �B > 0, (15)

within the soliton phase, and we can take �b + �B to be a first
approximation to the spin gap for PBC. Consider the opposite
to be true, in that case for OBC a state with bBb would have
lower energy than b, and bBbBb even lower energy, leading to
a contradiction. Eq (15) may therefore be seen as providing an
estimate of the extent of the soliton phase.

3. Critical fields, hc1
xy, hc2

xy

As we shall discuss further in Sec. VI, for fields hxy �= h�
xy

the states |XY 〉 and |Y X 〉 that form degenerate ground states at
h�

xy cease to be exact ground states, although the ground state
in the soliton phase is always twofold degenerate. Instead, an
approximation to the ground states can be found by consider-
ing the closely related product states of the form

|X ′Y ′〉 = |x′y′x′y′ . . .〉, |Y ′X ′〉 = |y′x′y′x′ . . .〉. (16)

where the states |x′〉 and |y′〉 are not orthogonal but instead at
an angle exceeding 90 degrees by a small amount δ in either
direction, justifying the |x′〉, |y′〉 notation. For such states the
spins are partly aligned with the field and the Zeeman term
can still lower the energy considerably; however, as long as
hxy < h�

xy an additional lowering of the energy can be obtained
from the Kitaev term if δ > 0. If we consider a small δ > 0
then to linear order, each Kitaev term then lowers the en-

ergy by −KS2δ while the average Zeeman term will change
to −Shxy(1 − δ)/

√
2 increasing the energy by +Shxyδ/

√
2.

Hence, if hxy < h�
xy, a nonzero δ > 0 can lower the energy

justifying the notation |x′〉 and |y′〉. For hxy > h�
xy, δ changes

sign and the angle between |x′〉, |y′〉 is smaller than 90 degrees
quickly approaching the PS state, which is reached when
δ = −π/4. We note that, for small δ, the states |X ′Y ′〉 and
|Y ′X ′〉 are still degenerate and linearly independent but no
longer orthogonal.

The presence of a nonzero δ implies that the soliton mass
�b and antisoliton mass �B vary with hxy, as does the energy
of the states |Y ′X ′〉 and |X ′Y ′〉 with respect to which they
are defined. As we discuss further in Sec. VI it is possible
to perform variational calculations to determine the optimal
�b and �B as a function of hxy thereby obtaining variational
estimates for the masses �var

b and �var
B versus hxy. Such esti-

mates should be relatively precise, close to h�
xy progressively

failing as the field is tuned away from h�
xy. If we use Eq. (15)

to define the soliton phase we can then use �var
b + �var

B > 0 to
estimate the extent of the soliton phase. Our variational results
(see Sec. VI) for �var

B and �var
B are shown in Fig. 2 for S = 1

as a function of hxy along with their sum. Crucially, there is
only a finite range around h�

xy where �var
b + �var

B > 0 and the
soliton phase is stable, indicating a lower hc1

xy and upper hc2
xy

critical field. The critical fields can also be determined very
precisely from iDMRG calculations, which are indicated as
the dotted red lines in Fig. 2. The variational estimate for hc2

xy is
in surprisingly good agreement with the iDMRG result, while
the variational estimate of hc1

xy is significantly worse. As we
discuss in Sec. IV, the agreement of the variational estimates
with precise DMRG results for �b progressively worsens as
the field is tuned away from h�

xy. Nevertheless, the fact that
the simple variational calculations predict the existence of
a nonzero lower critical field, hc1

xy , is highly nontrivial and
consistent with the fact that the soliton phase appears as an
island in the polarized sea (the PS state).

B. The Kitaev chain at h = 0

The Kitaev chain in zero field has a number of invariants
similar to the plaquette operators defined for the Honeycomb
model [1]. As shown in Ref. [39], if site operators

Rx
l = eiπSx

l Ry
l = eiπSy

l (17)

are defined, then, with x bond (y bond) couplings in H, Eq. (1),
between [l, l + 1] with l odd(even), bond-parity operators Wl

can be defined on odd and even bonds [59]

W2l−1 = Ry
2l−1R

y
2l , W2l−1 = Rx

2lRx
2l+1 (18)

that commutes with the Hamiltonian, [Wl ,H] = 0, and for
integer S, amongst themselves [Wl ,Wk] = 0. The Wl are there-
fore invariants and it can be shown that the ground state lies
in the sector with all 〈Wl〉=1 and for PBC it is nondegenerate.
For half-integer S, Wl anticommutes with, Wl±1 making the
physics of the half-integer spin Kitaev chain distinct from the
case of integer S that we consider here.

In materials other interactions than the Kitaev interactions
will be present and the S = 1 Kitaev chain has been studied in
the presence of an additional Heisenberg coupling J [59,60],
a � term [40], and also in the presence of anisotropy [58,88].

013210-5



SØRENSEN, RIDDELL, AND KEE PHYSICAL REVIEW RESEARCH 5, 013210 (2023)

FIG. 3. iDMRG results for the bond-parity operator 〈Wl〉 and
susceptibility χ e

D as a function of D for the S = 1 Hamiltonian HD,
Eq. (22). Results are shown alongside finite DMRG results with PBC
for the spin gap �pbc for N = 60. A smooth evolution with hxy is
evident and no transition is observed.

However, it is important to consider in detail the nature of
the zero-field ground state of the isotropic S = 1 chain with
J = � = 0. In Refs. [59,60] the ground state at h = 0 was
described as a quantum spin liquid; however, in Ref. [40] it
was noted that the entanglement spectrum is not doubled and
concluded it is not a symmetry protected topological (SPT)
state [89–91]. Following Ref. [92] we have therefore investi-
gated the projective representations, U that can be obtained
from the mixed transfer matrices in iDMRG. In general, if the
site symmetries Rx and Ry are respected their representations
can differ by a phase that must be ±1,

U (Rx )U (Ry) = ±U (Ry)U (Rx ). (19)

It is then convenient to isolate the phase factor by defining
[92]

OZ2×Z2 ≡ 1

χ
Tr(U (Rx )U (Ry)U †(Rx )U †(Ry)), (20)

with χ the bond dimension. For the S = 1 Kitaev chain at h =
0 we find OZ2×Z2 = 1. Similarly, under time reversal one finds
that at h = 0,

OTR ≡ 1

χ
Tr(UTRU �

TR) = 1, (21)

with � denoting complex conjugation and χ the bond dimen-
sion. Finally, if inversion is considered, one again finds that
the trivial phase factor OI = 1. This is in contrast to the
Haldane phase of the S = 1 spin chain where it is known
that OZ2×Z2 = −1, OTR = −1 in addition to a nontrivial phase
factor of OI = −1 when considering inversion [93,94]. For
S = 1 we can illustrate the trivial nature of the ground state of
the Kitaev chain at h = 0 by adding an uniaxial crystal field
term, D of the form D

∑
j (S

z
j )

2 to the h = 0 Hamiltonian to
obtain

HD = K
∑

j

(
Sx

2 j+1Sx
2 j+2 + Sy

2 j+2Sy
2 j+3

) + D
∑

j

(
Sz

j

)2
. (22)

Note that the D term preserves the symmetries present at h =
0 in Eq. (1). In the D → ∞ limit, the ground state of Eq. (22)
is the trivial product-state |0〉|0〉|0〉 . . .. We can now study the
evolution of HD as D is increased from zero. In Fig. 3 we

FIG. 4. iDMRG results with S = 1 for the bond-parity operator
〈Wl〉 and its derivate 〈Wl〉′ as a function of hxy/S at an angle φxy =
π/8 in the hx, hy plane shown alongside finite DMRG results with
PBC for the spin gap �pbc for N = 60. A smooth evolution with hxy

is evident and no transition is observed.

show iDMRG results for 〈Wl〉, which remain a constant 〈Wl〉
= 1 for any D. The gap �pbc increases with D and never ap-
proaches zero, likewise, the energy susceptibility χ e

D quickly
goes monotonically to zero. The evolution is smooth, and no
transition is observed, consistent with the trivial nature of the
ground state at h = 0. Without breaking the symmetry, we
have connected the two states. This defines what is sometimes
called a symmetry protected trivial phase [95,96] (SPT) or
alternatively a trivial SPT phase [97].

It is known that any SPT phase can be connected to
the same trivial product state if we break the symmetry
[51,89,90,98]. In our determination of the phase diagram in
Sec. IV A this turns out to be an important point since, as
already shown in Fig. 1, the soliton phases appear as isolated
islands within the polarized state implying that a path can be
found between the h = 0 and hxy = ∞ ground states without
an intervening phase transition. We note that, in contrast to
the D term discussed above, the introduction of a field term
at a general angle will break most symmetries present in the
Hamiltonian, Eq. (1). For S = 1 we can demonstrate the ab-
sence of a transition by calculating 〈Wl〉 and �pbc as a function
of hxy, which should interpolate smoothly between h = 0 and
the large-field limit where the simple product state associated
with complete field polarization is the ground state. iDMRG
results for such a calculation are shown in Fig. 4 where 〈Wl〉
is graphed versus hxy/S along with finite DMRG results for
the spin gap �pbc for N = 60. The calculations are done at a
fixed angle φxy = π/8 shown as the dotted blue line in Fig. 1,
that does not intersect with the soliton phase for S = 1. As is
clear from the results in Fig. 4 the evolution is smooth, and no
transition is observed, although some structure in 〈Wl〉′ can be
observed in the proximity of the soliton phase where �pbc also
has a minimum. In summary, for S = 1 we therefore conclude
that the h = 0 phase is a symmetry protected trivial (SPt)
phase. Once the field is applied in a general direction, the
symmetry is broken, and there is no distinction between the
SPt and polarized states. However, along the unique directions
hx = ±hy a transition to the soliton phase is possible since the
chain is still protected by the combined symmetry operation
of a rotation on each site by π around the field direction,
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FIG. 5. (a) iDMRG results for χ e
hxy

vs the field strength hxy/S for
the S = 1 and S = 2 Kitaev spin chains, showing the positions of
the critical fields hc1

xy and hc2
xy . (b) iDMRG results for the S = 1 and

S = 2 Kitaev spin chains, showing χ e
θz
/S vs the field angle θz for

field strengths of |h|/K = 1.3 (S = 1 ) and 2.6 (S = 2 ). (c) iDMRG
results for the S = 1 Kitaev spin chain for χ e

φxy
vs the field angle

φxy for field strengths of |h|/K = 0.8 and 1.3. Note the absence of
transitions for |h|/K = 0.8

Rxy = exp (iπ (Sx + Sy)/
√

2), followed by a translation by
one lattice spacing T . We expect this to hold for all integer
S but the half-integer case is distinct, as discussed in [37]
for S = 1

2 , since the Rxy ⊗ T symmetry protection allow for
a critical line to be present along the hx = ±hy symmetry
directions, connecting the soliton phase to h = 0.

IV. DMRG AND iDMRG RESULTS

A. Phase diagram

Our results for the phase diagram for S = 1, S = 2, S =
3, and to a lesser extent also for S = 4, 5 are summarized
in Fig. 1 where the extent of the soliton phase in the hx, hy

plane is shown as obtained from iDMRG results for χ e
h and

χ e
φxy

. Remarkably, the soliton phase appears as an island in
the polarized sea since the PS state completely surrounds the
soliton phase, as we have discussed above. For S = 1 this is
illustrated in Fig. 5(c) where χ e

φxy
is shown for the field values

hxy/K = 0.8 and 1.3. As the field angle φxy is varied, clear
transitions are visible for hxy/K = 1.3, but completely absent
for hxy/K = 0.8. If instead the field strength, hxy is varied at
a field angle of φxy = π/4 then two very well-defined transi-
tions are clearly visible in Fig. 5(a) for both S = 1 and S = 2.
The peak positions are what is plotted in Fig. 1. We have
extensively search for a phase transition distinguishing the
low-field phase (hxy < hc1

xy) from the PS state using different
techniques and different paths through the phase diagram, but
it appears adiabatically connected to the PS phase as explicitly
shown in Sec. III B. This is likely unique to the integer spin
models, since for S = 1/2 results indicate the presence of a
critical line [37] for hxy < hc1

xy .
The soliton phase is not only restricted to the hx, hy plane,

but extends to nonzero θz. This is demonstrated in Fig. 5(b)
where iDMRG results for χ e

θz
versus θz are shown at the

FIG. 6. DMRG results for the first few excited states as a func-
tion of field, hxy at φxy = 45◦ and θz = 0 for the S = 1 Kitaev spin
chain. The critical fields delineating the soliton phase are indicated
by the dotted blue lines. (a) Results for OBC with N = 100. At
hxy = 0 the ground state is fourfold degenerate. Note the proliferation
of low-lying states in the soliton phase, marked by “S”. (b) Results
for PBC with N = 60. Note, the twofold degenerate ground state in
the soliton phase. The green dotted line indicates h�

xy = SK
√

2.

fixed field values of hxy/K = 1.3 and hxy/K = 2.6 for S = 1
and S = 2 respectively. Clear transitions are observed at the
critical angles θz = 10.27◦ (S = 1 ) and 19.41◦ (S = 2 ).

B. Energy gaps

We next turn to a discussion of the energy spectrum at fixed
field angles θz = 0, φxy = π/4 as a function of field strength
hxy and for brevity we only discuss the S = 1 chain. Due to
the rapid growth of the size of the Hilbert space with N , it is
convenient to use finite size DMRG calculations to determine
the ground- (E0) and excited- (En) state energies and study the
gaps (�n = En-E0) in the spectrum. Our results are shown in
Fig. 6.

We first focus on PBC, where our results are shown in
Fig. 6(b). We exclusively consider N even dictated by the two-
site unit cell. The ground state at hxy = 0 is nondegenerate
below a sizable gap, �pbc(hxy = 0) = 0.1763K in agreement
with previous results [59]. The first excited state at hxy = 0
is known to be N-fold degenerate [39,59]. At hc1

xy = 1.077K
the gap closes, and the soliton phase is entered. Within the
soliton phase for hc1

xy < hxy < hc2
xy = 1.544K the ground state

is exactly twofold degenerate, even for finite N , below a
sizable gap. As mentioned previously, the maximum of the
gap coincides with the presence of the two exact product
ground states |Y X 〉 and |XY 〉 at h�

xy [indicated as the green
dotted line in Fig. 6(b)] where the gap is estimated to be
�pbc(hxy = 0) = 0.2555K .

We then turn the attention to OBC [Fig. 6(a)] where the
ground state at h = 0 is fourfold degenerate for S = 1 [59,88].
For small fields, the ground-state degeneracy is lifted, and a
low-lying doublet appears below a singlet. At field strengths
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FIG. 7. iDMRG results for the S = 1 and S = 2 Kitaev spin
chains. The dashed lines indicate the critical fields hc1

xy and hc2
xy .

(a) The entanglement entropy EE vs the field strength hxy/S. Note
that very low EE in the soliton phase. (b) The z component of the
vector chirality scaled with S2, X z/S2, vs hxy/S.

hxy ∼ 0.4 − 0.6 the low-lying singlet and doublet merge with
the other low-lying states, which we assume might form the
lower edge of a continuum. When the lower critical field hc1

xy
is reached the gap closes and throughout the soliton phase,
marked as S in Fig. 6, a proliferation of low-lying states is
visible until the upper critical field hc2

xy = 1.544K is reached
where the chain transitions back into the polarized state and
a gap opens up. Within the soliton phase the DMRG results
for the gaps indicate significant finite-size corrections, which
we have not been able to analyze in detail, and it has not been
possible to determine if these low-lying states correspond to
a true gapless spectrum as opposed to a significant number
of discrete in-gap levels appearing within the gap present for
periodic boundary conditions. The ground-state degeneracy, if
any, within the soliton phase for OBC is also an open question.

The difference in the spectrum within the soliton phase is
rather remarkable, even more so since the spectrum for OBC
does not depend on the parity of N and occurs equally well for
N even and odd. As discussed in the introduction, the absence
of SU(2) symmetry means that it is difficult to explain the
multitude of low-lying states occurring for OBC as arising
from unpaired degrees of freedom.

C. Chiral order X z and entanglement

In light of the two exact ground sates |Y X 〉 and |XY 〉
occurring at h�

xy for PBC it is not surprising that the soliton
phase can be characterized by a nonzero vector chirality X α ,

X α = (−1) j〈(S j × S j+1)α〉. (23)

While X x,y = 0 in the soliton phase, X z �= 0 as was previ-
ously established for S = 1

2 . This is shown in Fig. 7(b) for
S = 1 and S = 2 where iDMRG results for X z are plotted
as a function of hxy/S. As can be seen, X z remains sizable
throughout the soliton phase reaching a maximum close to (or

FIG. 8. Finite size DMRG results with N = 600 for the S = 1
(blue) and S = 2 (red) Kitaev spin chains showing the relative energy
density (〈ei〉 − ebulk

0 )/S2 vs position i in the chain. Results are shown
for hxy/K = 1.32(S = 1) and hxy/K = 2.60(S = 2)

at) h�
xy before abruptly going to zero at hc1

xy and hc2
xy . The soliton

phase should then be regarded as a chiral soliton phase.
In Fig. 7(a) we show results for the bipartite entanglement

entropy,

EE = −TrρA ln ρA (24)

where ρA is the reduced density for half the system. The states
|Y X 〉 and |XY 〉 are only exact ground states for PBC and the
iDMRG results shown in Fig. 7(a) are obtained for OBC.
Hence at h�

xy, shown as the green dotted line in Fig. 7, the
entanglement entropy EE is not strictly zero, as should be the
case for an exact product state, but rather extremely small.
As is clearly visible in Fig. 7(a), EE peaks at hc1

xy and hc2
xy but

away from the quantum critical points it remains rather small
throughout the entire soliton phase, approaching zero at h�

xy,
implying that the ground state is close to a product state within
the soliton phase.

D. Soliton mass �b and width ξS

The variational calculation of the soliton mass for OBC
described in Secs. III A 1 and VI relies on a subtractive proce-
dure where the energy of the single soliton state is measured
with respect to the isotropic product state. For a more detailed
understanding of the DMRG results it is useful to have a more
refined measure of �b that does not involve a subtraction. In
the absence of SU(2) symmetry and a well defined spin for the
soliton it is then necessary to focus on the local bond energy
density, which we define as the energy of the bond [i, i + 1]
plus 1/2 the field terms on the sites i and i + 1. Far away from
the soliton the energy density attains a constant value ebulk

0 and
we expect that this bulk energy density is essentially identical
to the energy density of the twofold degenerate ground states
with PBC. It is then instructive to study the following quantity:

〈ei〉 − ebulk
0 . (25)

This is shown in Fig. 8 where 〈ei〉 − ebulk
0 is plotted versus i

for hxy/K = 1.32 (S = 1) and 2.60 (S = 2), showing a sharply
localized soliton. Furthermore, the soliton “sharpens” with
increasing S, displaying a smaller spatial extent. We can now
simply define the soliton mass �b as the integrated deviation
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FIG. 9. Finite size DMRG results with N = 1200 for the S = 1
and S = 2 Kitaev spin chains. The dashed lines indicate the critical
fields hc1

xy and hc2
xy . (a) The soliton mass �b/S2 EE vs the field strength

hxy/S. (b) The soliton size ξS vs hxy/S.

from ebulk
0 in the following manner:

�b =
∑

i

(〈ei〉 − ebulk
0

)
. (26)

Clearly, this measures by how much the soliton has lowered
the total energy, which was our original definition of the
soliton mass �b. From high precision DMRG calculations
with OBC on N = 1200 sites for a range of hxy we can now
extract �b for both S = 1 and S = 2. Our results are illustrated
in Fig. 9(a) where �b/S2 is shown as a function of hxy. As
one might expect, �b is roughly proportional to S2, consistent
with classical models of solitons [66], and with only a modest
variation throughout the soliton phase. In contrast to the vari-
ational results for �var

b shown in Fig. 2 the DMRG results in
Fig. 9(a) show that �b tends to zero at hc1

xy and hc2
xy . From the

definition, Eq. (26) it follows that �b = 0 outside the soliton
phase where we expect the energy density to be uniform. In
contrast, the variational states ψb can never yield a uniform
energy density, and we have to use a less refined measure
for the soliton mass. However, it is still useful to compare
the estimates at h�

xy, where we from DMRG for S = 1 find
�b = −0.7457 and from the variational calculations �var

b =
−0.7225, in good agreement.

The energy profiles shown in Fig. 8 can be used to esti-
mate the size of the soliton ξS by simply measuring at what
distance |〈ei〉 − ebulk

0 | has decreased by a factor of 1/e from
the maximum. Measures of ξS are indicated on Fig. 8. Using
this definition of ξS , we have determined the size of the soli-
ton throughout the soliton phase from high precision DMRG
calculations with OBC on N = 1200 sites for both S = 1
and S = 2. The results are shown in Fig. 9(b). Through most
of the soliton phase ξS remains roughly constant at around
120 lattice spacings for S = 1 and approximately 60 lattice
spacings for S = 2, before increasing dramatically close to hc1

xy

and hc2
xy .

V. UNIFORM PRODUCT STATES

As already discussed in Sec. III A the product states |Y X 〉
and |XY 〉 play a crucial role in our understanding of the soliton
phase. For θz = 0, φxy = π/4 at h�

xy they are exact ground
states for PBC, however, as pointed out in Sec. III A 3, when
hxy is tuned away from h�

xy a good approximation to the ground
state can be obtained by considering product states of the
form |Y ′X ′〉 and |X ′Y ′〉 where the angle between |y′〉 and |x′〉
deviates from π/2 in both directions by an amount c. We now
wish to establish a reliable estimate of the optimal value for
this angle c� as a function of hxy for any S.

A. Estimate of c�

In the following we focus on the case of S = 1 and S = 2
with generalizations to S > 2 straight forward. With c taking
the place of δ discussed in Sec. III A 3, we define for S = 1
the following states on a given site:

|x′〉 = (ei2c,
√

2eic, 1)/2,

|y′〉 = (e−i2b,
√

2e−ib, 1)/2, (27)

with b = π/2 + c, while for S = 2 we define

|x′〉 = (ei4c, 2ei3c,
√

6ei2c, 2eic, 1)/4,

|y′〉 = (e−i4b, 2e−i3b,
√

6e−i2b, 2e−ib, 1)/4. (28)

We can then define the product states

|X ′Y ′〉 = |x′y′x′y′ . . .〉, |Y ′X ′〉 = |y′x′y′x′ . . .〉, (29)

for both S = 1 and S = 2. The optimal value for the excess
angle, c�, will depend on the field hxy. However, if we neglect
boundary effects, then, due to the simple product nature of the
states, it is only necessary to consider a two site system in
order to find the optimal c�. To proceed, we focus on a x bond
and assign half a field term to each bond and write the single
bond Hamiltonian as follows:

H1bond = KSx
1Sx

2 − hxy
(
Sx

1 + Sy
1 + Sx

2 + Sy
2

) 1

2
√

2
, (30)

with the 1/
√

2 arising from the field angle φxy = π/4. Evalu-
ating E1bond =< Y ′X ′|H2site|Y ′X ′ > we find

E1bond = −KS2 cos c sin c − Shxy√
2

(cos c − sin c). (31)

Minimizing E1bond with respect to c at a given hxy yields the
optimal c as

c∗ = tan−1

[
u + √

4S2 − u2

−u + √
4S2 − u2

]
= cos−1 u

2S
− π

4
, (32)

where u = hxy/K . It follows that c∗ becomes zero at u =
hxy/K = S

√
2, coinciding with h�

xy as has to be the case.
Furthermore, at hxy/K = 2S the optimal value for c becomes
c∗ = −π/4 and the spins are then fully aligned with the field
for any hxy > 2SK . This signals the transition to the PS state
at the classical level and is shown as the red dashed line in
Fig. 1. Using the optimal value of c∗ from Eq. (32) one finds
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for the energy,

E1bond = −1

4
(2S2 + u2), u � 2S. (33)

B. Estimate of the product state defect energy

It is illustrative to also consider a single defect state, at h�
xy

where calculations with the states |ψb(i)〉 can be significantly
simplified. At h�

xy we may estimate the defect energy of the
state

(34)

and compare it to the state |yxy〉 on just two bonds sites since
the two states will have the same energy elsewhere. That is,
we consider the two bond Hamiltonian

H2bond = KSx
1Sx

2 + KSy
2Sy

3 − hxy√
2

(
1

2

(
Sx

1 + Sy
1

)

+ Sx
2 + Sy

2 + 1

2

(
Sx

3 + Sy
3

))
, (35)

again counting the field terms on the first and last site by
a factor of 1/2. At h�

xy, it is straight forward to evaluate

〈yxy|H2bond|yxy〉 = −2 and 〈d|H2bond|d〉 = –1–
√

2. The en-
ergy of the defect state |d〉 is then 1–

√
2 ∼–0.4142 lower in

energy than the |yxy〉 state. As discussed in Sec. IV D, at h�
xy

DMRG results for �b yields −0.7457, considerably lower.
Moreover, if this analysis is extended to hxy �= h�

xy, and to

include the state describing the antidefect, then

the upper critical field coincides with the classical value of
2S and the lower critical field is absent. We therefore need to
consider a full variational calculation in the space defined by
all states |ψb(i)〉 and |ψB(i)〉, which we do next. A prelimi-
nary discussion of results from such variational calculations
formed we presented in Secs. III A 2 and III A 3.

VI. VARIATIONAL APPROACH

In order to develop a variational approach valid for an
extended part of the phase diagram we generalize the single
defect states in Eq. (9) and (10) to be constructed from the |y′〉
and |x′〉 states,

(36)

transitioning from the Y ′X ′ to the X ′Y ′ pattern at bond i.
As already noted, the energy cost of the ferromagnetically
aligned x′

i x′ bond is relatively small since it occurs on a y
bond. Likewise for the y′

i y′ bond. As shown in Fig. 7(a) the
entanglement is very low in the soliton phase and we expect
such product states to be of relevance. Analogously, we define
“anti”-defects of the form

,

(37)

in this case transitioning from the X ′Y ′ to the Y ′X ′ pattern at
bond i. As discussed, in this case the defects are now rather
costly since since the y′

i y′ now occurs on a y bond and the
x′

i x′ on a x bond. The defect states ψb and ψB are slight
variations of the bond defects considered for the S = 1

2 Kitaev
chain in Ref. [37] and are slightly more optimal for S � 1.
However, since all such basis states are nonorthogonal the
final results depend relatively little on the specific choice of
basis states.

With the states ψb and ψB defined we can form linear
combinations of these single defect states and perform a
variational calculation within the single defect subspace. As
illustrated in Fig. 7(a), the entanglement is very low within
the soliton phase and we therefore expect such linear combi-
nations to yield very reliable results within the soliton phase.
Explicitly, we define the variational states,

|�b〉 =
N∑

k=1

ak|ψb(k)〉, |�B〉 =
N−1∑
l=2

gl |ψB(l )〉. (38)

We refer to these states as soliton and antisoliton states to
distinguish them from the individual basis states |ψb(i)〉 and
|ψB(i)〉, which we refer to as defect states or basis states.
Correspondingly, we distinguish between soliton energies and
defect energies when referring to the energy of the linear
combination and individual basis state. We also note that for
�B we exclude the sites l = 1, N since their overlap with the
lower energy |Y ′X ′〉 and |X ′Y ′〉 states is an inconvenience.

The determination of the variational coefficients ak and
gl is a straightforward optimization problem. Since the basis
states are nonorthonormal the minimum can be found by
solving the generalized eigenvalue problem (see Appendix)
in terms of the matrices

Hkl = 〈ψb(k)|H |ψb(l )〉 and Mkl = 〈ψb(k)|ψb(l )〉, (39)

which can be solved by standard methods. The solution of
the generalized eigenvalue problem, Eq. (39), determines the
variational optimized ground states �b, �B in the subspace
formed by |ψb(i)〉 and |ψB(i)〉.

Having defined the single defect states |ψb(i)〉, |ψB(i)〉 it is
straight forward to extend the variational calculations to two-
defect bB states relevant for PBC by considering

,

(40)

and defining two-soliton states of the form

|�bB〉 =
∑
i �= j

ai, j |ψbB(i, j)〉. (41)

Similar variational two-soliton states have previously been
considered for the J1-J2 S = 1

2 chain [79] and S = 1
2 Kitaev

chain [37]. It is convenient to include the |Y ′X ′〉 and |X ′Y ′〉
states in the variational subspace for PBC and the variational
gap to two-soliton states �var

2sol can then be directly obtained
from the the eigenvalues of Eq. (39). For PBC we expect �var

2sol
of the spin gap �pbc.
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TABLE I. DMRG and variational, E (�b), E (�B), E (Y ′X ′) energies for the S = 1 chain for different field values hxy and system sizes N .
The resulting variational estimates of �var

b , �var
B and �var

B + �var
b and �var

2sol . These can be compared with DMRG results for N = 1200 for �
dmrg
b

and N = 60 for �
dmrg
pbc .

hxy N DMRG E (�b) E (�B) E (Y ′X ′) �
dmrg
b �var

b �var
B �var

B + �var
b �var

2sol �
dmrg
pbc

h�
xy 100 –100.7453 –100.7221 –99 –100 –0.7457 –0.7221 1 0.2779 0.2788 0.2555

240 –240.7457 –240.7225 –239 –240 –0.7225 1 0.2775
1.3 100 –93.0400 –92.8743 –91.2751 –92.1725 –0.7487 –0.7018 0.8974 0.1956 0.2327 0.1549

240 –222.3942 –222.0245 –220.4254 –221.3225 –0.7020 0.8971 0.1951

A. Variational results for S = 1

We first discuss our results for S = 1. Representative nu-
merical results for a few values of hxy and N are collected in
Table I. The first check on the variational results is to directly
compare the energy obtained with results from DMRG. For
S = 1 at h�

xy we see that the presence of the defect low-
ers the energy considerably when compared to the |Y ′X ′〉
state for a final result that is within 0.023% (N = 100) and
0.009% (N = 240) of the DMRG results. This is a remarkable
good agreement although we note that the agreement worsens
for hxy �= h�

xy. The agreement between �var
b and �

dmrg
b is at

the level of a few percent. A more detailed check on the
variational ground state �b with OBC can be obtained by
evaluating 〈Sα

i 〉, α = x, y and comparing to DMRG results.
Variational results at hxy/K = 1.3 for the on-site magnetiza-
tion (filled circles) are shown in Fig. 10(a) where only odd
sites are plotted making the change from |y′〉 on odd sites, |x′〉
on even sites to |y′〉 on even sites, |x′〉 on odd sites, evident.
The results in Fig. 10(a) for hxy/K = 1.3 are in excellent
agreement with the DMRG results shown as open circles, with
the agreement even better at h�

xy. For comparison, we show

FIG. 10. 〈Sα
i 〉 from finite size DMRG results (open circles) with

N = 100 for the S = 1 and S = 2 Kitaev spin chains, compared to
variational results (solid circles) for the one soliton state �b. To
emphasize the presence of the soliton only odd sites are shown.
(a) Results for S = 1 at hxy/K = 1.3. (b) Results for S = 2 at hxy/K
= 2.6. (c) Variational amplitudes |ak |2 for S = 1. (d) Variational
amplitudes |cl |2 for S = 2.

results for S = 2 in Fig. 10(b) at hxy/K = 2.6 with equally
good agreement between variational and DMRG results.

From the numerical results in Table I it is also clear that
�var

B + �var
b is in good agreement with the result �var

2sol ob-
tained directly from two-soliton variational calculations with
Eq. (41) with N = 60. Furthermore, at h�

xy both estimates are

in agreement with �
dmrg
pbc obtained from DMRG calculations

on periodic chains. This can be viewed as a validation of
the soliton antisoliton picture and would indicate that interac-
tions between the soliton and antisoliton are relatively modest.
However, from the discussion of the size of the soliton in
Sec. IV D we expect ξS ∼ 120 lattice spacings in the S = 1
soliton phase, implying that much larger variational calcula-
tions will be needed to study the soliton antisoliton interaction
in detail. Regrettably, the two-soliton calculations scale as N2

making such calculations numerically untractable.

1. Excited single soliton states

As can be seen from Table I, in the vicinity of h�
xy the

spin gap for PBC is sizable, of the order ∼0.25K . It is then
interesting to consider excited single soliton states [87,99].
We denote such states by n�b and we can obtain reliable
variational estimates for such excited states by considering the
first few eigenstates when solving the generalized eigenvalue
problem, Eq. (39). As is clear from the results in Sec. IV B
such excited single soliton states cause a proliferation of low-
lying levels within the soliton phase at energies below the gap
for PBC. Results for 1�b, 2�b and 3�b at h�

xy are shown in
Fig. 11. For the first excited state 1�b we compare to excited
state DMRG results for 〈Sx

i 〉, which are in excellent agreement
with the variational results. Note that in Fig. 11 results for
every site is plotted while in Fig. 10 only results for odd sites
are plotted. However, in Fig. 11 the same change from |y′〉 on
odd sites, |x′〉 on even sites to |y′〉 on even sites, |x′〉 on odd
sites, occurs.

VII. SPECIFIC HEAT S = 1

The thermodynamics of the S = 1 Kitaev chain in zero
field, h = 0, has previously been studied [40,88] using transfer
matrix renormalization group [100,101] (TMRG) techniques
and a perturbative effective Hamiltonian approach [88]. To
fully account for the presence of a single soliton in the
low-energy spectrum for OBC, which breaks translational
symmetry we here use a purification method outlined in Sec. II
that does not rely on translational symmetry. We exclusively
focus on the S = 1 chain, although we expect results for other
integer S > 1 to be relatively similar.
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FIG. 11. 〈Sα
i 〉 for the S = 1 chain at h�

xy from variational calcu-
lations for the excited soliton state n�b. (a) Results for first excited
state 1�b, compared to finite size DMRG results (open circles) for
〈Sx

i 〉dmrg (b) Results for second excited state 2�b. (c) Results for third
excited state 3�b.

Under periodic boundary conditions at h = 0 we show our
purification results in Fig. 12(b) for the S = 1 chain for N =
20, 30, 40, and 50 down to temperatures of kBT/K = 0.01. In
complete agreement with the TMRG results from Ref. [40],
finite-size effects are conspicuously absent. However, the un-
usual double peak structure, with peaks at Tl/K = 0.057 and
Th/K = 0.587 for N = 50, of the specific heat associated with
thermal fractionalization [102,103] characteristic of Kitaev

FIG. 12. The specific heat Cv (T ) vs kBT/K for the S = 1 Kitaev
spin chain at hxy/K = 0.0, as obtained from purification. (a) OBC, N
= 20, 30, 40, 100. (b) PBC, N = 20, 30, 40, 50.

FIG. 13. The specific heat Cv (T ) vs kBT/K for the S = 1 Kitaev
spin chain in the middle of the soliton phase, at hxy/K = 1.3, as
obtained from purification. (a) OBC, N = 20, 30, 40, 100. (b) PBC,
N = 20, 30, 40, 50.

physics is clearly present arising from the separation of energy
scales as previously noted [40,88]. The low-temperature peak
has been shown to arise from excitations of the bond-parity
operators, Wl Eq. (18), with the average bond density, W̄b =
(1/L)

∑〈Wl〉, approaching zero at the energy scale of the
low-temperature peak [40,88].

For OBC our results at h = 0 are shown in Fig. 12(a) for
N = 20, 30, 40, and 100. In this case there are clearly visible
finite-size effects visible in the low-temperature peak. As the
system size N is increased the low-T peak increases even-
tually approaching the PBC result. We note that the results
presented here for S = 1 can be straightforwardly integrated
to yield the entropy. However, the results from such an inte-
gration do not show any indication of plateaus as expected to
occur in the two dimensional honeycomb models [104].

The results in Fig. 12 should be contrasted with the results
in Fig. 13 obtained for the S = 1 chain close to the center
of the soliton phase at hxy/K = 1.3. Compared to the h =
0 results the first observation is that the separation of energy
scales present at h = 0 inducing the double peak structure
is now significantly reduced and replaced with an almost
constant specific heat between temperatures of kBT/K ∼ 0.05
although several not very well defined peaks are visible. For
PBC, Fig. 13(b) it is possible to locate three peaks, two
of which are almost independent of N ; however, the low-
est temperature peak dramatically decreases with increasing
system size with significant weight in Cv shifting to lower
temperatures. It is natural to associate this lowest temperature
peak with the bB soliton states. Within the picture we have
been proposing here, where the spin gap for PBC �pbc in the
soliton phase arises from the presence of such bB states with
both a soliton and an antisoliton, it is natural to expect rather
pronounced finite-size effects due to the significant size of the
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solitons ξS ∼ 120 lattice spacings in the S = 1 soliton phase.
This would explain the strong size dependence of the peak. We
expect a continuum of such bB states starting above the spin
gap, which is consistent with the results for PBC in Fig. 13(b).
From the results in Fig. 6(b), we note that �pbc ∼ 0.1548/K
at hxy/K = 1.3 whereas the low-T peak for N = 50 occurs
at kBT/K = 0.038 implying a significant density of states
starting at �pbc.

The more interesting features of the specific heat are ob-
served for OBC, where we show results in Fig. 13(a) at
hxy/K = 1.3 for N = 20, 30, 40, and 100. For OBC the
finite-size effects are now pronounced for any kBT/K < 1.
It is natural to view this observation as being due to a con-
siderable spatial size of the excitations responsible for the
energy fluctuations. Most strikingly, for temperatures below
kBT/K ∼ 0.02 − 0.03 a “foot” of the specific heat can be
observed with Cv almost constant over a considerable range of
temperatures, albeit at a very low value. The value of Cv over
this plateau appears to be decreasing with N . Unfortunately,
due to size and temperature limitations it has not been possible
to perform calculations at larger N , lower T . Since this foot in
Cv is only present for OBC at temperatures lower than for PBC
it is clear that it most arise from excitations only present with
OBC. We therefore ascribe this feature to the single soliton
ground state for OBC, excitations of which (Fig. 11) should
significantly contribute to Cv at energies below �pbc

VIII. DISCUSSION

Here we discuss a few open questions and future directions.
The variational picture of the soliton phase that we have been
advocating here rely on the presence of a gap for periodic
boundary conditions within the soliton phase. At the special
point h�

xy, the |Y X 〉 and |XY 〉 product states are exact ground
states. It therefore seems plausible that an analytic proof of a
gap at h�

xy can be established. So far we have not been able to
develop such a proof due to the low symmetry at h�

xy and the
degeneracy of the ground state with PBC in the soliton phase.

Under open boundary conditions we have shown here that
the ground state for any N always contain a single soliton,
which can exist in excited states leading to the formation of
in-gap states. Excited states of quantum solitons have been
considered before [68,87] and are usually associated with a
discrete harmonic oscillator like spectrum. In the present case
it is not clear if the in-gap states created by excitations of
the soliton form a continuous band or if they form discrete
states in the thermodynamic limit. The energy of the lowest
excited states appear to approach the ground state quickly as
N is increased but due to limitations in the size of the systems
we can reliably study it has not been possible to determine
if they indeed become degenerate with the ground state in the
thermodynamic limit. The degeneracy of the ground state with
OBC is hence an open question. We leave both these questions
for further study.

As illustrated in Fig. 1 the size of the soliton islands grow
with increasing S and one might ask the question what hap-
pens in the S → ∞ classical limit. Classical Monte Carlo
simulations are inconclusive in the low-field limit but one
might speculate that the soliton phase would occupy the entire

phase diagram for any |h| < 2S but so far we have not been
able to establish a proof of this.

It would be of considerable interest to identify realistic
low-dimensional Kitaev materials to test the soliton physics
presented here. Recently it was proposed that CoNb2O6

exhibits signatures of Kitaev physics known as twisted Ki-
taev chain [105], albeit with S = 1

2 FM Kitaev interaction
and hence not the AFM Kitaev interaction required for our
scenario. However, it seems likely that the AFM Kitaev in-
teraction required for the soliton phase can occur in S = 1
systems. Note that the effective S = 1

2 Kitaev materials with
d5 have a predominantly FM Kitaev interaction as the inter-
orbital exchange process among t2g orbitals leads to a FM
Kitaev interaction [2,106]. On the other hand, in S = 1 sys-
tems with d8, the Kitaev interaction is AFM as found from
the exchange processes of eg orbitals via strong spin-orbit
coupling at anions [30]. It was also suggested that 4 f 1 system
contains AFM Kitaev interaction due to the spatial anisotropy
of the f orbitals and the small crystal field splitting [107].
Thus, the soliton phase occurring in the AFM Kitaev interac-
tion under the magnetic field can be investigated if solid-state
materials with quasi-one-dimensional d8 systems and edge
sharing heavy ligands or 4 f 1 can be identified. Since the
solitons we have discussed here are particularly well defined
for large integer spin, if such low-dimensional AFM Kitaev
materials with large S can be found, it would offer the best
possibility for observing the solitons. Finally, we remark that
it would interesting to study the dynamics of the solitons in a
nonequilibrium setting.
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APPENDIX: THE GENERALIZED EIGENVALUE
PROBLEM

Let us consider a set of states {|bi〉}N
i=1 and a Hamiltonian

H. We can expand a generic state |ψ〉 on such basis states
writing

|ψ〉 =
N∑

i=1

ci|bi〉. (A1)

According to the variational principle the minimum condition
is then written as the generalized eigenvalue problem∑

j

(Hi j − EMi j )c j = 0, (A2)

where Hi j = 〈bi|H|b j〉 and Mi j is the overlap matrix 〈bi|b j〉.
In the case where 〈bi|b j〉 = δi j this reduces to the standard
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eigenvalue problem. We can write Eq. (A2) in matrix form as

Hc = EMc, (A3)

which defines a generalized eigenvalue problem. To solve
Eq. (A3) we first solve the standard eigenvalue problem

Md = md. (A4)

If the states {|bi〉}N
i=1 are linearly independent then M is

positive definite and Hermitian, which implies we can find a
unitary matrix D such that D†MD is a diagonal matrix. Since
all m > 0 we can then define

Ai j ≡ Di j√
mj

(A5)

so that A†MA = I . If we now define

c = Av, (A6)

then Eq. (A3) can be written as

HAv = EMAv. (A7)

If we now apply the matrix A† from the left we then obtain

A†HAv = EA†MAv = Ev, (A8)

which is now a standard eigenvalue problem for the matrix
A†HA. We have then reduced the solution of the generalized
eigenvalue problem to the solution of two standard eigenvalue
problems.
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phase transitions in the spin-1 Kitaev-Heisenberg chain, Phys.
Rev. B 102, 144437 (2020).

[60] W.-L. You, Z. Zhao, J. Ren, G. Sun, L. Li, and A. M. Olés,
Quantum many-body scars in spin-1 Kitaev chains, Phys. Rev.
Res. 4, 013103 (2022).

[61] K.-W. Sun and Q.-H. Chen, Quantum phase transition of the
one-dimensional transverse-field compass model, Phys. Rev.
B 80, 174417 (2009).

[62] H. J. Mikeska, Solitons in a one-dimensional magnet with an
easy plane, J. Phys. C 11, L29 (1978).

[63] H. J. Mikeska, Non-linear dynamics of classical one-
dimensional antiferromagnets, J. Phys. C 13, 2913 (1980).

[64] H. C. Fogedby, Solitons and magnons in the classical Heisen-
berg chain, J. Phys. A: Math. Gen. 13, 1467 (1980).

[65] H. C. Fogedby, The spectrum of the continuous isotropic quan-
tum Heisenberg chain: quantum solitons as magnon bound
states, J. Phys. C 13, L195 (1980).

[66] H.-J. Mikeska and M. Steiner, Solitary excitations in one-
dimensional magnets, Adv. Phys. 40, 191 (1991).

013210-15

https://doi.org/10.1103/PhysRevResearch.2.013072
https://doi.org/10.1038/s41467-019-10405-8
https://doi.org/10.1103/PhysRevB.100.144445
https://doi.org/10.1038/s41467-020-15320-x
https://doi.org/10.1038/s41467-021-24257-8
https://doi.org/10.1103/PhysRevB.78.115116
https://doi.org/10.1038/s41467-018-03934-1
https://doi.org/10.1103/PhysRevLett.123.037203
https://doi.org/10.7566/JPSJ.89.033701
https://doi.org/10.1103/PhysRevB.102.121102
https://doi.org/10.1103/PhysRevResearch.2.022047
https://doi.org/10.1103/PhysRevResearch.3.013160
https://doi.org/10.1103/PhysRevB.105.L060403
https://doi.org/10.1103/PhysRevResearch.2.023361
https://doi.org/10.1103/PhysRevResearch.5.L012027
https://doi.org/10.1103/PhysRevX.11.011013
https://doi.org/10.1103/PhysRevB.82.195435
https://doi.org/10.1103/PhysRevResearch.3.033048
https://doi.org/10.1103/PhysRevLett.68.3487
https://doi.org/10.1103/PhysRevLett.69.2863
https://doi.org/10.1103/PhysRevB.48.10345
https://doi.org/10.1103/RevModPhys.77.259
https://doi.org/10.1080/00018730600766432
https://doi.org/10.1016/j.aop.2010.09.012
http://arxiv.org/abs/arXiv:0804.2509
https://doi.org/10.1103/PhysRevB.81.064418
https://doi.org/10.1016/0034-4877(76)90060-4
https://doi.org/10.1016/0034-4877(86)90055-8
https://doi.org/10.1103/PhysRevLett.93.207204
https://doi.org/10.1103/PhysRevB.79.245101
https://doi.org/10.1103/PhysRevLett.108.227206
http://arxiv.org/abs/arXiv:1708.09349
https://doi.org/10.1103/PhysRevB.98.235163
https://doi.org/10.1016/0375-9601(76)90178-X
https://doi.org/10.1140/epjb/e2015-60247-6
https://doi.org/10.1103/PhysRevB.102.144437
https://doi.org/10.1103/PhysRevResearch.4.013103
https://doi.org/10.1103/PhysRevB.80.174417
https://doi.org/10.1088/0022-3719/11/1/007
https://doi.org/10.1088/0022-3719/13/15/015
https://doi.org/10.1088/0305-4470/13/4/035
https://doi.org/10.1088/0022-3719/13/9/005
https://doi.org/10.1080/00018739100101492


SØRENSEN, RIDDELL, AND KEE PHYSICAL REVIEW RESEARCH 5, 013210 (2023)

[67] A. Kosevich, B. Ivanov, and A. Kovalev, Magnetic solitons,
Phys. Rep. 194, 117 (1990).

[68] T. Vachaspati, Kinks and Domain Walls (Cambridge University
Press, Cambridge, 2006).

[69] T. Dauxois and M. Peyrard, Physics of Solitons (Cambridge
University Press, Cambridge, 2006).

[70] A. J. Heeger, S. Kivelson, J. R. Schrieffer, and W. P. Su,
Solitons in conducting polymers, Rev. Mod. Phys. 60, 781
(1988).

[71] J. K. Kjems and M. Steiner, Evidence for Soliton Modes in
the One-Dimensional Ferromagnet CsNiF3, Phys. Rev. Lett.
41, 1137 (1978).

[72] J. P. Boucher, F. Mezei, L. P. Regnault, and J. P. Renard,
Diffusion of Solitons in the Antiferromagnetic Chains of
(CD3)4NMnCl3: A Study by Neutron Spin Echo, Phys. Rev.
Lett. 55, 1778 (1985).

[73] L. P. Regnault, J. P. Boucher, J. Rossat-Mignod, J. P. Renard,
J. Bouillot, and W. G. Stirling, A neutron investigation of the
soliton regime in the one-dimensional planar antiferromagnet
(CD3)4NMnCl3, J. Phys. C 15, 1261 (1982).

[74] W. J. L. Buyers, M. J. Hogan, R. L. Armstrong, and B. Briat,
Solitons in the one-dimensional Ising-like antiferromagnet
CsCoBr3, Phys. Rev. B 33, 1727 (1986).

[75] H.-B. Braun, J. Kulda, B. Roessli, D. Visser, K. W.
Krämer, H.-U. Güdel, and P. Böni, Emergence of soliton
chirality in a quantum antiferromagnet, Nat. Phys. 1, 159
(2005).

[76] B. D. Gaulin and M. F. Collins, Evidence for out-of-easy-plane
solitons in CsMnBr3, Can. J. Phys. 63, 1235 (1985).

[77] B. D. Gaulin, M. F. Collins, and W. J. L. Buyers, Spin waves
in the triangular antiferromagnet CsMnBr3, J. Appl. Phys. 61,
3409 (1987).

[78] B. D. Gaulin, Soliton spin configurations along the classi-
cal anisotropic Heisenberg chain, J. Appl. Phys. 61, 4435
(1987).

[79] B. S. Shastry and B. Sutherland, Excitation Spectrum of
a Dimerized Next-Neighbor Antiferromagnetic Chain, Phys.
Rev. Lett. 47, 964 (1981).

[80] W. J. Caspers and W. Magnus, Some exact excited states in
a linear antiferromagnetic spin system, Phys. Lett. A 88, 103
(1982).

[81] W. J. Caspers, K. M. Emmett, and W. Magnus, The
Majumdar-Ghosh chain. Twofold ground state and ele-
mentary excitations, J. Phys. A: Math. Gen. 17, 2687
(1984).

[82] E. Sørensen, I. Affleck, D. Augier, and D. Poilblanc, Soliton
approach to spin-Peierls antiferromagnets: Large-scale numer-
ical results, Phys. Rev. B 58, R14701(R) (1998).

[83] E. S. Sørensen, M.-S. Chang, N. Laflorencie, and I. Affleck,
Impurity entanglement entropy and the Kondo screening
cloud, J. Stat. Mech.: Theory Exp. (2007) L01001.

[84] E. S. Sørensen, M.-S. Chang, N. Laflorencie, and I. Affleck,
Quantum impurity entanglement, J. Stat. Mech.: Theory Exp.
(2007) P08003.

[85] F. Casola, T. Shiroka, A. Feiguin, S. Wang, M. S. Grbić,
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