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Unraveling on kinesin acceleration in intracellular environments: A theory for active bath
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A single-molecular motor kinesin harnesses thermal and nonthermal fluctuations to transport various cargoes
along microtubules, converting chemical energy to directed movements. To describe the nonthermal fluctuations
generated by the complex environment in living cells, we propose a bottom-up model which combines a Markov
model of the kinesin and a mean-field model for the active bath, to mimic the kinesin movements in the
intracellular environment. Simulations of the model system show that the kinesin and the probe attached to
it are accelerated by such active bath. Further, we provide a theoretical insight into the simulation result by
deriving a generalized Langevin equation (GLE) for the probe with a mean-field method, wherein an effective
friction kernel and fluctuating noise terms are obtained explicitly. Numerical solutions of the GLE show very
good agreement with simulation results. We sample such noises, calculate their variances and non-Gaussian
parameters, and reveal that the dominant contribution to probe acceleration is attributed to noise variance.
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I. INTRODUCTION

Kinesins are a class of molecular motor proteins that are
driven by hydrolysis of adenosine triphosphate (ATP) and
move along microtubule filaments to transport various car-
goes [1–3]. The kinetic mechanism of kinesin movement
has been well studied through single-molecule measurement
technologies [4–6]. Beyond direct ATP propulsion, in living
cells, cargo-loaded kinesin utilizes thermal fluctuations to
make directed motions [3,7]. Besides, metabolic activities,
which are hard to recur in experimental conditions (in vitro)
but do occur in living cells, generate nonthermal fluctuations
through energy input [8–12]. A few works showed that active
fluctuations have non-Gaussian properties in various physical
systems, such as active swimmer suspensions [13–15] and
cytoskeleton networks [16]. Effects of these active fluctua-
tions have become a hot topic recently in biophysics and
nonequilibrium statistical physics communities [13,17–19],
and direct measurement of kinesin with nonthermal noises has
been achieved experimentally (in vitro) [17,18,20].

It has been shown that active fluctuations promote the
transport of molecular motors as far as we know [11,13,16–
18,20,21]. Ariga et al. [17] studied the noise-induced accel-
eration of kinesin with experiments and a phenomenological
theory. They found that kinesin accelerates under a semitrun-
cated Lévy noise, and when a large hindering force is loaded,
this acceleration becomes more significant. They also pointed
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out that the efficiency of kinesin is surprisingly low in vitro
[19] so that they hypothesized the kinesin movement is
likely to be optimized for noisy intracellular environments but
not necessarily for extracellular situations. Similarly, another
class of motor proteins, dynein, also exhibits analogous be-
havior. Ezber et al. [21] found that dynein harnesses active
fluctuations for faster movement experimentally, and de-
scribed this phenomenon with a racket potential model based
on Arrhenius theory. Analogously, Pak et al. [20] studied
probe transport and diffusion enhancement in the ratchet po-
tential and the presence of “exponentially correlated Poisson
(ECP) noise” experimentally. They found that the probe ve-
locity not only increased with noise strength, but also reached
the maximum for a characteristic correlation timescale and
non-Gaussian distribution of such noise.

On the other hand, when biological swimmers or artificial
self-propelled particles are suspended in the fluid, the trans-
port properties of the probe can be dramatically altered. This
constitutes a model called “active bath” or “active suspen-
sion” that has been widely investigated experimentally and
theoretically in recent decades [22–36]. In particular, signif-
icant progress has been made in recent years in modeling and
theoretical research, which are based on various theoretical
methods, including density functional theory [37], nonequi-
librium linear response theory [29,38–43], mean-field theory
method (including our previous work on the effective mobil-
ity and diffusion of a passive tracer in the active bath [44])
[45–50], and even mode-coupling theory [51,52]. The “active
bath” model brings an available tool to investigate the probe
properties in complex fluids which are far from equilibrium
and evolve complicated interactions, such as cytoplasm in
living cells. All these works inspire us to build a bottom-up
model for kinesin in an intracellular environment and derive
a corresponding theory that serves as a fundamental way to
decode the kinesin acceleration in nonequilibrium situations.
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FIG. 1. (a) Cartoon for the model system. (b) Schema for actual
simulation system: Large blue ball stands for the probe, small cyan
balls indicate active particles (only a few particles are shown), and
red dots indicate the kinesin. (c) Schematic diagram for Markov
model of kinesin movement. Typical trajectories of tracer and kinesin
in the active bath (d) for different hindering forces from −2 to −4 pN
with constant activity Pe = 40, and (e) for the different activity of
bath under constant drag force F0 = −4 pN.

In the present work, we introduce an active bath model
to mimic the cytoplasmic environment, by utilizing soft col-
loidal particles (also known as “active crowders”) to imitate
various proteins or vesicae, and particle activity to simu-
late metabolic processes. Then we investigate the effects of
thermal/nonthermal fluctuation generated by these crowders
on kinesin transport. Our model briefly captures the most sig-
nificant parts of the system and allows a wide range of param-
eters to include various kinds of situations. It brings a quan-
tifiable research approach to active fluctuations in living cells.

II. MODELING AND SIMULATIONS

Let us consider a three-dimensional system shown in
Fig. 1(a), where a probe (or called tracer elsewhere) at-
tached to a kinesin is suspended in an active bath consisting
of N self-propelled particles inside a box of side length
Lx, Ly, Lz with periodic boundaries. These bath particles are
propelled by independent Ornstein-Uhlenbeck (OU) noises,
forced by interparticle repulsive potentials and background
thermal noises. The movement of bath particles is governed
by overdamped Langevin equations

ṙi = −μb∇i

⎡
⎣∑

j �=i

V (|ri − r j |) + U (|ri − xp|)
⎤
⎦

+ fi +
√

2μbkBT ξi, (1a)

τbḟi = −fi +
√

2Dbζi, (1b)

where ri is the position for the ith bath particle, μb is the
mobility, xp is the position of the probe particle, V (r) and
U (r) are interacting potentials between bath-bath particles
and bath-probe, respectively, fi is the propulsion veloc-
ity acting on i-bath particles with persistent time τb and
strength Db, kB is the Boltzmann constant and T is the back-
ground temperature, and ξi and ηi are independent Gaussian
white noise vectors in 3d space, with zero means and delta
correlations 〈ξi(t )ξ j (t

′)〉 = 2δi jδ(t − t ′)I and 〈ζi(t )ζ j (t
′)〉 =

2δi jδ(t − t ′)I, where I is the unit matrix.
The molecular motor is described by a phenomenological

Markov-like kinetic diagram based on experimental observa-
tions [19], wherein the complex kinesin walking process is
simplified to a two-state Markov transition. In this model, the
central ATP hydrolysis and the walking process are divided
into three transition steps [see Fig. 1(c)]. The first step is ATP
load with the constant rate kc and causes a “state transition”
(state 1 to state 2). This rate is dependent on the concentration
of ATP, and independent of any mechanical issues. The second
and third steps are mechanical transitions for forward and
backward steps with constant step size d = 8 nm along the
microtubule as well as rates k f and kb, respectively. Mean-
while, the state transition accompanies both steps, from state
2 to state 1. These two rates have both force F dependent as
Arrhenius type

k{ f ,b}(F ) = k0
{ f ,b} exp

(
d{ f ,b}F

kBT

)
, (2)

where k0
{ f ,b} is the rate constant without any external force

load, d{ f ,b} is the characteristic distance, and all of these pa-
rameters are fitted by experimental data. Mathematically, the
evolution of the probability of each state (P1 and P2) obeys a
master equation

d

dt
P2 = kcP1 − (k f + kb)P2. (3)

This equation establishes the relationship between mean ve-
locity and all fitting parameters for kinesin systems, v̄ =
d (k f −kb)kc

k f +kb+kc
, which is used to identify fitting parameters men-

tioned above and can be determined by experiments [17].
One of the most concerned quantities in our model is the

position of the probe xp. The probe is dragged by a constant
hindering force F0 (to mimic optical tweezers in experiments)
and pulled by a molecular motor kinesin via a linear spring
with stiffness K . To illustrate the setup, we draw a cartoon in
Fig. 1(a), and show the actual simulation system in panel (b)
wherein the kinesin and probe are both constrained to move
along the �ex direction. The movement of the probe is also
described by an overdamped Langevin equation

ẋp = μp[K (xm − xp) + F0 + Fbath] +√2μpkBT ξt , (4)

where xp and xm are the position of the probe and the motor
along the �ex direction, respectively, μp is the mobility of the
probe, and Fbath = − ∂

∂xp

∑
i U (|ri − xp|) is the interactions

between the probe and bath particles.
For easier comparison with the previous experimen-

tal results, in simulations we use SI units and set
kBT = 4.115 pN nm for room temperature. Considering that
the intracellular environment is dense, and interactions of
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various components such as proteins and vesicae are soft,
we roughly set the active crowder diameter Rb = 160 nm
and mobility μb = 1.0 × 105 nm/(pN s), set the bath par-
ticle density ρ = N/(LxLyLz ) = 1.0/R3

b as a relatively high
value, and choose the harmonic potential as the interac-
tions between particles, U (r) = κ

2 (σpb − |r|)2 for |r| < σpb

and V (r) = κ
2 (σbb − |r|)2 for |r| < σbb, where σpb = (Rp +

Rb)/2 = 340 nm, σbb = Rb = 160 nm is the interacting dis-
tance of probe-bath particles and bath-bath particles, and κ

is the interaction strength which is set as a constant. Other
parameters and simulation details are shown in Appendix A.
In this work, the main control parameters are the activity of
active crowder, measured by Péclet number, which is dimen-
sionless and defined as Pe =

√
Db/τbRb

μbkBT , where
√

Db/τb is the
standard deviation of fi, as well as the persistent time of active
crowder τb.

Figures 1(d) and 1(e) show several typical simulation tra-
jectories of the kinesin and the probe attached to it. Due to
the kinesin walking process, all kinesin/probes move toward
the positive x direction. With the constant bath activity and
kinetics parameters of kinesin, the influence of hindering load
force on kinesin/probe movement is shown in Fig. 1(d). As a
matter of course, a larger load force leads to slower move-
ment, as well as a larger distance between the kinesin and
probe. Besides, the active fluctuations on the probe contribute
significant promotion effect. As shown in Fig. 1(e), with the
constant hindering force, larger bath activity induces faster
kinesin/probe movement.

Average velocities of probe v for variant bath activities
are shown in Figs. 2(a) and 2(c) for a normalized version,
and each marker indicates the hindering force F0 from −2 to
−5 pN. Results show that probe velocity v increases with bath
activity Pe monotonically in all cases. Especially, normalized
velocity v/vPe=0 shows a stronger enhancement under high
hindrance loads. This result is very similar to a most recent
in vitro experiment [17], wherein the researchers have used
optical tweezers to apply a “semitruncated Lévy noise” and
an additional constant load force on the probe. They found
that motor/probe velocity increases with the magnitude of
the noise, and such increases are larger for the stronger load
forces. We also investigate the kinesin velocity dependence on
persistent time of active bath particles with fixed activity Pe,
shown in Fig. 2(e). Simulations show that the probe velocity
increases with persistent time τb at first and next reaches a
plateau. Then, probe velocity weakly decreases at the large
τb region. To better illustrate these phenomena, velocities
depending on various Pe and τb have been shown in Fig. 4
in Appendix A.

III. THEORY OF ACTIVE BATH

To understand our simulation results, we propose a mean-
field theory method to investigate the system theoretically.
The starting point of the theory is the overdamped Langevin
equations (1), and the objective of the theory is to obtain an
effective movement equation that only contains probe and
kinesin variables. To eliminate numerous degrees of free-
dom of bath particles, we describe the model system at a
coarse-grained level, employing an evolution equation for
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FIG. 2. (a) Simulation results, the average velocity of the probe
in the active bath of activity. Each marker indicates various average
loads from −2 to −5 pN. (b) Numerical solution of GLE with the
same conditions and parameters as (a). (c) and (d): The relative
velocity of the probe under the same parameters with (a) and (b),
respectively. (e) and (f): Probe velocity for various activity Pe; fig-
ures are the plots of v as the function of persistent time τb. Other

parameters herein: For (a)–(d), we use τb = 0.01 s ≈ R2
b

6μbkBT , which
is the characteristic rotational time of a Brownian particle with di-
ameter Rb. All figures use κ = 0.003 pN/nm that indicates a weak
interaction; we also test other values of κ , and qualitatively results
are not affected by this parameter.

bath particles’ density profile ρ(r, t ),

∂ρ(r, t )

∂t
= μb∇r · ρ(r, t )∇r

[ ∫
ρ(r′, t )V (|r − r′|)dr′

+U (|r − xp|)
]

+ ∇ · [
√

ρ(r, t )ξA(r, t )]

+∇ · [
√

ρ(r, t )ξT (r, t )] + μbkBT ∇2ρ(r, t ), (5)

which is a Dean-like equation for active particle system,
wherein ξA,T (r, t ) are noise filed functions. To embody the
effect of such a density profile on probe movement, we first
solve this equation in Fourier space formally,

∂ρk (t )

∂t
≈ −μbk2[(kBT + ρVk )ρk (t ) + ρUkeik·xp]

+ i
√

ρk · [ξ̃
T

(k, t ) + ξ̃
A

(k, t )], (6)
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where ρ is the number density of bath particles, ξ̃
A,T

(k, t ),
and Uk,Vk are Fourier transforms of noises ξA,T (r, t )
and potentials U (r),V (r), respectively, with time corre-
lations 〈ξ̃A∗

α (k, t )ξ̃A
β (k′, t ′)〉 = Db

τb
δαβ (2π )3δ(k − k′)e−|t−t ′ |/τb

and 〈ξ̃T ∗
α (k, t )ξ̃T

β (k′, t ′)〉 = 2μbkBT δαβ (2π )3δ(k − k′)δ(t −
t ′). To be clear, Eqs. (5) and (6) are first derived in our
Ref. [44], wherein the transport properties of a free tracer
particle in the active bath were investigated.

Inserting the formal solution of Eq. (6) into
Eq. (4) by utilizing an identity −∇xp

∑
i U (|ri − xp|) ≡

1
(2π )3

∫
ike−ik·xpρk (t )Ukd3k, after a linearized approximation

on the memory kernel (see details in Appendix B), we obtain
a generalized Langevin equation for the probe

ẋp(t ) = − μp

∫ t

−∞
ζ (t − s)ẋp(s)ds + ηA(t ) + ηT (t )

+ μp[K (xm − xp) + F0] +√2μpkBT ξt (7)

with memory kernel

ζ (t ) = μpμbρ

3(2π )3

∫
k4U 2

k ake−t/ak d3k, (8)

where ak = [μbk2(kBT + ρVk )]−1 is a characteristic
timescale, and ηA,T are complicated colored noise

ηA,T (t ) = μp
√

ρ

(2π )3

∫
ikxUk

×
∫ t

−∞
e−(t−s)/ak k · ξ̃

A,T
(k, s)dsd3k (9)

with time correlation functions

〈ηT (t )ηT (t ′)〉 = μ2
t ρμbkBT

3(2π )3

∫
U 2

k k4ake−|t−t ′ |/ak d3k, (10a)

〈ηA(t )ηA(t ′)〉 = μ2
t ρDb

3(2π )3

∫
U 2

k k4 1

(τb/ak )2 − 1

× [τbe−|t−t ′ |/τb − ake−|t−t ′ |/ak
]
d3k. (10b)

Herein, a generalized fluctuation-dissipation relationship
(FDR) is revealed between memory kernel ζ (t ) and noise
ηT , and the OU noise of the bath particle brings an explicit
violation of the FDR. When the activity of the bath is absent,
Eq. (7) reduces to a generalized Langevin equation (GLE)
in equilibrium and the FDR holds naturally. Comparing to
our Ref. [44], Eqs. (8)–(10) correspond to the situation with
adiabatic approximation.

Equations (7)–(9) are the main theoretical results of the
present work. They unravel the properties of noise generated
by an active environment, and allow us to directly calculate
the probe movement and average velocity. Numerical solu-
tions of Eq. (7) are shown in Fig. 2, panels (b), (d), and
(f), wherein the parameters are chosen the same as panels
(a), (c), and (e), respectively. The numerical algorithm of the
generation of noises ηA,T is shown in Appendix C. Compared
with simulation results, the GLE reproduces the acceleration
effect of active crowders (a)–(d), quantitatively in most cases.
Surprisingly, GLE solutions also show very similar behavior
of the relationship between probe velocity and persistent time
τb, which further confirms the nontrivial phenomenon.

FIG. 3. (a) Distributions for noise ηA (red squares) and ηT (blue
round dots); solid lines are fitting lines with hypothetical Gaussian
distributions. fA is an OU process as a reference (yellow diamonds
and line), which satisfies an exact Gaussian distribution. Herein, we
set τb = 0.01 s. (b) Non-Gaussian parameters α for ηA and ηT (red
squares and left vertical axis); the formal one depends on persistent τb

which is drawn here as the horizontal axis. Also, we plot the variance
of noise ηA/μp (blue points and right vertical axis). Other parameters
for all subplots: κ = 0.01 pN/nm, Pe = 16.0.

Theoretical explanations about the mechanism of kinesin
acceleration are still in development. In Ref. [17], the authors
pointed out that the amplitude of noise is a major factor. Yet
in a ratchet potential model [20], not only the noise strength
significantly influences the probe dynamics, but also the non-
Gaussian property and time correlation behavior of the noise.
Herein, with the help of the GLE, it is feasible to investigate
which property of the noise dominates kinesin acceleration.

First, we focus on the strength (or amplitude) of the colored
noise ηA,T (t ). According to Eq. (9), or more straightforwardly,
the time correlation function of ηA,T (t ), the explicit expression
for variance, 〈

η2
T

〉 = μ2
t ρμbkBT

3(2π )3

∫
U 2

k k4akd3k, (11a)

〈
η2

A

〉 = μ2
t ρDb

3(2π )3

∫
U 2

k k4a2
k

τb + ak
d3k, (11b)

can be obtained, therefore 〈η2
A〉 ∝ Pe2τb

∫ k4U 2
k a2

k
τb+ak

d3k. As
shown in Figs. 2(b) and 2(d), probe velocity v increases with
Pe monotonically when τb is constant. Although the analytical
relation between v and Pe is not given due to the complexity
of the memory kernel and colored noise, qualitatively variance
of noise ηA definitely makes a positive contribution to kinesin
acceleration.

Another quantity we are concerned about is the non-
Gaussian property of these two colored noises. To intuitively
show the distributions of such noises, we plot the probability
distribution function P(η) in Fig. 3(a). The red square and
blue round hollow dots represent ηA and ηT , respectively, and
solid curves are their Gaussian fitting. Interestingly, both ηT

and ηA show heavy tail distributions and clearly deviate from
Gaussian distributions. As a contrast, the distribution function
of OU noise fA is also plotted with yellow diamond dots,
which perfectly satisfies the Gaussian distribution. Noticing
that Lévy noise also has such heavy tail distribution [17],
as well as the ECP noise [20], they all have a nontrivial
acceleration effect on kinesin. To quantitatively investigate
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this property, we then calculate the non-Gaussian param-
eter α(η) = 〈η4〉

3〈η2〉2 − 1 of ηA,T (t ). These quantities are not
functions of temperature T or activity Pe, and therefore the
contribution of non-Gaussian properties cannot be seen in
Figs. 2(a)–2(d). Yet α(ηA) is a function of τb, and both simula-
tion and GLE solution show the same dependency relationship
of kinesin velocity on τb. Hence we plot the non-Gaussian
parameter α (red squares, left axis) and corresponding noise
variance (blue dots, right axis) as functions of persistent time
τb in Fig. 3(b). When τp → 0, ηA reduces to the noise ηT

[under an effective temperature Teff = Db/(μbkB)], and its
non-Gaussian parameter is shown as a red horizontal dashed
line in Fig. 3(b). As τb increases, 〈η2

A〉 monotonically increases
and then reaches a plateau, which is very similar to the ve-
locity increase with τb at short and intermediate regions. As
shown in Figs. 2(e) and 2(f), when τb is large enough, the ki-
nesin velocity slightly decreases with τb. This weak decrease
in behavior has not been seen in the noise variance. On the
contrary, a strongly nonmonotonic dependence of α(ηA) on
τb is observed. The non-Gaussian parameter α(ηA) rapidly
decreases with τb when it is large. This phenomenon is very
likely to lead to a weak decrease in the kinesin velocity. In
general, variance indeed makes the major contribution to the
kinesin acceleration, while the non-Gaussian property also
makes a minor yet positive contribution to it.

IV. CONCLUSION

In summary, we have proposed a bottom-up model consist-
ing of a Markov model for kinesin and a mean-field model of
active particle bath, to investigate the acceleration behavior of
kinesin and probe attached to it in complex intracellular en-
vironment. Simulations show kinesin velocity increases with
bath activity monotonically, especially for larger load situa-
tions where more significant acceleration effect is observed.
We also establish a coarse-grained theoretical framework to
describe the active bath and obtain a generalized Langevin
equation for probe movement. The effects of active bath on the
probe are simplified into a memory kernel and two effective
noises. Numerical calculations of the GLE show very good
agreement with simulation data. Furthermore, the introduction
of the theory allows us to study the noise property conve-
niently and to investigate which one of them is the essential
to kinesin acceleration. Comparing simulations and numerical
solutions for GLE, we find out that the variance of noise
plays a major role in kinesin acceleration, while non-Gaussian
property brings positive yet minor contributions.

Our model and theory bring a quantifiable research ap-
proach to active fluctuations in living cells, which bridges
between phenomenological description of kinesin movement
and underlying principles of statistical physics. For further
study, with more information input such as accurate inter-
acting parameters, we believe our model could give more
accurate results, and deeper understanding on the noise prop-
erty. In addition, the theory of active bath is independent of
the kinesin model, which also serves as a way to investigate
the active environment, the generality of which could lead to
numerous other applications in other probe-bath interacting
systems.
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APPENDIX A: NUMERICAL SIMULATIONS

Numerical simulations are run in a three-dimensional
box (Lx, Ly, Lz ) = (40σ, 10σ, 10σ ) with periodic boundary,
where σ = 160 nm is the unit of length. In the present coarse-
grained model, both the kinesin and the probe movements are
constrained on a fixed line (y, z) = (Ly/2, Lz/2). The volume
repulsive interactions are only considered between bath-bath
particles and bath-probe, meaning that the kinesin’s volume
repulsive interaction is not considered. The diameter of bath
particle and the probe are set as Rb = σ, Rp = 3.25σ , so that
interparticle distance σpb = 2.125σ . The temperature is set
as the room temperature, and therefore kBT = 4.115 pN nm,
which is used as the unit of the energy. The mobility of the
bath particle is μb = 1.0 × 105 nm/(pN s), which can be used
to label the unit of time τu = σ 2/(μbkBT ) = 6.22 × 10−2 s.
We set the probe diameter Rp = 520 nm and mobility μp =
0.308 × 105 nm/(pN s).

FIG. 4. Probe velocity for various activity Pe and τb. The upper
figure is the result of direct simulations, and the lower one is the
numerical result of GLE.
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In simulations, we use the time step δt = 5.0 × 10−6 s (to
keep kc,b, f δt � 1, δt � τb, and δt � τu). For each time inter-
val, both the Markov dynamics for kinesin and the Langevin
dynamics for probe and bath particles are performed. For
each simulation, the system is allowed to reach a steady state
over 106δt , and then the kinesin/probe’s displacements and
velocities are averaged over the following 107δt time interval.
The variance of the velocity is calculated by simulations of at
least 20 times with the exact same parameters and different
random number seeds. We find that more average counts did
not have a significant effect on the reduction of the variance.

For the numerical calculation of the generalized Langevin
equation (GLE), the time step is also set as δt = 5.0 × 10−6 s.
The generation of the complex color noises is shown in
Appendix C. Velocities and their variances are calculated by
over 107 time steps and 50 trajectories.

The Markov transition migrates from Ref. [17], and pa-
rameters in the main text Eqs. (2) and (3) also come from
this reference: k0

f = 1002 s−1, k0
b = 27.9 s−1, kc = 102 s−1,

d f = 3.61 nm, db = 1.14 nm.
To better illustrate Figs. 2(e) and 2(f) in the main text, we

plot the probe velocity dependence on Pe and persistent time
τb, as shown in Fig. 4.

APPENDIX B: DEAN’S EQUATION FOR ACTIVE BATH
AND EFFECTIVE GENERALIZED LANGEVIN

EQUATION FOR PROBE

This section gives the derivation details of Eq. (4) in the
main text. To be clear, this derivation shares the same idea
as our Ref. [44]. For clarity and the convenience of reading,
we arrange this part here and rewrite something since only
adiabatic is used in the current work.

The starting point is the Langevin equation for bath
particles,

ṙi = −μb∇i

⎡
⎣∑

j �=i

V (|ri − r j |) + U (|ri − xp|)
⎤
⎦

+ fi +
√

2μbkBT ξi, (B1a)

τbḟi = −fi +
√

2Dbηi. (B1b)

Introducing the single-particle density ρi(r, t ) = δ(r −
ri(t )) and the collective one ρ(r, t ) =∑N

i=1 ρi(r, t ), for an
arbitrary function of bath particle coordinate g(ri ) with natural
boundary condition, according to the Itō calculus, one has

dg(ri )

dt
=
⎧⎨
⎩−μb∇i

⎡
⎣∑

j �=i

V (|ri − r j |) + U (|ri − xp|)
⎤
⎦+ fi +

√
2μbkBT ξi

⎫⎬
⎭ · ∇ig(ri )

+ μbkBT ∇2
i g(ri )

=
∫

ρi(r, t )

⎧⎨
⎩
⎛
⎝−μb∇r

⎡
⎣∑

j �=i

V (|r − r j |) + U (|r − xp|)
⎤
⎦+ fi +

√
2μbkBT ξi

⎞
⎠ · ∇rg(r)

+ μbkBT ∇2
r g(r)

⎫⎬
⎭dr

=
∫

ρi(r, t )

{(
−μb∇r

[∫
ρ(r′, t )V (|r − r′|)dr′ + U (|r − xp|)

]
+ fi +

√
2μbkBT ξi

)
· ∇rg(r)

+ μbkBT ∇2
r g(r)

}
dr

=
∫

g(r)

{
∇r ·

(
μb∇r

[∫
ρ(r′, t )V (|r − r′|)dr′ + U (|r − xp|)

]
− fi −

√
2μbkBT ξi

)
ρi(r, t )

+ μbkBT ∇2
r ρi(r, t )

}
. (B2)

In the third step, it seems there is an extra term V (0), but it vanishes due to the ∇r operator, and the last step used part integral. On
the other hand, with the identity d

dt g(ri ) = d
dt

∫
ρi(r, t )g(r)dr = ∫ ∂ρi (r,t )

∂t g(r)dr, and considering the arbitrariness of function
g(r), immediately

∂ρi(r, t )

∂t
= ∇r · ρi(r, t )

[
μb∇r

(∫
ρ(r′, t )V (|r − r′|)dr′ + U (|r − xp|)

)
− fi −

√
2μbkBT ξi

]

+ μbkBT ∇2
r ρi(r, t ) (B3)
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then the collective density function

∂ρ(r, t )

∂t
= μb∇ ·

[
ρ(r, t )∇

(∫
ρ(r′, t )V (|r − r′|) + U (|r − xp|)

)]

+
∑

i

[−∇ · (fiρi ) −
√

2μbkBT ∇ · (ρiξi )] + μbkBT ∇2ρ(r, t ). (B4)

This equation is not self-consistent yet, since fiρi and ρiξi terms still exist. To fix this, following Dean’s method [53], we introduce
two noise fields χ1,2(r, t ) as functions of ρ(r, t ) to replace χ ′

1(r, t ) = −∑i ∇ · (fiρi ) and χ ′
2(r, t ) = −√

2μbkBT
∑

i ∇ · (ρiξi ).
Considering

〈χ ′
1(r, t )χ ′

1(r′, t ′)〉 = Db

τb
e−|t−t ′ |/τb

∑
i

∇ · ∇′[ρi(r, t )ρi(r′, t ′)]

= Db

τb
e−|t−t ′ |/τb∇ · ∇′[ρ(r, t )δ(r − r′)], (B5a)

〈χ ′
2(r, t )χ ′

2(r′, t ′)〉 = 2μbkBT δ(t − t ′)
∑

i

∇ · ∇′[ρi(r, t )ρi(r′, t ′)]

= 2μbkBT δ(t − t ′)∇ · ∇′[ρ(r, t )δ(r − r′)], (B5b)

we construct noise field χ1(r, t ) = ∇ · [
√

ρ(r, t )ξA(r, t )] and χ2(r, t ) = ∇ · [
√

ρ(r, t )ξT (r, t )] to keep the correlations of χ1

and χ ′
1, χ2 and χ ′

2 equal, where ξA,T (r, t ) are also noise field with correlation 〈ξA(r, t )ξA(r′, t ′)〉 = Db
τ

e−|t−t ′ |/τbδ(r − r′)I and
〈ξT (r, t )ξT (r′, t ′)〉 = 2μbkBT δ(−|t − t ′|)δ(r − r′)I, respectively. Now we achieve a self-consistent equation for the evolution of
ρ(r, t ),

∂ρ(r, t )

∂t
= μb∇r · ρ(r, t )∇r

[∫
ρ(r′, t )V (|r − r′|)dr′ + U (|r − xp|)

]

+ μbkBT ∇2ρ(r, t ) + ∇ · [
√

ρ(r, t )ξA(r, t )] + ∇ · [
√

ρ(r, t )ξT (r, t )]. (B6)

This equation is one of the central results in this section, also known as Dean’s equation.
To eliminate variables of bath particle positions, we use a mean-field theory to describe the active bath. Using Eq. (B6) and

assuming the environment is isotropic, homogeneous, and has no special structures (suitable for weak interaction and dense
situations), the evolution equation for bath density can be simplified as

∂ρk (t )

∂t
≈ −μbk2[(kBT + ρVk )ρk (t ) + ρUkeik·xp] + i

√
ρk · [ξ̃

T
(k, t ) + ξ̃

A
(k, t )] (B7)

in Fourier space, where ρk (t ), Uk , Vk , ξ̃
A

(k, t ), and ξ̃
T

(k, t ) are Fourier transforms of ρ(r, t ), U (r),V (r), ξA(r, t ), and ξT (r, t ),
respectively. This equation has a formal solution

ρk (t ) =
∫ t

−∞
e−(t−s)/ak {−μbkBT k2ρUkeik·xp + i

√
ρk · [ξ̃

A
(k, s) + ξ̃

T
(k, s)]}ds, (B8)

where ak = [μbk2(kBT + ρVk )]−1. Using the identity (performing the Fourier transition and its inverse transform on the left-hand
side)

−∇xp

∑
i

U (|ri − xp|) ≡ 1

(2π )3

∫
ike−ik·xpρk (t )Ukd3k, (B9)

and inserting the formal solution (B8) into the Langevin equation for probe Eq. (1) in the main text, we get a generalized
Langevin equation for probe movement along the �ex direction,

ẋp = μp

∫ t

−∞
F̃ (t − s)ds + μp[K (xm − xp) + F0] + ηA(xp(t ), t ) + ηT (xp(t ), t ) +√2μpkBT ξt , (B10)

where F̃ (t ) = − μbρ

(2π )3

∫
ikxk2U 2

k e−ikx[xp(t )−xp(s)]e−(t−s)/ak is a complex memory kernel, and

ηA,T (xp(t ), t ) = μp
√

ρ

(2π )3

∫
ikxUke−ikxxp(t )

∫ t

−∞
e−(t−s)/ak k · ξ̃

A,T
(k, s)dsd3k (B11)

is the colored noise term induced by the bath. This memory kernel is very complex to use, yet to the linear order, the memory
kernel can be simplified to the form μp

∫ t
−∞ F̃ (t − s)ds ≈ − ∫ t

−∞ ζ (t − s)ẋp(s)ds, where

ζ (t ) = μpμbρ

3(2π )3

∫
k4U 2

k ake−t/ak d3k, (B12)
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which is much easier to employ. As for the noise ηA,T (xp(t ), t ), considering that the timescale of probe movement is much slower
than bath particles, we use the adiabatic approximation so that the noises can be simplified into

ηA,T (t ) = μp
√

ρ

(2π )3

∫
ikxUk

∫ t

−∞
e−(t−s)/ak k · ξ̃A,T

(k, s)dsd3k (B13)

with time correlations

〈ηT (t )ηT (t ′)〉 = 2μ2
t ρμbkBT

(2π )3

∫
k2

xU 2
k k2 ak

2
e−|t−t ′|/ak d3k, (B14a)

〈ηA(t )ηA(t ′)〉 = μ2
t ρDb

(2π )3

∫
k2

xU 2
k k2 1

(τb/ak )2 − 1
[τbe−|t−t ′|/τb − ake−|t−t ′ |/ak ]d3k. (B14b)

APPENDIX C: GENERATION OF COMPLEX COLORED NOISE

According to Eq. (B13), and using the Greek alphabet to express the vector component, ηA,T in the α component is

ηα
A,T (t ) = μt

√
ρ

(2π )3

∫
d3kkαe−ik·xp(t )Uk

∫ t

−∞
e−(t−s)/ak

⎡
⎣∑

β

kβ ξ̃A,T
β (k, s)

⎤
⎦ds. (C1)

Since ξ̃A,T
β (k, t ) = ∫ ξA,T

β (r, t )eik·rd3r, as well as the correlations shown in Appendix B, one has〈
ξ̃A∗
α (k, t )ξ̃A

β (k′, t ′)
〉 = Db

τb
δαβ (2π )3δ(k − k′)e−|t−t ′ |/τb, (C2a)

〈
ξ̃T ∗
α (k, t )ξ̃T

β (k′, t ′)
〉 = 2μbkBT δαβ (2π )3δ(k − k′)δ(t − t ′). (C2b)

Therefore random variables ξ̃A,T
α (k, t ) can be divided into two independent stochastic processes in time and k space,

ξ̃A
α (k, t )dtd3k =

√
Db

τb
(2π )3/2 fα (t )dtd3Wk, (C3a)

ξ̃T
α (k, t )dtd3k =

√
2μbkBT (2π )3/2dWt d

3Wk, (C3b)

where Wt and Wk are independent Wiener processes, fα (t ) is an dimensionless OU process with τb ḟα (t ) = − fα (t ) + √
2τbξt

(ξt stands for standard white noise), formal solution fα (t ) =
√

2
τb

∫ t
−∞ e−(t−s)/τbξsds, and time correlation 〈 fα (t ) fβ (t ′)〉 =

δαβe−|t−t ′ |/τb .
This proposal indicates Eq. (C1) can be rewritten as

ηα
A(t ) = − μt

(2π )3/2

√
ρDb

∫
kαe−ik·x(t )Uk

∑
β

kβBA
β (k, t )d3Wk

= − μt

d (2π )3/2

√
ρDb

∫
k2e−ik·x(t )UkBA

α (k, t )d3Wk, (C4a)

ηα
T (t ) = − μt

(2π )3/2

√
2ρμbkBT

∫
kαe−ik·x(t )Uk

∑
β

kβBT
β (k, t )d3Wk

= − μt

d (2π )3/2

√
2ρμbkBT

∫
k2e−ik·x(t )UkBT

α (k, t )d3Wk, (C4b)

where BA
α (k, t ) = ∫ t

−∞ τ
−1/2
b e−(t−s)/ak fα (s)ds, BT

α (k, t ) = ∫ t
−∞ e−(t−s)/ak dWs are independent stochastic processes which can be

generated numerically.
In detail, one has ḂT

α = −a−1
k BT

α + ξt , which is also an OU process with 〈BT
α (t )BT

α (t ′)〉 = ak
2 e−|t−t ′ |/ak . Therefore the initial

value of BT
α (k, t ) can be set as a Gaussian random number with zero mean and variance ak/2. Numerically, BT

α (k, ti+1) =
e−�t/ak BT

α (k, ti ) +
√

ak
2 (1 − e−2�t/ak )ui+1, where �t = ti+1 − ti is the time interval, and {ui} is a set of independent Gaus-

sian random variables of zero mean and variance 1. Here we emphasize that the ordinary Euler-Maruyama algorithm [i.e.,
BT

α (k, ti+1) = (1 − �t/ak )BT
α (k, ti ) + √

�tui] is not suitable for the present case, since the characteristic timescale ak is
dependent on k = |k| and it is not practical to choose a small enough interval such that �t � ak for all k’s.

On the other hand, ḂA
α = −a−1

k BA
α + τ

−1/2
b fα (t ) and B̈A

α + (a−1
k + τ−1

b )ḂA
α + (akτb)−1BA

α =
√

2
τb

ξt leads to the solution

BA
α (k, t ) = ak

√
2

τb − ak

∫ t

−∞

[
e−(t−s)/τb − e−(t−s)/ak

]
dWs (C5)
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with correlation function 〈BA
α (t )BA

α (t ′)〉 = 1
(τb/ak )2−1 [τbe−|t−t ′ |/τb − ake−|t−t ′ |/ak ]. So the initial value of BA

α (t ) can be a set of

Gaussian random numbers with zero mean and variance a2
k

τb+ak
. Consequently, BA

α (k, t ) can be written as

BA
α (k, ti+1) = e−�t/ak BA

α (k, ti ) + ak

√
2

τb − ak

[
(e−�t/τb − e−�t/ak )

√
τb

2
fα (ti) + Gα (k, ti )

]
, (C6)

where Gα (k, ti ) = ∫ ti+1

ti
[e−(ti+1−s)/τb − e−(ti+1−s)/ak ]dWs, with expectation

〈Gα (k, ti )Gα (k, t j )〉 = δi j

[
τb

2
(1 − e−2�t/τb ) + ak

2
(1 − e−2�t/ak ) − 2τbak

ak + τb
(1 − e−�t/τbe−�t/ak )

]

≡ δi jGα (k,�t ), (C7)

which is of order �t3(ak−τb)2

3a2
kτ

2
b

+ O(�t4). Finally, the exact numerical algorithm to generate BA
α (k, ti ) is

BA
α (k, ti+1) = e−�t/ak BA

α (k, ti ) + ak

√
2

τb − ak

[
(e−�t/τb − e�t/ak )

√
τb

2
fα (ti ) +

√
Gα (k,�t )vi

]
, (C8a)

fα (ti+1) = e−�t/τb fα (ti ) +
√

1 − e−2�t/τbwi, (C8b)

where {vi} and {wi} are sets of independent Gaussian random variables of zero mean and variance 1. Comparing with the direct
differential algorithm BA

α (ti+1) = (1 − �t/ak )BA
α (ti ) + τ

−1/2
b fα (t )�t , our method is suitable for the situation when �t � ak .

For the 3d system, the stochastic integral over d3Wk can be simplified through the following method. For simplic-
ity, consider an arbitrary bounded stochastic integral η = ∫∫∫ f (k)d3Wk with f (k) = f (k), k = |k|. One has 〈η〉 = 0 and
〈η2〉 = ∫∫∫ f 2(k)d3k = 4π

∫∞
0 f 2(k)k2dk. Now consider another one-dimensional integral ϕ = a

∫∞
0 f (k)kbdWk; one also has

〈ϕ2〉 = a2
∫∞

0 f 2(k)k2bdk. Let 〈η2〉 = 〈ϕ2〉; immediately one gets a = √
4π and b = 1. This method can greatly simplify the

calculation of ηα
A,T (x, t ).

At last, under the adiabatic approximation, we have

ηα
T (0, t ) = − μt

3(2π )3/2

√
8πρμbkBT

∫ ∞

0
k3UkBT

α (k, t )dWk, (C9a)

ηα
A(0, t ) = − μt

3(2π )3/2

√
4πρDb

∫ ∞

0
k3UkBA

α (k, t )dWk . (C9b)

Now we consider the asymptotic behavior of the correlation function at a large timescale. In this situation, only very
small k’s contribute to the integral. Therefore one may assume e−|t−t ′ |/ak ≈ e−|t−t ′|μbk2(kBT +ρV0 ), where V0 notes for V (k = 0).
Consequently, for ηT , one has

〈
ηα

T (0, t )ηα
T (0, t ′)

〉 ≈ μ2
t ρμbkBT

(2π )d

∫
k2
αU 2

0

μb(kBT + ρV0)
e−|t−t ′ |μb(kBT +ρV0 )k2

d3k

= μ2
t ρ

(2π )d (1 + ρV0/kBT )

1

2p

(
π

p

) d
2

, (C10)

where U0 also stands for U (k = 0), p = |t − t ′|μb(kBT + ρV0). As a result, we get 〈ηα
T (0, t )ηα

T (0, t ′)〉 ∝ |t − t ′|−(d/2+1).
For ηA, the exponential decay part e−|t−t ′|/τb has no contribution to the long-time decay behavior anyway. One may only

consider the other part, i.e.,

〈
ηα

A(0, t )ηα
A(0, t ′)

〉 � μ2
t ρDb

(2π )2

∫
k2
αU 2

k

k2ak

1 − (τb/ak )2
e−|t−t ′|/ak d3k

≈ μ2
t ρ

(2π )d

Db

μb(kBT + ρV0)

∫
k2
αU 2

0

1 − [μb(kBT + ρV0)τb]2k4
e−|t−t ′|μb(kBT +ρV0 )k2

d3k

≈ μ2
t ρ

(2π )d

Db

μb(kBT + ρV0)

1

2p

(
π

p

) d
2

. (C11)

Clearly the long-time behavior also follows a power law 〈ηα
A(0, t )ηα

A(0, t ′)〉 ∝ |t − t ′|−(d/2+1).

013206-9



MENGKAI FENG AND ZHONGHUAI HOU PHYSICAL REVIEW RESEARCH 5, 013206 (2023)

Another situation is the weak interaction limit between bath particles, kBT � ρV (k), then ak ≈ [μbk2kBT ]−1. Herein the
correlation of ηT is

〈
ηα

T (0, t )ηα
T (0, t ′)

〉 ≈ μ2
t ρμbkBT

(2π )d

∫
k2
α

∫∫
eik·(r+r′ )U (r)U (r′)drdr′

μbkBT
e−|t−t ′|μbkBT k2

d3k

= μ2
t ρ

(2π )2

∫
k2
α

∫∫
U (r)U (r′)e−|t−t ′ |μbkBT k2+ik·(r+r′ )drdr′d3k

= μ2
t ρ

(2π )d

∫∫ [
1 − 2q2

α

p
e−q2

](
π

p

) d
2

U (r)U (r′)drdr′, (C12)

where p = |t − t ′|μbkBT , q = (r+r′ )
2
√

p . When |t − t ′| is large enough, 〈ηα
T (0, t )ηα

T (0, t ′)〉 ∝ |t − t ′|−(d/2+1).
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