
PHYSICAL REVIEW RESEARCH 5, 013204 (2023)

Dynamics of photoinduced ferromagnetism in oxides with orbital degeneracy

Jonathan B. Curtis ,1,2,* Ankit Disa,3,4 Michael Fechner,4 Andrea Cavalleri,4,5 and Prineha Narang1,†

1College of Letters and Science, University of California, Los Angeles, California 90095, USA
2Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
3Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA

4Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, DE, Germany
5Clarendon Laboratory, Department of Physics, Oxford University, Oxford, United Kingdom

(Received 26 September 2022; accepted 12 January 2023; published 24 March 2023)

By using intense coherent electromagnetic radiation, it may be possible to manipulate the properties of
quantum materials very quickly, or even induce new and potentially useful phases that are absent in equilibrium.
For instance, ultrafast control of magnetic dynamics is crucial for a number of proposed spintronic devices,
and it can also shed light on the possible dynamics of correlated phases out of equilibrium. Inspired by recent
experiments on spin-orbital ferromagnet YTiO3, we consider the nonequilibrium dynamics of a Heisenberg
ferromagnetic insulator with low-lying orbital excitations. We model the dynamics of the magnon excitations in
this system following an optical pulse that resonantly excites infrared-active phonon modes. As the phonons ring
down, they can dynamically couple the orbitals with the low-lying magnons, leading to a dramatically modified
effective bath for the magnons. We show that this transient coupling can lead to a dynamical acceleration of the
magnetization dynamics, which is otherwise bottlenecked by small anisotropy. Exploring the parameter space
more, we find that the magnon dynamics can also even completely reverse, leading to a negative relaxation
rate when the pump is blue-detuned with respect to the orbital bath resonance. We therefore show that by using
specially targeted optical pulses, one can exert a much greater degree of control over the magnetization dynamics,
allowing one to optically steer magnetic order in this system. We conclude by discussing interesting parallels
between the magnetization dynamics we find here and recent experiments on photoinduced superconductivity,
where it is similarly observed that depending on the initial pump frequency, an apparent metastable supercon-
ducting phase emerges.
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I. INTRODUCTION

The idea of using strong optical fields to gain control over
phases of quantum matter is a tantalizing one. Optical con-
trol of ferroelectric [1,2], structural [3–8], superconducting
[9–15], charge density wave [16–18], and magnetic orders
[19–34] has been proposed theoretically or demonstrated
experimentally. Essentially, by inducing strongly nonequilib-
rium scenarios, one can explore an enlarged nonequilibrium
phase diagram that may allow for the access of novel phe-
nomena and functionalities.

One way to realize such strongly nonequilibrium scenar-
ios is by resonantly driving the system, inducing coherent
oscillations in the Hamiltonian, thereby breaking time-
translation symmetry and driving the system away from the
thermal regime. These coherent oscillations can potentially
excite parametric resonances [35–39], induce novel topology
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[40–46], produce tunable interactions [30,47–49], generate
nonthermal correlations [50], and even lead to effective
cooling mechanisms [51–53]. In particular, the dynamics of
correlated Mott insulators hosting orbital degrees of freedom
[54] is known to be quite rich, exhibiting spin-orbital sepa-
ration [55,56], tunable exchange [57,58], and hidden phases
[59]. Similarly, ferromagnets with high levels of spin-rotation
symmetry can exhibit many exotic phenomena away from
equilibrium [60–62].

The interplay between spin and orbital fluctuations can
lead to dramatic effects, including magnon softening [63],
entangled spin-orbital phases [64–71], and pronounced mag-
netic fluctuations [72,73] and subsequent phase transition
[74–76]. Inspired by recent experiments on the ferromagnetic
Mott-insulator YTiO3 (YTO) [19], we examine the nonequi-
librium dynamics of magnons in a model quasidegenerate
orbital system driven out of equilibrium by coherently oscil-
lating optical phonons.

In YTO, the 3d1 conduction band is formed from the
titanium t2g shell, which naively has a threefold degeneracy
enforced by a cubic lattice symmetry [66]. However, in YTO
and many other compounds, this cubic symmetry is broken
at low temperatures by a GdFeO3-type structural distortion,
which then lifts the resulting orbital degeneracy [77–83]. In
this case, the system has nondegenerate but potentially low-
lying orbital excitations [70,84–89]. In equilibrium settings,
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the lifted orbital degeneracy leads to a decoupling between
spin and orbital excitations, and for most magnetic purposes
their cross-coupling can be ignored.

Can these orbital excitations, which are essentially absent
from equilibrium processes, significantly modify the out-of-
equilibrium dynamics? This question is not purely academic;
the ability to control magnetic order on ultrafast timescales
[21,25,28,49] is crucial for many spintronic technologies, and
may also help design better ferromagnets that can operate at
higher temperatures more efficiently. We answer this question
in the affirmative, provided the orbitals are relatively low-
lying and may come close in energy to relevant optically
driven degrees of freedom, such as infrared-active phonons,
which can reside in the 1–20 THz regime. In this case, by
judiciously choosing the parameters of the optical driving
applied, one can speed up, slow down, and even reverse the
magnetization dynamics. This then paves the way for novel
control routes in quasidegenerate spin-orbital systems [19,90]
as well as potentially other systems [20,34,49].

The remainder of this paper is structured as follows. In
Sec. II we outline the model system considered, and motivate
various parameter choices. Then, in Sec. III we show how in
equilibrium the orbitals essentially serve to provide a bath for
angular momentum for the magnons. In Sec. IV we examine
the dynamics of this system in equilibrium and estimate the
equilibrium relaxation timescale. In Sec. V we then explore
the nonequilibrium dynamics of this system following a sim-
ulated impulsive drive of optical phonons, presenting the main
results of this work. Finally, we discuss the implications of our
results in Sec. VI, where we conclude by discussing interest-
ing parallels between this system and recent experiments on
light-induced superconductivity. In Appendix A we show how
to map the t2g orbital levels into an effective angular momen-
tum, in Appendix B we present details on the nonequilibrium
Keldysh technique as applied to the Holstein-Primakoff spin-
wave expansion. In Appendix C there are details about the ab
initio calculations, and in Appendix D we show how to reduce
these equations to a simple equation of motion for the magnon
occupation.

II. MODEL

Here we introduce a simple model for ferromagnetic spins
interacting with a quasidegenerate orbital bath. Though this
is inspired by YTiO3 (YTO), we emphasize that we are con-
sidering a more abstract model, and we expect our results to
be relevant to other high-symmetry ferromagnetic insulators
with low-lying orbital excitations. In particular, we consider
a single electron occupying a low-lying t2g orbital manifold.
In the cubic limit there is a large threefold degeneracy that
can lead to pronounced orbital fluctuations. In reality, this
cubic degeneracy is lifted by the GdFeO3 structural distortion,
which renders the crystal structure orthorhombic and induces
a finite crystal-field splitting � between the lowest and next-
lowest orbitals on each Ti site. This leads to a model where
each site has an orbital pseudospin-1/2 τ̂ j in addition to the
actual electron spin Ŝ j on each site.

We consider a three-dimensional isotropic ferromagnetic
Heisenberg model alongside a local orbital degree of freedom

with Hamiltonian

Ĥ = − J
∑

j,δ

Ŝ j · Ŝ j+δ − Jz
0

∑
j,δ

Ŝz
j Ŝ

z
j+δ

+
∑

j

�

2
τ̂ 3

j + λL̂ j · Ŝ j . (1)

The first two terms are the isotropic Heisenberg exchange,
with J ∼ 2.75 meV [91] for the case of YTO, and an easy-axis
exchange that is chosen to counter the orbital bath-induced
Lamb shift, leading to the renormalized spin-wave gap that
for the case of YTO was estimated to be 0.02 meV, though
the upper bound was quite a bit larger, of order 0.3 meV
[91]. We will consider a modestly sized renormalized gap of
�0 = 0.1 meV in this work. Here j labels the lattice sites R j ,
and δ = ex, ey, ez labels the nearest neighbors along the three
principal axes.

The third term, involving τ̂ 3
j , corresponds to the local

crystal-field excitation gap. There is considerable uncertainty
about the value of this parameter, with theoretical estimates
ranging from nearly zero to over 300 meV. In Ref. [92] it
was estimated by Raman scattering that 2� ∼ 50 meV, while
Ref. [93] found energies closer to 2� ∼ 235 meV. Using
resonant inelastic x-ray scattering (RIXS), Ref. [87] found
evidence for collective orbital excitations with a gap of order
120 meV. Nuclear magnetic resonance has recently provided
yet another estimate [89] of 15 meV, which is quite low. We
will consider � = 90 meV here, though more experiments
with greater resolution and sensitivity are probably needed
in the case of YTO. The last term describes the atomic L · S
spin-orbit coupling, which leads to a torque on the spin in the
presence of an orbital angular momentum L.

The orbital angular momentum can be obtained by project-
ing the full three-dimensional t2g angular momentum onto the
lowest crystal-field levels, leading to the expression

L̂ j = n j τ̂
2
j . (2)

The unit vector n j is orthogonal to the two participating or-
bitals, and it characterizes the “soft” axis for orbital angular
momentum (see Appendix A). The operator τ̂ 2

j characterizes
the instantaneous orbital many-body state, and in particular τ̂ 2

j
is odd under time-reversal (which squares to +1 for the L = 1
orbitals), satisfying the selection rules. This is coupled to the
spin angular momentum by the atomic spin-orbit interaction
λ, which in fact need not be small. Reasonable estimates place
λ ∼ 15 meV for a light 3d transition metal such as Ti [82].
Finally, we note that n j will in general point in a different
direction on each of the four Ti sublattices depending on the
local crystal-field environment. For more details, we refer
to Appendix B. Finally, we will assume that due to, e.g.,
phonons or orbital interactions, the orbital excitation itself
obtains a finite T1 linewidth �. We estimate � ∼ 15 meV
as well, although it is not known with great certainty and
may appear significantly more broad in, e.g., a two-orbital
spectral function, which may appear in the Raman and RIXS
measurements.

We can imagine that in the magnetically ordered phase,
each site has a local level scheme as illustrated in Fig. 1(a),
where we show the crystal-field splitting of the Ti t2g states
and their corresponding spin and orbital angular momentum.
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FIG. 1. (a) Splitting of Ti t2g shell into nondegenerate levels by
the GdFeO3 distortion, which are then occupied by a single electron
giving S = 1/2. Interorbital coherences lead to angular momentum
L, which is largely quenched in equilibrium. (b) Focusing on the
lowest two levels |0〉 and |1〉, we find spin-flip T1 processes in the
orbital ground state obtained from virtual orbital transitions. Spin-
orbit coupling λ can lead to a simultaneous orbital excitation along
with a spin flip. This is then followed by a spin-independent orbital
decay with rate �, shown in the level diagram. Ultimately, the decay
rate is governed by the spectral overlap of the orbital bath (shown on
the left schematically) with the spin transition, which is small leading
to a long lifetime.

The main idea is that magnetization dynamics is often intrin-
sically slow due to the bottleneck associated with the transfer
of spin angular momentum into a bath, such as the orbital.
One such route is illustrated in Fig. 1(b), which shows how
in second-order perturbation theory this model can give rise
to a finite longitudinal magnetization relaxation rate. We ar-
gue that the phonon dynamics induced by the strong optical
pulse can lead to an acceleration of this relaxation time out
of equilibrium, leading to the possibility of pump-enhanced
magnetization dynamics. Note that, unlike Ref. [58], which
considered the impact of dynamics on the superexchange in-
teractions, we are more concerned here with the impact on the
spin-orbit coupling.

Finally, we comment on the coupling to the drive. In the
experiment [19], the pump was performed using a mid-IR
pulse that strongly couples to lattice degrees of freedom,
rather than, e.g., an optical pulse that traverses the Mott gap.
This pump was tuned to be resonant with various different
infrared-active phonon modes and used to strongly drive these
vibrations. Based on ab initio calculations, we argue that one
of the dominant effects of this pump is a strong modulation
of the crystal-field matrix, and in particular we find that for
relevant fluences this may lead to a sizable change in the
eigenvector n j . This in turn leads to a dynamical modulation
of the orbital angular momentum L j = n j (t )τ̂ 2

j , which will
now acquire sidebands at twice the phonon frequency.

We model this by writing

n j (t ) ∼ n j + δn jQ
2
IR(t ). (3)

Here QIR is the generalized coordinate describing the infrared-
active phonon, which is directly driven by light (in general
there may be different or multiple modes that are excited
depending on the frequency and polarization used in the pump
and the absorption spectrum of the material). The coupling to

Q2
IR(t ) is due to the fact that the orbital angular momentum is

a Raman-active transition, whereas the infrared-active phonon
is polar. This is in fact very important since this will induce os-
cillations at twice the phonon frequency. For an �ph = 9 THz
optical phonon mode, this leads to sidebands for the spin-orbit
coupling at a frequency of 2�ph ∼ 80 meV. This comes close
to the orbital resonance in this model at 90 meV. We will study
in particular how the dynamics depends on the drive frequency
�d . We now proceed to determine the equilibrium structure of
this model before computing the nonequilibrium dynamics.
In particular, we show that the orbitals can act as a bath for
angular momentum for the spins even in equilibrium.

Overall, the effect we propose hinges on the properties of
many subsystems: spins, orbitals, and the lattice. To render
the problem tractable, we treat each of these subsystems as
modularly as possible: we have incorporated the phonons as
classical time-dependent drives acting on the exchange and
spin-orbit, the orbitals as a thermal bath for the spins in a
Gaussian approximation, and the spins as unentangled with
the orbitals and in a spin-wave expansion. In future works it
would be desirable to relax this and fully treat the nonequilib-
rium coupled system, however this seems quite challenging.
Moreover, we expect our results to be somewhat robustly
applicable to more general spin-orbital systems provided the
fluctuations are not too strong (in which case even more inter-
esting effects may present).

Though we do not specifically consider YTO, for certain
rough estimates of parameter values and feasibility analysis
we have used ab initio calculations based on YTO. We es-
timate interactions between the phonon and the crystal-field
parameters by performing first-principles calculations in the
framework of density functional theory (DFT). All technical
details are listed in Appendix C. Our approach is inspired by
Refs. [78,79], where we first compute the full DFT band struc-
ture within the local density approximation (LDA). Using this,
we construct localized t2g Wannier functions using appropriate
projectors according to Ref. [94]. To estimate the modulation
of the crystal-field parameters due to the phonon distortion,
we performed frozen phonon computations. Therefore, we
recalculated the electronic structure and Wannier functions
for crystal structures that have been modulated according to
eigenvectors of polar eigenmodes (QIR). This allows us to
estimate changes in the crystal Hamiltonian for distinct polar
distortions.

III. ORBITAL BATH

We now analyze the spin-orbit coupling in equilibrium. To
later accommodate the nonequilibrium calculations, we will
implement at the outset the Schwinger-Keldysh formalism for
describing this system. We begin by treating the orbitals in
a Gaussian approximation, valid for small orbital excitation
amplitudes. For details, we again refer to Appendix B, though
for a more complete treatment we refer the reader to Ref. [95].

In the Keldysh formalism, we have a doubling of the de-
grees of freedom, which can be arranged into a “classical”
part S j,cl, characterizing the expectation value, and the “quan-
tum” part S j,q, which characterizes the fluctuations about the
expectation value. Applying this formalism to the spin-orbit
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interaction, we find a Keldysh action of

Ssoc = −λ
∑

j

∫
dt[L j,q(t ) · S j,cl(t ) + L j,cl(t ) · S j,q(t )].

(4)

This then appears as a contribution to a path integral Z =∫
D[S, L]eiS , which can be used to generate nonequilibrium

correlation functions, such as the magnetization 〈S j (t )〉.
We remark to the reader that in this expression, S jα (t )

(α = cl, q) should be understood as a stand-in for an appropri-
ate representation of the spin operator in terms of a canonical
bosonic or fermionic field. In this work, we will focus on the
dynamics in the ordered phase, wherein the operators S j (t )
can be expanded in terms of the Holstein-Primakoff bosons
perturbatively in 1/S, where S is the spin length. This is
strictly valid only at low temperatures with T � TC , and even
then it suffers from the fact that in YTO S = 1

2 is small. It
therefore remains an important problem for future studies to
extend this treatment to include the fluctuation regime near TC

by, e.g., an expansion in terms of Schwinger bosons instead,
which can better handle the dynamics in the disordered phase.
Nevertheless, we expect that for low magnon densities, this
ought to be at least qualitatively acceptable.

We proceed by integrating out the local orbital angular mo-
mentum, treating it as a bath under a Gaussian approximation.
This bath can be characterized by the correlation functions

D̂R(t, t ′) = −i〈L j,cl(t )L j,q(t ′)〉 = n j (t )n j (t
′)DR(t, t ′),

(5a)

D̂A(t, t ′) = −i〈L j,q(t )L j,cl(t
′)〉 = n j (t )n j (t

′)DA(t, t ′),

(5b)

D̂K (t, t ′) = −i〈L j,cl(t )L j,cl(t
′)〉 = n j (t )n j (t

′)DK (t, t ′).

(5c)

This is in turn expressed in terms of a scalar dynamical
response function D(t, t ′) and the unit vectors n j (t ), as
emphasized in the second equalities, and elaborated on in
Appendix B. In equilibrium, these are completely determined
given knowledge of the orbital spectral function and the ther-
mal occupation function coth(βω/2).

In the Gaussian approximation, we can model the spec-
tral function for τ̂ 2

j as that of a damped harmonic oscillator.
In particular, we assume the orbital angular momentum has
linear-response equations of motion of

dτ 2

dt
= �τ 1 − �τ 2, (6a)

dτ 1

dt
= −�τ 2 − Fext (t ). (6b)

Fext (t ) is an external force that acts on the angular momentum
L ∝ τ̂ 2, which is canonically conjugate to τ̂ 1 (the x Pauli
matrix whose expectation value corresponds to an interorbital
density rather than angular momentum). This leads to a spec-
tral function of

A(ω) = − 1

π
Im

�

ω2 + iω� − �2
= 1

π

ω��

(ω2 − �2)2 + �2ω2
.

(7)

In the limit of � → 0, this reduces to the spectrum found
from the Hamiltonian (1). A realistic estimate for �, based on
Raman data [92], is that � ∼ 15 meV, though it seems there is
a great amount of uncertainty about this parameter [96]. From
the spectral function, we find the frequency domain Green’s
functions from Kramers-Kronig relations as

DR(ω) = �

ω2 + i�ω − �2
, (8a)

DA(ω) = �

ω2 − i�ω − �2
, (8b)

DK (ω) = −2π i coth

(
βω

2

)
A(ω). (8c)

This then generates an effective action for the spin after
integrating out the bath in the Gaussian approximation (for
the orbitals) of

Seff = − λ2

2

∫
dt

∫
dt ′ ∑

j

[S j,cl(t
′) · n j (t

′), S j,q(t ′) · n j (t
′)]

×
(

0 DA(t ′, t )
DR(t ′, t ) DK (t ′, t )

)(
n j (t ) · S j,cl(t )
n j (t ) · S j,q(t )

)
. (9)

As a final step, we simplify by averaging over the four ti-
tanium sublattices. For a long-wavelength spin wave, it is
reasonable to expect the magnon to be sensitive only to the
average of the four titanium sites. It is worth pointing out that
this possibly fails for a short-wavelength magnon, which is
localized to the order of one unit cell. In this case, it is possible
that the distinct nature of the orbital bath on each site may
be important and could be an important source of quantum
fluctuations, though we leave this for future work.

Proceeding on, if we average over the four sites, we gener-
ate an effective local action describing the orbital bath of

Seff = − λ2

2

∫
dt

∫
dt ′ ∑

j

[S j,cl(t
′) · D̂A(t ′, t ) · S j,q(t )

+ S j,q(t ′) · D̂R(t ′, t ) · S j,cl(t )

+ S j,q(t ′) · D̂K (t ′, t ) · S j,q(t )]. (10)

This involves the sublattice averaged anisotropy tensor
N(t ′, t ) = n(t ′) ⊗ n(t ) through

Ď(t ′, t ) = N(t ′, t )Ď(t ′, t ). (11)

This tensor is presented in Fig. 2, which illustrates the ma-
trix elements along the x, y, z axes (note that the x, y, z axes
may not necessarily align with the a, b, c axes of the crystal
but rather are defined by the orientation of the crystal-field
levels).

IV. EQUILIBRIUM SPIN-ORBIT COUPLING

We now analyze the spin-orbit coupling in equilibrium. At
low temperatures, we can expand around the fully polarized
| ↑↑↑ · · · 〉 ground state via the Holstein-Primakoff expan-
sion. We then describe magnons in terms of canonical bosons
b̂ j via the formal mapping

Ŝz
j = S − b̂†

j b̂ j, (12a)
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FIG. 2. Matrix elements of sublattice averaged anisotropy tensor
N = n ⊗ n in equilibrium. We see that the off-diagonal elements
are zero, indicating the eigenbasis is aligned with the crystalline
axes. We also see that the eigenvalues are nondegenerate, due to the
orthorhombicity of the crystal. The matrix is further partitioned into
the ab-plane (x, y) components and the c axis (z) components. To a
good approximation, the matrix projection along the c-axis is zero,
while the anisotropy in the ab-plane is appreciable but not extreme.

Ŝ+
j =

√
2S − b̂†

j b̂ j b̂ j, (12b)

Ŝ−
j = b̂†

j

√
2S − b̂†

j b̂ j . (12c)

We then expand in the large-S limit up to order 1/S to find
the linear spin-wave Hamiltonian. The Heisenberg interaction
(along with the external field along ez) gives the standard
form, which is diagonalized in momentum space to give

Ĥ (2)
0 =

∑
p

�pb̂†
pb̂p, (13)

with dispersion relation (for spin S = 1
2 )

�p = 6SJ
[
1 − 1

3 (cos px + cos py + cos pz )
] + 6SJz

0 . (14)

This has a gap set by the easy-plane anisotropy energy 6SJz
0 ,

and it has a bandwidth of order 12SJ ∼ 18 meV. At this
point, we still need to include the Lamb shift due to orbital
fluctuations. This dispersion relation is depicted in Fig. 3(a),
along with the corresponding single-particle density of states
(DOS) in Fig. 3(b), computed using Monte Carlo sampling.

We now include the orbital self-energy, which can be writ-
ten in the frequency domain due to the time-translational
invariance in equilibrium. We expand to order S, neglecting
the linear term, which should vanish when expanding around
the ground state. We find a Gaussian action for the magnons
of

S(2) =
∫

p
bp

[
Ǧ−1

0 (p) − �̌(p)
]
bp. (15)

We expand the orbital bath term to O(S) in Appendix B in
order to find the magnon self-energy �̌(p).

One can calculate the anisotropy due to the orbital fluctua-
tions and find that due to the orthorhombic nature of YTO, it
has three distinct eigenvectors. Calculating the projections, we
find essentially no projection along the c-axis, with approxi-
mately 75% and 25% along the two in-plane directions. This
has the result of inducing an easy and hard axis for fluctua-
tions, which leads to quantum fluctuations manifested by the
anomalous correlation functions of 〈bpb−p〉. In our simplistic
treatment, we neglect these, finding an approximately U (1)
system, with a dominant eigenvalue of 0.5 and an anisotropy
of 0.25 splitting the two principal axes.

For simplicity, we will neglect the anisotropy so we may
obtain a diagonal self-energy, leading to a Green’s function of

GR(ω, p) = [ω − �p − Sλ2N+−DR(ω)]−1. (16)

We have N+− ∼ 0.48, which is the isotropic projection of
the in-plane components of the anisotropy tensor. We plot
the magnon spectral function in the (ω, p) plane in Fig. 4,
however it is worth briefly examining the effects of the orbital
bath perturbatively.

Due to the large separation of scales between the orbital
and spin degrees of freedom, we can analyze the corrections
to the magnon spectrum perturbatively. We find a Lamb shift
due to the coupling to the reservoir, which shifts the magnon
band gap (it is essentially a source of single-ion anisotropy of
the easy-plane type). We then find a renormalized magnon gap

FIG. 3. (a) Linear spin-wave dispersion relation along �-X -R-� cut in the Brillouin zone using an idealized cubic model with J =
2.75 meV and a magnon gap of �0 = 0.1 meV (after renormalizing away the Lamb shift from the orbital bath). (b) Magnon density of states
(DOS) ρ(E ) = ∫

q δ(E − �q ) obtained by the Monte Carlo sampling dispersion relation in (a). This is used later when we evaluate the integrals
of the kinetic equation. (c) Equilibrium occupation of magnons with dispersion in (a), in terms of the magnetic moment Mz = 2μB(S − neq ).
We expect the Holstein-Primakoff expansion to underestimate the role of fluctuations since 1/S is not small in reality.
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FIG. 4. Magnon spectral function Amag(ω, p) = − 1
π

ImGR(ω, p)
including orbital bath for N+− = 0.5, λ = 15 meV, � = 90 meV,
and � = 10 meV. Plotted along the same dispersion contour as
Fig. 3. Damping is approximately proportional to frequency, so that
the linewidth γp ∼ �p. The Lamb shift due to the orbital bath is
renormalized away so that the magnon gap is the physically mea-
sured gap of �0 = 0.1 meV.

of

�0 = 6SJz
0 − λ2SN+−/�. (17)

This is used to fix the counterterm Jz
0 by matching this to ex-

periment. It is empirically observed that the gap for magnons
is quite small [91], which is in and of itself an interesting fact,
though we will not dwell on this here. We also find that a finite
lifetime is generated for the magnons via their interaction with
the bath. This has a strong energy dependence and is found to
be

γ (Ep) = πSλ2N+−A(Ep) = Sλ2N+−�Ep

�3
. (18)

In particular, the imaginary part scales with Ep, indicating it is
essentially a form of Ohmic Gilbert damping due to the orbital
bath. Taking estimates for YTO parameters of � ∼ 90 meV,
� ∼ 15 meV, and λ ∼ 15 meV, we find a lifetime in ns of

τp = 3.6 ns
meV

Ep
. (19)

We note that τp (the lifetime for a magnon with momentum
p) is completely distinct from τ̂ 1, τ̂ 2, which correspond to
the orbital operators, and also from τd , which corresponds to
the lifetime of the phonon ring-down. These should all occur
in separate contexts, but we emphasize this distinction here
to avoid confusion. At T ∼ 10 K, we have typical magnon
energies of Ep ∼ 1 meV and thus we have a typical lifetime
for the magnetization relaxation of order 3.6 ns according
to this model, though other channels for spin-flip processes
may reduce this time according to Matthiessen’s rule. We now
proceed to study the nonequilibrium dynamics of this system.

λsoc
Γorb

2Ωph

t

τph
Ωph

t

FIG. 5. (a) Timescales of pump-induced dynamics. Incident THz
pulse (red) resonantly excites a phonon mode, which then exhibits
coherent oscillations (blue) for timescale τph � 2π/�ph. (b) These
dynamics also lead to an acceleration of the spin-orbit mediated
magnetization dynamics, which leads to faster dynamics during the
oscillations due to the appearance of a new channel for spin-flip
decay via the phonon-induced sidebands. (c) After the oscillations
decay, the dynamics returns to the slower timescale present in
equilibrium.

V. NONEQUILIBRIUM DYNAMICS

We now discuss the effect of the strong optical pulse.
Focusing our attention on the most striking of the three pump
frequencies from Ref. [19], namely the pump at 9 THz, we
start by describing how this pump affects the orbital state. The
key idea is summarized in Fig. 5, which shows how the orbital
dynamics can modify the spin relaxation time scales. This is
now derived in detail.

A. Pump model

As per the estimates of the experiment [19], we consider
a terahertz pulse that resonantly drives an IR-active phonon
mode; in the experiment [19], these were at frequencies of 4,
9, and 17 THz. Even though the pump itself is quite short,
the coherent oscillations it initiates in the phonon mode are
estimated to live much longer, with a ring-down time of order
of 20–30 ps [97]. We therefore focus on the magnon dynam-
ics, which are induced by these coherent ring-down dynamics,
rather than the initial pulse, which is of quite a short duration.
We use a ring-down model of the form

QIR(t ) = Q0e−t/τd sin(�dt )θ (t ), (20)

with initial (and maximal) excitation amplitude Q0, central
frequency �d , and ring-down time τd .

For our purposes, we will assume that the pump has two
main effects. First, it is assumed to induce a transient change
in the spin-exchange J due to a standard spin-phonon coupling
mechanism. The origin of this mechanism is not the main
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FIG. 6. Change in in-plane projection of angular momentum unit
vector n j for 9 THz B2u polarized phonon mode in YTO. We expect
for realistic fluence that the peak amplitude is of order 1 in these
units, leading to an appreciable change in the eigenvalues of the
anisotropy tensor N, which oscillate at frequencies ±2�d . This
motivates the amplitude parameter Ad of order Ad ∼ √

0.1 = 0.3.

focus of this work, though it may also be interesting. We
simply model this as a coupling between QIR and S j · S j+δ

of the form

Hsp-ph =
∑

j,δ

−βŜ j · Ŝ j+δQ
2
IR(t ). (21)

This leads to the first effect of the pump, namely a transient
change in J such that we have an instantaneous value of
J (t ) = J + βQ2

IR(t ). We focus on the rectified part of this,
which leads to a change in the exchange of

�J (t ) = 1
2βQ2

0e−2t/τd = �J (0)e−2t/τd . (22)

We consider two cases—pump-induced enhancement of
�J (0) = 0.5 J and pump-induced destruction �J (0) =
−0.5 J. We once again emphasize that investigating or ex-
plaining the origin of this particular effect is not the subject of
this work; rather, the subject of this work is investigating the
speed at which the magnetization reacts to such an impetus.
It is expected, however, that in a more complete model, such
as a full three-orbital nonequilibrium Kugel-Khomskii model,
this effect would also be explained due to, e.g., the change
in orbital polarization affecting the Goodenough-Kanamori
rules.

In addition to this, we have also argued that the pump
induces substantial changes to the excited crystal-field eigen-
vector, which in turn leads to a dynamical modulation of the
spin-orbit coupling between the magnons and the orbital bath.
This is motivated by Fig. 6, which shows how the orbital an-
gular momentum associated with the first-excited crystal-field
transition changes with QIR in the case of YTO.

We see that there is a quadratic coupling between the
phonon mode Q2

IR and the crystal-field eigenvector n j , such
that we write

n j ∼ n j + δnQ2
IR(t ). (23)

This also has a rectified part, which may lead to an interest-
ing pump-induced renormalization of the magnetic anisotropy
[29,30]. However, here we will focus instead on the dynamic
harmonics, which can dramatically change the nature of mag-
netic relaxation in this system. This is modeled as a change in
the anisotropy tensor, which is obtained by averaging this over
the four Ti sublattices (see Appendixes B and D). Importantly,
this is a nonlinear effect in the phonon field, and therefore, like
all nonlinear phononic effects, it is essentially only apparent
upon strong resonant excitation of the infrared mode.

We write this as

N(t, t ′) =Neq [A0(t ) + A1(t )e−i�d t + A−1(t )ei�d t ]

× [A0(t ′) + A∗
1(t ′)e+i�d t ′ + A∗

−1(t ′)e−i�d t ′
], (24)

where roughly A2
0 + |A1|2 + |A−1|2 = 1 models the rotation of

the excited-state unit vector without changing the net length,
such that the projection onto the c-axis changes by |A−1|2 +
|A−1|2. We assume that the phase is not important, and we take

A1(t ) = A−1(t ) = 1
2 Ad e−2t/τd , (25)

in line with the same pump profile as the one that drives the
change in exchange.

To determine the effect of this Floquet-driven coupling
to the orbital bath, we will work in the approximation that
we may still separate the timescales associated with (i) the
magnon dynamics, (ii) the transience of the drive, and (iii)
the orbital dynamics. It is very interesting, albeit challenging,
to relax this hierarchy and allow for a complete breakdown
of the separation of timescales. This is left open for future
works. Additionally, though this model captures the essen-
tial physics, it is still only qualitatively motivated by YTO
calculations, and in future work a more detailed calculation
of how exactly the changes in crystal field evolve for each
phonon mode would be warranted. In particular, it may be the
case that different phonon modes are more or less effective at
modulating various components of this tensor and may allow
for a more selective control over the effects we describe here.

B. Quasiparticle dynamics

We now examine the magnon dynamics in the presence of a
hypothetical Floquet modulation of the spin-orbit interaction.
As argued in the previous section, this is a reasonable model
of the pumped phonon’s effect on the spin-orbit coupling. To
simplify matters, we assume that the pump does not actu-
ally change the orbital correlations or fluctuations, but rather
changes the coupling of the magnons to the orbital bath.

By using the Keldysh technique, we are able to calculate
the real-time dynamical evolution of the magnon correlation
functions, as detailed in Appendix B. The key object of in-
terest in this work is the magnon occupation function, which
is encoded in the Keldysh correlation function GK

p (t, t ′), here
taken to be diagonal in momentum space. From this, we can
then obtain the net magnetization as a function of time.

We further utilize the separation of timescales between the
evolution under the pump profile and the internal frequency
scales by taking the Wigner transform of GK , which encodes
the full two-time dependence in terms of a “center-of-mass”
time, which corresponds to the slow evolution, and the fre-
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quency, which encodes the rapid oscillations in the relative
time difference. The Wigner-transformed Keldysh function is

GK
p (T ; ω) =

∫
dτGK

p

(
T + τ

2
, T − τ

2

)
eiωτ . (26)

From this, we can extract the total magnon density as a func-
tion of time as

n(t ) = 1

2

∫
p

(∫
dω

2π
iGK

p (t ; ω) − 1

)
, (27)

and the corresponding magnetization is then found to be

Mz(t ) = 2μB[S − n(t )]. (28)

By systematically expanding in terms of gradients of the
slowly varying pump profile, we derive in Appendix D an
effective relaxation-time approximation for this, which to the
very lowest order reads

∂GK
p (T ; ω)

∂T
= 2i Im�R(T ; ω)

[ − iGK
p (T ; ω)

+ 2πAmag(T ; ω, p)Forb(ω)
]
. (29)

Here Amag(T ; ω, p) = −1/π ImGR
p (T ; ω) is the instantaneous

magnon spectral function, which depends on time in the in-
stance when the pump changes, e.g., the spin-exchange, as it
does in this system. We also see the appearance of the orbital
occupation function, which we assume remains in equilibrium
at temperature Torb, such that Forb(ω) = coth ω

2Torb
.

We now study the dynamics of this system under the quasi-
particle approximation, such that we can replace the frequency
dependence by the instantaneous on-shell frequency. This
gives us a simple equation we can solve for the quasiparticle
occupation function fp(T ) of

∂ fp(T )

∂T
= − 1

τp(T )

(
fp(T ) − f (bath)

p (T )
)
, (30)

where 1/τp(T ) is the instantaneous relaxation rate at time
T , derived from the magnon self-energy, and f (bath)

p (T ) is
the instantaneous equilibrium occupation set by the orbital
bath occupation function projected onto the magnon spectral
density. For details, see Appendix D.

If we only include the change in J , and therefore only
the instantaneous change in the spectral function, we see a
meager response to the pump. This can be seen in Fig. 7,
which shows the change in instantaneous magnetization fol-
lowing a transient increase in J due to the coherent phonon
ring-down, schematically illustrated above the numerical plot.
We plot the change in magnetization �Mz(t ) as a percentage
relative to the maximum possible change, which would be
2μB[S − n(0)] so that if the initial moment is 0.9μB and it
increases to 0.95μB, this would by 50% of the maximum
possible increase.

Though the magnetization generally follows the pump-
induced change �J , which here was set to 0.5J (0), it is a
relatively mediocre response since the dynamics are still quite
bottlenecked by the long-relaxation time, τp, which is of order
nanoseconds for a thermal magnon, whereas the duration of
the pump-induced oscillations is at most 50 ps.

However, as we argued before, the nonequilibrium dynam-
ics induced by the pump can potentially exhibit accelerated
timescales, as illustrated in Fig. 5. Due to a combination

FIG. 7. Change in magnetization following a pump-induced
change in the ferromagnetic exchange due to the rectified spin-
phonon coupling, modeled here as a transient �J (t ) ∼ Q2

IR(t ), which
follows the impulsive initial pulse, illustrated on top of the frame.
For a ring-down time of order τph ∼ 30 ps and an initial change in
the exchange of �J (0)/Jeq = 50% we find magnetization dynamics
in the plot below, which shows the change in magnetization �Mz(t )
in terms a percentage of the maximum possible enhancement �Mmax

(corresponding to a complete saturation of the magnetization). The
ring-down period is shaded in red. This is not including the resonant
enhancement of the magnetization dynamics.

of high-frequency oscillations at 2�d ∼ 80 meV and low-
lying orbital excitations with � ∼ 90 meV or so, we can
find a transient acceleration of the relaxation rate, quantified
by 1/τp = −2/π Im�R(T ; ω), making the system essentially
relax faster than in equilibrium during the driving period. This
is confirmed by calculating the effective magnon lifetime in
the presence of steady-state coherent oscillations. In Fig. 8
we plot the magnon lifetime τp as a function of the magnon
kinetic energy Ep for different pump frequencies ωd and am-
plitudes Ad [98].

To see whether the increased relaxation rate has any effect
in practice, we carry out the simulations of Eq. (30) now
including both the pump-induced change in J (t ) as well as the
pump-induced change in the relaxation rate. This is presented
in Fig. 9, which shows the equivalent �J as in Fig. 7 but now
including the pump-accelerated relaxation rate for different
frequencies �d at a fixed fluence Ad = 0.3. We see that when
the pump approaches resonance with the orbital excitation, the
dynamics greatly accelerates, and as a result the magnetization
can grow much more over the same ∼30 ps window of growth
time.

Curiously, we see that around �d = 45 meV, the effect
seems to completely disappear, and the resulting magnetiza-
tion growth is almost completely stunted. In fact, this is a
manifestation of the pump actually passing through the orbital
resonance and changing from red-detuning to blue-detuning.
If we continue to increase the drive frequency further, we
find that the relaxation rate actually becomes negative—an
effect that is clearly impossible in equilibrium. This negative
relaxation rate essentially indicates that in the rotating frame,
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(a)

(b)

Fluence

Frequency

FIG. 8. (a) Plot of magnon lifetime τp = 1/γp in the presence of
the coherent phonon enhancement as a function of magnon kinetic
energy Ep for different drive frequencies. We fix the fluence param-
eter to Ad = 0.3 and we fix the orbital parameters to � = 90 meV
and � = 10 meV, with λ = 15 meV. The lifetime is reduced by the
magnon appearance of sidebands at � ± 2�d . Near �d = 40 meV,
this process nears resonance and the decay rate is maximally en-
hanced by nearly two orders of magnitude. (b) We study varying the
drive fluence parameter Ad at fixed �d = 35 meV for the same orbital
parameters. The dependence in this model is monotonic, though in a
more refined model we would expect some saturation as Ad → 1.

the orbital bath is population-inverted with respect to the
magnon system. Therefore, the bath actually acts as a gain
medium rather than a retarder. The resulting dynamics are
shown in Fig. 10, where we simulate both an initial increase
in exchange, as in Fig. 9, as well as a pump-induced reduction
in J of �J/J (0) = −50%. We see that the response is most
pronounced when �d is around ±5 meV detuned from the
�/2 = 45 meV point. We also see that the negative relaxation
rate essentially leads to an effectively reversed sign of �J ,
leading to growth in the magnon number when it should
become less ferromagnetic, and vice versa.

Therefore, we see that not only can one try to accelerate
magnetic dynamics away from equilibrium by modulating the
coupling to the orbital bath, but one may even potentially
slow the dynamics down (in our example, by tuning �d ∼
45 meV) or reverse them altogether by changing from red- to
blue-detuning. This is a genuinely nonequilibrium process and
may potentially explain the apparent opposite trend between
the equilibrium spin-phonon coupling and pump-induced re-
sponse in YTO in the recent experiment [19].

FIG. 9. Fractional change in magnon occupation following
pump-induced change in exchange �J while also including the en-
hancement of the relaxation rate due to the phonon ring-down. For
different pump frequencies (here we only model the pump frequency
as changing the spin-flip time) we see a dramatic increase in the
maximum change in magnetization upon approaching the resonance
condition around �d ∼ 40 meV. For pump frequencies above this,
the effect quickly reverses, and by �d ∼ 45 meV we see that the
dynamics has actually slowed substantially.

We can more systematically map this effect out by plotting
the most extreme value of the time-traces as a function of �d

and temperature, shown in Fig. 11(a) as a density plot and in
Fig. 11(b) for two line-cuts at a fixed temperature T . We see
quite clearly that the dynamics are most dramatically affected
near the resonance of 2�d = �, and upon passing through the
resonance the sign of the effect changes.

Thus, we see that going beyond the “quasistatic” picture
and actually considering how the coupling to the orbital bath
changes in the presence of nonequilibrium dynamics can lead
to striking and potentially useful changes to the magnetiza-
tion dynamics. Crucially, the effect we outline here relies on
a relatively low-lying orbital excitation that couples to the
spins and also the pumped phonon modes. If the orbitals are
too low-lying, then they will exhibit strong fluctuations and
cannot be treated as a bath, as we have here. On the other
hand, if they are too high in excitation energy, they cannot
be effectively coupled by phonon oscillations and therefore
they cannot realistically participate in the dynamics. Thus,
quasidegenerate magnetic insulators present a special oppor-
tunity for this type of “bath-control,” although as we will
discuss next, this type of physics may be able to be extended
to more general systems such as antiferromagnets, supercon-
ductors, or potentially other correlated phases.

VI. DISCUSSION

We now summarize our findings. We considered a sim-
ple model for the nonequilibrium dynamics of magnons in a
Heisenberg ferromagnetic insulator with low-lying “quaside-
generate” orbitals, as may be realized in orthorhombic
titanates RTiO3 (R = Y,Sm,Gd), and possibly other com-
pounds. By using a powerful terahertz pulse to resonantly
excite optical phonons, we argued that relatively long-lasting
nonequilibrium dynamics can be induced by the coherently
oscillating phonon modes, which may have lifetimes lasting
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(a) (b)

FIG. 10. Magnetization dynamics for frequencies below and above resonance. (a) For a transient increase in J of 50%, ferromagnetism
should increase in equilibrium, however in the presence of a high-frequency drive this can amplify, diminish, or even reverse as the frequency
passes through resonance with the bath. For �d = 40 meV the relaxation rate reaches near maximal enhancement and the magnetization is
most responsive to the pump-induced increase in J , while for �d = 50 meV it has already passed to the other side of the resonance. The bath
now acts to induce “gain” rather than loss and drives the magnetization opposite to the naive result, quite dramatically. (b) If we consider
instead a pump-induced reduction in J of =50%, the same features qualitatively persist, with opposite directions. In this case, driving above
the resonance leads to a substantial enhancement of magnetization.

up to 30 ps. These phonon oscillations may lead to transient
modifications to the superexchange, although, e.g., the recti-
fied part of the spin-phonon coupling ∼Q2

IRS j · Sk; this may
then lead to dynamic changes in the magnetic free-energy
landscape, which can potentially be used to optically drive the
magnetization and control the phase diagram. However, this
dynamics is often plagued by a bottleneck due to small spin-
orbit coupling, which leads to an approximate conservation
law for magnetization, leading to slow diffusive dynamics on
the relevant timescales.

This bottleneck can be circumvented in a nonequilibrium
setting, as we showed in Sec. V. In particular, in the pres-
ence of low-lying orbital excitations, the coupling between
magnons and the orbital angular momentum can become un-
quenched in the presence of phonon dynamics, which may
lead to “stimulated-emission”-type processes into the orbital

bath. This can in principle lead to a significant acceleration
in the timescale for the magnetization dynamics, allowing for
more effective optical control on relevant timescales. Further-
more, we found that in principle it is even possible to reverse
the nature of the coupling to the bath by changing from red-
to blue-detuning with respect to the orbital bath, allowing
for an even greater degree of control over the magnetization
dynamics.

More generally, our results should be able to be applied
to other systems of interest, including antiferromagnetic in-
sulators, spin liquids, and other correlated insulators. The
key component is the ability to induce a dynamical coupling
between the degrees of freedom of interest (such as spins)
and the bath degrees of freedom. In addition to controlling
the bath decay rates, this may also allow us to control the
bath-induced Lamb shift, which in the case we consider here

(a) (b)

FIG. 11. (a) Plot of maximum change in magnetization as a function of initial temperature and pump frequency. (a) Color map in the
(�d , T ) plane. We see that crossing through the resonance at �d = �/2 there is a dramatic change in the sign of the effect, and that the
greatest change occurs in this region. (b) Line cuts at low temperature (T = 1 K) and high temperature (T = 10 K). We see that the effect is
slightly more efficient at increasing the magnetization when the temperature is low, while it is more effective at reducing the magnetization at
higher temperatures.
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enters as an effective single-ion anisotropy. Thus, it may also
be possible to control the anisotropy dynamically, as proposed
in the recent experiment [29] and theory [30]. Control over
the isotropic superexchange interaction may also be possible
through the mechanism we outline here as well as through
similar mechanisms [20,24,31,49,57].

Our results may also be relevant to recent experiments
on nonequilibrium light-induced superconductivity [99] in
fullerides [9,11,12], organics salts [13,100], and cuprates
[14,15,101]. In this case, we argue that there are a number
of parallels that make it even more interesting to under-
stand this physics. Chief among these are the observations
of pump-induced signatures of the ordered phase above the
equilibrium transition temperature, the long-lived resilience
of this long-range order, and enhancement of “coherence” be-
low the ordering temperature. In the case of superconductors,
the effects of pump-induced order are seen most clearly in
systems that are strongly coupled and do not exhibit a simple
mean-field transition [102,103] (e.g., cuprates, fullerides), and
this is also the case for the magnetic order in the recent
experiment on YTO in Ref. [19], which appears to exhibit
a “magnetic pseudogap.” It is also possible that a similar
equilibrium slowing-down of reaction pathways occurs in
these systems, which reside near a metal-insulator transition
[104,105].

Although in the current work we do not address the “pseu-
dogap regime,” it should be possible to extend our results to
include strong magnetic fluctuations via, e.g., the Schwinger
boson technique or various slave-particle mappings, which
can be extended to nonequilibrium settings [61,106–109]. It
may turn out that the equivalent problem in the superconduct-
ing case will actually be more tractable since in this case the
theory for a fluctuating superconductor is more amenable to
nonequilibrium diagrammatic approaches [103,110,111].

We also comment that similar ideas have recently been
discussed in the context of “pump-induced sideband cooling”
for various solid-state systems by various groups [51–53].
In particular, it was proposed that recent experiments on
light-induced superconductivity [9] could be understood by a
Floquet sideband cooling utilizing an intermediate bath state
provided by an internal excitonic resonance of the fullerene
molecules [51]. This was later extended to the case of a
quantum spin-system with a dynamical coupling induced in
a complementary bath system [52]. In this respect, this is very
similar to the system we are proposing here, where the orbitals
serve as an analog to the excitonic bath of Ref. [51]. However,
our results should still be present even if the true sideband
cooling does not materialize. In particular, it is likely that both
processes will be happening in a true driven system.

To conclude, we have examined the nonequilibrium spin-
orbital dynamics in a ferromagnetic insulator, and we found
that away from equilibrium there is a rich variety of dynamical
processes that can happen even in a relatively simple quasi-
particle description. Experimentally, this is possibly relevant
to various ferromagnetic insulators realized in ferromagnetic
rare-earth titanates RTiO3, and it may be more generally ap-
plicable to strongly correlated spin-orbital systems such as
NiPS3 [29,30], CuSb2O6 [90], other titanates [24,25,64,78],
manganites [112,113], vandates [26,64,114,115], and a num-
ber of other compounds [116]. There may also be connections

to charge-density-wave physics, which can also be manipu-
lated by light [16,117].

We also argued that our results may be analogous to
recent experiments on photoinduced superconductivity. In
future works, it will be important to consider extending our
results to the strongly fluctuating regime near and above
TC , as well as to incorporate the truly dynamical terms that
break time-translational symmetry [37,43,118]. In addition,
considering systems that do have degenerate orbitals (or
exhibit genuine spontaneous orbital ordering) would be of
great interest, with many exotic phenomena already known
to occur [56]. It will also be necessary to develop a closer
connection to specific materials in order to make contact
with current and future experiments. Experiments using
ultrafast x-ray scattering may be able to directly confirm these
nonequilibrium dynamics [55,119], though this is likely to be
quite challenging theoretically.
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APPENDIX A: ORBITAL ANGULAR MOMENTUM

Here we present details of the orbital angular momentum
projected onto the t2g states. The orbital angular momentum
of the full d shell is in general characterized by a total L = 2
operator. In the presence of cubic crystal-field splitting, this
is further split into two eg levels with quenched angular
momentum, and three t2g levels that in general may have an
unquenched effective angular momentum of Leff = 1 roughly
corresponding to the vector representation of the three orbitals
[120].

Explicitly, we have the representation of the effective an-
gular momentum operators given in terms of the t2g states
|a〉 = |yz〉, |b〉 = |zx〉, |c〉 = |xy〉 on site j as

L̂l
j = −iεlmn(|n; j〉〈m; j| − |m; j〉〈n; j|). (A1)

Note that this is odd under time-reversal symmetry and has
purely off-diagonal matrix elements written in terms of the
Cartesian orbitals.

In the presence of further splitting induced by the GdFeO3

lattice distortion, the orbital angular momentum becomes
quenched. We can then project it onto the lowest two states of
the intra-t2g distortion, which we call |0〉 and |1〉. If we express
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the angular orbital momentum on the basis of the crystal-field
matrix, we find that the relevant operator is

L̂ j = (−i|1; j〉〈0; j| − |0; j〉〈1; j|)e2 = e2τ̂
2
j , (A2)

where the second equality expresses this in a vector repre-
sentation in terms of the unit vector that points along the
direction ez for the xy orbital, and so on in a cyclic way.
The Pauli matrix τ̂ 2

j is the relevant second-quantized operator
resulting from the projection of the full orbital state operator
onto the two lowest orbitals. More generally, we may have
the crystal-field matrix evolving with a parameter (such as a
phonon coordinate), in which case we express this in terms of
the relevant crystal-field wave functions as

L̂ j = nτ̂ 2
j , (A3)

where the matrix elements of the orbital angular momentum
vector are obtained via the Levi-Civita symbol as

nc = ea × eb, (A4)

where ea is the ath (real, by time-reversal symmetry) eigen-
vector of the crystal field.

APPENDIX B: KELDYSH HOLSTEIN-PRIMAKOFF

We introduce the spin fields on the forward and backward
contours, expanded up to O(S0) as

S j,± = Se3 +
√

S[e−b j± + e+bj±] − e3bj±b j± (B1)

with

e± = 1√
2

(e1 ± ie2). (B2)

We therefore find the expansion for the classical/quantum
fields of

S j,cl = S
1√
2

e3 +
√

S[e−b jcl + e+bjcl]

−e3
1√
2

(bjclb jcl + bjqb jq ), (B3a)

S j,q =
√

S[e−b jq + e+bjq] − e3
1√
2

(bjclb jcl + bjqb jcl ).

(B3b)

We require the products Sα
jcl(t )Sβ

jq(t ′) and Sα
jq(t )Sβ

jq(t ′) up
to order O(S). We find at quadratic order the contributions

S jq(t )S jcl(t
′) = S[T++bjq(t )bjcl(t

′) + T+−bjq(t )b jcl(t
′)

+ T−+b jq(t )bjcl(t
′) + T−−b jq(t )b jcl(t

′)]

− S

2
T33

(
bjcl(t )b jq(t ) + bjq(t )b jcl(t )

)
(B4)

and

S jq(t )S jq(t ′) = S[T++bjq(t )bjq(t ′) + T+−bjq(t )b jq(t ′)

+ T−+b jq(t )bjq(t ′) + T−−b jq(t )b jq(t ′)].
(B5)

Here we have introduced the tensors

T++ = e+ ⊗ e+, (B6a)
T+− = e+ ⊗ e−, (B6b)

T−+ = e− ⊗ e+, (B6c)

T−− = e− ⊗ e−, (B6d)

T33 = e3 ⊗ e3. (B6e)

We have an effective action due to the orbital bath of

Seff = − S
λ2

2

∑
j

∫
t,t ′

tr
{

n j (t
′) ⊗ n j (t ) ·

[
DK (t, t ′)

(
T++bjq(t )bjq(t ′) + T+−bjq(t )b jq(t ′) + T−+b jq(t )bjq(t ′) + T−−b jq(t )b jq

× (t ′)
) + DR(t, t ′)

(
T++bjq(t )bjcl(t

′) + T+−bjq(t )b jcl(t
′) + T−+b jq(t )bjcl(t

′) + T−−b jq(t )b jcl(t
′) − 1

2
T33

(
bjcl(t )b jq(t )

+ bjq(t )b jcl(t )
)) + DA(t, t ′)

(
T++bjcl(t )bjq(t ′) + T+−bjcl(t )b jq(t ′) + T−+b jcl(t )bjq(t ′) + T−−b jcl(t )b jq(t ′)

− 1

2
T33

(
bjcl(t

′)b jq(t ′) + bjq(t ′)b jcl(t
′)
))]}

. (B7)

Here the trace is taken over the spin-tensor indices.
We will herein replace the sublattice specific angular momentum vectors n with the sublattice averaged matrix

N(t ′, t ) = n j (t ′) ⊗ n j (t ). (B8)

We also will for the most part throw away the anomalous correlations, assuming they are small, though this may be an interesting
direction for the future. We then find an effective U (1) symmetry for the magnons, getting

Seff = − S
λ2

2

∑
j

∫
t,t ′

tr
{
N(t ′, t ) ·

[
DK (t, t ′)

(
T+−bjq(t )b jq(t ′) + T−+b jq(t )bjq(t ′)

)

+ DR(t, t ′)
(
T+−bjq(t )b jcl(t

′) + T−+b jq(t )bjcl(t
′) − 1

2
T33

(
bjcl(t )b jq(t ) + bjq(t )b jcl(t )

))

+ DA(t, t ′)
(
T+−bjcl(t )b jq(t ′) + T−+b jcl(t )bjq(t ′) − 1

2
T33

(
bjcl(t

′)b jq(t ′) + bjq(t ′)b jcl(t
′)
))]}

. (B9)
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At this point, we can read out the retarded self-energy

�R(t, t ′) = Sλ2

2
[N+−(t ′, t )DR(t, t ′) + N−+(t, t ′)DA(t ′, t )]

− Sλ2

4

(∫
dt ′′N33(t ′′, t )DR(t, t ′′)δ(t − t ′) − 1

2

∫
dt ′′N33(t ′, t ′′)DA(t ′′, t ′)δ(t − t ′)

)
(B10)

and the Keldysh self-energy as

�K (t, t ′) = c
Sλ2

2
[N+−(t ′, t )DK (t, t ′) + N−+(t, t ′)DK (t ′, t )].

(B11)
In the retarded self-energy, the last two terms describe the

drive-induced dephasing (T2 process), which only enters when
the effective magnon gap due to the orbital fluctuations is
time-dependent. We will leave this study to future works,
and ignore it in this case as we assume the projection of the
angular momentum matrix elements is small along the c-axis.

To summarize, once we discard the anomalous terms and
the pump-induced dephasing, we are left with the magnon
self-energies of

�R(t, t ′) = Sλ2

2
[N+−(t ′, t )DR(t, t ′) + N−+(t, t ′)DA(t ′, t )],

(B12a)

�A(t, t ′) = Sλ2

2
[N+−(t ′, t )DA(t, t ′) + N−+(t, t ′)DR(t ′, t )],

(B12b)

�K (t, t ′) = Sλ2

2
[N+−(t ′, t )DK (t, t ′) + N−+(t, t ′)DK (t ′, t )].

(B12c)

We are now tasked with using these to solve the equa-
tions of motion in the driven case. Note that

N+−(t ′, t ) = e+ · n(t ′)n(t ) · e− = N−+(t, t ′). (B13)

APPENDIX C: DENSITY FUNCTIONAL THEORY
CALCULATIONS

We performed our computations with the Vienna ab-initio
simulation package VASP.6.2 [121]. For the phonon calcula-
tions, we used the PHONOPY software package [122] and the
WANNIER90 package for Wannierization [94]. Our computa-
tions further utilized pseudopotentials generated within the
projected augmented wave (PAW) [123] method. Specifically,
we take the following configurations for default potentials: Ti
3p64s13d3, Y 4s24p65s24d1, and O 2s22p4. We applied the
local spin density approximation (LSDA) approximation for
the exchange-correlation potential, which we augment with
the Hubbard U -J parameter to account for the localized nature
of the d-states of Ti. We use U = 4 eV and J = 0.0 eV. As
a numerical setting, we used a 9 × 9 × 7 Monkhorst [124]
generated k-point-mesh sampling of the Brillouin zone and a
plane-wave energy cutoff of 600 eV. We iterate self-consistent
calculations until the change in total energy has converged up
to 10−8 eV.

APPENDIX D: TWO-TIME EQUATIONS

Here we elaborate on the details associated with computing
the various nonequilibrium Green’s functions that enter into
the magnon kinetic equation. We focus on the time-frequency
domain transforms, assuming that the space and momentum
dependencies are trivial.

To begin with, we invoke the formula for the relation of the
Wigner transform of two products. We consider two corre-
lation functions with known Wigner transforms A(T1; ω1) and
B(T2; ω2). We want the Wigner transform of their convolution,
expressed in terms of the two-time functions A, B, as

C(T ; �) =
∫

dτ ei�τ

∫
dtA(T + τ/2, t )B(t, T − τ/2).

(D1)
This expression can be found in [95] and is formally given as
an exponential derivative operation as

C(T ; �) = A(T ; �) exp

(
− i

2
[
←−
∂T

−→
∂� − ←−

∂�

−→
∂T ]

)
B(T ; �).

(D2)
This is only useful if one can expand the relevant functions in
terms of slowly varying in both time and frequency, which in
turn relies on a separation of scales between the dynamics and
frequencies.

We also use the related formula, relevant for the Wigner
transform of the pointwise product,

D(T ; ω)=
∫

dτ ei�τ A

(
T + τ

2
, T − τ

2

)
B

(
T + τ

2
, T − τ

2

)
,

(D3)
which yields

D(T ; �) =
∫

dω

2π
A(T ; � − ω)B(T ; ω). (D4)

We now apply this to the Green’s functions. First, we
consider the magnon retarded Green’s function, which obeys
the integral equation

(i∂t − �p)GR(t, t ′) −
∫

dt ′′�R(t, t ′′)GR(t ′′, t ′) = δ(t − t ′).

(D5)
In the absence of the drive, this is solved in the frequency
domain, and we obtain the standard result, which in particular
amounts to a form of Gilbert damping at low frequencies.

In this work, we will still retain the separation between the
evolution times, which are of order of 20–2000 ps, and the
timescales of the internal degrees of freedom, which are from
20 to 800 fs or so. This allows us to efficiently employ the
equations of motion using the Wigner transformations and the
Moyal expansions.

The lowest order in the Moyal expansion is simply the
product. We retain the expansion up to first order, giving an

013204-13



JONATHAN B. CURTIS et al. PHYSICAL REVIEW RESEARCH 5, 013204 (2023)

equation of motion for the retarded Green’s function

i

2
[1 − ∂ω�R(T ; ω)]∂T GR

p (T ; ω)

+
[
ω − �p − �R(T : ω) + i

2
∂T �R(T ; ω)∂ω

]

× GR
p (T ; ω) = 1. (D6)

This yields a first-order differential equation for the Green’s
function, though it remains nonlocal in frequency space due to
the changing self-energy. When solving, we also supplement
with the initial condition that

GR
p (−∞.ω) = 1

ω − �p − �R(ω)
. (D7)

To complete this, we need to express the self-energy as a
Wigner transform as well. We use the product formula to find
the Wigner transform (as applied to R, A, K self-energies)

�̌(T ; �) = 1

Neq
+−

∫
dω

2π
N+−(T ; ω)�̌eq(� − ω). (D8)

Here �eq(ω) is the equilibrium self-energy and it depends
only on frequency. Neq

+− is the equilibrium angular momentum
projection, while N+−(T ; ω) is the Wigner transform of the
modulated angular momentum tensor. We model the modula-
tion via

N+−(t, t ′) = Neq
+− [A0(t ) + A1(t )e−i�d t + A−1(t )ei�d t ]

× [A∗
0(t ′) + A∗

1(t ′)ei�d t ′ + A∗
−1(t ′)e−i�d t ′

], (D9)

where we have expressed this in terms of a Floquet expansion
in the drive-frequency �d , along with slowly varying envelope
functions A0, A±1, which vary over times of order τd � �−1

d .
This gives, in the slowly varying envelope approximation for
A’s,

N+−(t, t ′)/Neq
+−

= [|A0(T )|2 + A1(T )A∗
−1(T )e−2i�d T

+ A−1(T )A∗
1(T )e2i�d T

]
2πδ(ω)

+ |A1(T )|22πδ(ω − �d ) + |A−1(T )|22πδ(ω + �d )

+ [
A0(T )A∗

1(T )ei�DT + A∗
0(T )A1(T )e−i�DT

]
2πδ

× (ω − �d/2) + [
A0(T )A∗

−1(T )e−i�DT + A∗
0(T )A−1(T )

× ei�DT
]
2πδ(ω + �d/2). (D10)

This involves a number of terms, including some that cou-
ple the slow dynamics to the fast degrees of freedom. These
terms involve oscillatory couplings like ei�d T . While these are
important close to parametric resonance, or in the steady-state
Floquet system, where the separation of timescales com-
pletely disintegrates, or must be treated nonperturbatively, we
limit ourselves to the regime where the dynamics are still able
to be disentangled. We therefore only keep in this expansion
those terms that do not average out over long times T . This
leaves only the terms

�̌(T ; ω) = |A0(T )|2�̌(ω) + |A1(T )|2�̌(ω − �d )

+ |A−1(T )|2�̌(ω + �d ). (D11)

In fact, the object we are interested in is the magnon
Keldysh occupation function, whose equal-time value reflects
the time dependence of the total number of magnons. At the
Gaussian level, one can find that the Green’s function is given
by

GK = GR ◦ �K ◦ GA. (D12)

To proceed, we manipulate this to obtain an equation of
motion of the form

(GR)−1 ◦ GK − GK ◦ (GA)−1 = −(GR ◦ �K − �K ◦ GA).
(D13)

We now utilize the fact that this is diagonal in momentum
space, and we take the Wigner transform of this equation. In
general, this will not yield a closed form since the Wigner
transform is over convolutions of the functions. In the very
lowest-order limit of a slowly varying change in the self-
energy, we get[

i
∂

∂T
− [�R(T ; ω) − �A(T ; ω)]

]
GK

p (T ; ω)

= −(
GR

p (T ; ω) − GA
p (T ; ω)

)
�K (T ; ω). (D14)

This is formulated in terms of the occupation and spectral
functions as

∂GK
p (T ; ω)

∂T
= [�R(T ; ω) − �A(T ; ω)]

( − iGK
p (T ; ω)

+ 2πAmag(T ; ω, p)Forb(T ; ω)
)
. (D15)

This is the simple frequency-dependent relaxation-time ap-
proximation. We find a relaxation of the instantaneous
magnon occupation towards the bath temperature with the
relaxation rate given by the bath coupling.

To conclude, we implement the quasiparticle approxima-
tion, which assumes that the linewidth of the magnon is much
smaller than its central frequency. In this case, we can derive
a simple equation solely for the total magnon occupation
function

fp(T ) = i
∫

dω

2π
GK

p (T ; ω) (D16)

as

∂t fp(t ) = − 1

τp(t )

[
fp(t ) − f (0)

p (t )
]
, (D17)

where the instantaneous relaxation rate is given by

1

τp(t )
= −2

∫
dω

2π
Im�R(ω; t )Amag(ω, p; t ), (D18)

and the instantaneous occupation function is

f (0)
p (t ) =

∫
dω
2π

Im�R(ω; t )Amag(ω, p; t )Forb(ω)∫
dω
2π

Im�R(ω; t )Amag(ω, p; t )
. (D19)

We approximate the spectral function as

Amag(ω, p; t ) = δ(ω − �p(t )), (D20)

since the quasiparticle decay rate is expected to be small.
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