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Large deviations and fluctuation theorems for cycle currents defined in the loop-erased
and spanning tree manners: A comparative study
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The cycle current is a crucial quantity in stochastic thermodynamics. The absolute and net cycle currents
of a Markovian system can be defined in the loop-erased (LE) or spanning tree (ST) manner. Here we make
a comparative study between the large deviations and fluctuation theorems for LE and ST currents, i.e., cycle
currents defined in the LE and ST manners. First, we derive the exact joint distribution and large deviation rate
function for the LE currents of a system with a cyclic topology and also obtain the exact rate function for the ST
currents of a general system. The relationship between the rate functions for LE and ST currents is clarified and
the analytical results are applied to examine the fluctuations in the product rate of a three-step reversible enzyme
reaction. Furthermore, we examine various types of fluctuation theorems satisfied by LE and ST currents and
clarify their ranges of applicability. We show that both the absolute and net LE currents satisfy the strong form of
all types of fluctuation theorems. In contrast, the absolute ST currents do not satisfy fluctuation theorems, while
the net ST currents only satisfy the weak form of fluctuation theorems under the periodic boundary condition.
Finally, the fluctuation theorems for cycle currents are applied to study the fluctuations in entropy production
along a single stochastic trajectory.
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I. INTRODUCTION

Over the past two decades, significant progress has been
made in stochastic thermodynamics [1–3], which has grown
to become an influential branch of nonequilibrium statistical
physics. In this field, a thermodynamic system is usually mod-
eled by a Markov process. Markov chains, whose state spaces
are discrete, are the most fundamental and important dynamic
model since any Markov process can always be approximated
by a Markov chain. Along this line, an equilibrium state is
defined as a reversible Markov process and the deviation from
equilibrium is usually quantified by the concept of entropy
production, which can be represented as a bilinear function
of thermodynamic fluxes and forces [4,5]. It has long been
noted by Kolmogorov [6,7] that the reversibility of a Markov
chain can be characterized by its cycle dynamics: the system
is reversible if and only if the product of transition probabil-
ities along each cycle and that along its reversed cycle are
exactly the same, which generalizes the Wegscheider con-
dition for detailed balanced chemical reaction networks. An
incisive observation is that the entropy production can be
decomposed along cycles, with the thermodynamics fluxes
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being the cycle currents (also called cycle fluxes or circu-
lations) and with the thermodynamic forces being the cycle
affinities [8].

The cycle representation theory of Markov chains has
found wide applications in physics, chemistry, and biol-
ogy [9,10]. In fact, the current of a cycle can be defined in
several different ways. Two common definitions are based
on the spanning tree (ST) and loop-erased (LE) methods.
Hill [11–14] and Schnakenberg [8] developed a network the-
ory and defined the currents for a family of fundamental
cycles. In this theory, a ST is associated with the transition
diagram of a Markov chain, which is a directed graph. Each
edge of the graph that does not belong to the ST, which is
called a chord, will generate a fundamental cycle. The current
of a fundamental cycle is defined as the number of times
that the associated chord is traversed per unit time. Qian and
coworkers [15–17] further developed the cycle representation
theory and defined the currents for all simple cycles of the
graph, i.e., cycles with no repeated vertices except the be-
ginning and ending vertices. In this theory, the trajectory of
a Markovian system is tracked. Once a cycle is formed, it
is erased from the trajectory and we further keep track of
the remaining trajectory until the next cycle is formed. The
current of a simple cycle then is defined as the number of
times that the cycle is formed per unit time. Recently, another
type of cycle current has been proposed based on the idea of
sequence matching [18–20]. In this theory, the currents are
defined for all cycles of the graph, i.e., directed paths with the
first and last vertices being equal.

All types of cycle currents can also be defined along
a single stochastic trajectory. One of the major advances
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in stochastic thermodynamics is the finding that a broad
class of thermodynamic quantities such as entropy produc-
tion and cycle currents satisfy various types of fluctuation
theorems [21–32], which provide nontrivial generalizations
of the second law of thermodynamics in terms of equali-
ties rather than inequalities. For cycle currents defined in
the ST manner, Andrieux and Gaspard [33] proved that the
fluctuation theorem holds for net cycle currents in the long-
time limit. Moreover, Polettini and Esposito [34] showed that
the transient fluctuation theorem at any finite time holds if
the definition of cycle currents is slightly modified. For the
cycle currents defined in the LE manner, Andrieux and Gas-
pard [35] and Jia et al. [36] proved that all types of fluctuation
theorems and symmetric relations are satisfied for both the
absolute and net cycle currents. For cycle currents defined in
the sequence matching manner, the corresponding fluctuation
theorems and symmetric relations have also been developed
recently [20]. The fluctuation theorems for cycle currents
have also been developed for some stochastic processes
with continuous state space, such as Langevin dynamics on
circles [37].

From the mathematical perspective, another important
question is whether various thermodynamic quantities defined
along single stochastic trajectories satisfy the large deviation
principle [38,39]. The large deviations are concerned with the
long-time fluctuation behavior of a stochastic process with
small probability and it is closely related to the fluctuation
theorem in the long-time limit. For Markovian systems, the
large deviations for empirical measures, i.e., the number of
times that each vertex of the graph is crossed per unit time,
and for empirical flows, i.e., the number of times that each
edge of the graph is traversed per unit time, have been exten-
sively studied, while the large deviations for empirical cycle
currents, i.e., the number of times that each cycle of the graph
is formed per unit time, have received comparatively little
attention. For cycle currents defined in the ST manner, the
large deviations have been established since, in this case, the
empirical cycle currents are exactly the empirical flows of
chords [40,41]. For cycle currents defined in the LE manner,
the explicit expression of the large deviation rate function
is still unknown, even for systems with a simple topological
structure.

In this paper, we make a comprehensive comparative study
between cycle currents defined in the ST and LE manners,
and clarify the connections and differences between them.
The structure of this paper is organized as follows. In Sec. II,
we recall the definitions of the two types of cycle currents
and make a brief comparison between them. In Sec. III,
we investigate the large deviations for the two types of cy-
cle currents. We obtain the exact joint distribution and rate
function for LE currents of a monocyclic Markovian sys-
tem using the so-called cycle insertion method, and also
obtain the exact rate function for ST currents of a general
Markovian system. In Sec. IV, we state and compare var-
ious types of fluctuation theorems and symmetric relations
satisfied by the two types of cycle currents. We clarify the
ranges of applications of these fluctuation theorems and show
that all the results for ST currents can be derived naturally
from the relevant results for LE currents. We conclude in
Sec. V.

II. MODEL AND TWO TYPES OF CYCLE CURRENTS

A. Model

Here we consider a thermodynamic system modeled by a
discrete-time Markov chain ξ = (ξn)n�0 with state space S =
{1, 2, · · · , N} and transition probability matrix P = (pi j )i, j∈S ,
where pi j denotes the transition probability from state i to
state j. The transition diagram of the Markov chain ξ is a
directed graph G = (S, E ), where the vertex set S is the state
space and the edge set E contains all directed edges with
positive transition probabilities (Fig. 1). In this paper, we use
〈i, j〉 to denote the edge from state i to state j. With this
notation, the edge set E can be written more clearly as

E = {〈i, j〉 ∈ S × S : pi j > 0},
and we assume that |E | = M, where |E | denotes the number
of elements in E . Here we assume that the Markov chain ξ is
irreducible, which means that G is a connected graph. Since
the transition from a particular state to itself is allowed for a
Markov chain, graph G may contain an edge from a state to
itself, i.e., a self-loop (Fig. 1).

A special case occurs when the transition diagram G has
a cyclic topology (except all self-loops), as illustrated in
Fig. 1(c). Such systems will be referred to as monocyclic
Markov chains in this paper. Specifically, the Markov chain
ξ is called monocyclic if pi j = 0 for any |i − j| � 2, where
i and j are understood to be modulo N . In fact, mono-
cyclic systems are of particular relevance in the biological
context. Many crucial biochemical processes such as con-
formational changes of enzymes and ion channels [42,43],
progression of cell cycle [44–46], phenotypic switching of
cell types [47,48], phosphorylation-dephosphorylation cy-
cle [49,50], and activation of promoters due to chromatin
remodeling and transcription factor binding [51,52] can all be
modeled as monocyclic Markov chains. In what follows, we
mainly focus on monocyclic systems, while most of the results
can be extended to general systems.

B. Cycle currents defined in the loop-erased manner

In this paper, we will investigate and compare two types
of cycle currents. We first recall cycle currents defined in
the LE manner [17,53]. A circuit of the Markov chain ξ is
defined as a path i1 → i2 → · · · → is → i1 in graph G from
a state to itself, where i1, i2, · · · , is are distinct states in S. Let
j1 → j2 → · · · → jr → j1 be another circuit. The above two
circuits are said to be equivalent if r = s and there exists an
integer k such that

j1 = ik+1, j2 = ik+2, · · · , jr = ik+s,

where k + 1, · · · , k + s are understood to be modulo s. The
equivalence class of the circuit i1 → i2 → · · · → is → i1
under the equivalence relation described above is called a
cycle and is often denoted by c = (i1, i2, · · · , is). For ex-
ample, (1,2,3), (2,3,1) and (3,1,2) represent the same cycle.
The reversed cycle of c = (i1, i2, · · · , is) is defined as c− =
(i1, is, · · · , i2). The set of all cycles is called the cycle space
and is denoted by C.

The trajectory of a Markov chain constantly forms various
cycles. Intuitively, if we discard the cycles formed by ξ and
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FIG. 1. Transition diagrams and the associated spanning trees for various Markov chains. (a) A Markov chain with a general transition
diagram. The green arrows show the spanning tree T with root vertex 4, and the red arrows show all the chords of T . (b) A fully connected
Markov chain with four states, where each state can transition to both itself and any other states. (c) A monocyclic Markov chain with N states.
Each state can only transition to itself and its two neighbors. (d) A monocyclic Markov chain with N states. Here the transition from state 1 to
state N is forbidden. In (b)–(d), the green arrows show the spanning tree T .

keep track of the remaining states in the trajectory, then we
obtain a new Markov chain ξ̃ = (ξ̃n)n�0 called the derived
chain. For example, if the trajectory of the original chain ξ is
{1, 2, 3, 3, 2, 3, 4, 1, 4, · · · }, then the corresponding trajectory
of the derived chain ξ̃ and the cycles formed are shown in
Table I.

More rigorously, a state of the derived chain ξ̃ is a fi-
nite sequence i1, i2, · · · , is of distinct states in S, denoted by
[i1, i2, · · · , is]. Suppose that ξ̃n−1 = [i1, i2, · · · , is] and ξn =
is+1. If is+1 /∈ {i1, i2, · · · , is}, then ξ̃n is defined as (see Table I
for an illustration)

ξ̃n = [i1, i2, · · · , is, is+1].

On the other hand, if is+1 = ir for some 1 � r � s, then ξ̃n is
defined as (see Table I for an illustration)

ξ̃n = [i1, i2, · · · , ir].

In this case, we say that the Markov chain ξ forms cycle c =
(ir, ir+1, · · · , is) at time n. Let Nc

n be the number of times that
cycle c is formed up to time n. Then the empirical (absolute)
current of cycle c up to time n is defined as

Jc
n = 1

n
Nc

n ,

and the empirical net current of cycle c up to time n is de-
fined as J̃c

n = Jc
n − Jc−

n . Intuitively, Jc
n represents the number

of times that cycle c is formed per unit time and J̃c
n repre-

sents the net number of times that cycle c is formed per unit
time.

As n → ∞, the empirical cycle current Jc
n → Jc and em-

pirical net cycle current J̃c
n → J̃c will both converge with

probability one. The limits Jc and J̃c are called the current and
net current of cycle c, respectively. The explicit expressions
of Jc and J̃c can be found in Ref. [17]. The well-known cycle

TABLE I. An example of the derived chain and the cycles formed.

n 0 1 2 3 4 5 6 7 8

ξn 1 2 3 3 2 3 4 1 4
ξ̃n [1] [1,2] [1,2,3] [1,2,3] [1,2] [1,2,3] [1,2,3,4] [1] [1,4]
Cycles formed (3) (2,3) (1,2,3,4)
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current decomposition theorem [17] states that

πi pi j =
∑

c�〈i, j〉
Jc, (1)

where πi is the steady-state probability of state i and the sum
on the right-hand side is taken over all cycles c which traverses
edge 〈i, j〉 (the symbol c � 〈i, j〉 means that cycle c traverses
edge 〈i, j〉). This shows that the probability flux between any
pair of states can be decomposed as the sum of cycle currents.

C. Cycle currents defined in the spanning-tree manner

The current of a cycle can also be defined in the ST man-
ner [8,53]. Let T be a directed subgraph of the transition
diagram G, i.e., all the edges of T are also edges of G, and
let T denote the undirected graph associated with T . Recall
that T is called a ST (or maximal tree) of G if the following
three conditions are satisfied [53]:

(a) T is a covering subgraph of G, i.e. T contains all the
vertices of G;

(b) T is connected;
(c) T has no circuits, where a circuit of an undirected

graph is defined as an undirected path from a vertex to itself.
In the following, we use T to represent both the ST itself

and its edge set. The meaning should be clear from the con-
text. In general, the choice of the ST is not unique, which
means that a graph may have many different STs. It is easy
to see that any ST T must contain all the vertices of G and
must have N − 1 edges (see the green arrows in Fig. 1) [53].

A directed edge l /∈ T is called a chord of T [see the red
arrows in Fig. 1(a)]. Since |E | = M and |T | = N − 1, any
ST T must have M − N + 1 chords. Since T is connected
and has no circuits, if we add to T one of its chords l , then
the resulting undirected subgraph T ∪ {l} must have exactly
one circuit. Let cl be the cycle obtained from this circuit with
the orientation being the same as chord l . For example, for the
system illustrated in Fig. 1(a), if we add the chord l = 〈2, 1〉
to the ST T , then we obtain the cycle cl = (2, 1, 4, 3). The
family of cycles L = {cl : l /∈ T } generated by the chords is
referred to as the fundamental set. Since there is a one-to-one
correspondence between the chord set and the fundamental
set, the number of times that cycle cl is formed is simply
defined as the number of times that chord l is traversed. Along
this line, the empirical (absolute) current of cycle cl up to time
n is defined as

Qcl
n = 1

n

n∑
m=1

1{〈ξm−1,ξm〉=l}.

Intuitively, Qcl
n represents the number of times that chord l is

traversed per unit time. Unlike the LE technique which can be
used to define the currents of all cycles, the ST technique can
only be used to define the currents of cycles in the fundamen-
tal set.

Similarly, we can define the empirical net current in the
ST manner. The empirical net current of cycle cl up to time
n is defined as Q̃cl

n = Qcl
n − Qcl −

n . If cl is composed of one
or two states, then cl = cl− and thus Q̃cl

n = 0. For any chord
l = 〈i, j〉, if cl is composed of three or more states and if cl−
is in the fundamental set, then l− = 〈 j, i〉 must also be a chord
and cl− is exactly the cycle generated by the chord l−. As

n → ∞, the empirical cycle current Qcl
n → Qcl and empirical

net cycle current Q̃cl
n → Q̃cl will both converge with proba-

bility one. The limits Qcl and Q̃cl are called the current and
net current of cycle cl , respectively. For any chord l = 〈i, j〉,
it follows from the ergodic theorem of Markov chains that
Qcl = πi pi j .

We emphasize that most previous papers focused on net
cycle currents defined in the LE [35] and ST [8,33] manners,
and absolute cycle currents have received much less attention.
Clearly, the net currents vanish for any one-state and two-state
cycles. Hence, in previous papers [8,33,35], the net currents
are only defined for cycles with three or more states. In this
paper, we focus on both absolute and net currents. Here,
following Refs. [17,53], we extend the definition slightly to
include cycles with one or two states. This extension turns out
to be useful, as can be seen in Sec. III below.

D. Comparisons between two types of cycle currents

Next we make a brief comparison between the two types
of cycle currents. In what follows, cycle currents defined in
the LE manner will be called LE currents and those defined
in the ST manner will be called ST currents. We have seen
that LE currents are defined for all cycles in the cycle space
C, while ST currents are only defined for cycles in the fun-
damental set L. Hence, LE currents provide a more complete
description of the cycle dynamics than ST currents. Moreover,
since the ST is in general not unique, different choices of the
ST correspond to different ST currents. Clearly, LE currents
are independent of the choice of the ST.

A natural question is how much the fundamental set L
is smaller than the cycle space C. Since each chord corre-
sponds to one and only one element in L, we have |L| =
M − N + 1. It is difficult to provide a unified expression for
|C|. To gain deeper insights, we focus on two special cases.
We first consider a Markov chain whose transition diagram is
fully connected, i.e., pi j > 0 for any i, j ∈ S, as illustrated in
Fig. 1(b). In this case, the number of cycles with k states is
given by N (N − 1) · · · (N − k + 1)/k, and thus

|C| =
N∑

k=1

N (N − 1) · · · (N − k + 1)

k
.

In particular, when N = 4, we have |C| = 24 and the cycle
space is given by

C = {(1), (2), (3), (4), (1, 2), (1, 3), (1, 4), (2, 3), (2, 4),

× (3, 4), (1, 2, 3), (1, 2, 4), (1, 3, 2), (1, 3, 4), (1, 4, 2),

× (1, 4, 3), (2, 3, 4), (2, 4, 3), (1, 2, 3, 4), (1, 2, 4, 3),

× (1, 3, 2, 4), (1, 3, 4, 2), (1, 4, 2, 3), (1, 4, 3, 2)}.
If we choose the ST to be T = 1 → 2 → 3 → 4, then |L| =
13 and the fundamental set is given by

L = {(1), (2), (3), (4), (1, 2), (2, 3), (3, 4)

× (1, 2, 3), (1, 3, 2), (2, 3, 4), (2, 4, 3), (1, 2, 3, 4, ),

× (1, 4, 3, 2)}.
For a fully connected system, the number of ST currents is
much smaller than the number of LE currents.
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We next consider the monocyclic Markov chain illustrated
in Fig. 1(c), where each state can only transition to itself and
its two neighbors. In this case, we have |C| = 2N + 2 and the
cycle space is given by

C = {(1), · · · , (N ), (1, 2), · · · , (N − 1, N ), (N, 1),

× (1, 2, · · · , N ), (1, N, · · · , 2)}. (2)

The first N cycles are one-state cycles, i.e., self-loops, the
middle N cycles are two-state cycles, and the last two cycles
are N-state cycles. If we choose the ST to be T = 1 → 2 →
· · · → N , then |L| = 2N + 1 and the fundamental set is given
by

L = {(1), · · · , (N ), (1, 2), · · · , (N − 1, N ), (1, 2, · · · , N ),

× (1, N, · · · , 2)}.
For a monocyclic system, there is only one cycle, i.e., cycle
(N, 1), that is contained in C but is not contained in L.

To further understand the relationship between the LE
current Jc

n and the ST current Qcn
n , we use the convention of

periodic boundary conditions, i.e., ξ0 = ξn, which is a stan-
dard assumption in the literature [39]. With this assumption,
for any chord l , it is easy to see that

Qcl
n =

∑
c�l

Jc
n , (3)

where the sum is taken over all cycles c that traverse chord l .
Both sides of the equation represent the number of times that
chord l is formed per unit time. This shows that ST currents
can be represented as the sum of LE currents.

III. JOINT DISTRIBUTION AND LARGE DEVIATIONS
FOR CYCLE CURRENTS

Previous studies about cycle currents mainly focused on
the fluctuation relations, i.e., the symmetry relations satisfied
by the probability distribution of cycle currents [35,36]. How-
ever, very little is known about the explicit expression of the
probability distribution. Here we will address this problem
and then use it to study the large deviations for cycle currents.
In Sec. III A, we use methods in combinatorics and graph the-
ory to compute the explicit expression of the joint probability
distribution for LE currents. In Sec. III B, using the exact joint
distribution and the Stirling formula, we investigate the large
deviations for LE currents and give the explicit expression
of the corresponding rate function. In Sec. III C, we study
the large deviations for ST currents using the existing large
deviation results for empirical flows.

A. Joint distribution for LE currents of monocyclic
Markov chains

We first focus on the joint distribution for empirical LE
currents (Jc

n )c∈C . In general, it is very difficult to obtain
the explicit expression of the joint distribution for a general
Markov chain. Here we focus on the monocyclic system
illustrated in Fig. 1(c). All possible cycles formed by the
system are listed in Eq. (2). Without loss of generality, we
assume that the system starts from state 1. For each cycle c =
(i1, i2, · · · , is), let γ c = pi1i2 pi2i3 · · · pisi1 denote the product of

TABLE II. An example of allowable trajectories for a mono-
cyclic system. All eight allowable trajectories for a three-state system
up to time n = 8 so each one of the four cycles (3), (12), (23), and
(1,3,2) are formed once, while the remaining four cycles (1), (2),
(13), and (1,2,3) are not formed, i.e., k3 = k12 = k23 = k− = 1 and
k1 = k2 = k13 = k+ = 0.

m 0 1 2 3 4 5 6 7 8

ξm 1 3 3 2 3 2 1 2 1
ξm 1 3 2 3 3 2 1 2 1
ξm 1 3 3 2 1 2 3 2 1
ξm 1 3 2 1 2 3 3 2 1
ξm 1 2 3 3 2 1 3 2 1
ξm 1 2 3 2 1 3 3 2 1
ξm 1 2 1 3 3 2 3 2 1
ξm 1 2 1 3 2 3 3 2 1

transition probabilities along this cycle. For any sequence of
negative integers k = (kc)c∈C satisfying

∑
c∈C |c|kc = n, since

we have assumed the periodic boundary condition, the joint
distribution of empirical LE currents is given by

P
(
Jc

n = νc, ∀c ∈ C
) = P

(
Nc

n = kc, ∀c ∈ C
)

= |Gn(k)|
∏
c∈C

(γ c)kc

,

where νc = kc/n is the frequency of occurrence of cycle c and
Gn(k) denotes the set of all possible trajectories up to time
n so each cycle c is formed kc times. Such trajectories will
be called allowable trajectories in what follows. For conve-
nience, we write kc as ki if c = (i) is a one-state cycle, as ki,i+1

if c = (i, i + 1) is a two-state cycle, as k+ if c = (1, 2, · · · , N )
is the clockwise N-state cycle, and as k− if c = (1, N, · · · , 2)
is the counterclockwise N-state cycle [Fig. 1(c)]. For example,
for a three-state system, if the sequence k = (kc)c∈C is chosen
as

k3 = k12 = k23 = k− = 1, k1 = k2 = k13 = k+ = 0, (4)

then there are eight allowable trajectories up to time n = 8,
and all of them are listed in Table II. Similarly, we write νc as
ν i, ν i,i+1, ν+, and ν− and write Jc as Ji, Ji,i+1, J+, and J−.

We will next compute the number |Gn(k)| of allowable
trajectories. The basic idea is to insert all cycles into the tra-
jectory in some appropriate order. The number of all possible
insertions will then be the number of all allowable trajectories.
The calculation is divided into the following three steps.

Step 1. Since we have assumed that the system starts from
state 1, as the first step, we select all cycles containing the ini-
tial state 1, i.e., (1), (1,2), (N, 1), (1, 2, · · · , N ), (1, N, · · · , 2),
and insert them into the trajectory. Since each cycle c is
formed kc times, the total number of possible insertions in
step 1, i.e., the number of all permutations of these cycles,
are given by

A1 =
(

k1 + k12 + kN1 + k+ + k−

k1, k12, kN1, k+, k−

)

:= (k1 + k12 + kN1 + k+ + k−)!

k1! k12! kN1! k+! k−!
.
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FIG. 2. Schematic of the cycle insertion method of constructing all allowable trajectories. Here we use the example given in Eqs. (4). The
cycle insertion method is divided into three steps: First, we insert all cycles containing the initial state into the trajectory, next we insert all the
remaining two-state cycles into the trajectory, and, finally, we insert all remaining one-state cycles into the trajectory. After the three-step cycle
insertion, we find all eight allowable trajectories, which coincide exactly with those listed in Table II.

For the example given in Eqs. (4), all possible insertions in
step 1 are shown in the left panel of Fig. 2.

Step 2. We next insert the remaining two-state cycles
(2, 3), (3, 4), · · · , (N − 1, N ) into the trajectory. Note that
when the system forms a two-state cycle (i, i + 1), it may be
formed at state i or state i + 1. For example, for the trajectory
{1, 3, 2, 3, · · · }, when cycle (2,3) is formed, the derived chain
becomes [1,3]. In this case, we say that the cycle is formed
at state 3. On the contrary, for the trajectory {1, 2, 3, 2, · · · },
when cycle (2,3) is formed, the derived chain becomes [1,2].
In this case, we say that the cycle is formed at state 2.

For any two-state cycle (i, i + 1), let l i and mi denote the
number of times that it is formed at state i and state i + 1,
respectively. Clearly, we have l i + mi = ki,i+1. When l i and
mi are fixed, the number of allowable trajectories can be com-
puted as follows. First, we insert the l2 cycle (2,3) at state 2.
There are k12 + k+ possible positions for the insertion, which
correspond to state 2 in the cycles (1,2) and (1, 2, · · · , N ),
which have been arranged in step 1. Note that these positions
do not include state 2 in cycle (1, N, · · · , 2). This is because
if we insert cycle (2,3) here, then the cycle will be formed
at state 3 rather than state 2. Hence the number of possible
insertions is given by(

k12 + k+ + l2 − 1

l2

)
. (5)

Then we insert the l i cycle (i, i + 1) at state i one by one
for 3 � i � N − 1. For each i, there are l i−1 + k+ possible
positions for the insertion, which correspond to state i in
cycles (i − 1, i) and (1, 2, · · · , N ). The number of possible
insertions is given by(

l i−1 + k+ + l i − 1

l i

)
, 3 � i � N − 1. (6)

Thus far, we have inserted the l i cycle (i, i + 1) at state i one
by one for 2 � i � N − 1. Combining Eqs. (5) and (6), the
number of possible insertions is given by

N−1∏
i=2

(
l i + l i−1 + k+ − 1

l i

)
,

where l1 := k12.
Next we insert the mi cycle (i, i + 1) at state i + 1 one by

one for 2 � i � N − 1 in a similar way, and the number of
possible insertions is given by

N−1∏
i=2

(
mi + mi+1 + k− − 1

mi

)
,

where mN := kN1. Up till now, we have inserted all two-state
cycles into the trajectory. Summing over all choices of l i and
mi, the total number of possible insertions in step 2 is given
by

A2 =
∑

l2+m2=k23

· · ·
∑

lN−1+mN−1=kN−1,N

N−1∏
i=2

(
l i + l i−1 + k+ − 1

l i

)

×
N−1∏
i=2

(
mi + mi+1 + k− − 1

mi

)
.

For the example given in Eqs. (4), all possible insertions in
step 2 are shown in the middle panel of Fig. 2.

Step 3. We finally insert the remaining one-state cycles
into the trajectory. Specifically, we insert cycle (i) into the
trajectory one by one for 2 � i � N . For each i, there are∑

c�i kc − ki possible positions for the insertion, which cor-
respond to state i in all the cycles except cycle (i). Hence the
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total number of possible insertions in step 3 is given by

A3 =
N∏

i=2

(∑
c�i kc − 1

ki

)
.

For the example given in Eqs. (4), all possible insertions in
step 3 are shown in the right panel of Fig. 2.

Combining the above three steps, we finally obtain the
number of allowable trajectories, which is given by

|Gn(k)| = A1A2A3.

Hence, for a monocyclic system, the joint distribution of em-
pirical LE currents can be computed exactly as

P
(
Jc

n = νc, ∀c ∈ C
) = A1A2A3

∏
c∈C

(γ c)kc

. (7)

We have seen that most previous papers [8,33,35] mainly fo-
cused on cycles with three or more states since the net currents
for all one-state and two-state cycles must vanish. Here, we
extend the definition slightly to include cycles with one and
two states. This extension has the following two advantages:
(i) in this paper, we not only focus on net cycle currents
but also focus on absolute cycle currents; it is clear that the
absolute currents for one-state and two-state cycles do not
vanish and thus cannot be ignored; and (ii) only when all one-
state and two-state cycles are taken into account, is it possible
to recover all the allowable trajectories from empirical cycle
currents using the three-step cycle insertion method; in this
way, the joint distribution of empirical cycle currents has a
simple closed-form expression.

B. Large deviations for LE currents of monocyclic
Markov chains

The large deviations are concerned with the long-time
fluctuation behavior of a stochastic process with small prob-
ability [38,39]. We next investigate the large deviations for
empirical LE currents of a monocyclic Markov chain. Note
that under the periodic boundary condition, the empirical LE
currents (Jc

n )c∈C must lie in the space

V =
{

(νc)c∈C : νc � 0,
∑
c∈C

|c|νc = 1

}
,

where |c| denotes the length of cycle c, i.e., the number of
states contained in cycle c. Roughly speaking, (Jc

n )c∈C are
said to satisfy a large deviation principle with rate function
IJ : V → [0,∞] if the joint distribution satisfies

P
(
Jc

n = νc, ∀c ∈ C
) ∝ e−nIJ (ν), n → ∞ (8)

for any ν = (νc)c∈C ∈ V . Clearly, the large deviation theory
can capture the long-time fluctuation behavior of cycle cur-
rents. Next, we only present the main idea of the proof. The
rigorous definition and proof of the large deviation principle
can be found in Appendix A.

To obtain the explicit expression of the rate function IJ , we
recall the Stirling formula

log n! = n log n − n + O(log n) = h(n) − n + O(log n),

where log represents the natural logarithm throughout the
paper and h(x) = x log x for any x � 0. For convenience, we

set ki = ∑
c�i kc and νi = ∑

c�i ν
c. Note that the definitions of

ki and ki are different. It then follows from the Stirling formula
that

log A1 = log
k1!

k1! k12! kN1! k+! k−!

= h(k1) − h(k1) − h(k12) − h(kN1)

− h(k+) − h(k−) + O(log n)

= n[h(ν1) − h(ν1) − h(ν12) − h(νN1) − h(ν+)

− h(ν−)] + O(log n). (9)

Similarly, we have

log A3 = log
N∏

i=2

(
ki − 1

ki

)
=

N∑
i=2

log
ki!

ki!(ki − ki )!

=
N∑

i=2

[h(ki ) − h(ki ) − h(ki − ki )] + O(log n)

=
N∑

i=2

n[h(νi ) − h(ν i ) − h(νi − ν i )] + O(log n). (10)

Finally, we estimate log A2. Let D = {(l i, mi )2�i�N−1 :
l i, mi ∈ N, l i + mi = ki,i+1} denote the set of all possible
choices of l i and mi. For any L = (l i, mi ) ∈ D, let

BL =
N−1∏
i=2

(
l i + l i−1 + k+ − 1

l i

)(
mi + mi+1 + k− − 1

mi

)

be the number of insertions in step 2 when l i and mi are fixed.
It is clear that |D| � nN−2. Thus, we have

max
L∈D

BL � A2 � nN−2 max
L∈D

BL, (11)

where we have used the fact that A2 = ∑
L∈D BL. Similarly to

Eq. (10), we have

log BL =
N−1∑
i=2

[h(l i + l i−1 + k+) − h(l i) − h(l i−1 + k+)]

+
N−1∑
i=2

[h(mi + mi+1 + k−) − h(mi )

− h(mi+1 + k−)] + O(log n)

=
N−1∑
i=2

n[h(xi + xi−1 + ν+) − h(xi ) − h(xi−1 + ν+)]

+
N−1∑
i=2

n[h(yi + yi+1 + ν−) − h(yi ) − h(yi+1 + ν−)]

+ O(log n), (12)

where xi = l i/n and yi = mi/n. For any ν ∈ V , we introduce
the space

V (ν) = {(xi, yi )2�i�N−1 : xi, yi � 0, xi + yi = ν i,i+1},
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and for any X = (xi, yi ) ∈ V (ν), we define the function

Fν (X ) =
N−1∑
i=2

[h(xi ) + h(xi−1 + ν+) − h(xi + xi−1 + ν+)]

+
N−1∑
i=2

[h(yi ) + h(yi+1 + ν−) − h(yi + yi+1 + ν−)],

(13)

where x1 = ν12 and yN = νN1. It then follows from Eq. (11)
that

log A2 = max
L∈D

log BL + O(log n) = n sup
X∈V (ν)

Fν (X )+ O(log n).

(14)
Combining Eqs. (7) and (8), we obtain

IJ (ν) = − lim
n→∞

1

n
logP

(
Jc

n = νc, ∀c ∈ C
)

= − lim
n→∞

1

n

[
log A1+ log A2+ log A3+

∑
c∈C

kc log γ c

]
.

It then follows from Eqs. (9), (10), and (14) that

IJ (ν) = [h(ν12) + h(νN1) + h(ν+) + h(ν−)

− h(ν12 + νN1 + ν+ + ν−)]

+ inf
X∈V (ν)

Fν (X ) +
∑
i∈S

[h(νi − ν i ) + h(ν i ) − h(νi )]

−
∑
c∈C

νc log γ c, (15)

where h(x) = x log x and νi = ∑
c�i ν

c. This gives the expres-
sion of the rate function IJ for empirical LE currents. We
emphasize that the explicit expressions of the joint probability
distribution and the rate function for empirical LE currents,
i.e., Eqs. (7) and (15), are only applicable to monocyclic
Markov chains and cannot be applied to general systems. For a
general Markov chain, the process of cycle formation is much
more intricate and cannot be computed using the three-step
cycle insertion method.

Note that in Eq. (15), it is difficult to compute the term
infX∈V (ν) Fν (X ). A more explicit expression of this term can
be obtained using the Lagrange multiplier method. In Ap-
pendix B, we have proved that

inf
X∈V (ν)

Fν (X ) = Fν (xi, yi ),

where (xi, yi )2�i�N−1 is any solution (such solution must exist
but may not be unique) of the following set of algebraic
equations:

xi

xi−1 + xi + ν+ · xi + ν+

xi + xi+1 + ν+

= yi + ν−

yi−1 + yi + ν− · yi

yi + yi+1 + ν− ,

xi + yi = ν i,i+1, (16)

with x1 = ν12, xN = 0, y1 = 0, and yN = νN1.
Thus far, we have assumed that the system starts from

state 1. A natural question is whether the rate function

will change when the system starts from other initial dis-
tributions. In fact, we can prove that the rate function is
independent of the choice of the initial distribution. Note that
this is a highly nontrivial result because in the expression
Eq. (15), the status of state 1 and the status of other states
are not equal. The proof is rather complicated and is put in
Appendix C.

For a general monocyclic system, the expression Eq. (15)
of the rate function is very complicated. This expression can
be greatly simplified in two special cases: (i) the case where
the system has only three states (any three-state system must
be monocyclic) and (ii) the case where the transition from
state 1 to state N is forbidden [see Fig. 1(d) for an illustration].
For a three-state system, the rate function reduces to (see
Appendix D for the proof)

IJ (ν) =
∑
i∈S

[
ν i log

(
ν i/νi

Ji/Ji

)
+ (νi − ν i ) log

(
(νi − ν i )/νi

(Ji − Ji )/Ji

)]

+
∑

c∈C,|c|�=1

νc log

(
νc/ν̃

Jc/J̃

)
, (17)

where

ν̃ =
∑

c∈C,|c|�=1

νc = ν12 + ν13 + ν23 + ν+ + ν−,

J̃ =
∑

c∈C,|c|�=1

Jc = J12 + J13 + J23 + J+ + J−.

For an N-state monocyclic system with the transition from
state 1 to state N being forbidden [Fig. 1(d)], the rate function
reduces to (see Appendix D for the proof)

IJ (ν) =
∑
i∈S

[
ν i log

(
ν i/νi

Ji/Ji

)
+ ν i,i+1 log

(
ν i,i+1/νi

Ji,i+1/Ji

)

+(ν i−1,i + ν+) log

((
ν i−1,i + ν+)

/νi

(Ji−1,i + J+)/Ji

)]
. (18)

Note that the expressions of the rate function in the two
special cases are much simpler and more symmetric than the
general expression given in Eq. (15). Clearly, both expressions
have a symmetric form with respect to each state and thus
are independent of the choice of the initial distribution. It is
well-known that the empirical flows of a Markov chain, i.e.,
the number of times that each edge is traversed per unit time,
also satisfy a large deviation principle and the associated rate
function has the form of relative entropy (see Sec. III C for
details). Interestingly, we find that the rate functions given
in Eqs. (17) and (18) also have a functional form similar to
relative entropy.

The large deviations for empirical LE currents (Jc
n )c∈C

can be directly applied to establish the large deviations for
empirical net LE currents (J̃c

n )c∈C . Since the empirical net
LE currents vanish for any one-state and two-state cycles
and since J̃+

n = −J̃−
n for the two N-state cycles (1, 2, · · · , N )

and (1, N, · · · , 2), we only need to focus on the empirical
net currents J̃+

n of cycle (1, 2, · · · , N ). By the contraction
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principle, we have

P (J̃+
n = x) = P (J+

n − J−
n = x)

=
∑

ν+−ν−=x

P
(
Jc

n = νc,∀c ∈ C
)

∝
∑

ν+−ν−=x

e−nIJ (ν), n → ∞. (19)

This shows that the empirical net LE current J̃+
n satisfies a

large deviation principle with rate function

IJ̃ (x) = inf
{ν∈V : ν+−ν−=x}

IJ (ν). (20)

C. Large deviations for ST currents of general Markov chains

We next focus on the large deviations for empirical ST cur-
rents of a general Markov chain. In fact, the large deviations
for empirical net ST currents have been investigated and the
symmetry of the rate function has been obtained in Ref. [40].
Here we focus on the large deviations for empirical (absolute)
ST currents. To this end, we first recall the large deviations for
empirical flows [39].

Recall that the empirical flow of edge 〈i, j〉 up to time n is
defined as

Rn(i, j) = 1

n

n∑
m=1

1{ξm−1=i,ξm= j}.

Intuitively, Rn(i, j) represents the number of times that edge
〈i, j〉 is traversed per unit time. Note that under the periodic
boundary condition, the empirical flows (Rn(i, j))〈i, j〉∈E must
lie in the space

M =
{

(Rn(i, j))〈i, j〉∈E : Rn(i, j) � 0,
∑
i, j∈S

R(i, j) = 1,

∑
j∈S

R(i, j) =
∑
j∈S

R( j, i)

}
.

It is well-known that the empirical flows (Rn(i, j))〈i, j〉∈E sat-
isfy the following large deviation principle:

P (Rn(i, j) = R(i, j), ∀〈i, j〉 ∈ E ) ∝ e−nIflow(R), n → ∞,

where the rate function Iflow : M → [0,∞] is given by

Iflow(R) =
∑

〈i, j〉∈E

R(i, j) log
R(i, j)

R(i)pi j
,

with R(i) = ∑
j∈S R(i, j). Clearly, the rate function for empir-

ical flows has the form of relative entropy. For any chord l of
a fixed ST T , let Hcl be a function on E defined by

Hcl (i, j)

=
⎧⎨
⎩

1, if (i) 〈i, j〉 ∈ T and 〈i, j〉 ∈ cl or (ii) 〈i, j〉 = l
−1, if 〈i, j〉 ∈ T, 〈i, j〉 /∈ cl , and 〈 j, i〉 ∈ cl

0, otherwise.
(21)

In fact, the empirical flow Rn(i, j) can be represented as the
weighted sum of Hcl (i, j) with the weights being all empirical

ST currents [53], i.e.,

Rn(i, j) =
∑
cl ∈L

Qcl
n Hcl (i, j), 〈i, j〉 ∈ E .

It was further proved in Ref. [53] that this representation is
unique. In other words, if Rn = ∑

cl ∈L μcl Hcl for some coef-
ficients μcl , then we must have μcl = Qcl

n for any cl ∈ L. It
then follows from the uniqueness of the above representation
that

P
(
Qcl

n = μcl , ∀cl ∈ L
)

= P

(
Rn(i, j) =

∑
cl ∈L

μcl Hcl (i, j), ∀〈i, j〉 ∈ E

)

∝ e
−nIflow

(∑
cl ∈L μcl Hcl

)
, n → ∞.

This shows that the empirical ST currents (Qcl
n )cl ∈L satisfy a

large deviation principle with rate function

IQ(μ) = Iflow

⎛
⎝∑

cl ∈L
μcl Hcl

⎞
⎠. (22)

Thus far, we have obtained the explicit expressions of
the rate function for empirical LE currents of a monocyclic
system and the rate function for empirical ST currents of a
general system. A natural question is what the relationship
is between the two rate functions. To see this, recall that ST
currents can be represented by LE currents as Qcl

n = ∑
c�l Jc

n .
It thus follows from the contraction principle that

P
(
Qcl

n = μcl , ∀l ∈ L
) = P

(∑
c�l

Jc
n = μcl , ∀l ∈ L

)

=
∑

∑
c�l νc=μcl

P
(
Jc

n = νc, ∀c ∈ C
)

∝
∑

∑
c�l νc=μcl

e−nIJ (ν), n → ∞.

This shows that the rate functions for empirical LE and ST
currents are connected by

IQ(μ) = inf
{ν∈V :

∑
c�l νc=μcl }

IJ (ν).

It is straightforward to prove that the rate function IQ given
above coincides with the one given in Eq. (22) for monocyclic
systems.

The large deviations for empirical ST currents (Qcl
n )cl ∈L

can also be used to establish the large deviations for empirical
net ST currents (Q̃cl

n )cl ∈L. Since the empirical net ST currents
vanish for all one-state and two-state cycles, we only need to
focus on cycles with three or more states. Let cl1 , cl2 , · · · , cls
be all cycles with three or more states in the fundamental set so
any two of them are not reversed cycles of each other. By the
contraction principle, the empirical net ST currents (Q̃cli )1�i�s

of these cycles satisfy a large deviation principle with rate
function

IQ̃(x) = inf
{μ∈M: μ

cli −μ
cli

−=xi, ∀1�i�s}
IQ(μ). (23)
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FIG. 3. Three-step mechanism of a reversible enzyme reaction. (a) Kinetic scheme of a three-step reversible enzyme reaction. Here k0
1 and

k0
−3 are second-order rate constants since they are the rate constants of the second-order reactions E + S → ES and E + P → EP, respectively,

while k1 = k0
1 [S] and k−3 = k0

−3[P] are pseudo-first-order rate constants since they are the rate constants of the effective first-order reactions
E → ES and E → EP, respectively (here we have assumed that the system is open and [S] and [P] are sustained by an external agent).
From the perspective of a single enzyme molecule, the reaction is unimolecular and cyclic. (b) Noise η in the product rate as k−1 varies. The
parameters are chosen as τ = 0.01, n = 15, k0

1 = 2k−1, k2 = 1, k−2 = 1, k3 = 1, k0
−3 = 0.1, [P] = 1, and [S] is tuned so 〈J̃+

n 〉 remains invariant.
(c) Noise η in the product rate as k−2 varies. The parameters are chosen as τ = 0.01, n = 15, k0

1 = 1.2, k−1 = 0.6, k2 = k−2, k3 = 1, k0
−3 = 0.1,

[P] = 1, and [S] is tuned so〈J̃+
n 〉 remains invariant. (d) Distribution of the product rate as time n increases. The blue squares are the ones

obtained using stochastic simulations, the red circles are the ones obtained using the exact joint distribution Eq. (7), and the black curves are
the ones obtained using the exact rate function Eq. (17) and large deviation approximation Eqs. (8). The parameters are chosen as τ = 0.1,
k0

1 = 4, k−1 = 2, k2 = 5, k−2 = 1, k3 = 6, k0
−3 = 0.1, and [S] = [P] = 1.

D. Applications in single-molecule enzyme kinetics

As an application of our theoretical results, we consider
the following three-step mechanism of a reversible enzyme
reaction [10,54],

E + S
k0

1�
k−1

ES
k2�

k−2

EP
k3�

k0
−3

E + P,

where E is an enzyme turning the substrate S into the product
P. Here k0

1 and k0
−3 are second-order rate constants since they

are the rate constants of second-order reactions, while k−1,
k±2, and k3 are first-order rate constants since they correspond
to first-order reactions. If there is only one enzyme molecule,
then it may convert stochastically among three conformal
states: the free enzyme E , the enzyme-substrate complex ES,
and the enzyme-product complex EP. For simplicity, we as-
sume that the enzyme reaction is in an open system with the
concentrations of S and P sustained by an external agent [49].
Then from the enzyme perspective, the kinetics is stochastic
and cyclic with pseudo-first-order rate constants k1 = k0

1[S]
and k−3 = k0

−3[P], where [S] and [P] are the sustained con-
centrations of S and P, respectively [Fig. 3(a)]. Note that the
time variable of the enzyme reaction is continuous. However,
in experiments, we are only able to observe the system at
multiple discrete time points. If we record the conformal state
of the enzyme molecule at a series of time points with interval

τ , then the system can be modeled as a three-state discrete-
time Markov chain, which coincides with the model studied
in this paper. Let Q = (qi j ) be the transition rate matrix of
the continuous-time system shown in Fig. 3(a). Then the tran-
sition probability matrix of the discrete-time system is given
by P = (pi j ) = eτQ [55]. The discrete-time system serves as a
good approximation of the continuous-time system when the
interval τ is small.

Note that for the cyclic kinetics illustrated in Fig. 3(a), a
substrate molecule S is converted into a product molecule P
whenever the clockwise cycle C+ = (E , ES, EP) is formed,
and a product molecule P is converted into a substrate
molecule S whenever the counterclockwise cycle C− =
(E , EP, ES) is formed. Thus the rate of product formation,
also called product rate, of the enzyme reaction, i.e., the net
conversion of S into P per unit time, is exactly the net LE
current J̃+

n = J+
n − J−

n . Previous studies [10] mainly focus on
the long-time mean product rate

lim
n→∞ J̃+

n = J̃+ = γ + − γ −

C
,

where γ + = p12 p23 p31, γ − = p13 p32 p21, and

C =
3∑

i=1

[(1 − pi−1,i−1)(1 − pi+1,i+1) − pi−1,i+1 pi+1,i−1].
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The analytical results derived in previous sections allow us to
investigate the finite-time fluctuation behavior of the product
rate J̃+

n . In experiments, the size of the fluctuations, also called
noise, in the product rate is often measured by the coefficient
of variation η = σ/μ, where μ = 〈J̃+

n 〉 is the mean and σ is
the standard deviation [56,57]. Note that we have obtained the
exact joint distribution of empirical LE currents in Sec. III.
Using the joint distribution, it is easy to calculate all moments,
including the mean and standard deviation, of the product rate
J̃+

n .
In Figs. 3(b) and 3(c), we illustrate noise η as a function

of the rate constants k−1 and k−2. Here k−1 and k−2 are
varied while keeping k0

1/k−1 and k2/k−2 as constant, and the
substrate concentration [S] is tuned so the mean product rate
μ remains invariant (examining protein noise while fixing
the protein mean is a common strategy in molecular biology
experiments [58]). From Fig. 3(b), we see that noise in the
product rate becomes larger as k0

1 and k−1 increase (while
keeping their ratio as constant). Note that when k0

1 and k−1

are both large, the reaction E + S � ES will reach rapid
pre-equilibrium and this is widely known as rapid equilibrium
assumption in enzyme kinetics [50]. Our results show that
rapid equilibrium between enzyme states E and ES leads to
large fluctuations in the product rate. Similarly, from Fig. 3(c),
we find that noise in the product rate also becomes larger as
k2 and k−2 increase (while keeping their ratio as constant).
Note that when k2 and k−2 are both large, the two enzyme
states ES and EP will reach rapid pre-equilibrium and thus
can be combined into a single state [59,60]. In this case, the
three-step enzyme reaction reduces to the classical two-step
Michaelis-Menten enzyme kinetics

E + S � ES � E + P.

This implies that compared to the two-step Michaelis-Menten
kinetics, the three-step kinetics results in smaller fluctuations
in the product rate.

While the exact joint distribution for LE currents derived
in Sec. III A can be used to study the fluctuations in the
product rate, it is computationally very slow because we need
to calculate a large number of factorials and combinatorial
numbers [see Eq. (7)], especially when time n and the number
of states N are large. Fortunately, the large deviations for LE
currents studied in Sec. III B can be used to provide a much
more efficient computational method of the joint distribution.
Specifically, we only need to compute the rate function IJ (ν)
using Eq. (17) and then apply Eqs. (8) to construct an ap-
proximation of the joint distribution. In Fig. 3(d), we compare
the distribution of the production rate J̃+

n obtained by using
stochastic simulations (blue squares), the analytical solution
(red circles), and the large deviation approximation (black
curves). As expected, the analytical solution coincides per-
fectly with stochastic simulations. Interestingly, we find that
the approximate distribution obtained based on the large devi-
ation theory is in good agreement with the analytical solution
when n � 15 and they become practically indistinguishable
when n � 30. According to our simulations, when n = 30,
compared with the analytical solution, the large deviation
approximation can save the computational time by over 99%.
This suggests that the large deviation principle studied in this

paper is very useful because it enables a fast exploration of
large swaths of parameter space.

IV. FLUCTUATION THEOREMS FOR CYCLE CURRENTS

Next we investigate the fluctuation relations satisfied by
the two types of cycle currents. In Sec. IV A, using trajec-
tory reversal method, we obtain a symmetric relation for LE
currents of a monocyclic system that is even stronger than
the classical transient and integral fluctuation theorems. In
Sec. IV B, we generalize the fluctuation relations to a general
system and reveal their connection with the second law of
thermodynamics. In Sec. IV C, we explore the fluctuation
relations for ST currents of a general system and compare
them with the fluctuation relations for LE currents.

A. Fluctuation theorems for LE currents of monocyclic
Markov chains

An important question is whether empirical cycle currents
satisfy various fluctuation theorems. In fact, the transient fluc-
tuation theorem for net LE currents has been investigated in
Refs. [35,61]. Here we will prove a symmetric relation for
a monocyclic system that is even stronger than the transient
fluctuation theorem. For convenience, we write the two N-
state cycles of a monocyclic system as C+ = (1, 2, · · · , N )
and C− = (1, N, · · · , 2). Let N+

n and N−
n denote the number

of times that cycles C+ and C− are formed up to time n,
respectively. The strong symmetric relation for LE currents
is given by

k+P
(
N+

n = k+, N−
n = k− − 1, Nc

n = kc, ∀c �= C+,C−)
=

(
γ +

γ −

)
k−P

(
N+

n = k+ − 1, N−
n = k−, Nc

n = kc,

∀c �= C+,C−)
, (24)

where γ + = p12 p23 · · · pN1 and γ − = p21 p32 · · · pN1 are the
product of transition probabilities along cycles C+ and C−,
respectively. In fact, a similar equality has been obtained
recently for another type of cycle currents defined in the
sequence matching manner [20]. We next give the proof of
Eq. (24) for LE currents. Under the periodic boundary condi-
tion, it follows from Eq. (7) that

P
(
N+

n = k+, N−
n = k− − 1, Nc

n = kc, ∀c �= C+,C−)
= (γ +)k+

(γ −)k−−1

×
∏

c �=C+,C−
(γ c)kc |Gn(k+, k− − 1, (kc)c �=C+,C− )|,

where Gn(k+, k− − 1, (kc)c �=C+,C− ) is the collection of all pos-
sible trajectories up to time n so cycle C+ is formed k+
times, cycle C− is formed k− − 1 times, and any other cycle
c �= C+,C− is formed kc times. For simplicity of notation, we
rewrite the above equation as

P (N+
n = k+, N−

n = k− − 1, · · · )

= (γ +)k+
(γ −)k−−1

∏
c �=C+,C−

(γ c)kc |Gn(k+, k− − 1, · · · )|.
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Similarly, replacing k+ by k+ − 1 and replacing k− − 1 by k−
in the above equation, we obtain

P (N+
n = k+ − 1, N−

n = k−, · · · )

= (γ +)k+−1(γ −)k− ∏
c �=C+,C−

(γ c)kc |Gn(k+ − 1, k−, · · · )|.

Hence, to prove Eq. (24), we only need to show that

k+|Gn(k+, k− − 1, · · · )| = k−|Gn(k+ − 1, k−, · · · )|. (25)

For any trajectory {ξ0, ξ1, · · · , ξn} lying in Gn(k+, k− −
1, · · · ), since cycle C+ is formed k+ times, there are k+ begin-
ning times (the times that C+ begins to form) and k+ ending
times (the times that C+ has been formed) for this cycle. Let
T begin

i and T end
i denote the ith beginning and ending times for

cycle C+, respectively. For example, for the trajectory given
in Table I, the first beginning time for cycle c = (1, 2, 3, 4)
is n = 0 and the first ending time is n = 7. If we reverse the
trajectory {ξ0, ξ1, · · · , ξn} between T begin

i and T end
i , then we

obtain a new trajectory {ξ̃0, ξ̃1, · · · , ξ̃n}, which is given by

ξ̃m =
{

ξT begin
i +T end

i −m, if T begin
i � m � T end

i

ξm, otherwise.

Clearly, the reversed trajectory must lie in Gn(k+ −
1, k−, · · · ). Since cycle C+ is formed k+ times, there
are k+|Gn(k+, k− − 1, · · · )| possible reversed trajectories.
Among these reversed trajectories, k− trajectories are ex-
actly the same and are counted repetitively. For exam-
ple, if C+ = (1, 2, 3) and C− = (1, 3, 2), then the tra-
jectories {1, 2, 3, 1, 2, 3, 1, 3, 2} and {1, 2, 3, 1, 3, 2, 1, 2, 3}
in G8(2, 1, · · · ) can both be reversed to the trajectory
{1, 2, 3, 1, 3, 2, 1, 3, 2} in G8(1, 2, · · · ), and thus are counted
twice. As a result, the number of possible trajectories in
Gn(k+ − 1, k−, · · · ) is given by

|Gn(k+ − 1, k−, · · · )| = k+

k− |Gn(k+, k− − 1, · · · )|,

which is exactly Eq. (25). Thus we have proved the strong
symmetric relation given by Eq. (24). Applying the symmetric
relation |k+ − k−| times, we obtain the transient fluctuation
theorem for LE currents:

P (N+
n = k+, N−

n = k−, · · · )

= P (N+
n = k−, N−

n = k+, · · · )

(
γ +

γ −

)k+−k−

. (26)

Thus far, we have proved the symmetric relation Eq. (24)
and transient fluctuation theorem Eq. (26) under the periodic
boundary condition. Without the periodic boundary condition,
these two equalities are also valid for monocyclic systems; the
proof is similar and thus is omitted.

The transient fluctuation theorem can be used to prove the
other two types of fluctuation theorems. To see this, recall that
the moment-generating function of empirical LE currents is
defined as

gn(λ+, λ−, · · · ) = 〈
eλ+N+

n +λ−N−
n +∑

c �=C+ ,C− λcNc
n
〉
,

where 〈A〉 denotes the mean of A. Then the following
Kurchan-Lebowitz-Spohn-type fluctuation theorem holds:

gn(λ+, λ−, · · · )

=
∑

k

e
∑

c∈C λckc
P (N+ = k+, N− = k−, · · · )

=
∑

k

e
∑

c∈C λckc
P (N+ = k−, N− = k+, · · · )

(
γ +

γ −

)k+−k−

=
∑

k

e
···+

(
λ+−log γ+

γ−
)

k++
(
λ−−log γ−

γ+
)

k−

× P (N+ = k−, N− = k+, · · · )

= 〈
e
(
λ−−log γ+

γ−
)

N+
n +

(
λ++log γ+

γ−
)

N−
n +···〉

= gn

(
λ− − log

γ +

γ − , λ+ + log
γ +

γ − , · · ·
)

, (27)

where log(γ +/γ −) is the affinity of cycle C+ [2]. We next
consider the long-time limit behavior of a monocyclic system.
As n → ∞, it is easy to see that

e−nIJ (ν+,ν−,··· ) ∝ P (J+
n = ν+, J−

n = ν−, · · · )

= P (J+
n = ν−, J−

n = ν+, · · · )

(
γ +

γ −

)n(ν+−ν− )

∝ e−n[IJ (ν−,ν+,··· )−(log γ+
γ− )(ν+−ν− )]

.

This yields the Gallavotti-Cohen-type fluctuation theorem:

IJ (ν+, ν−, · · · ) = IJ (ν−, ν+, · · · ) −
(

log
γ +

γ −

)
(ν+ − ν−).

(28)
Similarly, we can also obtain the fluctuation theorems for

net LE currents. For a monocyclic system, we only need to
focus on the empirical net LE current J̃+

n of cycle C+. Let
g̃n(λ) = 〈eλnJ̃+

n 〉 be the moment-generating function of J̃+
n and

let IJ̃ (x) be the rate function of J̃+
n given in Eq. (20). The var-

ious types of fluctuation theorems for net LE currents follow
directly from Eqs. (26)–(28) and are summarized as follows
(these identities were first obtained in Ref. [61]).

(1) Transient fluctuation theorem:

P (J̃+
n = x)

P (J̃+
n = −x)

=
(

γ +

γ −

)nx

.

(2) Kurchan-Lebowitz-Spohn-type fluctuation theorem:

g̃n(λ) = g̃n

(
−
(

λ + log
γ +

γ −

))
.

(3) Integral fluctuation theorem: Taking λ =
− log(γ +/γ −) in the above equation yields

〈eλnJ̃+
n 〉 = 1.

(4) Gallavotti-Cohen-type fluctuation theorem:

IJ̃ (x) = IJ̃ (−x) −
(

log
γ +

γ −

)
x.
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B. Fluctuation theorems for LE currents of general
Markov chains

We have seen that various symmetric relations and fluctu-
ation theorems hold for LE currents of a monocyclic system.
A natural question is whether these results can be extended to
a general Markov chain. Before stating the results, we recall
the definition of similar cycles [36]. Let c1 = (i1, i2, · · · , is)
and c2 = ( j1, j2, · · · , jr ) be two cycles. Then c1 and c2 are
called similar if s = r and {i1, i2, · · · , is} = { j1, j2, · · · , jr}.
In other words, two cycles are similar if they pass through the
same set of states. For example, the following six cycles:

(1, 2, 3, 4), (1, 2, 4, 3), (1, 3, 2, 4), (1, 3, 4, 2), (1, 4, 2, 3),

(1, 4, 3, 2)

are similar. Note that any cycle C and its reversed cycle C−
must be similar.

We first focus on empirical LE currents (Jc
n )c∈C , where

Jc
n = Nc

n /n. For a general Markov chain, if cycles c1 and c2

are similar, then the following symmetric relation holds:

kc1P
(
Nc1

n = kc1 , Nc2
n = kc2 − 1, Nc

n = kc, ∀c �= c1, c2
)

kc2P
(
Nc1

n = kc1 − 1, Nc2
n = kc2 , Nc

n = kc, ∀c �= c1, c2
)

= γ c1

γ c2
. (29)

If we choose c1 and c2 to be some cycle C+ and its revered
cycle C−, then this equality reduces to

k+P
(
N+

n = k+, N−
n = k− − 1, Nc

n = kc, ∀c �= C+,C−)
k−P

(
N+

n = k+ − 1, N−
n = k−, Nc

n = kc, ∀c �= C+,C−)
= γ +

γ − .

This can be viewed as a generalization of Eq. (24) in the
monocyclic case. Applying Eq. (29) repeatedly gives the fol-
lowing transient fluctuation theorem for LE currents:

P
(
Nc1

n = kc1 , Nc2
n = kc2 , Nc

n = kc, ∀c �= c1, c2
)

P
(
Nc1

n = kc2 , Nc2
n = kc1 , Nc

n = kc, ∀c �= c1, c2
) =

(
γ c1

γ c2

)kc1 −kc2

. (30)

This shows that if cycles c1 and c2 are similar, then the joint distribution of empirical LE currents satisfies a symmetric relation
under the exchange of kc1 and kc2 . Actually, the proof of Eq. (30) has been given in Ref. [36] under the restrictions that all cycles
under consideration pass through a common state i ∈ S and the Markov chain also starts from state i. Fortunately, this technical
assumption can be removed and the result holds generally (manuscript in preparation).

We next consider empirical net LE currents (J̃c
n )c∈C . Let c1, c2, · · · , cr be all cycles with three or more states in the cycle

space so any two of them are not reversed cycles of each other (the empirical net LE currents for one-state and two-state cycles
vanish and do not need to be considered). It then follows from Eq. (30) that

P
(
J̃c1

n = x1, J̃cm
n = xm, ∀2 � m � r

)
= P

(
Nc1

n − Nc1−
n = nx1, Ncm

n − Ncm−
n = nxm, ∀2 � m � r

)
=

∑
kci −kci−=nxi, ∀1�i�r

P
(
Nc1

n = kc1 , Nc1−
n = kc1−, Ncm

n = kcm , Ncm−
n = kcm−, ∀2 � m � r

)

=
∑

kci −kci−=nxi, ∀1�i�r

P
(
Nc1

n = kc1−, Nc1−
n = kc1 , Ncm

n = kcm , Ncm−
n = kcm−, ∀2 � m � r

)( γ c1

γ c1−

)nx1

= P
(
Nc1

n − Nc1−
n = −nx1, Ncm

n − Ncm−
n = nxm, ∀2 � m � r

)
e

nx1 log γ c1

γ c1−

= P
(
J̃c1

n = −x1, J̃cm
n = xm, ∀2 � m � r

)
e

nx1 log γ c1

γ c1− .

Hence we have obtained the following transient fluctuation
theorems for net LE currents:

P
(
J̃c1

n = x1, J̃cm
n = xm, ∀2 � m � r

)
P
(
J̃c1

n = −x1, J̃cm
n = xm, ∀2 � m � r

) = e
nx1 log γ c1

γ c1− . (31)

This shows that the joint distribution of empirical net LE
currents satisfies a symmetric relation when any xi is replaced
by −xi. In fact, this result which was first found in Ref. [61]
for a monocyclic system and further generalized in Ref. [35]
to a general system, while the proof is not totally rigorous. If
we change xi to −xi one by one for 1 � i � r in the above

equation, then we obtain

P
(
J̃c1

n = x1, J̃c2
n = x2, · · · , J̃cr

n = xr
)

P
(
J̃c1

n = −x1, J̃c2
n = −x2, · · · , J̃cr

n = −xr
) = e

n
∑r

i=1 xi log γ ci

γ ci− .

(32)

Note that Eq. (32) is much weaker than Eq. (31). In what
follows, we term Eq. (31) the strong form and term Eq. (32)
the weak form of the transient fluctuation theorem.

Other types of fluctuation theorems for absolute and net LE
currents can be easily derived from the transient fluctuation
theorem and are summarized as follows. Here we only focus
on the strong form of various fluctuation theorems; the weak
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form can be obtained similarly. Let gn(λ) = 〈en
∑

c∈C λiJ
ci
n 〉 and

g̃n(λ) = 〈en
∑r

i=1 λi J̃
ci
n 〉 be the moment generating functions of

(Jci
n )ci∈C and (J̃ci

n )1�i�r , respectively. Moreover, let IJ (x) and
IJ̃ (x) be the rate functions of (Jci

n )ci∈C and (J̃ci
n )1�i�r , respec-

tively.
(1) Kurchan-Lebowitz-Spohn-type fluctuation theorem: if

cycles c1 and c2 are similar, then

gn(λ1, λ2, · · · ) = gn

(
λ2 − log

γ c1

γ c2
, λ1 + log

γ c1

γ c2
, · · ·

)
,

g̃n(λ1, · · · ) = g̃n

(
−
(

λ1 + log
γ c1

γ c1−

)
, · · ·

)
.

(2) Integral fluctuation theorem: for any subset
{c1, c2, · · · , ct } ⊂ {c1, c2, · · · , cr}, we have〈

e
−n

∑t
i=1 J̃

ci
n log γ ci

γ ci−
〉

= 1. (33)

(3) Gallavotti-Cohen-type fluctuation theorem: If cycles c1

and c2 are similar, then

IJ (x1, x2, · · · ) = IJ (x2, x1, · · · ) −
(

log
γ c1

γ c2

)
(x1 − x2),

IJ̃ (x1, · · · ) = IJ̃ (−x1, · · · ) −
(

log
γ c1

γ c1−

)
x1.

The fluctuation theorems for net LE currents have impor-
tant physical implications. To see this, recall that the total
entropy production of a Markovian system along a single
trajectory {ξ0, ξ1, · · · , ξn} is given by [29]

Stot
n = log

μ0(ξ0)pξ0ξ1 pξ1ξ2 · · · pξn−1ξn

μn(ξn)pξnξn−1 pξn−1ξn−2 · · · pξ1ξ0

= log
μ0(ξ0)

μn(ξn)
+

n−1∑
k=0

log
pξkξk+1

pξk+1ξk

,

where μ0 = (μ0(i))i∈S is the distribution of ξ0 and μn =
(μn(i))i∈S is the distribution of ξn. Under the periodic bound-
ary condition, it is clear that μ0(ξ0) = μn(ξn). Moreover, we
have

pξ0ξ1 pξ1ξ2 · · · pξn−1ξn =
∏
c∈C

(γ c)Nc
n ,

pξnξn−1 pξn−1ξn−2 · · · pξ1ξ0 =
∏
c∈C

(γ c)Nc−
n .

Combining the above two equations, we obtain

Stot
n = n

∑
c∈C

J̃c
n log γ c = n

2

∑
c∈C

J̃c
n log

γ c

γ c−

= n
r∑

i=1

J̃ci
n log

γ ci

γ ci− , (34)

where we have used the fact that J̃c−
n = −J̃c

n in the sec-
ond identity. This shows that the total entropy production
can be decomposed as the weighted sum of net LE currents

with the weights being all cycle affinities, and the quantity
nJ̃c

n log(γ c/γ c) can be understood as the entropy product
along cycle c. It is well-known, as the total entropy produc-
tion of any Markovian system satisfies the integral fluctuation
theorem 〈e−Stot

n 〉 = 1 [29], which implies the classical second
law of thermodynamics 〈Stot

n 〉 � 0. Our results indicate that
the integral fluctuation theorem not only holds for the total
entropy production but also holds for the entropy production
along any finite number of cycles c1, c2, · · · , ct [see Eq. (33)].
In particular, for any cycle c, we have

〈
e−nJ̃c

n log γ c

γ c−
〉 = 1.

This is much stronger than the classical result for the total
entropy production. Moreover, applying Jensen’s inequality to
the integral fluctuation theorem Eq. (33), we find

〈
t∑

i=1

J̃ci
n log

γ ci

γ ci−

〉
� 0, (35)

where c1, c2, · · · , ct are any finite number of cycles. In partic-
ular, for any cycle c, we have

〈
J̃c

n log
γ c

γ c−

〉
� 0.

This provides a much refined version of the second law of
thermodynamics, which shows that the entropy production
along any finite number of cycles has a nonnegative mean.
This reveals the hidden refined structure behind the underlying
system.

C. Fluctuation theorems for ST currents of
general Markov chains

We have seen that both absolute and net LE currents satisfy
various fluctuation theorems. A natural question is whether
similar relations also hold for absolute and net ST currents.
In fact, (absolute) ST currents do not satisfy any form of
fluctuation theorems, even for monocyclic systems. To see
this, consider a fully connected three-state system and let
T = 1 → 2 → 3 be the ST. Then the fundamental set is given
by

L = {(1), (2), (3), (1, 2), (2, 3), (1, 2, 3), (1, 3, 2)}.

It then follows from Eq. (22) that the rate function for empiri-
cal ST currents is given by

IQ(μ) =
∑

〈i, j〉∈E

Rμ(i, j) log
Rμ(i, j)

Rμ(i)pi j
,

where Rμ(i, j) = ∑
cl ∈L μcl Hcl (i, j) and Rμ(i) =∑

j∈S Rμ(i, j). For simplicity of notation, let μ+ = μ(1,2,3)

and let μ− = μ(1,3,2). In Fig. 4(a), we illustrate the
difference between IQ(μ+, μ−, · · · ) and IQ(μ−, μ+, · · · ) −
log(γ +/γ −)(μ+ − μ−) as a function of μ+ and μ− under
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FIG. 4. Some fluctuation theorems may be broken for absolute and net ST currents. (a) Heat plot of ρ = IQ(μ+, μ−, · · · ) −
IQ(μ−, μ+, · · · ) + log(γ +/γ −)(μ+ − μ−) as a function of μ+ and μ− for a three-state system. The fact that ρ �≡ 0 shows that the
Gallavotti-Cohen-type fluctuation theorem is broken for absolute ST currents. The parameters are chosen as μ1 = 15, μ2 = 20, μ3 = 3,
μ12 = 21, μ23 = 37, p11 = 0.28, p12 = 0.22, p13 = 0.5, p21 = 0.1, p22 = 0.6, p23 = 0.3, p31 = 0.3, p32 = 0.3, p33 = 0.4. (b) Change of
ρ = IQ̃(x1, x2, x3) − IQ̃(−x1, x2, x3) + log(γ c1/γ c1−)x1 as a function of x1 for a four-state system. The fact that ρ �≡ 0 shows that the strong
form of the Gallavotti-Cohen-type fluctuation theorem is broken for net ST currents. The parameters are chosen as x2 = 2, x3 = 3, p11 = 0.1,
p12 = 0.2, p13 = 0.3, p14 = 0.4, p21 = 0.5, p22 = 0.15, p23 = 0.15, p24 = 0.2, p31 = 0.1, p32 = 0.4, p33 = 0.25, p34 = 0.25, p41 = 0.2,
p42 = 0.2, p43 = 0.3, p44 = 0.3.

a set of appropriately chosen parameters. It is clear that the
difference is nonzero and thus we have

IQ(μ+, μ−, · · · ) �= IQ(μ−, μ+, · · · )−
(

log
γ +

γ −

)
(μ+ − μ−),

(36)
which means that the Gallavotti-Cohen-type fluctuation the-
orem is broken. Other types of fluctuation theorems must
also be broken since the Gallavotti-Cohen-type fluctuation
theorem is the weakest among all fluctuation theorems.

While various fluctuation theorems fail for ST currents,
they may hold for net ST currents [33]. To see this, note
that for a monocyclic system, we only need to consider the
empirical net current Q̃+

n of cycle C+. Suppose that the ST is
chosen as T = 1 → 2 → · · · → N . With the periodic bound-
ary condition, it follows from Eq. (3) that Q+

n = J+
n + J (N,1)

n
and Q−

n = J−
n + J (N,1)

n . These two equations imply that Q̃+
n =

J̃+
n , and thus the fluctuation theorems for net ST currents

naturally follow from those for net LE currents. Without
the periodic boundary condition, the Gallavotti-Cohen-type
fluctuation theorem still holds since it reflects the long-time
behavior of the system and assuming the periodic boundary
condition or not will not influence the large deviation rate
function, while the other three types of fluctuation theorems
are all broken. It has been shown in Ref. [34] that all four types
of fluctuation theorems are satisfied for a modified version of
net ST currents.

The above results can be extended to a general system. Let
cl1 , cl2 , · · · , cls be all cycles with three or more states in the
fundamental set so any two of them are not reversed cycles
of each other (the empirical net ST currents for one-state and
two-state cycles vanish and do not need to be considered). In
Ref. [33], the authors have proved the following weak form
of the Gallavotti-Cohen-type fluctuation theorem for net ST

currents:

IQ̃(x1, x2, · · · , xs)

= IQ̃(−x1,−x2, · · · ,−xs) −
s∑

i=1

xi log
γ cli

γ cli−
. (37)

This shows that the joint distribution of empirical net ST
currents satisfies a symmetric relation when all xi are replaced
by −xi. In fact, the above equality can be obtained directly
from the fluctuation theorems for net LE currents. For any
cycle cl ∈ L with three or more states, under the periodic
boundary condition, it follows from Eq. (3) that

Q̃cl
n =

∑
c�l

Jc
n −

∑
c�l−

Jc
n =

∑
c�l

Jc
n −

∑
c�l

Jc−
n =

∑
c�l

J̃c
n . (38)

This indicates that empirical net ST currents can be decom-
posed as the sum of empirical net LE currents. It then follows
from Eq. (32) that (see Appendix E for the proof)

P
(
Q̃

cl1
n = x1, · · · , Q̃cls

n = xs
)

P
(
Q̃

cl1
n = −x1, · · · , Q̃cls

n = −xs
) = e

n
∑s

i=1 xi log γ
cli

γ
cli

−
. (39)

This shows that net ST currents satisfy the weak form of
the transient fluctuation theorem under the periodic boundary
condition. The weak form Eq. (37) of the Gallavotti-Cohen-
type fluctuation theorem holds generally since assuming the
periodic boundary condition or not will not influence the large
deviation rate function.

In contrast to net LE currents, net ST currents do not satisfy
the strong form of fluctuation theorems; this fact has been
found in previous papers [62–65]. To give a counterexample,
we consider a fully connected four-state system illustrated in
Fig. 1(b). Suppose that the ST is chosen as T = 1 → 2 →
3 → 4. In this case, we only need to consider the net ST
currents of the three cycles c1 = (1, 2, 3), c2 = (2, 3, 4), and
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c3 = (1, 2, 3, 4), since other cycles in the fundamental set are
either their reversed cycles or cycles with one or two states.
Recall that the rate function of empirical net ST currents
(Q̃c1

n , Q̃c2
n , Q̃c3

n ) is given by

IQ̃(x) = inf
{μ∈M:μci −μci−=xi, ∀1�i�3}

IQ(μ). (40)

In Fig. 4(b), we illustrate the difference between IQ̃(x1, x2, x3)
and IQ̃(−x1, x2, x3) − log(γ c1/γ c1−)μ̃c1 as a function of x1

under a set of appropriately chosen parameters. It is clear that
the difference is nonzero and thus

IQ̃(x1, x2, x3) �= IQ̃(−x1, x2, x3) −
(

log
γ c1

γ c1−

)
μ̃c1 . (41)

Hence the strong form of the Gallavotti-Cohen-type fluctua-
tion theorem fails for net ST currents.

We next discuss the connection between ST currents and
entropy production. Similarly to Eq. (34), under the periodic
boundary condition, the total entropy product along a single
trajectory can be also decomposed as the weighted sum of net
ST currents [8], i.e.,

Stot
n = n

s∑
i=1

Q̃
cli
n log

γ cli

γ cli−
. (42)

Hence within the ST framework, the quantity
nQ̃cl

n log(γ cl /γ cl −) can be understood as the entropy
production along fundamental cycle cl . Note that this is totally
different from the quantity J̃cl

n log(γ cl /γ cl −) investigated in
Sec. IV B. We have seen that within the LE framework, the
entropy production along any finite number of cycles satisfies
both the strong form of integral fluctuation theorem Eq. (33)
and the refined version of the second law of thermodynamics
Eq. (35). Since the strong form of fluctuation theorems
fails for net ST currents, the entropy production along any
fundamental cycle does not satisfy the refined version of the
second law of thermodynamics. In other words, it may occur
that 〈

Q̃cl
n log

γ cl

γ cl −

〉
< 0

for some fundamental cycle cl .
The reason why the strong form of fluctuation theorems

and the refined version of the second law of thermodynamics
are broken for net ST currents can be explained as follows.
From Eq. (38), it is clear that the net ST current Q̃cl

n of
fundamental cycle cl can be decomposed as the sum of the net
LE currents J̃c

n of all cycles c that traverse chord l , i.e., Q̃cl
n =∑

c�l J̃c
n . Note that these cycles c that traverse chord l have

different affinities, which may not be equal to the affinity of
fundamental cycle cl . Hence, even if 〈J̃c

n log(γ c/γ c−)〉 � 0 for
all cycles c, we cannot conclude that 〈Q̃cl

n log(γ cl /γ cl −)〉 � 0.
The weak form of fluctuation theorems holds for net ST cur-
rents since it is essentially the fluctuation theorems for the
total entropy production [see Eq. (42)].

In summary, we have seen that LE currents have much
better properties than ST currents; the former satisfies a much
more refined version of the second law of thermodynamics
while the latter does not. This demonstrates the advantage of
LE currents in dealing with complex thermodynamic systems

far from equilibrium (for simple monocyclic systems, the net
LE and ST currents are the same).

V. CONCLUSIONS AND DISCUSSION

In this paper, we make a comparative study of the large de-
viations and fluctuation theorems for empirical cycle currents
of a Markov chain defined in the LE and ST manners. LE
currents are defined for all cycles in the cycle space, while
ST currents are only defined for cycles in the fundamental
set generated by the chords of an arbitrarily chosen ST. The
fundamental set may be much smaller than the cycle space
for a general system. However, for a system with a cyclic
topology, there is at most one cycle that is contained in the
cycle space but is missing in the fundamental set. LE currents
provide a more complete and detailed description for the cy-
cle dynamics than ST currents. Under the periodic boundary
condition, the ST current of any cycle can be represented by
the weighted sum of LE currents.

Furthermore, we establish the large deviation principle and
provide the explicit expression of the associated rate function
for empirical LE currents of a monocyclic Markov chain. The
proof is based on deriving the joint distribution of empirical
LE currents of all cycles in closed form. When computing
the joint distribution, we propose the method of three-step
cycle insertion: (i) the first step is to insert all cycles that
pass through the initial state into the trajectory, (ii) the second
step is to insert all two-state cycles that do not contain the
initial state into the trajectory, and (iii) the third step is to
insert all one-state cycles that do not contain the initial state
into the trajectory. In addition, the rate function is proved to
be independent of the initial distribution of the system. The
analytical expression of the rate function is complicated for a
general monocyclic system. However, it can be greatly simpli-
fied for a three-state system and for a monocyclic system with
a certain transition between adjacent states being forbidden.
Whether the rate function of LE currents can be computed in
a nonmonocyclic system remains an open question. Following
the method proposed in Ref. [40], which only focused on
empirical net ST currents, we also give the exact rate function
for empirical (absolute) ST currents of a general system. The
relationship between the rate functions of empirical LE and
ST currents is clarified.

The analytical results are then applied to investigate the
fluctuations in the product rate for a three-step reversible
enzyme reaction, which can be modeled as a three-state
monocyclic system. A single enzyme molecule can convert
stochastically among three conformal states: the free enzyme
E , the enzyme-substrate complex ES, and the enzyme-
product complex EP. The product rate of the enzyme reaction
is exactly the empirical net LE current of the monocyclic
system. Using the exact joint distribution for LE currents,
we find that rapid equilibrium between enzyme states E and
ES and rapid equilibrium between enzyme states ES and EP
both result in larger fluctuations in the product rate. Moreover,
compared with the analytical solution, we show that the large
deviations for LE currents provide a much more efficient com-
putational method of the joint distribution, and thus enable a
fast exploration of large swaths of parameter space.
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Finally, we examine various types of fluctuation theorems
satisfied by empirical LE and ST currents and clarify their
ranges of applicability. We first show that the empirical ab-
solute and net LE currents satisfy all types of fluctuation
theorems and symmetric relations. In particular, we introduce
the concept of similar cycles and obtain the strong form of
the transient fluctuation theorem: (i) the joint distribution of
empirical LE currents satisfies a symmetric relation when the
currents of any pair of similar cycles are exchanged and (ii) the
joint distribution of empirical net LE currents satisfies a sym-
metry relation when the net current of any cycle is replaced by
its opposite number. Since empirical ST currents can be repre-
sented by the weight sums of empirical LE currents under the
periodic boundary condition, we further show that empirical
ST currents do not satisfy any form of fluctuation theorems,
while empirical net ST currents only satisfy the weak form of
the transient fluctuation theorem under the periodic boundary
condition: the joint distribution of empirical net ST currents
satisfies a symmetry relation when the net currents of all
cycles in the fundamental set are replaced by their opposite

numbers. As a corollary of the integral fluctuation theorem,
we show that LE currents satisfy a refined version of the
second law of thermodynamics: the entropy production along
any finite number of cycles has a nonnegative mean, while it
is broken for ST currents.

In the present paper, some results are only obtained for a
monocyclic Markov chain. We anticipate that these results can
be generalized to more general Markovian systems and even
to semi-Markovian or non-Markovian systems. In addition,
here we only make a comparison between LE and ST currents.
The relationship between these two types of cycle currents and
those defined in the sequence matching manner [18–20] is not
clear. These are under current investigation.
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APPENDIX A: LARGE DEVIATIONS FOR LE CURRENTS OF A MONOCYCLIC MARKOV CHAIN

Here we give rigorous proof of the large deviation principle for LE currents. Recall that the empirical LE currents (Jc
n )c∈C are

said to satisfy a large deviation principle with a good rate function IJ : V → [0,∞] if [38]
(i) For each α � 0, the level set {x ∈ V : IJ (x) � α} is compact.
(ii) For each open set U ⊂ V ,

lim
n→∞

1

n
logP

((
Jc

n

)
c∈C ∈ U

)
� − inf

x∈U
IJ (x). (A1)

(iii) For each closed set F ⊂ V ,

lim
n→∞

1

n
logP

((
Jc

n

)
c∈C ∈ F

)
� − inf

x∈F
IJ (x). (A2)

To prove the large deviation principle, we proceed in two steps. First, we examine the properties of the rate function and then
we give the rigorous proof of upper bound Eq. (A1) and lower bound Eq. (A2).

Proposition 1. The rate function IJ is finite, continuous, and convex.
Proof. Recall that the rate function IJ : V → [0,∞] for empirical LE currents in the main text is given by

IJ (ν) = [h(ν12) + h(νN1) + h(ν+) + h(ν−) − h(ν12 + νN1 + ν+ + ν−)]

+ inf
X∈V (ν)

Fν (X ) +
∑
i∈S

[h(νi − ν i ) + h(ν i ) − h(νi )] −
∑
c∈C

νc log γ c

:= I1(ν) + I2(ν) + I3(ν) − I4(ν), (A3)

where h(x) = x log x is continuous on [0,∞) and

Fν (X ) =
N−1∑
i=2

[h(xi ) + h(xi−1 + ν+) − h(xi + xi−1 + ν+)] +
N−1∑
i=2

[h(yi ) + h(yi+1 + ν−) − h(yi + yi+1 + ν−)]. (A4)

It is easy to see that IJ is finite. We next prove that IJ is continuous. Obviously, I1, I3, and I4 are continuous functions with respect
to ν. Specially, I4 is a linear function. We still need to prove I2 is continuous. Let Y (ν) ∈ V (ν) be a solution of Eq. (B2) in
Appendix B. Since Eq. (B2) is a set of polynomial equations, it is easy to see that Y (ν) is a continuous function with respect to
ν. This fact, together with the continuity of Fν , guarantees that infX∈V (ν) Fν (X ) = Fν (Y (ν)) is a continuous function of ν.

Finally, we prove that IJ is convex. Note that

I1(ν) = ν12 log

(
ν12

ν̂

)
+ νN1 log

(
νN1

ν̂

)
+ ν+ log

(
ν+

ν̂

)
+ ν− log

(
ν−

ν̂

)
, (A5)
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where ν̂ = ν12 + νN1 + ν+ + ν−. Recall the following log sum inequality: For any a1, a2, b1, b2 � 0, we have

(a1 + a2) log
a1 + a2

b1 + b2
� a1 log

a1

b1
+ a2 log

a2

b2
. (A6)

For any α, β � 0 satisfying α + β = 1 and ν, μ ∈ V , it follows from the log sum inequality Eq. (A6) that

(αν12 + βμ12) log

(
αν12 + βμ12

αν̂ + βμ̂

)
� αν12 log

(
ν12

ν̂

)
+ βμ12 log

(
μ12

μ̂

)
,

where μ̂ = μ12 + μN1 + μ+ + μ−. This implies that the first term on the right-hand side of Eq. (A5) is a convex function of ν.
Similarly, it is easy to prove that the other three terms on the right-hand side of Eq. (A5) are also convex functions of ν. This
shows that I1 is convex. Similarly, by the log sum inequality, we can also prove that I3 is convex. Since I4 is a linear function of
ν, it is also convex. Finally, we will prove that infX∈V (ν) Fν (X ) is convex with respect to ν. To this end, we rewrite Eq. (A4) as

Fν (X ) =
N−1∑
i=2

[
(xi−1 + ν+) log

(
xi−1 + ν+

xi−1 + xi + ν+

)
+ xi log

(
xi

xi−1 + xi + ν+

)]

+
N−1∑
i=2

[
yi log

(
yi

yi + yi+1 + ν−

)
+ (yi+1 + ν−) log

(
yi+1 + ν−

yi + yi+1 + ν−

)]

: =
N−1∑
i=2

[
Ai

1(ν, X ) + Ai
2(ν, X ) + Ai

3(ν, X ) + Ai
4(ν, X )

]
. (A7)

Note that αX + βZ ∈ V (αν + βμ) for any X = (xi, yi ) ∈ V (ν) and Z = (zi,wi ) ∈ V (μ). Then by the log sum inequality, we
have

Ai
1(αν + βμ, αX + βY )

= (αxi−1 + βzi−1 + αν+ + βμ+) log

(
αxi−1 + βzi−1 + αν+ + βμ+

αxi−1 + αxi + βzi−1 + βzi + αν+ + βμ+

)

= (α(xi−1 + ν+) + β(zi−1 + μ+)) log

(
α(xi−1 + ν+) + β(zi−1 + μ+)

α(xi−1 + xi + ν+) + β(zi−1 + zi + μ+)

)

� α(xi−1 + ν+) log

(
xi−1 + ν+

xi−1 + xi + ν+

)
+ β(zi−1 + μ+) log

(
zi−1 + μ+

zi−1 + zi + μ+

)

= αAi
1(ν, X ) + βAi

1(μ,Y ).

Similarly, we have Ai
j (αν + βμ, αX + βY ) � αAi

j (ν, X ) + βAi
j (μ,Y ) for j = 2, 3, 4. This shows that

Fαν+βμ(αX + βY ) � αFν (X ) + βFμ(Y ).

Optimizing over X and Y , we obtain

inf
Z∈V (αν+βμ)

Fαν+βμ(Z ) � α inf
X∈V (ν)

Fν (X ) + β inf
Y ∈V (μ)

Fμ(Y ).

This completes the proof of this proposition. �
We next give the rigorous proof of the upper and lower bounds for empirical LE currents (Jc

n )c∈C .
Proposition 2. (Jc

n )c∈C satisfy a large deviation principle with a good rate function IJ . Moreover, the upper bound of the large
deviation principle can be improved as

lim
n→+∞

1

n
logP

((
Jc

n

)
c∈C ∈ 

)
� − inf

ν∈
IJ (ν) (A8)

for any set  ⊂ V .
Proof. Since V is compact, the level set {x ∈ V : IJ (x) � α} is also compact for any α � 0. Set

Kn :=
{

(kc)c∈C ∈ N2N+2 :
∑
c∈C

kc|c| = n

}
. (A9)

Without loss of generality, we assume that the system starts from state 1. For any k = (kc)c∈C ∈ Kn, it follows from Eq. (7) in
the main text that

P1

(
Jc

n = kc

n
, ∀c ∈ C

)
= |Gn(k)|

∏
c∈C

(γ c)kc

. (A10)
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Let μn(k) = k/n ∈ V . For any  ⊂ V , let us put

Qn() = max
k∈Kn:μn(k)∈

P1

(
Jc

n = kc

n
, ∀c ∈ C

)
.

Then, clearly, we have

Qn() � P1(Jn ∈ ) � |Kn|Qn(). (A11)

It is easy to see that |Kn| � (2N + 2)(n + 1)2N+3. Combining Eqs. (A10) and (A11), we obtain

1

n
logP1(Jn ∈ ) = O

(
log n

n

)
+ 1

n
log Qn()

= O

(
log n

n

)
+ max

k∈Kn:μn(k)∈

[
1

n
log |Gn(k)| +

∑
c∈C

kc

n
log γ c

]

= O

(
log n

n

)
− min

k∈Kn:μn(k)∈
IJ (μn(k)). (A12)

To complete the proof, it is easy to see that ∪n∈N{μn(k) : k ∈ Kn} is dense in V . This fact, together with the continuity of IJ ,
guarantees that for each ν ∈ V , there exists a sequence (kn)n∈N with kn ∈ Kn for all n, such that

lim
n→∞ ‖μn(kn) − ν‖ = 0, lim

n→∞ IJ (μn(kn)) = IJ (ν).

Then, for any open set U ⊂ V , we have

lim
n→∞ min

k∈Kn:μn(k)∈U
IJ (μn(k)) � IJ (ν), ∀ν ∈ U .

Optimizing over ν ∈ U , we obtain

lim
n→∞ min

k∈Kn:μn(k)∈U
IJ (μn(k)) � inf

ν∈U
IJ (ν). (A13)

Combining (A12) and (A13), we obtain the lower bound (A1) of the large deviation principle. Similarly, for any  ⊂ V , we can
prove that

lim
n→∞

min
k∈Kn:μn(k)∈

IJ (μn(k)) � inf
ν∈

IJ (ν). (A14)

Combining Eqs. (A12) and (A14), we obtain the upper bound Eq. (A2) of the large deviation principle. This completes the
proof. �

APPENDIX B: EXPLICIT EXPRESSION OF THE RATE FUNCTION IJ FOR MONOCYCLIC MARKOV CHAINS

Recall that for a monocyclic system, the rate function IJ for empirical LE currents is given by Eq. (15). Here the term
infX∈V (ν) Fν (X ) is not in closed form. Next we will use the Lagrange multiplier method to find the explicit expression of
infX∈V (ν) Fν (X ). For any ν ∈ V , we defined the Lagrangian function

Aν (X, λ) = Fν (X ) +
N−1∑
i=2

λi(x
i + yi − ν i,i+1),

where X = (xi, yi )2�i�N−1 ∈ V (ν) and λ = (λi)2�i�N−1 ∈ RN−2. Taking the derivative of Aν (X, λ) with respect to the variables
xi, yi, and λi, we obtain the following equations:

log(xi ) − log(xi−1 + xi + ν+) + log(xi + ν+) − log(xi + xi+1 + ν+) + λi = 0,

log(yi + ν−) − log(yi−1 + yi + ν−) + log(yi ) − log(yi + yi+1 + ν−) + λi = 0, xi + yi = ν i,i+1, 2 � i � N − 1. (B1)

It is easy to check that Eqs. (B1) can be rewritten as

xi

xi−1 + xi + ν+
xi + ν+

xi + xi+1 + ν+ = yi + ν−

yi−1 + yi + ν−
yi

yi + yi+1 + ν− = e−λi , xi + yi = ν i,i+1, 2 � i � N − 1. (B2)

where x1 = ν12, xN = 0, y1 = 0, and yN = νN1. Next we will prove that the set of algebraic equations Eqs. (B2) has at least one
solution X = (xi, yi ) ∈ V (ν) and this solution minimizes the function Fν over V (ν).

Proposition 3. There exists at least one solution X = (xi, yi ) ∈ V (ν) of Eqs. (B2).
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Proof. If there exists νk,k+1 = 0 for some 2 � k � N − 1, then we have xk = yk = 0. Then Eqs. (B2) can be divided into two
equations in terms of the indices 2 � i � k − 1 and k + 1 � i � N − 1. Thus, we only need to proof the lemma when νk,k+1 > 0
for any 2 � k � N − 1. Next we will consider three different cases.

Case 1: ν12 = ν+ = νN1 = ν− = 0. It is easy to see that for each α ∈ (0, 1),

xi = αν i,i+1, yi = (1 − α)ν i,i+1, 2 � i � N − 1,

is a solution of Eqs. (B2).
Case 2: ν12 = ν+ = 0, νN1 + ν− > 0 or νN1 = ν− = 0, ν12 + ν+ > 0. When ν12 = ν+ = 0, νN1 + ν− > 0, it is easy to see

that xi = 0, yi = ν i,i+1 is a solution of Eqs. (B2). Similarly, when νN1 = ν− = 0, ν12 + ν+ > 0, it is easy to see that xi = ν i,i+1,
yi = 0 is a solution of Eqs. (B2).

Case 3: ν12 + ν+ > 0, νN1 + ν− > 0. We claim that for any 2 � k � N − 2, whenever xk+1 � 0, yk+1 > 0, and xk+1 +
yk+1 = νk+1,k+2, there exists a solution of the following set of equations:

xi

yi
= xi + xi+1 + ν+

xi + ν+
yi + ν−

yi−1 + yi + ν−
xi−1 + xi + ν+

yi + yi+1 + ν− , xi + yi = ν i,i+1, 2 � i � k, (B3)

and the solution satisfies xi, yi > 0 for all 2 � i � k. We next prove it by induction. When k = 2, Eqs. (B3) can be simplified as

x2

ν23 − x2
= x2 + x3 + ν+

x2 + ν+
ν12 + x2 + ν+

ν23 − x2 + y3 + ν− .

It is easy to see that

lim
x2↓0

x2

ν23 − x2
= 0, lim

x2↓0

x2 + x3 + ν+

x2 + ν+
ν12 + x2 + ν+

ν23 − x2 + y3 + ν− � ν12 + ν+

ν23 + y3 + ν− > 0.

On the other hand, we have

lim
x2↑ν23

x2

ν23 − x2
= ∞, lim

x2↑ν23

x2 + x3 + ν+

x2 + ν+
ν12 + x2 + ν+

ν23 − x2 + y3 + ν− = ν23 + x3 + ν+

ν23 + ν+
ν12 + ν23 + ν+

y3 + ν− < ∞.

By the intermediate value theorem, we can find a solution of Eqs. (B3) satisfying x2, y2 > 0 and x2 + y2 = ν23. Suppose that the
claim holds for k = n − 1. Then we consider the equation

xn

νn,n+1 − xn
= xn + xn+1 + ν+

xn + ν+
νn,n+1 − xn + ν−

yn−1 + νn,n+1 − xn + ν−
xn−1 + xn + ν+

νn,n+1 − xn + yn+1 + ν− ,

where xn−1, yn−1 > 0 is the solution of Eqs. (B3) for k = n − 1, which depends on xn � 0. It is easy to see that

lim
xn↓0

xn

νn,n+1 − xn
= 0, (B4)

and

lim
xn↓0

xn + xn+1 + ν+

xn + ν+
νn,n+1 − xn + ν−

yn−1 + νn,n+1 − xn + ν−
xn−1 + xn + ν+

νn,n+1 − xn + yn+1 + ν−

� νn,n+1 + ν−

limxn↓0 yn−1 + νn,n+1 + ν−
limxn↓0 xn−1 + ν+

νn,n+1 + yn+1 + ν− > 0, (B5)

where we have used the fact that limxn↓0 xn−1 > 0 since xn−1 is a continuous function of xn. On the other hand, we have

lim
xn↑νn,n+1

xn

νn,n+1 − xn
= ∞ (B6)

and

lim
xn↑νn,n+1

xn + xn+1 + ν+

xn + ν+
νn,n+1 − xn + ν−

yn−1 + νn,n+1 − xn + ν−
xn−1 + xn + ν+

νn,n+1 − xn + yn+1 + ν−

� νn,n+1 + xn+1 + ν+

νn,n+1 + ν+
limxn↑νn,n+1 xn−1 + νn,n+1 + ν+

yn+1 + ν− < ∞. (B7)

By the intermediate value theorem, we can find a solution of Eqs. (B3) satisfying xi, yi > 0 and xi + yi = ν i,i+1 for any 2 � i � n.
By induction, the claim holds for all k � 2.

Note that when k = N − 1, Eqs. (B3) are equivalent to Eqs. (B2). In this case, we have yk+1 = νN1. Since νN1 + ν− > 0, it is
easy to see that Eqs. (B4)–(B7) still hold. Similarly to the above proof, by the intermediate value theorem, we can find a solution
of Eqs. (B3) satisfying xi, yi > 0 and xi + yi = ν i,i+1 for any 2 � i � N − 1. This completes the proof of this lemma. �
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Proposition 4. Let X = (xi, yi ) ∈ V (ν) be any solution of Eqs. (B2). Then X minimizes the function Fν over V (ν).
Proof. By the log sum inequality Eq. (A6), we have

a1 log
a1

a1 + a2
+ a2 log

a2

a1 + a2
� a1 log

b1

b1 + b2
+ a2 log

b2

b1 + b2
. (B8)

For any Z = (zi,wi ) ∈ V (ν), it follows from Eq. (A7) that

Fν (Z ) =
N−1∑
i=2

[
(zi−1 + ν+) log

zi−1 + ν+

zi−1 + zi + ν+ + zi log
zi

zi−1 + zi + ν+

]

+
N−1∑
i=2

[
wi log

wi

wi + wi+1 + ν− + (wi+1 + ν−) log
wi+1 + ν−

wi + wi+1 + ν−

]
,

where z1 = ν12,wN = νN1. Combining Eqs. (B2) and (B8), we have

Fν (Z ) �
N−1∑
i=2

[
(zi−1 + ν+) log

xi−1 + ν+

xi−1 + xi + ν+ + zi log
xi

xi−1 + xi + ν+

]

+
N−1∑
i=2

[
wi log

yi

yi + yi+1 + ν− + (wi+1 + ν−) log
yi+1 + ν−

yi + yi+1 + ν−

]

=
N−1∑
i=2

[
ν+ log

xi−1 + ν+

xi−1 + xi + ν+ + zi log
xi + ν+

xi−1 + xi + ν+
xi

xi−1 + xi + ν+

]

+
N−1∑
i=2

[
ν− log

yi+1 + ν−

yi + yi+1 + ν− + wi log
yi + ν−

yi−1 + yi + ν−
yi

yi + yi+1 + ν−

]

+ ν12 log
ν12 + ν+

ν12 + x2 + ν+ + νN1 log
νN1 + ν−

νN1 + yN−1 + ν−

=
N−1∑
i=2

[
−λiν

i,i+1 + ν+ log
xi−1 + ν+

xi−1 + xi + ν+ + ν− log
yi+1 + ν−

yi + yi+1 + ν−

]

+ ν12 log
ν12 + ν+

ν12 + x2 + ν+ + νN1 log
νN1 + ν−

νN1 + yN−1 + ν−

=
N−1∑
i=2

[
(xi−1 + ν+) log

xi−1 + ν+

xi−1 + xi + ν+ + xi log
xi

xi−1 + xi + ν+

]

+
N−1∑
i=2

[
yi log

yi

yi + yi+1 + ν− + (yi+1 + ν−) log
yi+1 + ν−

yi + yi+1 + ν−

]

= Fν (X ),

where λi is defined in Eqs. (B2). This gives the desired result. �

APPENDIX C: INDEPENDENCE OF THE RATE FUNCTION
WITH RESPECT TO THE INITIAL DISTRIBUTION

Here we will prove that for any monocyclic system, the rate
function IJ is independent of the choice of the initial distribu-
tion. Before giving the proof, we introduce some notations.

For any k = (kc)c∈C ∈ N2N+2, set |k| = ∑
c∈C kc|c|. For

any state i ∈ S, let Gi(k) be the set of all possible tra-
jectories (with periodic boundary conditions) up to time n
with initial state i so each cycle c is formed kc times,
i.e.,

Gi(k) = {
(ξ0, ξ1, · · · , ξn) ∈ Sn+1 : Nc

n = kc for any ∀c ∈ C, ξ0 = i, n = |k|}.

013207-21



YUHAO JIANG, BINGJIE WU, AND CHEN JIA PHYSICAL REVIEW RESEARCH 5, 013207 (2023)

N+1

1

1-N

η(ξ)

κ(ξ)

N+1

1

1-N

j

j-N

(b)(a)

FIG. 5. The broken line graph for the trajectory ξ . Here we consider states i and N + i as different states. (a) The first type mapping of
trajectory: η(ξ ) is the last time that trajectory ξ reach state 1. (b) The second type mapping of trajectory: κ (ξ ) denotes the first time that
trajectory ξ reaches state j.

For any state i ∈ S and any cycle c � i, let Gi,c(k) be the subset
of Gi(k) so the last cycle formed by the trajectory is cycle c.
For convenience, in the following, if c = C+, then Gi,c(k) is
abbreviated as Gi,+(k); if c = C−, then Gi,c(k) is abbreviated
as Gi,−(k).

We next give some nontrivial identities about |Gi(k)| and
|Gi,c(k)|.

Lemma 1. Set

Bi(k̃) = |Gi,+(1, 0, k̃)|, Ci(k̃) = |Gi,−(0, 1, k̃)|,
where k̃ = (k1, · · · , kN , k12, · · · , kN1). Then, for any i, j ∈ S
and k̃ ∈ N2N , we have

Bi(k̃) = B j (k̃) = Ci(k̃) = C j (k̃).

Proof. Without loss of generality, we assume i = 1. We
first prove that B1(k̃) = C1(k̃). Note that any monocyclic
Markov chain naturally corresponds to a nearest-neighbor
random walk (with the transition from a state to itself being
allowed). Hence, each trajectory of the monocyclic system
can be represented as a broken line graph illustrated in Fig. 5.
The horizontal movement of the broken line from state i to
itself corresponds to the formation of cycle (i). Each decrease
of the broken line from state i + 1 to state i above state 1
corresponds to the formation of cycle (i, i + 1). Each increase
of the broken line from state − j to state 1 − j below state 1
corresponds to the formation of cycle (− j, 1 − j), where all
states are understood to be modulo N .

Let n = N + |k̃|. For any trajectory ξ = (ξm)0�m�n ∈
G1,+(1, 0, k̃), let

η(ξ ) = max{m : 0 � m � n − 1, ξm = 1}
be the last exit time of the initial state 1 before time n.
Since the last cycle formed by ξ is C+, it is clear that ξ

must reach the set {N + 1, 1 − N} for the first time at time
n with ξn = N + 1. Then we can construct another trajectory
ξ̃ = (ξ̃m)0�m�n corresponding to ξ as [see Fig. 5(a) for an
illustration]

ξ̃m :=
{

ξm, if 0 � m � η(ξ )

ξn+η(ξ )−m − N, if η(ξ ) < m � n,

where the original trajectory between time η(ξ ) and time n are
reversed and then translated to the initial state 1. Clearly, each
cycle formed by (ξm)0�m�η(ξ ) is also formed by (ξ̃m)0�m�η(ξ ).
In addition, the horizontal movement of the broken line from

state i to itself for (ξm)η(ξ )�m�n corresponds to the horizon-
tal movement of the broken line from state i − N to itself
for (ξ̃m)η(ξ )�m�n. Similarly, each decrease of the broken line
from state i + 1 to state i for (ξm)η(ξ )�m�n corresponds to an
increase of the broken line from state i − N to state i + 1 −
N for (ξ̃m)η(ξ )�m�n. Then all one-state and two-state cycles
formed by ξ are also formed by ξ̃ . Moreover, it is clear that
ξ̃ reaches the set {N + 1, 1 − N} for the first time at time
n with ξ̃n = 1 − N . This implies that ξ̃ ∈ G1,−(0, 1, k̃) since
the last cycle formed by ξ̃ is C−. Hence the map ξ �−→ ξ̃

gives a one-to-one correspondence between G1,+(1, 0, k̃) and
G1,−(0, 1, k̃). This shows that B1(k̃) = C1(k̃).

We next prove that B1(k̃) = B j (k̃). For each k̃ satisfying
|k̃| = n − N , let G̃l (k̃) be the set of all possible trajecto-
ries up to time n with initial state l so each edge 〈i, i〉 is
passed through ki times, each edge 〈i, i + 1〉 is passed through
ki,i+1 + 1 times, each edge 〈i + 1, i〉 is passed through ki,i+1

times, and the trajectory reaches state N + i for the first time
at time n, where all states are understood to be module N . We
claim that |G̃1(k̃)| = |G̃ j (k̃)|.

We now prove the claim. For any trajectory ξ =
(ξm)0�m�n ∈ G̃1(k̃), let

κ j (ξ ) = min{m : 0 � m � n, ξm = j}
be the hitting time of state j. Then we can construct another
trajectory ξ̃ = (ξ̃m)0�m�n corresponding to ξ as [see Fig. 5(b)
for an illustration]

ξ̃m :=
{

ξκ j (ξ )+m, if 0 � m � n − κ j (ξ )

ξm+κ j (ξ )−n, if n − κ j (ξ ) < m � n,

where the original trajectory between time κ j (ξ ) and time n
are moved before the initial time and then translated to initial
state 1. It is easy to see that ξ̃ has initial state j. In addition,
edge 〈i, i〉 is passed through ki times, edge 〈i, i + 1〉 is passed
through ki,i+1 + 1 times and edge 〈i + 1, i〉 are passed through
ki,i+1 times. Moreover, since ξ reaches state j is the first time
at time κ j (ξ ), it is clear that ξ̃ reaches state j + N the first
time at time n. This implies that ξ̃ ∈ G̃ j (k̃). Hence the map
ξ → ξ̃ gives a one-to-one correspondence between G̃1(k̃) and
G̃ j (k̃). This shows that |G̃1(k̃)| = |G̃ j (k̃)|.

In fact, for each trajectory ξ ∈ G̃1(k̃), cycles (i), (i, i + 1),
(1, · · · , N ), and (1, N, · · · , 2) are formed ki, ki,i+1 − r, r + 1,
and r times, respectively. Here r � mini∈S ki,i+1 depends on ξ .
It is easy to see that ξ reaches state N + 1 for the first time at
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time n. Then the last cycle formed by ξ is C+ and thus

G̃1(k̃) =
mini∈S ki,i+1⊔

r=0

G1,+(r + 1, r, k1, · · · , kN , k12

− r, · · · , kN1 − r).

Since B1(k̃) = |G1,+(1, 0, k̃)|, we obtain

|G̃1(k̃)| =
mini∈S ki,i+1∑

r=1

|G1,+(r + 1, r, k1, · · · , kN , k12

− r, · · · , kN1 − r)| + B1(k̃). (C1)

Similarly, we can also obtain

|G̃ j (k̃)| =
mini∈S ki,i+1∑

r=1

|Gj,+(r + 1, r, k1, · · · , kN , k12

− r, · · · , kN1 − r)| + B j (k̃). (C2)

Finally, we prove B1(k̃) = B j (k̃) by induction. When
mini∈S ki,i+1 = 0, it follows from Eqs. (C1), (C2), and the
claim that

B1(k̃) = |G̃1(k̃)| = |G̃ j (k̃)| = B j (k̃).

Suppose that the equality holds for mini∈S ki,i+1 � t . When
mini∈S ki,i+1 = t + 1, fix 1 � r � t + 1. Now we calculate
|G1,+(r + 1, r, k1, · · · , kN , k12 − r, · · · , kN1 − r)|. Let ξ ∈
G1,+(r + 1, r, k1, · · · , kN , k12 − r, · · · , kN1 − r), then trajec-
tory ξ can be divided into 2r + 1 subtrajectories such that the
last cycle formed by each subtrajectory is cycle (1, · · · , N )
or (1, N, · · · , 2). Note that the number of permutations for
inserting r + 1 cycle (1, · · · , N ) and r cycle (1, N, · · · , 2)
into state 1 such that the last cycle is (1, · · · , N ) is

(2r
r

)
. Fix

the partition of the rest cycles, i.e.,

2r+1∑
s=1

k̃s = (k1, · · · , kN , k12 − r, · · · , kN1 − r).

Since Bi(k̃) = Ci(k̃) for all i and k̃, the number of insertions
is

∏2r+1
s=1 B j (k̃s). Summing over all choices of k̃s, the total

number is given by

|G1,+(r + 1, r, k1, · · · , kN , k12 − r, · · · , kN1 − r)|

=
(

2r

r

) ∑
∑2r+1

s=1 k̃s=(k1,··· ,kN ,k12−r,··· ,kN1−r)

2r+1∏
s=1

B1(k̃s).

Similarly, we can also obtain

|Gj,+(r + 1, r, k1, · · · , kN , k12 − r, · · · , kN1 − r)|

=
(

2r

r

) ∑
∑2r+1

s=1 k̃s=(k1,··· ,kN ,k12−r,··· ,kN1−r)

2r+1∏
s=1

B j (k̃s).

Note that mini∈S (ki,i+1 − r) � mini∈S ki,i+1 − 1 � t , we have
B1(k̃s) = B j (k̃s) by induction. Then

|G1,+(r + 1, r, k1, · · · , kN , k12 − r, · · · , kN1 − r)|
=|Gj,+(r + 1, r, k1, · · · , kN , k12 − r, · · · , kN1 − r)|.

It follows from Eqs. (C1), (C2), and the claim that B1(k̃) =
B j (k̃). By induction, we complete the proof. �

Proposition 5. For any i, j ∈ S, k ∈ N2N+2:

|Gi,+(k)| = |Gj,+(k)|, |Gi,−(k)| = |Gj,−(k)|. (C3)

Proof. Here we only prove the first identity of Eqs. (C3);
the proof the second identity is similar. Now we calculate
|Gi,+(k)|. Suppose that the system starts from state i. We first
insert cycles C+ and C− into the trajectory. Note that the last
cycle formed by any trajectory ξ ∈ Gi,+

n (k) is C+. Since cycle
C+ is formed k+ times and cycle C+ is formed k+ times, the
number of insertions is

(k++k−−1
k+−1

)
.

We next insert the remaining one-state and two-state cycles
into the trajectory. Since there are currently k+ + k− N-state
cycles in the trajectory, we divide the remaining cycles into
k+ + k− groups and then insert those cycles that belong to
the sth group onto the sth N-state cycle. If we partition the
remaining cycles into k+ + k− groups as

∑k++k−
s=1 k̃s = k̃, then

it follows from Lemma 1 that the number of insertions is∏k++k−
s=1 Bi(k̃s). Summing over all choices of k̃s, the total num-

ber of insertions is given by

|Gi,+(k)| =
(

k+ + k− − 1

k+ − 1

) ∑
∑k++k−

s=1 k̃s=k̃

k++k−∏
s=1

Bi(k̃s).

Similarly, we have

|Gj,+(k)| =
(

k+ + k− − 1

k+ − 1

) ∑
∑k++k−

s=1 k̃s=k̃

k++k−∏
s=1

B j (k̃s).

By Lemma 1, we complete the proof of this proposition. �
The next lemma gives the relationship between |Gi(k)| and

|Gi,c(k)|.
Lemma 2. Let k ∈ N2N+2, i ∈ S, and c ∈ C. Suppose that

c passes through state i. Then

|Gi,c(k)| = kc∑
c�i kc

|Gi(k)|.

Proof. Without loss of generality, we assume i = 1. Recall
the three-step cycle insertion method of calculating |G1(k)| in
the main text. Let us fix the last cycle as c in the first step and
the number of permutations is given by

kc

k1 + k12 + kN1 + k+ + k− A1.

Keep the second and third steps the same. In this case, the last
cycle formed by the trajectory will be c, which means

|G1,c(k)| = kc∑
c�1 kc

|G1(k)|.

This completes the proof of this lemma. �
Proposition 6. Under the periodic boundary condition, the

rate function IJ is independent of the choice of the initial
distribution of ξ .
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Proof. We only need to prove that the rate function when
the systems starts from state 1 is exactly the same as the the
rate function when the systems starts from state 2. For any
state i ∈ S, recall that

Pi
(
Jc

n = νc,∀ c ∈ C
) = |Gi(k)|

∏
c∈C

(γ c)kc

,

where n = ∑
c∈C |c|kc and νc = kc/n. It follows from Eqs. (6)

in the main text that we only need to prove that log |G1(k)| =
log |G2(k)| + O(log n). Let c = (1, · · · , N ). By Proposition 5
and Lemma 2, we have

log |G1(k)| = log |G1,+(k)| + O(log n)

= log |G2,+(k)| + O(log n)

= log |G2(k)| + O(log n).

This completes the proof of this proposition. �

APPENDIX D: SIMPLIFIED EXPRESSION OF RATE
FUNCTION IJ IN TWO SPECIAL CASES

We have seen that the rate function IJ for empirical LE
currents of a monocyclic system can be simplified to a large
extent in two special cases: (i) the case where the system has
only three states and (ii) the case where the transition from
state 1 to state N is forbidden [see Fig. 1(d) for an illustration].
Next we will give the proof.

We first prove that for a three-state system, the rate function
is given by Eq. (17). When N = 3, it is easy to see that the

solution X = (x2, y2) of Eqs. (16) is given by

x2 = ν23(ν12 + ν+)

ν12 + ν13 + ν+ + ν− , y2 = ν23(ν13 + ν−)

ν12 + ν13 + ν+ + ν− .

Note that the solution X = (x2, y2) minimizes the function Fν .
Then we have

I2(ν) = Fν (X )

= ν23 log
ν23

ν̃
+ (ν12 + ν13 + ν+ + ν−) log

ν̃ − ν23

ν̃
.

Straightforward calculations show that

I1(ν) + I2(ν) + I3(ν)

=
∑
i∈S

[
ν i log

ν i

νi
+ (νi − ν i ) log

νi − ν i

νi

]

+
∑

c∈C,|c|�=1

νc log
νc

ν̃
. (D1)

Recall the following expression of the LE currents Ref. [17,
Theorem.1.3.3],

J+ = γ + 1

C
, J− = γ − 1

C
,

Ji,i+1 = γ i,i+1 1 − pi−1,i−1

C
, 1 � i � 3, (D2)

where C = ∑
i∈S[(1 − pi−1,i−1)(1 − pi+1,i+1) − pi−1,i+1

pi+1,i−1]. It then follows from Eq. (1) that

pi j =
∑

c�〈i, j〉 Jc∑
c�i Jc

. (D3)

Combining Eqs. (D2) and (D3), we have

∑
i∈S

[
ν i log

Ji

Ji
+ (νi − ν i ) log

Ji − Ji

Ji

]
+

∑
c∈C,|c|�=1

νc log

(
Jc

J̃

)

=
∑
i∈S

[
ν i log

Ji

Ji
+ ν i,i+1 log

((
1 − Ji

Ji

)(
1 − Ji+1

Ji+1

)
Ji,i+1

J̃

)]
+ ν+ log

(
J+

J̃

∏
i∈C

(
1 − Ji

Ji

))
+ ν− log

(
J−

J̃

∏
i∈C

(
1 − Ji

Ji

))

=
∑
c∈C

νc log γ c = −I4(ν). (D4)

Combining Eqs. (D1) and (D4) gives the desired result.
We next prove that for a monocyclic system, if the transition from state 1 to state N is forbidden [see Fig. 1(d) for an

illustration], then the rate function is given by Eq. (18). Since pN1 = 0, the two cycles (1, N ) and (1, N, · · · , 2) cannot be
formed. Hence we can take νN1 = ν− = 0 in Eqs. (16) and it is easy to see that xi = ν i,i+1, yi = 0 is a solution of Eqs. (16).
Then we have

I2(ν) = Fν (xi, yi ) =
N−1∑
i=2

[
−λiν

i,i+1 + ν+ log
ν i−1,i + ν+

ν i−1,i + ν i,i+1 + ν+

]
+ ν12 log

ν12 + ν+

ν12 + ν23 + ν+ ,

where

λi = − log

(
ν i,i+1

ν i−1,i + ν i,i+1 + ν+
ν i,i+1 + ν+

ν i,i+1 + ν i+1,i+2 + ν+

)
.

By the definition of νi, we have

ν1 = ν1 + ν12 + ν+, νi = ν i + ν i−1,i + ν i,i+1 + ν+, 2 � i � N − 1, νN = νN + νN−1,N + ν+.
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Straightforward calculations show that

I1(ν) = ν12 log
ν12

ν1 − ν12
+ ν+ log

ν+

ν1 − ν1
,

I2(ν) =
N∑

i=2

[
ν i,i+1 log

ν i,i+1

νi − ν i
+ ν+ log

ν i−1,i + ν+

νi − ν i

]
+

N∑
i=1

ν i,i+1 log
ν i,i+1 + ν+

νi+1 − ν i+1
,

I3(ν) =
∑
i∈S

[
ν i log

ν i

νi
+ ν+ log

νi − ν i

νi

]
+

∑
i∈S

ν i,i+1

(
log

νi − ν i

νi
+ log

νi+1 − ν i+1

νi+1

)
. (D5)

It then follows from Eq. (D3) that

∑
i∈S

[
ν i log

Ji

Ji
+ ν i,i+1 log

Ji,i+1

Ji
+ (ν i−1,i + ν+) log

Ji−1,i + J+

Ji

]

=
∑
i∈S

[
ν i log

Ji

Ji
+ ν i,i+1 log

Ji,i+1(Ji,i+1 + J+)

Ji+1Ji

]
+ ν+ log

∏N
i=1

(
Ji,i+1 + J+)
∏N

i=1 Ji

=
∑
c∈C

νc log γ c = −I4(ν). (D6)

Combining Eqs. (D5) and (D6) gives the desired result.

APPENDIX E: PROOF OF THE TRANSIENT FLUCTUATION THEOREM FOR NET ST CURRENTS

Here we will prove Eq. (39) under the periodic boundary condition. It follows from Eq. (38) that for any cycle cl ∈ L with
three or more states, we have

Q̃cl
n =

r∑
i=1

J̃ci
n [1{l∈ci} − 1{l∈ci−}],

where 1A is the indicator function which takes the value of 1 when A holds and takes the value of 0 when A does not hold. Then
we obtain

P
(
Q̃

cl1
n = x1, · · · , Q̃cls

n = xs
) = P

(
r∑

i=1

J̃ci
n

[
1{l1∈ci} − 1{l1∈ci−}

] = x1, · · · ,

r∑
i=1

J̃ci
n

[
1{ls∈ci} − 1{ls∈ci−}

] = xs

)

=
∑

∑r
i=1 yi[1{lm∈ci }−1{lm∈ci−}]=xm,1�m�s

P
(
J̃c1

n = y1, · · · , J̃cr
n = yr

)

=
∑

∑r
i=1 yi[1{lm∈ci }−1{lm∈ci−}]=xm,1�m�s

P
(
J̃c1

n = −y1, · · · , J̃cr
n = −yr

)
e

n
∑r

i=1 yi log γ ci

γ ci−

=
∑

∑r
i=1 yi[1{lm∈ci }−1{lm∈ci−}]=xm,1�m�s

P
(
J̃c1

n = −y1, · · · , J̃cr
n = −yr

)
e

n
∑s

i=1 xi log γ
cli

γ
cli

−

=
∑

∑r
i=1 yi[1{lm∈ci }−1{lm∈ci−}]=−xm,1�m�s

P
(
J̃c1

n = y1, · · · , J̃cr
n = yr

)
e

n
∑s

i=1 xi log γ
cli

γ
cli

−

= P

(
r∑

i=1

J̃ci
n

[
1{l1∈ci} − 1{l1∈ci−}

] = −x1, · · · ,

r∑
i=1

J̃ci
n

[
1{ls∈ci} − 1{ls∈ci−}

] = −xs

)
e

n
∑s

i=1 xi log γ
cli

γ
cli

−

= P
(
Q̃

cl1
n = x1, · · · , Q̃cls

n = xs
)
e

n
∑s

i=1 xi log γ
cli

γ
cli

−
,

where we use the fact that under the constraint of
∑r

i=1 yi[1{lm∈ci} − 1{lm∈ci−}] = xm, ∀ 1 � m � s, we have

r∑
i=1

yi log
γ ci

γ ci− =
s∑

j=1

x j log
γ

cl j

γ
cl j − . (E1)
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This identity is highly nontrivial and we next prove it. For any cycle c, let Lc be a function on E defined by

Lc(i, j) =
{

1, if 〈i, j〉 ∈ c
0, otherwise.

By the definition of the function Hcl in Eq. (21), it can be proved that [53]

Lc =
∑
l /∈T

Lc(l )Hcl .

Let w be a function on E defined by

w(i, j) = log
pi j

p ji
.

For any cycle c = (i1, i2, · · · , it ), we have

log
γ c

γ c− =
t∑

k=1

log
pik ,ik+1

pik+1,ik

= 〈w, Lc〉,

where it+1 = i1 and 〈w, Lc〉 = ∑
〈i, j〉∈E w(i, j)Lc(i, j) is the inner product. Moreover, for any cl ∈ L, it is not difficult to prove

that

log
γ cl

γ cl − = 〈w, Hcl 〉.

Note that log(γ c/γ c−) = 0 for all one-state or two-state cycles. Then for any cycle c, we have
s∑

j=1

[Lc(l j ) − Lc−(l j )] log
γ

cl j

γ
cl j − =

∑
l /∈T

Lc(l ) log
γ cl

γ cl − .

Thus, we finally obtain
s∑

j=1

x j log
γ

cl j

γ
cl j − =

s∑
j=1

r∑
i=1

yi[L
ci (l j ) − Lci−(l j )] log

γ
cl j

γ
cl j − =

r∑
i=1

yi

s∑
j=1

[Lci (l j ) − Lci−(l j )] log
γ

cl j

γ
cl j −

=
r∑

i=1

yi

∑
l /∈T

Lci (l )〈w, Hcl 〉 =
r∑

i=1

yi

〈
w,

∑
l /∈T

Lci (l )Hcl

〉
=

r∑
i=1

yi〈w, Lci〉 =
r∑

i=1

yi log
γ ci

γ ci− .

This completes the proof of Eq. (E1) and thus completes the proof of the transient fluctuation theorem.
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