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Pattern formation induced by symmetry breaking is a fundamental concept underlying biological phenomena
across different scales, from single cells to tissues. However, the mechanics behind the pattern formation of
the actomyosin system remains elusive due to complex biochemical regulations in living cells. In this study,
we report the transition between distinct patterns of cytoplasmic actomyosin networks: steady actin flow and
periodic actin waves, which are confined to a quasi-two-dimensional cell-like compartment. By combining
molecular perturbations and numerical simulations of the active fluid model, we show that contractility and actin
polymerization rate are the critical factors for the state transition from the steady actin flow to periodic actin
waves. These patterns emerge either when active stress outweighs the diffusive relaxation of actin filaments or
when the actin polymerization rate is sufficiently slow to accumulate actin filaments close to the surface of the
circular confinement. Furthermore, our active fluid model predicts that the spatial heterogeneity at the onset of
contraction leads to a rotational actin wave, which is stable only at the phase boundary between the steady actin
flow and periodic actin waves. This study provides an integrative understanding of the distinct pattern formation
of active gels confined in cell-sized spaces.
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Symmetry breaking is the basis of pattern formation in
biological systems, from fish skin patterns [1] to the oscilla-
tory pattern of the Min system in bacteria [2,3]. Such spatial
pattern formation via translational symmetry breaking is often
observed in reaction-diffusion systems. In reaction-diffusion
systems of two species composed of an activator and an
inhibitor, symmetry breaking arises from Turing instability,
where the faster diffusion of the inhibitor stabilizes the small
initial fluctuation in the spatial pattern [4]. Growing evidence
suggests that the active cytoskeletal system, consisting of actin
filaments and myosin molecular motors, plays an important
role in achieving diverse pattern formation by harnessing its
contractile forces [5–8]. Such actomyosin-involved symmetry
breaking has been observed in various biological phenomena,
including the chiral symmetry breaking of radial actin flow
in fibroblasts [9], rotational waves in epithelial cells [10],
rotational surface waves in dividing cells [11,12], and circular
movement of blebs in Xenopus blastomeres [13].
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Recent experiments have shown that Rho signaling is key
to forming a reaction-diffusion pattern coupled with F-actin
polymerization in the cell cortex [14,15]. However, the ex-
tent to which the mechanics of the actin cytoskeleton plays
a role in driving pattern formation remains unclear. In the-
oretical studies, continuum mechanical models of the actin
cytoskeleton on a flat cortex plane considering myosin con-
tractility have shown that translational symmetry breaking can
be achieved by the competition between active stress and dif-
fusive relaxation [16–18]. Although these theoretical models
showed that active force generation is a critical factor that
causes the transition from the uniform state to ordered pat-
terns in the actin cortex, such ordered patterns in experiments
exhibit more diverse behaviors than theoretical predictions.
Recent in vivo and in vitro experiments have shown that the
combination of intracellular and cortical actomyosin networks
induces distinct behaviors such as actin flow [19,20], periodic
waves [21,22], rotational flows [9], and rotational waves [12],
whereas how these distinct patterns emerge in the actomyosin
system confined in small cell-sized spaces remains elusive.

In overcoming the difficulties in precisely controlling the
biophysical parameters in living cells to compare the the-
oretical predictions with the experimental results, in vitro
cell models composed of cytoplasmic actomyosin networks
of Xenopus laevis egg extracts have been developed [20,21].
This reconstituted system allows us to flexibly control the
biophysical parameters and develop simple theoretical models
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by decoupling mechanics from complex biochemical signal-
ing [7,22–25]. In vitro systems using cytoplasmic actomyosin
networks have revealed various self-organizations by harness-
ing the physiologically relevant actin turnover dynamics of
the extracts, ranging from continuous actin flow [20,24] and
periodic actomyosin contractions [21,22] to dynamic defor-
mation and migration of droplets [26]. However, the physical
mechanisms and molecular determinants of the emergence of
these distinct self-organized states in the same actomyosin
system remain poorly understood.

In this study, we realized both steady actin flow and ring-
shaped periodic actin waves by encapsulating cytoplasmic
actomyosin networks in a quasi-two-dimensional (quasi-
2D) circular confinement composed of water-in-oil droplets.
We demonstrated that the state transition can be controlled
through contractility and polymerization rate by combin-
ing molecular perturbations and theoretical modeling of an
active fluid model. Furthermore, our numerical simulation
predicted the emergence of a rotational wave by imposing a
time delay at the onset of contraction. This study revealed a
physical mechanism of symmetry breaking and pattern for-
mation of actomyosin networks confined in cell-sized spaces.
The results provide an integrative physical understanding
of biological pattern formation driven by active cytoskeletal
systems.

I. RESULTS

A. Transition from steady actin flow to periodic actin waves

In the present study, we encapsulated the cytoplasmic acto-
myosin networks of M-phase Xenopus eggs into water-in-oil
droplets covered with a phospholipid monolayer to develop a
cell-like quasi-2D circular confinement ranging from a diam-
eter of 200 to 300 µm [Figs. 1(a) and 1(b)]. Xenopus egg ex-
tracts contain physiological concentrations of various proteins
required to perform F-actin polymerization/depolymerization
and contraction of actomyosin networks, and the literature
has revealed that the Arp2/3 complex is highly active in
M-phase extracts [21]. Other studies encapsulating extracts
into water-in-oil droplets have suggested that the recruitment
of actin nucleation-promoting factor WASP at the water-oil
interface may account for localized Arp2/3-mediated F-actin
nucleation [20], and actomyosin contraction slows upon inhi-
bition of Arp2/3 by CK666 [22].

In this experimental setup, we found two self-organized
patterns in the confined actomyosin system. In the first pattern,
the steady flow of actin filaments (F-actin) was continuously
transported from the membrane boundary toward the center
of the droplet, which we named “steady actin flow” [Fig. 1(c),
Movie S1]. In the second pattern, the F-actin formed a ring-
shaped pattern, where a gel-like structure was periodically
formed at the periphery of the droplet and moved toward
the center, which we named “actin waves” [Fig. 1(d), Movie
S2]. Both patterns share the characteristic behavior of F-actin
being transported toward the center of the droplet. However, in
the steady actin flow pattern, the F-actin density was constant
over time, whereas in the periodic actin wave pattern, the actin
density periodically changed due to the periodic contraction of
the actin gel toward the center [Figs. 1(e)–1(g)]. Elucidating
the physical and molecular processes that cause these distinct

F-actin density dynamics is key to understanding the mecha-
nism of pattern formation in the confined actomyosin system.

In theoretical models of actomyosin systems, contractile
stress has been proposed as a primary factor that breaks
translational symmetry [16–18]. To examine the influence
of contractile stress on the observed self-organized patterns
of actomyosin networks, we added Calyculin A (hereafter
called “CalA”), a myosin II phosphatase inhibitor, resulting in
increased contractile stress. By increasing the concentration
of CalA, we observed a state transition from a steady actin
flow to ring-shaped periodic actin waves [Fig. 1(h)]. These
patterns can be clearly distinguished in the angular kymo-
graphs extracted from the time-lapse images [Figs. 1(e)–1(g)].
If F-actin is continuously contracting in the case of steady
actin flow, visually identifying the steady actin flow in the
kymograph would be difficult. To show the presence of steady
actin flow, we added velocity vectors of steady actin flow
calculated using particle image velocimetry on F-actin fluo-
rescence [Fig. 1(c)].

To quantitatively characterize the state transition, we av-
eraged the fluorescence intensity of F-actin over the angle
0 < θ < 360 (deg.) within the region of interest (0.45R <

r < 0.55R, where r is the distance from the droplet center,
and R is the radius of the droplet), and periodic structures were
detected using Fourier transform (Fig. S1, Methods) [27]. In
the power spectrum of the fluorescence intensity of F-actin,
the peak frequency 1/T → 0 indicates the wave period of
T → ∞, corresponding to the steady actin flow. In contrast,
the finite peak frequency 1/T corresponds to the periodic
actin waves with a finite wave period T . It is notable that the
periodic actin waves emerge at CalA concentrations greater
than 30 pM [Fig. 1(h)]. The wave period mostly remained at
the same value T � 1.5 min for the high CalA concentration,
indicating that the period is not primarily determined by the
myosin contractility but by other factors such as actin poly-
merization dynamics [22].

B. Contractility and polymerization rate control
the state transition

To elucidate the critical molecular determinants involved in
the transition from steady actin flow to periodic actin waves,
we performed molecular perturbations to change the contrac-
tility and polymerization rate. Under control conditions, the
steady actin flow was stable [Figs. 2(a) and 2(b), (i)]. After
increasing the contractility with CalA, periodic actin waves
emerged [Figs. 2(a) and 2(b), (ii)], and the steady actin flow
emerged again by increasing the polymerization rate of F-
actin by adding the VVCA (Verprolin, cofilin, acidic) domain
of N-WASP, which activates the Arp2/3-mediated actin poly-
merization [Figs. 2(a) and 2(b), (iii), Movie S3]. Conversely,
the steady actin flow in the control condition was transformed
into periodic actin waves by decreasing the F-actin polymer-
ization rate with the addition of Cytochalasin D, an inhibitor
of F-actin polymerization [Figs. 2(a) and 2(b), (iv), Movie
S4], and the steady actin flow emerged again by decreasing the
contractility by adding the myosin phosphorylation inhibitor
Y27632 [Figs. 2(a) and 2(b), (v), Movie S5].

We also attempted to inhibit specific F-actin nucleators,
a branched F-actin nucleator Arp2/3 complex, and an un-
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FIG. 1. Increased contractility induces the transition from the steady actin flow to the periodic actin waves. (a) Schematic showing the
experimental setup. Droplets were confined between PDMS-coated glass slides, and the dynamics of the actomyosin contraction was observed
by confocal microscopy. (b) A representative image captured at the middle plane of the droplet. (c) Time-lapse images showing the steady actin
flow under a control condition. The velocity field was calculated using particle image velocimetry (PIV) and averaged for 2 min. (d) Time-lapse
images showing the periodic actin wave contraction after adding 30 nM Calyculin A. (e) Schematic showing the definition of the region of
interest (ROI) where kymograph was extracted for (f) and (g). (f) Angular kymograph extracted from (c). (g) Angular kymograph extracted
from (d). Horizontal stripes are the ring-shaped actin waves. (h) The inverse period (frequency of the wave) was analyzed using the angular
kymograph (Fig. S1). Wavelike structure emerged at the Calyculin A (CalA) concentration larger than 0.3 pM. All images were captured by
confocal microscopy. m:s stands for minutes and seconds. * stands for p < 0.05. Scale bars, 100 µm.

branched F-actin nucleator formin protein. First, by adding
the Arp2/3 inhibitor CK666, periodic actin waves emerged;
this result is similar to those of Cytochalasin D (Fig. S2).
The period of actin waves slowed with the addition of
CK666, suggesting the contribution of Arp2/3-mediated F-
actin polymerization, consistent with our previous study [22].
In contrast, with the addition of the formin inhibitor SMIFH2,
neither steady actin flow nor periodic actin waves emerged

(Fig. S2). Note that SMIFH2 did not specifically suppress
formin in the present extracts, but it also substantially inhib-
ited the ATPase activity of several myosin types [28]. Thus,
we speculate that observing no apparent contraction upon
the addition of SMIFH2 might be due to the inhibition of
myosin contractility. As we could not specify the molecular
target of SMIFH2 inhibition, we chose CK666 to confirm the
contribution of the F-actin nucleator in this study.
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FIG. 2. (a) Transition between flow and wave was experimentally confirmed by the molecular perturbations. (i) Control condition. (ii) By
adding Calyculin A, a myosin phosphatase inhibitor, the contractility of myosin σact was increased, and the actin wave state was stabilized. (iii)
By adding the VVCA, an activator of actin nucleator Arp2/3, the polymerization rate kp increased, and the flow state was stabilized. (iv) By
adding Cytochalasin D, an F-actin polymerization inhibitor, the polymerization rate kp was decreased, and the actin wave state was stabilized.
(v) By adding the Y27632, an inhibitor of myosin phosphorylation, the contractility was decreased, and the flow state was stabilized. (b) Wave
periods calculated from Fourier transformation of the intensity profiles in (a). (c) Conceptual model and schematic phase diagram. Flow-to-
wave transition is controlled through (1) contractility of myosin σact and (2) polymerization rate of F-actin kp. The right panel summarizes the
schematic phase diagram inferred from the molecular perturbations. All images were captured by confocal microscopy. Scale bars, 100 µm.

Conclusively, these molecular perturbations revealed that
myosin contractility and F-actin polymerization are keys to
controlling the state transition between the steady actin flow
and periodic actin waves [Fig. 2(c)].

C. Active fluid model of contractile actomyosin networks

To understand the physical mechanism of the transi-
tion from steady actin flow to periodic actin waves, we
developed a theoretical model of contractile actomyosin net-
works confined in quasi-2D circular confinement [Fig. 3(a)].
We described the actomyosin networks as an active fluid
producing active stress σact, which experiences the internal
viscous stress σvis and external friction from the cytoplasm
and the membrane −γ v, where γ is the effective friction
coefficient and v is the velocity of the actomyosin gel [17,18].

Thus, the momentum balance for the active fluid is given by

∇ · (σvis + σact ) = γ v. (1)

The viscous stress is given by the dissipative part of the
viscous fluid [29]:

σvis = η[∇v + (∇v)T ] + ηb(∇ · v)I, (2)

where η and ηb are the dynamic and bulk viscosities, respec-
tively, and I is the identity matrix. Additionally, the active
stress was assumed to be proportional to the density of the
actomyosin gel,

σact = (ζ�μ)0 f (ρ)I, (3)

where (ζ�μ)0 is the effective myosin contractile stress per
F-actin, ρ is the local density of actomyosin gel, and f (ρ) =
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FIG. 3. Active fluid model of the steady actin flow to ring-shaped wave transition. (a) Schematic showing the internally generated active
stress σact , viscous stress σvis, and polymerization and depolymerization rate of F-actin kp and kd, respectively. (b) Schematic showing the
definition of bulk and surface polymerization rate kbulk

p and ksurf
p , respectively. Here, we assume that the surface polymerization rate is 10

times faster than the bulk polymerization rate to mimic the experimentally observed local F-actin polymerization at the inner droplet surface.
(c) At the Péclet number Pe = 38, steady actin flow emerged. White arrows indicate the velocity field. (d) At Pe = 115, periodic actin waves
emerged. (e) Angular kymographs were extracted from the ROI in the time sequences (c) and (d). The larger the Péclet number (i.e., effective
contractility), the more the periodic actin waves stably emerged. (f) Péclet number dependence of the peak frequency is shown. The graph
shows that the periodic waves emerged at a certain Pe as the Pe increased. (g) Phase diagram of the active fluid model by changing the Pe and
ksurf

p . (h) Phase diagram of the active fluid model by changing the bulk-to-surface polymerization ratio αp.

ρ/(ρ0 + ρ), where ρ0 is a constant [17,18]. For simplicity, we
assumed that local myosin density is proportional to F-actin
density [18]. Thus, we considered only the mass conservation
equation for F-actin:

∂ρ

∂t
+ ∇ · (ρv) = D∇2ρ + kp − kdρ, (4)

where D is the effective diffusion constant of F-actin, and kp

and kd are the polymerization and depolymerization rates of
F-actin, respectively. For simplicity, the orientation of F-actin
was assumed not to play a substantial role in the state transi-
tion behaviors in this study. Previous studies using Xenopus
egg extracts have also used isotropic models that reproduced
the contractile behavior of the cytoplasmic actomyosin net-
work [22,24].
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D. Numerical simulation in a 2D circular domain
imposed by a phase-field model

To implement a quasi-2D circular confinement mimicking
extracts-in-oil droplets, we used a phase-field model [29–33].
Specifically, we used the phase-field dynamics developed in
[29], which is expressed as

∂φ

∂t
= Dφ∇2φ + �φU ′(φ). (5)

The first term on the right side describes the resistance
to the deformation, where the parameter Dφ has a similar
effect to surface tension [29,31]. The second term is intro-
duced to conserve droplet volume, and U ′ is the derivative
of the double-well potential U , U ′(φ) = φ(φ − 1)[φ − 1/2 −
α0(V/Vtar − 1)], where the fixed points φ = 0 and 1 describe
the outside and inside of the droplet, respectively. The term
α0(V/Vtar − 1) describes the conservation of droplet volume
V = ∫∫

drφ toward a target volume Vtar. The parameter α0

characterizes the stiffness of this constraint [31]. The ratio of
parameters (8Dφ/�φ )1/2 determines the characteristic width
of the droplet boundary [29]. As we were interested in the
actomyosin dynamics in circular confinement, we imposed an
immobile nondeformable boundary condition by eliminating
the advection term −v · ∇φ [29]. We also neglected the bend-
ing rigidity of the membrane for the current purpose, which
corresponds to higher-order differentials in φ [30,32,33].

In the present phase-field model, the no-flux boundary
condition on actomyosin gel was imposed by an effective
energy E (ρ, φ) = ∫∫

dr{(ρ2 + β )[(1 − φ)2 + β]}1/2, which
is an addition to the chemical potential of actomyosin gel, and
β was introduced to avoid singularities [29]. This led to the
final, full set of nondimensionalized equations:

∇2v + λ∇(∇ · v) + ∇ f = v, (6)

∂ρ

∂t
+ Pe∇ · (ρv) = ∇2ρ + kp − kdρ + ερ∇2 δE

δρ
, (7)

∂φ

∂t
= Dφ∇2φ + �φU ′(φ), (8)

where the lengthscales and timescales were nondimensional-
ized by the lengthscale unit l = (η/γ )1/2 and the timescale
unit τ = η/Dγ . The Péclet number (i.e., the ratio between
the timescale of advective and diffusive transport) is de-
fined as Pe = Cl/D = (ζ�μ)0/Dγ , where the characteristic
velocity C = (ζ�μ)0/(ηγ )1/2 is introduced. The rescaled pa-
rameters were redefined as ρ/ρ0 → ρ, kp/ρ0τ → kp, kd/τ →
kd. We assumed the constant λ = 1 + ηb/η = 1/3 to sim-
plify the momentum balance equation [29]. The explicit form
of the functional derivative in Eq. (7) is δE/δρ = ρ{(ρ2 +
β )−1[(1 − φ)2 + β]}1/2. Additionally, we assumed that the
local actin polymerization near the inner surface of the droplet
was faster than that in the bulk space within the droplet.
This assumption is based on previous experimental obser-
vations. Although the exact mechanism remains uncertain,
studies have reported the local polymerization of F-actin at
the periphery of the droplet when extracts were confined to
water-in-oil droplets [20,22]. It has been reported that the
VCA domain of WASP can be adsorbed onto the extracts-oil
interface due to its partially hydrophobic nature, by which

the local actin assembly may be activated [34]. Here, we
defined the bulk-to-surface ratio of the polymerization rate as
αp ≡ kbulk

p /ksurf
p = 0.1, where kbulk

p is the bulk polymerization
rate at 0 < r < 0.9R, and ksurf

p is the surface polymerization
rate at 0.9R < r < R [Fig. 3(b)].

First, we present the numerical results for Pe = 38, ksurf
p =

1.5, kd = 1, β = 0.0001, Dφ = 1, �φ = 160Dφ, ερ = 20,

α0 = 50 with the initial condition of ρ(x, y) = 1, v(x, y) = 0.
At the boundary of the droplet, the uniform actomyosin
networks started to contract inward, forming a high-density
actomyosin cluster at the center of the circular domain
[Figs. 3(c) and 3(d)]. Subsequently, steady actin flow emerged
at Pe = 38 [Figs. 3(c) and 3(e), Movie S6], whereas the peri-
odic actin waves emerged at Pe = 115 [Figs. 3(d) and 3(e),
Movie S6]. Fourier analysis of the F-actin density ρ showed
that periodic actin waves emerged as the Péclet number Pe
increased [Fig. 3(f)], consistent with the experimental obser-
vations [Fig. 1(h)]. As the Péclet number is predominantly
determined by the contractility when D and γ are fixed, this
result indicates contractility-induced instability of the acto-
myosin system. The wave period was shorter for the higher
surface polymerization rate ksurf

p [Fig. 3(f)], suggesting that
F-actin polymerization determines the periodicity of actin
waves, consistent with the experimental results (Fig. S2) [22].

The phase diagram was obtained by changing Pe and
ksurf

p [Fig. 3(g)]. The phase diagram again showed that the
periodic actin waves emerged as Pe increased [Fig. 3(g),
(i)–(ii)]. Decreasing the polymerization rate also induces a
flow-to-wave transition [Fig. 3(g), (i)–(iv)], and the simulta-
neous reduction of contractility leads to the flow [Fig. 3(g),
(iv)–(v)], as observed in the experiments [Fig. 2(c)]. At a
very low polymerization rate ksurf

p ∼ 0, steady actin flow was
stable [Fig. 3(g), (vi)]. Periodic actin waves emerged when the
polymerization rate was increased toward ksurf

p > 1 [Fig. 3(g),
(vi)–(ii)]. Notably, the steady actin flow stabilized again with
a higher polymerization rate [Fig. 3(g), (ii)–(iii)], consistent
with the experimental observations [Fig. 2(c)]. The reason
for this might be that at a high polymerization rate, newly
polymerized filaments are immediately transported toward the
center of the droplet, by which the actomyosin density around
the surface becomes smaller, thereby suppressing the forma-
tion of periodic actin waves. Thus, this result suggests that the
higher actomyosin density in the vicinity of the droplet surface
than in the bulk could be an important factor in generating
periodic actin waves.

We fixed the bulk-to-surface polymerization ratio αp =
kbulk

p /ksurf
p = 0.1 to describe the local F-actin assembly at

the droplet surface in our experiments [22]. However, as
suggested by the reentrant transition from periodic actin
waves to steady actin flow at a higher polymerization rate in
the phase diagram [Fig. 3(g), (ii)–(iii)], the bulk-to-surface
contrast of actomyosin density could affect the contractile
behavior of the actomyosin system. To clarify the contri-
bution of αp, we altered the bulk-to-surface polymerization
ratio to within 0.1 < αp < 1 by changing kbulk

p with a fixed
ksurf

p [Fig. 3(h)]. Notably, at a fixed Pe, the periodic actin
waves only emerged at a smaller bulk-to-surface polymeriza-
tion ratio αp < 0.5 (i.e., a higher surface polymerization than
the bulk), suggesting that the contrast of the bulk-to-surface
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FIG. 4. Initial time delay of the contraction induces the rotational symmetry breaking. (a) Schematic showing the definition of the time
delay in contraction. The circular domain was divided into four regions, in which each region successively starts to contract with time delay τd.
(b) Time-lapse images of the initial time delay in contraction and the emergence of the rotational wave. Parameters were Pe = 90, ksurf

p = 1.75,
and αp = 0.01. (c) Angular kymograph extracted from (b). (d) Phase diagram with the initial time delay in the contraction. Each symbol
corresponds to the flow (empty circle), the wave (filled blue circle), and the rotation wave (filled red square). The simulation was performed
with the bulk to surface polymerization ratio αp = 0.01. (e) Representative examples of distinct wave behaviors. Each image corresponds to
Pe = 85, ksurf

p = 1.5 (flow, empty circle); Pe = 100, ksurf
p = 1.5 (rotation wave, filled red square); Pe = 115, ksurf

p = 1.75 (ring-shaped wave,
filled blue circle).

polymerization rate crucially determines the contractile be-
havior of the confined active gels. Therefore, our active fluid
model also predicts the phase transition of contractile behav-
ior in terms of the ratio of the bulk-to-surface polymerization
rate αp.

E. Time delay of initial contraction-induced rotational
symmetry breaking

Our theoretical model considered a uniform progression
of actin polymerization at the membrane surface; however,
the initiation of actin polymerization in cells and reconsti-
tuted systems often occurs heterogeneously. To test how such
heterogeneity alters pattern formation, we performed numer-
ical calculations with a nonuniform time delay in initiating
actomyosin contraction at the surface. The nondeformable
circular domain was divided into four regions, and each region
initially started to contract with the time delay τd [Fig. 4(a)].
Specifically, at t = 0, we initiate the time evolution of Eqs. (6)
and (7) in region 1, while the actomyosin density in regions
2–4 was kept as the initial value. Subsequently, at t = τd and
after that, we allow the time evolution of regions 2–4. In this

way, we describe the time delay in the initiation of contraction
(i.e., spatial heterogeneity of the initiation of contraction).

With the time delay τd = 10−2Ts (Ts is the total simulation
duration), we found that the rotational wave became stable
after several time steps [Figs. 4(b) and 4(c), and Movie S7].
This suggests that an initial perturbation in the distribution of
actomyosin networks can break the rotational symmetry. The
phase diagram shows that with a fixed ksurf

p , the steady actin
flow is stable at a small Pe, whereas this flow is destabilized
at a large Pe and becomes ring-shaped periodic actin waves,
as discussed [Figs. 4(d) and 4(e), Movie S8]. However, with
the time delay of the initial contraction, a rotational wave
emerged at the phase boundary between the steady actin flow
and the periodic actin waves [Figs. 4(d) and 4(e), red squares,
Movie S8].

The aforementioned results can be interpreted as follows:
In our active fluid model, the contractile behavior of the
actomyosin networks could be determined by a competition
between the bulk actomyosin network located near the center
of the droplet and the surface actomyosin network poly-
merized in the vicinity of the droplet periphery. The bulk
actomyosin network self-organizes into steady actin flow, and
the surface actomyosin network self-organizes into periodic
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actin waves. By increasing the bulk polymerization rate,
steady actin flow was observed in the larger phase space
(Fig. S3). Thus, the rotational wave could emerge at the phase
boundary between the steady actin flow and periodic actin
waves, where the competing contractile forces between the
bulk and surface actomyosin networks may be balanced. Im-
portantly, we confirmed that the magnitude of τd did not affect
the period of the finally stabilized rotational wave, indicating
that the emergence of the rotational wave is independent of
the initial condition; therefore, a self-organized stable state
is determined by the physical parameters of the actomyosin
system (Fig. S4). However, the detailed mechanisms remain
unclear because of the difficulty in obtaining an analytical
expression from complex equations with imposed boundary
conditions. A detailed analysis, such as nonlinear perturbation
analysis, can be explored in further research.

II. DISCUSSION

Previous studies using cytoplasmic actomyosin networks
found various contractile behaviors of the actomyosin net-
works, such as steady actin flow [20,24] and ring-shaped
periodic actin waves [21,22], whereas how these distinct
contractile behaviors could emerge in the same actomyosin
system has been elusive. In this study, by combining molec-
ular perturbations and theoretical modeling of active gels,
we showed that distinct contractile behaviors emerged in the
same cytoplasmic actomyosin networks by fine tuning the
contractility of myosin and the polymerization rate of F-actin,
where we constructed a simple theoretical model explaining
the mechanism of the transition between the distinct contrac-
tile behaviors from the steady actin flow to the ring-shaped
periodic actin waves.

Recent experimental studies have shown that contractile
actomyosin networks can be used to move large nucleuslike
structures toward the center of extracts-in-oil droplets [22,25].
However, in these studies, different actomyosin structures,
either the inward steady actin flow or the ring-shaped periodic
actin waves, were separately proposed as driving forces for
the centering of large nucleuslike structures. Based on this
study, we can understand that such distinct self-organized
actomyosin structures are not mutually exclusive but can be
realized in the same actomyosin system depending on myosin
contractility and the F-actin polymerization rate. Therefore,
our study provides an integrative understanding of the self-
organization of actomyosin networks confined to cell-sized
spaces.

Theoretical studies have shown that the pattern formation
in active gels is stabilized when the active stress outweighs
the diffusive relaxation in 2D periodic systems [16–18] and
in the surface of a sphere as a model of the cell cortex
[35,36]. In this study, we demonstrated the importance of the
combination of intracellular and cortical actomyosin networks
within the cell-like closed spaces that can together drive state
transitions, wherein both the strength of the active stress and
the polymerization rate determine the stable states. Recent ex-
perimental studies have shown the importance of cytoplasmic
actomyosin networks in cell division [12], spindle position-
ing [19], and cytoplasmic segregation [37]. Thus, the active
fluid model developed in this study may provide mechanical

insights into contractile behaviors widely observed in living
cells, highlighting the potential importance of the mechan-
ics of intracellular actomyosin networks interacting with the
actomyosin cortex.

Our confined active fluid model also predicted the emer-
gence of rotational waves based on the time delay of the
onset of contraction. Such a time delay could occur in liv-
ing cells because the actomyosin network is tightly bound
to the cell plasma membrane, and the onset of contraction
could be spatially heterogeneous. Notably, theoretical works
have predicted spontaneous rotational symmetry breaking of
active fluids by considering the microscopic polarization field
(orientation field) of F-actin [41–43]. When actin-binding
lipids increase actin-membrane interactions in extracts-in-oil
droplets, filament orientation at the water-oil interface might
play a role in inducing rotational symmetry breaking, such
as by changing the direction of the motion of migrating
actomyosin droplets [26]. The experimental realization of ro-
tational waves in extracts-in-oil droplets remains an important
topic for future research.

Several experimental studies have reported rotational
waves driven by contractile actomyosin networks in various
cell types, including fibroblasts [10], HeLa cells [11], CHO
cells [9], fish parasites [38], and Xenopus blastomeres [13].
This suggests that a rotational wave could be a universal bi-
ological phenomenon that is not considerably affected by the
system details. In a biological context, rotational waves might
be related to polarity formation at the onset of migration. The
literature has revealed that increased contractility induces po-
larity formation in migratory cells, whereas some cells fail to
form stable polarity and undergo rotational behaviors [39,40].
Thus, understanding the mechanism of rotational waves might
also provide implications for polarity formation without en-
tering into the rotational wave state. Moreover, during the cell
division of epithelial cells, rotational actin waves were shown
to randomize the mitochondrial position, increasing the prob-
ability that each daughter cell receives an equivalent amount
of mitochondrial networks. This process may be necessary for
epithelial regeneration to maintain tissue homeostasis [12].

Note that the confined space represented by the phase
field is assumed to be immobile and nondeformable in this
study. Although the no-flux boundary condition may be eas-
ily introduced in polar coordinates, we chose the phase-field
model after considering a future extension toward mobile,
deformable droplets. Our recent study reported deformable
motile droplets encapsulating cytoplasmic actomyosin net-
works [26], and the present phase-field model is well-suited
for describing these behaviors.

III. CONCLUSIONS

Confined actomyosin networks undergo state transitions
between steady actin flow and periodic actin waves by tuning
myosin contractility and the F-actin polymerization rate. Nu-
merical simulations based on the mechanics of the actomyosin
network explained these experimental observations and pre-
dicted a time-delay-induced rotational wave. These results
indicate that the mechanics of actomyosin alone can con-
trol distinct patterns, highlighting the potential importance of
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mechanics in the pattern formation of the confined actomyosin
system in cells.

IV. MATERIALS AND METHODS

A. Preparation of Xenopus egg extracts

Actin-intact extracts were prepared as previously described
[22]. First, actin-intact cytoplasmic extracts were prepared
from Xenopus laevis eggs [21]. Immediately thereafter, a
1/1000 volume of protease inhibitors (10 mg mL−1 leupeptin,
10 mg mL−1 pepstatin A, 10 mg mL−1 chymostatin dissolved
in DMSO), a 1/20 volume of 2 M sucrose, and a 1/20 volume
of energy mix (150 mM creatine phosphate, 20 mM ATP, and
20 mM MgCl2) was added. The extracts were then divided
into 20 µL aliquots, snap-frozen in liquid nitrogen, and stored
at −80 ◦C.

B. Preparation of recombinant proteins

Recombinant proteins were prepared as previously de-
scribed [22]. The VVCA domain of mouse N-WASP cDNA
(385–501 aa) was cloned into the pGEX-6P vector (Cytiva)
and expressed in E. coli. (Rosetta2(DE3), Merck Millipore)
at 37 ◦C for 3 h in the presence of 1 mM IPTG. GST-tagged
VVCA was purified on a GSTrap HP column (Cytiva), fol-
lowed by dialysis against A50 buffer (50 mM HEPES-KOH
pH7.6, 50 mM KCl, 5 mM MgCl2, and 1 mM EGTA) contain-
ing 1 mM DTT at 4 ◦C. The sample was further purified using
a size exclusion column (Superdex 200 Increase 10/300 GL,
Cytiva) with A50 buffer containing 1 mM DTT; snap-frozen
in liquid nitrogen; and stored at −80 ◦C. Protein concentration
was determined using a Protein Assay Kit (500-0006, Bio-
Rad), with a molecular weight of 39 500 Da.

C. Preparation of PDMS-coated glass slides

Glass slides were coated with a silicone elastomer (poly-
dimethylsiloxane, PDMS) (Sylgard 184; Dow Corning) as
previously described [22]. Uncured PDMS mixed with a cur-
ing agent was poured onto the glass slides, and then PDMS
was spread using a spin coater (1000 rpm, 20 s). The PDMS-
coated glass slides were cured for 1 h at 75 ◦C. PDMS-coated
coverslips (18×18 mm2) were prepared by cutting the PDMS-
coated glass with a glass cutter.

D. Encapsulation of extracts in droplets

Droplets were generated as previously described [22].
First, an aliquot of the extract (20 µL) frozen at −84 ◦C was
thawed and then incubated on ice for 1 h. Thereafter, 0.2
µL TMR-Lifeact dissolved in dimethyl sulfoxide (DMSO)
(final 1 µM) and 0.2 µL nocodazole dissolved in DMSO (final
100 µM) were added to the extracts. To prepare the control
condition as a steady actin flow state, we added 1 µL of A50
buffer to slightly dilute the extracts. Simultaneously, 0.2 µL
Calyculin A, Cytochalasin D, and VVCA were added to the
extracts for molecular perturbation. Note that both Cytocha-
rasin D [20,22] and Latrunculin B [44] have been shown
to effectively inhibit F-actin polymerization in Xenopus egg
extracts. Furthermore, 0.4 µL of the extract was injected into
14 µL of a lipid-oil mixture [1 mM L-α-phosphatidyl choline
from egg yolk (eggPC) (27554-01; Nacalai Tesque) in mineral
oil (M5904; Sigma-Aldrich)] to produce steady actin flow

and ring-shaped periodic actin waves. By tapping the sample
tube with a finger, we obtained a polydisperse emulsion of
extract-in-oil. Immediately after emulsification, 3–7 µL of
the emulsion was placed on a PDMS-coated glass slide and
gently covered with a PDMS-coated coverslip. The chamber
height h = 60 µm was controlled by the spacer thickness.
For the molecular perturbation experiments in Fig. S2 of the
Supplemental Material, we used the inhibitors at the final
concentration of 1 mM CK666, 25 µM SMIFH2, 100 µM
Cytochalasin D, and 1 mM Y27632.

E. Image analysis

Quantitative image analysis was performed using a custom
code implemented in MATLAB. To quantitatively analyze the
period of the contractile wave, we used Fourier analysis of the
total intensity within the region of interest. Because the center
of the droplet is the origin r = 0 in polar coordinates, the local
density of the actin filaments was measured using local flu-
orescent intensity I (r, θ, t ). The intensity was then averaged
over the region of interest 0.45R < r < 0.55R and 0 < θ <

2π ; thus, I (t ) ≡ ∫ 0.55R
0.45R

∫ 2π

0 I (r, θ, t )drdθ . We then performed

the Fourier transform Ī (ω) = (1/2π )
∫ 10min

0 I (t )e−iωt dt . Next,
the period of the actin wave was calculated from the peak
of Ī (ωpeak ) using the relation Tpeak = 2π/ωpeak. Notably,
Tpeak → ∞ (i.e., ωpeak → 0) corresponds to stationary flow,
in which there is no oscillatory structure in the intensity
time course. Notably, the 1/T calculated in Fig. 1(h) is
slightly larger than zero. This occurs because the decrease
in fluorescence intensity by photobleaching was detected as
a low-frequency signal with a small 1/T value via Fourier
analysis. Nevertheless, we can clearly distinguish steady flow
from waves because the wave period has a much higher fre-
quency than the background signal. Additionally, to visualize
the spatial velocity profile of actin flow [Fig. 1(c)], we used
a public domain particle image velocimetry (PIV) program
implemented as a Fiji ImageJ plugin.

F. Microscopy

To visualize the F-actin network in detail, we used confo-
cal microscopy and focused on the midplane of the confined
droplet. Time-lapse images of steady actin flow and periodic
actin waves were acquired every 6 s using a confocal micro-
scope (IX73; Olympus) and confocal scanning unit (CSU-X1;
Yokogawa Electric Cor. Ltd.) equipped with an iXon-Ultra
EM-CCD camera (Andor Technologies) and ×20 objective
lens (UPlanSApo 20×/0.75; OLYMPUS) under a 561 nm
fluorescence channel. Time-lapse images of rotational waves
were acquired every 6 s using a microscope (IX73; Olym-
pus) equipped with a ×20 objective lens (TU Plan ELWD
20×/0.40; Nikon), cooled CMOS camera (Neo5.5; Andor
Technology), and stable excitation light source (XLED1;
Lumen Dynamics). For all microscopic examinations, room
temperature was maintained at 20 ± 1 ◦C.

G. Numerical simulation scheme

To solve our equations, we discretized them using a finite-
difference method and performed numerical simulations. In
each time step, we first determined the density and phase
fields using Eqs. (7) and (8). We then updated the velocity
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field by using the force balance in Eq. (6), which was solved
using a spectral method. In all simulations, we used �x =
10−1, �y = 10−1, and �t = 10−5. We verified that our re-
sults did not change for smaller values.

For the simulation of rotational waves, we attempted a
random initial condition such as adding small perturbation
in the velocity and the density field; however, it was in-
sufficient to realize the rotational symmetry breaking. This
may have occurred because the spatial range of perturbation
was too small for the system size, as rotational symmetry
breaking is system-wide. Thus, we attempted to impose a
system-wide perturbation, that is, a time delay in the initial
contraction.
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