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Quantum first detection of a quantum walker on a perturbed ring
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The problem of quantum first detection time has been extensively investigated in recent years. Employing the
stroboscopic measurement protocol, we consider such a monitored quantum walk on sequentially or periodically
perturbed rings and focus on the statistics of first detected return time, namely, the time it takes a particle to return
to the initial state for the first time. Using time-independent perturbation theory, we obtain the general form of
the eigenvalues and eigenvectors of the Hamiltonian. For the case of a sequentially perturbed ring system, we
find steplike behaviors of

∑N
n=1 nFn (→ 〈n〉 as N → ∞) when N increases, with two plateaus corresponding

to integers, where Fn is the first detected return probability at the nth detection attempt. Meanwhile, if the initial
condition preserves the reflection symmetry, the mean return time is the same as the unperturbed system. For
the periodically perturbed system, similar results can also appear in the case where the symmetry is preserved;
however, the size of the ring, the interval between adjacent perturbations, and the initial position may change
the mean return time in most cases. In addition, we find that the decay rate of the first detection probability Fn

decreases with the increase in perturbation amplitude. More profoundly, the symmetry-preserving setup of the
initial conditions leads to the coincidence of Fn. The symmetry of the physical systems under investigation is
deeply reflected in the quantum detection time statistics.

DOI: 10.1103/PhysRevResearch.5.013202

I. INTRODUCTION

The classical first-passage problem is one of the most basic
issues in statistical mechanics. In the classical random walk,
a walker starts at the initial position rin and reaches the tar-
get position rd for the first time at a certain time, which is
considered to be the first-passage process [1]. The classical
first-passage-time problem has been extensively studied, as
it has a large number of applications in a variety of sci-
entific fields [2–8]. The quantum extension of this problem
is the quantum first-detection problem, and it exhibits some
different behaviors compared with the classical first-passage
problem.

The time statistics of the quantum first-detection problem
has attracted a great deal of theoretical attention [9–29]. Using
a periodical monitoring method (see details below), Grün-
baum et al. [11] proved that a monitored quantum walk on
a finite graph can always return to the initial state, i.e., the
system is recurrent with the Pólya number as 1 [30], and
the expectation of the first return time is an integer times the
measurement period. The quantization of the mean first return
time has been observed on an IBM quantum computer [31]. In
addition, Krovi and co-workers [13–16] showed that the first
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hitting time of a quantum walk is sensitively dependent on the
initial conditions, and different hitting times could be gener-
ated for different initial states. Besides that, the degeneracy of
the evolution operator’s eigenvalues also has some influence
on the hitting time. When the evolution operator is highly
degenerate, it is possible to have some initial states that give
infinite hitting times, due to which the system is driven into
dark states [32]. The degeneracy of the evolution operators
arises due to the symmetry of graphs, and the symmetry of
graphs is likely to play an important role in the speedups and
slowdowns of quantum walks.

As a factor affecting the symmetry of a system, disorder
is inevitable in most quantum systems. Quantum walk with
disorder has been studied both theoretically and experimen-
tally, and various kinds of interesting dynamical phenomena
were demonstrated, such as ballistics and diffusive spreading
[33–38] and Anderson and bound-state localization [37–43].
In the tight-binding quantum walk, disorder can be repre-
sented by the nonzero on-site energies of a Hamiltonian.
When the nonzero on-site energies are small, they are called
perturbations. The turning on of disorder results in the re-
moval of degeneracy of a ring Hamiltonian’s energy levels,
and the time distribution exhibits a slowly decaying tail in
a non-Hermitian quantum system [24]. The first return time
depends on the effective dimension of the underlying Hilbert
space, which is given by the number of distinct energy lev-
els whose overlaps with the target state are nonzero [19].
Therefore the number of the system Hamiltonian’s energy
levels determines the first return time to a large extent. If
the degeneracy of the disordered system’s Hamiltonian can be
regulated, the first return time can also be regulated. Mülken
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et al. [44] showed that the degeneracy of a ring system’s
Hamiltonian with traps was affected by the spatial distribu-
tion of traps, and the spatial distribution of traps also had a
significant effect on the mean quantum survival probability.
Especially, when traps were periodically arranged on the ring,
the mean quantum survival probability decayed asymptoti-
cally to a nonzero value, which depends on the ring size and
the number of traps. When traps were consecutively arranged
on the ring and the number of traps was half of the ring size,
the mean quantum survival probability was independent of the
ring size, and its decay rate was related to the strength of the
traps [44]. Similarly, in classical systems, recently, Pozzoli
and De Bruyne [45] studied the survival probability of random
walks on a ring with periodically distributed traps and showed
the dependence of the decay rate of the survival probability on
the trap’s length for discrete-time random walks.

The goal of this paper is to investigate the effect of spatial
distribution and strength of perturbations on the time statistics
of a quantum walk on a ring. We focus on the first detected
return time in this paper, namely, the time it takes a monitored
quantum walker to return to the initial state for the first time,
since the mean of the first detected return time reveals some of
the topology of the problem (see below) [11,19]. A previous
study has shown that, with a single defect, the mean first return
time is still the same as in the clean system, if the initial state
does not break the reflection symmetry of the system, and
otherwise, the mean first return time increases [21]. Therefore
the mean first return time is closely related to the choice of the
initial state.

In this paper, we consider two special cases of perturba-
tions’ distribution, i.e., sequential arrangement and periodical
arrangement (see Fig. 1). Following a recap of the model and
formalism that relates the mean return time with the number
of energy levels, we derived the general formulas of the eigen-
values and eigenvectors of the ring system via the perturbation
theory [46] (see Sec. II). For the two types of spatial distribu-
tions of perturbations, the mean and variance of the first return
time are investigated (see Figs. 2–4 and Table I). In the case
of sequentially arranged perturbations, we found the staircase
pattern of the truncated mean return time (see definition below
and Fig. 3). Under the symmetry-preserving initial condition,
the perturbations do not change the mean and variance of
the first return time. In the case of periodically arranged
perturbations, we summarized in a table the values of the
mean return time, for different parameters that determine the
symmetry of the system (see Table I). To further understand
the influence of perturbations on the detection time statistics,
we also discussed the first detection probability Fn, namely,
the distribution of the first detection time, for sequentially or
periodically perturbed rings. Besides the monotonic decrease
of the decay rate of Fn as the perturbation strength increases
(see Fig. 6), we found the coincidence of Fn for a symmetric
setup (see Figs. 8 and 9).

The rest of this paper is organized as follows. In Sec. II,
we elucidate the model and formalism and derive the general
formulas of the eigenvalues and eigenvectors of the perturbed
ring system by employing time-independent perturbation
theory. The main results as mentioned above are elabo-
rated in detail in Sec. III. We close the paper with a
summary and discussion in Sec. IV. Detailed calculations

related to the perturbation theory and Table I are presented in
Appendixes A and B.

II. MODEL AND GENERAL FORMALISM

A. Model

The system can be represented in Hilbert space H, and
the quantum particle is initialized at state |xin〉 ∈ H. A time-
independent Hamiltonian Ĥ determines the particle dynamics
via the Schrödinger equation. We measure the particle state
at a sampling period τ to determine whether the particle is
at state |xd〉 ∈ H or not. The stroboscopic measurement is
performed via the projection operator D̂ = |xd〉〈xd|. If the de-
tection fails, the amplitude at the target state |xd〉 will vanish,
and then the wave function will be renormalized and evolve
freely for another duration of τ . We continue this “evolution-
projection-evolution...” process unless the walker “hits” the
detector. Finally, the particle is detected for the first time at the
nth attempt. The indeterministic nature of quantum mechanics
renders n random, which is defined as the first detection time.

Following this stroboscopic detection protocol [10,11], the
first detection amplitude at the nth attempt is

φn = 〈xd|Û (τ )[(1 − D̂)Û (τ )]n−1|xin〉, (1)

where Û (τ ) = e−iĤτ (h̄ is set as 1 here and in what follows) is
the unitary evolution operator of the system. The probability
of the first detection at the nth attempt is Fn = |φn|2, and
the total probability of detection can be written as Pdet =∑∞

n=1 Fn. We note that Pdet can be less than 1, indicating
that the walker could evade detection, and the mean detection
time can be defined as 〈n〉 =∑n nFn/Pdet. In order to get
Fn numerically, we derive from Eq. (1) and get the quantum
renewal equation [18,19]

φn = 〈xd|Û (nτ )|xin〉 −
n−1∑
m=1

〈xd|Û [(n − m)τ ]|xd〉φm. (2)

This equation shows that the first detection amplitude
is equal to the measurement-free transition amplitude
〈xd|Û (nτ )|xin〉 subtracting the measurement-free return am-
plitude 〈xd|Û [(n − m)τ ]|xd〉 propagating from the prior first
detection amplitude φm(m < n). This is also the spirit of the
classical renewal equation, with a replacement of the proba-
bility to amplitude [1].

B. Generating function

In practice, it is more convenient to get φn with its gen-
erating function [19,47], i.e., employing the discrete Laplace
transform or Z transform

φ̂(z) =
∞∑

n=1

znφn = 〈xd|Û (z)|xin〉
1 + 〈xd|Û (z)|xd〉

, (3)

where Û (z) =∑∞
n=1 znÛ (nτ ) = ze−iĤτ

1−ze−iĤτ
. Upon substituting

this form of Û (z) into Eq. (3) we obtain

φ̂(z) =
〈xd| 1

z−1eiĤτ −1
|xin〉

1 + 〈xd| 1
z−1eiĤτ −1

|xd〉
. (4)
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We can recover φn using the inversion formula

φn = 1

n!

dn

dzn
φ̂(z)

∣∣∣∣
z=0

(5)

or Cauchy’s integral formula

φn = 1

2π i

∮
|z|=1

dz

zn+1
φ̂(z). (6)

Based on whether |xd〉 is the same as |xin〉, we divide the
problem into two types: the return problem and the arrival
problem. When |xd〉 = |xin〉, it is called the return problem,
which is the focus of this paper, and φ̂(z) can be expressed
specifically as

φ̂(z) = 〈xd|Û (z)|xd〉
1 + 〈xd|Û (z)|xd〉

. (7)

When |xd〉 �= |xin〉, it is called the arrival problem, and φ̂(z) is
consistent with Eq. (3).

The total probability of detection Pdet and the mean return
time 〈n〉 can be expressed as

Pdet =
∞∑

n=1

Fn =
∞∑

n=1

|φn|2

= 1

2π

∫ 2π

0

∞∑
k=1

φ∗
k e−ikθ

∞∑
l=1

φl e
ilθ dθ

= 1

2π

∫ 2π

0
|φ̂(eiθ )|2dθ (8)

and

〈n〉 =
∞∑

n=1

nFn =
∞∑

n=1

n|φn|2

= 1

2π

∫ 2π

0

∞∑
k=1

φ∗
k e−ikθ

(
1

i

∂

∂θ

) ∞∑
l=1

φl e
ilθ dθ

= 1

2π i

∫ 2π

0
[φ̂(eiθ )]∗∂θ φ̂(eiθ )dθ, (9)

where we set eiθ → z in the analytic extension of the unit
circle.

In the return problem, φ̂(eiθ ) is given by

φ̂(eiθ ) =
〈xd| 1

ei(Ĥτ−θ )−1
|xd〉

1 + 〈xd| 1
ei(Ĥτ−θ )−1

|xd〉

= − 1
2 − i

2 〈xd| cot (Ĥτ−θ )
2 |xd〉

1
2 − i

2 〈xd| cot (Ĥτ−θ )
2 |xd〉

. (10)

If we write û(θ ) = 〈xd| cot (Ĥτ−θ )
2 |xd〉, which is a real number,

Eq. (10) becomes

φ̂(eiθ ) = 1 + iû(θ )

−1 + iû(θ )
. (11)

Obviously, using Eq. (8), we get the total probability of de-
tection Pdet = 1 because of |φ̂(eiθ )| = 1. If we write φ̂(eiθ ) =
eiϕ(θ ), where ϕ(θ ) = 2 arctan[û(θ )] + π , it follows that

φ̂(eiθ ) = −e2i arctan[û(θ )]. (12)

Upon substituting this expression of φ̂(eiθ ) into Eq. (9), we
obtain

〈n〉 = 1

2π

∫ 2π

0
∂θ (2 arctan[û(θ )])dθ. (13)

Exceptional sampling times

The symmetry of the system, whose Hamiltonian governs
the quantum walker’s dynamics, can cause the degeneracy of
energy levels. In addition, exceptional sampling times τc give
rise to the pseudodegeneracy, i.e., e−iEkτc = e−iEl τc , between
different energy levels. Hence exceptional sampling time τc is
defined by

|Ek − El |τc = 2πn, (14)

where n is an integer. Ek and El are the eigenvalues of the
system’s Hamiltonian. The pseudodegeneracy leads to non-
analytic behaviors at those exceptional sampling times τc;
namely, the mean 〈n〉 in the return case exhibits discontinuous
transition, which is accompanied by diverging variance in the
vicinity [19,21]. In the arrival problem, 〈n〉 and the variance
of n both diverge [23].

C. Rings with perturbations

We study a nearest-neighbor tight-binding model of finite
rings with perturbations in this paper. We first introduce the
Hamiltonian of a finite ring with N sites,

H0 = −γ

N−1∑
x=0

(|x〉〈x + 1| + |x + 1〉〈x|). (15)

This equation describes a quantum walker hopping between
nearest neighbors on a one-dimensional N-site ring, where γ

is the hopping rate between nearest sites. In this paper, we
set γ = 1. This ring system possesses translational invariance,
namely, |0〉 = |N〉. The eigenvalues of this Hamiltonian H0

are E (0)
l = −2 cos 2π l

N , and the corresponding eigenvectors are

|E (0)
l 〉 = 1√

N

∑N−1
x=0 e−i 2π l

N x|x〉, with l = 0, 1, . . . , N − 1 [48].
When l + k = N and l �= k, El and Ek are a pair of degenerate
energy levels. Hence the number of distinct energy levels is
N+2

2 when N is even and N+1
2 when N is odd.

Recently, the model of finite rings has been studied in
the return problem [18,19]. For the case of finite rings, the
quantum walk as shown above [see Eqs. (8) and (12)] is
always recurrent in the return problems, i.e., Pdet = 1. Aside
from isolated exceptional sampling times τc, the mean return
time is independent of the general sampling time τ , and it just
depends on the number of sites,

〈n〉 =
{

N+2
2 , N is even

N+1
2 , N is odd.

(16)

Here, we can see that 〈n〉 is the number of distinct energy
levels of the system. However, Eq. (16) is not applicable for
exceptional sampling times. According to Eq. (14), whenever
two modes exp(iEkτ ) are identical when strobed at each pe-
riod τc, the value of 〈n〉 is reduced by unity. Therefore the
mean return time is less than or equal to the number of energy
levels.
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Apparently, the results of the perturbed system are different
from the above results [21]. We next consider a finite ring sys-
tem with perturbations. Assume that perturbations are located
at sites ξ j with j = 1, 2, . . . , m and ξ j ∈ M. M is the set of
sites at which the perturbations are located. The energy of
perturbations is a small constant −γ ε, and ε2 
 1. Then, the
total Hamiltonian of the system with perturbations is

H = H0 + H ′, (17)

where H ′ is the Hamiltonian of perturbations and H ′ =
−γ ε

∑m
j=1 |ξ j〉〈ξ j |.

Eigenvalues and eigenvectors of the perturbed rings

The eigenvalues of the total Hamiltonian in Eq. (17) and
their corresponding eigenvectors can be obtained approxi-
mately with perturbation theory. We study a finite ring model
with even sites, i.e., N is even, and the different eigenvalues
can be calculated by E (0)

l = −2 cos 2π l
N with l = 0, 1, . . . , N

2
[48]. Apparently, this system has two nondegenerate energy
levels, E (0)

0 and E (0)
N
2

, and their corresponding eigenvectors are

∣∣E (0)
0

〉 = 1√
N

N−1∑
x=0

|x〉, (18)

∣∣∣E (0)
N
2

〉
= 1√

N

N−1∑
x=0

(−1)x|x〉. (19)

The rest of the energy levels (l �= 0, N
2 ) are doubly degenerate,

and each energy level corresponds to two degenerate eigen-
vectors

∣∣E (0)
l1

〉 = 1√
N

N−1∑
x=0

ei 2π l
N x|x〉, (20)

∣∣E (0)
l2

〉 = 1√
N

N−1∑
x=0

ei 2π (N−l )
N x|x〉. (21)

In this paper, the approximate results of eigenvalues and the
corresponding eigenvectors are accurate to the second-order
correction for the nondegenerate cases. For the degener-
ate cases, the approximate results of eigenvalues and the
corresponding eigenvectors are accurate to the first-order cor-
rection. For the nondegenerate energy levels E0 and E N

2
, their

first-order correction can be expressed as

E (1)
l = −ε

m∑
j=1

∣∣〈ξ j

∣∣E (0)
l

〉∣∣2 = −ε
m

N
, (22)

where l = 0 or N
2 . The first-order correction of the corre-

sponding eigenvector is

∣∣E (1)
l

〉 =∑
n �=l

gn∑
μ=1

H ′
nμ,l

E (0)
l − E (0)

n

∣∣E (0)
nμ

〉
, (23)

where H ′
nμ,l = 〈E (0)

nμ |H ′|E (0)
l 〉 and gn is the degeneracy of En.

Furthermore, we explore the second-order correction of
eigenvalues and eigenvectors for the nondegenerate energy
levels E (0)

0 and E (0)
N
2

. The correction of the eigenvalue is given

by

E (2)
l =

∑
n �=0

gn∑
μ=1

∣∣H ′
nμ,l

∣∣2
E (0)

l − E (0)
n

. (24)

The second-order correction of the eigenvector is given by

∣∣E (2)
l

〉 = ∑
n �=l

gn∑
μ=1

[∑
m �=l

gm∑
i=1

H ′
nμ,miH

′
mi,l(

E (0)
l − E (0)

n
)(

E (0)
l − E (0)

m
)

− H ′
mi,l H

′
l,l(

E (0)
l − E (0)

n
)2
]∣∣E (0)

nμ

〉
. (25)

Then, using Eqs. (18)–(25), we can obtain the second-order
corrected eigenvalues and eigenvectors. See Appendix A for
the specific expressions of eigenvalues and eigenvectors of the
ring Hamiltonian.

As to the degenerate energy levels, the degeneracy is re-
moved due to the presence of perturbations. We can obtain the
first-order correction of eigenvalue E (1)

lα with secular equation∣∣∣∣∣H
′
l1,l1 − E (1)

lα H ′
l1,l2

H ′
l2,l1 H ′

l2,l2 − E (1)
lα

∣∣∣∣∣ = 0, (26)

where H ′
l1,l1 = H ′

l2,l2 = −ε m
N and H ′

l1,l2 = H ′∗
l2,l1 =

− ε
N

∑m
j=1 e−i4πξ j l/N . Equation (26) can be solved exactly

to obtain

E (1)
lα = − ε

N

(
m + (−1)α

∣∣∣∣
m∑

j=1

ei
4πξ j l

N

∣∣∣∣
)

. (27)

Because the degeneracy of Elα is 2 in our model, α in Eq. (27)
is equal to 1 or 2.

According to the perturbation theory, the new zero-order
eigenvector of degenerate energy levels can be expressed as

∣∣E (0)
lα

〉 = gl∑
i=1

aαi

∣∣E (0)
li

〉
, (28)

where gl is the degeneracy of El and i = 1, 2. The coefficient
aαi can be determined by solving the equation

gl∑
i,i′=1

(
H ′

li′,li − E (1)
lα δli′,li

)
aαi = 0. (29)

Upon substituting for E (1)
lα from Eq. (28) and H ′

li′,li into

Eq. (29), we obtain (a11 a12)T =
√

2
2 (−eiβ 1)T and

(a21 a22)T =
√

2
2 (eiβ 1)T , where T means matrix transpo-

sition and eiβ =
∑m

j=1 e−i4πξ j l/N

|∑m
j=1 ei4πξ j l/N | .

The first-order correction of the corresponding eigenvector
is given by

∣∣E (1)
lα

〉 =∑
n �=l

gl∑
i=1

gn∑
μ=1

aαi

H ′
nμ,li

E (0)
l − E (0)

n

∣∣E (0)
nμ

〉
. (30)

Hence, in the sense of the first-order correction, if the
degeneracy of El is removed, so that the twofold energy level
El splits into two energy levels, we can obtain the first-order
corrected eigenvalues and eigenvectors with Eqs. (27)–(30)
(see details in Appendix A).

013202-4



QUANTUM FIRST DETECTION OF A QUANTUM WALKER … PHYSICAL REVIEW RESEARCH 5, 013202 (2023)

However, when the degeneracy is maintained, namely,
E (1)

l1 = E (1)
l2 , we cannot obtain aαi via Eq. (29) anymore, and

we cannot get the new zero-order eigenvector with Eq. (28). In
the remainder of this section, we adopt another method [46] to
determine the coefficient aαi when the degeneracy is removed
in the second-order correction.

We first calculate the second-order correction of eigenvalue
E (2)

lα . In order to get E (2)
lα , we need to solve the following

equation:

det

∣∣∣∣∣
∑
n �=l

gn∑
μ=1

Ĥ ′
nμ,liĤ

′
li′,nμ

E (0)
l − E (0)

n

− E (2)
lα δli′,li

∣∣∣∣∣ = 0. (31)

We obtain

E (2)
lα =

∑
n �=l

gn∑
μ=1

Ĥnμ,l1Ĥ ′
l1,nμ

E (0)
l − E (0)

n

+ (−1)α
∣∣∣∣∣
∑
n �=l

Ĥ ′
nμ,l1Ĥ ′

l2,nμ

E (0)
l − E (0)

n

∣∣∣∣∣.
(32)

Because of Ĥnμ,l1, Ĥ ′
l1,nμ, Ĥ ′

nμ,l1, and Ĥ ′
l2,nμ ∼ ε, E (2)

lα is a
small quantity and approximately equals zero. Upon substi-
tuting Eq. (32) into the equation

gl∑
i,i′=1

(∑
n �=l

gn∑
μ=1

Ĥ ′
nμ,liĤ

′
li′,nμ

E (0)
l − E (0)

n

− E (2)
lα δli′,li

)
aαi = 0, (33)

we obtain (a11 a12)T =
√

2
2 (−eiγ 1)T and (a21 a22)T =

√
2

2 (eiγ 1)T , where eiγ =
∑

n �=l

∑gn
μ=1

Ĥ ′
nμ,l1Ĥ ′

l2,nμ

E (0)
l −E (0)

n

|∑n �=l

∑gn
μ=1

Ĥ ′
nμ,l1Ĥ ′

l2,nμ

E (0)
l −E (0)

n
|
. Using

Eqs. (28) and (30), we obtain the new zero-order eigenvectors
|E (0)

lα 〉 and the first-order correction eigenvector |E (1)
lα 〉.

We consider the approximate results of eigenvalues and the
corresponding eigenvectors being accurate to the first-order
correction for the degenerate cases. When the degeneracy is
removed in the second order but not in the first order, namely,
El1 = El2 = −(2 cos 2π l

N + ε m
N ), we can obtain the first-order

corrected eigenvectors using the results of |E (0)
lα 〉 and |E (1)

lα 〉
with Eqs. (28) and (30)–(33) (see details in Appendix A).

Similarly, if the degeneracy is removed at higher order,
this method can also be extended to higher-order perturbation
cases in solving the eigenvectors.

III. RESULTS

A. The mean return time

The mean return time 〈n〉 may increase as the number of
energy levels increases due to the removal of the degeneracy.
When the degeneracy is not removed, namely, the number of
energy levels is minimal, the mean return time 〈n〉 must be
minimal. Whether or not the degenerate energy levels split
will depend on the summation in Eq. (27) being zero. If the
summation is zero, the degenerate energy levels do not split.
Since the perturbation potential energies have the same ampli-
tude in this paper, the summation only depends on the sites at
which the perturbations are located. In the following sections,
we will study two special arrangements of perturbations on a
ring system: the sequential arrangement of perturbations and
the periodic arrangement of perturbations [44].

FIG. 1. Examples of sequential (a) and periodic (b) arrangements
of m = 4 perturbations on a ring of size N = 12. The green circles
represent the perturbed sites.

1. Sequentially perturbed rings

First, we consider the case of sequential arrangement of
perturbations, as illustrated in Fig. 1(a). We assume that the
ring has N sites and m perturbations, and the jth perturbation
is located at the ξ j = jth site, where j = 0, 1, . . . , m − 1.
Upon substituting for ξ j = j in Eq. (27), we obtain

E (1)
lα = − ε

N

(
m + (−1)α

∣∣∣∣
m−1∑
ξ j=0

ei
4πξ j l

N

∣∣∣∣
)

. (34)

The summation part in Eq. (34) can be reduced to

m−1∑
ξ j=0

ei
4πξ j l

N = 1 − ei 4πml
N

1 − ei 4π l
N

= sin 2π lm
N

sin 2π l
N

× ei 2π l (m−1)
N , (35)

where l ∈ [1, N
2 − 1]. When the size of the ring is

twice the number of perturbations, i.e., N = 2m, we have∑m−1
ξ j=0 ei 4π l

N ξ j = 0, and then E (1)
l1 = E (1)

l2 = −ε m
N . This means

that the degenerate energy levels do not split, and the number
of energy levels in this perturbed system is equal to that in the
unperturbed system. The only difference is that the energy for
each level shifts by the same value −ε m

N . Hence the mean re-
turn time does not change, and the exceptional sampling times
in the perturbed system are also the same as in the unperturbed
system. In Fig. 2, we compare the mean return time 〈n〉 and the
variance of n in the unperturbed ring system and sequentially
perturbed ring system with the sizes N = 6 and 8. The results
show that even if the size of the ring is different, 〈n〉 and the
variance of n are consistent in the perturbed and unperturbed
systems.

However, Eq. (34) is the approximate result, and Fig. 2
shows the results of the finite summation with the attempt
number N = 30 000. As to the case of exact solutions, every
pair of degenerate energy levels can split into two energy
levels with a very small difference. As shown in Fig. 3, for the
sequentially perturbed ring system with the sizes N = 6 and
8, it can be found that, with the increase in the attempt number
N , 〈n〉N =∑N

n=1 nFn has two plateaus at N
2 + 1 and N in

most cases. For the small number of attempts, the degenerate
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FIG. 2. In the quantum return problem, the mean return time 〈n〉
and the variance of n vs τ for the cases of a sequentially perturbed
system and an unperturbed system. The size of the ring systems is
set at N = 6 in (a) and (b) and N = 8 in (c) and (d). The initial
positions are set at xin = 1 in (a) and (b) and xin = 2 in (c) and
(d). The red dashed curves show the results for m = N

2 sequentially
arranged perturbations with amplitude ε = 0.025. The blue curves
are the results for the case of the unperturbed system. In (a) and (c),
the open circles and triangles are the singularities for the perturbed
and unperturbed systems, respectively.

energy levels cannot be resolved and appear as one, resulting
in a coarse-grained quantization. However, when N = 6 and
xin = 1 or 4, the mean return time always equals N

2 + 1. This
is because the choice of the initial condition does not break
the reflection symmetry of the system.

2. Periodically perturbed rings

Next, we consider the case of a periodic arrangement of
perturbations, as illustrated in Fig. 1(b). We assume that the
jth perturbation is located at the ξ j = (a ∗ j)th site, where
a is the interval between adjacent perturbations and j =
0, 1, . . . , m − 1. The relation between N , m, and a is N = ma.
Upon substituting for ξ j = a ∗ j in Eq. (27), we obtain

E (1)
lα = − ε

N

(
m + (−1)α

∣∣∣∣
m−1∑
j=0

ei 4π l
N a j

∣∣∣∣
)

. (36)
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FIG. 3. For m = N
2 sequentially arranged perturbations with am-

plitude ε = 0.025, the mean return time 〈n〉 vs the attempt number
n when τ = 90. The size of the ring systems is set at N = 6 in
(a) and N = 8 in (b). In (a), the blue curve and the orange curve
show the results for the initial conditions xin �= 1 or 4 and xin = 1 or
4, respectively. The blue curve has two plateaus at 〈n〉 = 4 and 6,
and the orange curve only has a plateau at 〈n〉 = 4. In (b), the blue
curve shows the results for arbitrary initial conditions, and it has two
plateaus at 〈n〉 = 5 and 8.

For the general case, i.e., ei 4π l
N a �= 1, the summation part in

Eq. (36) takes the simple form

m−1∑
j=0

ei 4πal
N j = 1 − ei 4πmal

N

1 − ei 4πal
N

= sin 2πalm
N

sin 2πal
N

× ei 2πal (m−1)
N = 0. (37)

In this case, the energy for each level also shifts by the same
value −ε m

N as in the last case. There is no degenerate energy
level split. The difference between each pair of energy levels
does not change; that is, the mean return time 〈n〉 and excep-
tional sampling times are unchanged. As shown in Figs. 4(a)
and 4(b), we compare the mean return time 〈n〉 and the vari-
ance of n in the unperturbed system and periodically perturbed
system with N = 6 and a = 2. In the two systems, 〈n〉 and the
variance of n are still consistent.

However, when 2la
N is an integer, we have ei 4π l

N a = 1, and

m−1∑
j=0

ei 4π l
N a j = m. (38)

Upon substituting Eq. (38) into Eq. (36), we get the first-order
correction E (1)

lα = 0 or −ε 2m
N . This means that the correspond-

ing degenerate energy level splits. Due to the energy level
splitting, the numbers of energy levels and exceptional sam-
pling times of the perturbed system are different from those of
the unperturbed system. As shown in Figs. 4(c) and 4(d), we
compare the mean return time 〈n〉 and the variance of n in an
unperturbed system and a periodically perturbed system with
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FIG. 4. In the quantum return problem, the mean return time 〈n〉
and the variance of n vs τ for the cases of a periodically perturbed
system and an unperturbed system. In (a) and (b), N = 6; in (c) and
(d), N = 8. The initial positions are set at xin = 0 in (a)–(d). The
red dashed curves show the results for m = N

2 periodically arranged
perturbations with amplitude ε = 0.025. The blue curves are the
results for the case of an unperturbed system. In (a) and (c), the
open circles and triangles are the singularities for the perturbed and
unperturbed systems, respectively.

N = 8 and a = 2. The results show that the mean return time
〈n〉 is the same, except for exceptional sampling time, and the
variances of n are not coincident in the two systems as a pair
of degenerate energy levels split up.

From Eq. (36), we find that the ring size N and the interval
a can affect degenerate energy levels splitting up, and they
may change the mean return time 〈n〉. In addition, when some
pairs of degenerate energy levels split up, the mean return time
〈n〉 for different initial positions xin may show different results
[21]. We now show how the size of the ring N , the interval
a, and the initial position xin influence the mean return time
〈n〉. The detailed results are shown in Table I (the detailed
derivation is given in Appendix B). The upper half and the
lower half of the table show the results for N

2 being even and
odd, respectively. In the table, �x is the minimum distance
between the initial position xin and the position of perturbation
ξ j , i.e., �x = |xin − ξ j |min. Apparently, 0 � �x � a

2 . We can
find that NE , the number of energy levels, has two possible
values, N

2 + 1 and N
2 + 1 + s, where s is the number of split

TABLE I. The mean return time 〈n〉 and the number of energy
levels NE for a quantum walker on a periodically perturbed ring.
�x = |xin − ξ j |min. s is the number of split degenerate energy levels.
bi is a divisor of a.

a �x NE 〈n〉
N
2 is even

Even
2 any N

2 + 1 + s N
2 + 1

4 0 or a
2

N
2 + 1 + s N

2 + 1
other N

2 + 1 + s N
2 + 1 + s

� 6 0 or a
2

N
2 + 1 + s N

2 + 1
nbi

N
2 + 1 + s N

2 + 1 + s − (bi − 1)
other N

2 + 1 + s N
2 + 1 + s

Odd
Prime number 0 N

2 + 1 + s N
2 + 1

other N
2 + 1 + s N

2 + 1 + s

Composite number 0 N
2 + 1 + s N

2 + 1
nbi

N
2 + 1 + s N

2 + 1 + s − (bi − 1)
other N

2 + 1 + s N
2 + 1 + s

N
2 is odd

Even
2 any N

2 + 1 N
2 + 1

� 6 0 or a
2

N
2 + 1 + s N

2 + 1
nbi

N
2 + 1 + s N

2 + 1 + s − (bi − 1)
other N

2 + 1 + s N
2 + 1 + s

Odd
Prime number 0 N

2 + 1 + s N
2 + 1

other N
2 + 1 + s N

2 + 1 + s

Composite number 0 N
2 + 1 + s N

2 + 1
nbi

N
2 + 1 + s N

2 + 1 + s − (bi − 1)
other N

2 + 1 + s N
2 + 1 + s

degenerate energy levels. Here, s = a − 1 when m is even, and
s = a

2 − 1 when m is odd. The mean return time 〈n〉 is less
than or equal to NE , and 〈n〉 has three possible results. They
are N

2 + 1, N
2 + 1 + s, and N

2 + 1 + s − (bi − 1), where the
integer bi is a divisor of a, and 1 < bi < a

2 .
However, for the case of a = 2, there is only one result

when N
2 is odd or even. When a = 2, the degenerate energy

level splits under the condition of N
2 being even, and this

means NE increasing accordingly. However, when a = 2 and
N
2 is odd, there is no degenerate energy level splitting. No
matter whether the energy level splits or not, the mean return
time 〈n〉 remains unchanged, and it is equal to the mean return
time in the unperturbed ring, i.e., 〈n〉 = N

2 + 1. In addition,
compared with the case of a being a prime number, 〈n〉 has
an extra possible value of N

2 + 1 + s − (bi − 1) when a is a
composite number.

In fact, when the periodic arrangement of perturbations
does not break the symmetry of the system, the mean re-
turn time 〈n〉 is consistent in the perturbed and unperturbed
systems. As discussed above, the initial position xin is a key
variable which influences the symmetry of the system. In the
ring system with periodically arranged perturbations, when N

2
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is even and xin = ka
2 , or when N

2 is odd and xin = ka, where k is
an integer, the symmetry of the perturbed system is preserved.

When the perturbation amplitude ε is much less than 1,
the terms including the first-order small quantity of ε in the
eigenvectors calculated with perturbation theory can be ig-
nored. Hence the first-order correction is considered in the
calculation of the eigenvalues, and the zero-order correction is
considered in the calculation of corresponding eigenvectors.
When a and N

2 are even, the conclusions in Table I are not
always applicable. The decrease in the perturbation strength ε

may change the mean return time 〈n〉 at some special initial
position, and the maximum of 〈n〉 is no longer N

2 + 1 + s but
N
2 + s.

3. The winding number of φ̂(eiθ ) in perturbed systems

In Table I, we can find that the number of energy levels is
not necessarily equal to the mean return time. We will discuss
〈n〉 in this section. After simplifying Eq. (10), we have

φ̂(eiθ ) = eiθ
∑w

k=1 pk/(eiEkτ − eiθ )∑w
k=1 pkeiEkτ /(eiEkτ − eiθ )

, (39)

where the overlaps pk =∑gk

l=1 |〈xd | Ekl〉|2, gk is the degen-
eracy of the eigenvalue Ek , and w is the amount of nonzero
pk corresponding to different energy phases eiEkτ . For general
sampling time, if all pk are nonzero, w is exactly equal to
the dimension of the Hilbert space; however, if there is a pk

that is zero, w will be reduced by 1. In addition, when we set
τ to be an exceptional sampling time, namely, there exists a
pair of energy levels Ek , El satisfying |Ek − El |τ = 2πn, i.e.,
eiEkτ = eiEl τ , w will be reduced by 1.

We may replace eiθ by z, and Eq. (39) can be rewritten as
φ̂(z) = N (z)

D(z) , where N (z) and D(z) are given by

N (z) = z
w∑

k=1

pk

w∏
j=1
j �=k

(eiEjτ − z), (40)

D(z) =
w∑

k=1

pkeiEkτ

w∏
j=1
j �=k

(eiEjτ − z), (41)

respectively. The relation between N (z) and D(z) is

D(z) = ei
∑w

k=1 Ekτ · (−1)w−1zw

[
N
(

1

z∗

)]∗
. (42)

Here, we can rewrite N (z) in another form,

N (z) = z
w−1∏
i=1

(zi − z), (43)

where {zi} are the zeros of φ̂(z) and lie inside the unit circle on
the complex plane. Upon combining Eqs. (42) and (43), after
some rearrangement, we obtain

φ̂(z) = e−i
∑w

k=1 Ekτ · z
∏w−1

i=1 (zi − z)∏w−1
i=1 (1 − z∗

i z)
. (44)
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FIG. 5. Three-dimensional plot of φ̂(eiθ ) in the periodic arrange-
ment of two perturbations on the ring of size N = 12. The initial
positions xin are set at xin = 2, 3, and 5 in (a)–(c), respectively. The
curves show that the winding numbers are 11, 7, and 12 in (a)–(c),
respectively.

Then, with |φ̂(eiθ )| = 1 and using Eq. (9), the mean return
time 〈n〉 can be described by the variable z,

〈n〉 = 1

2π

∫ π

−π

(−i∂θ ) ln[φ̂(eiθ )]dθ

= 1

2π i

∮
|z|=1

[
1

z
+

w−1∑
i=1

(
1

z − zi
+ z∗

i z

1 − z∗
i z

)]
dz. (45)

According to the residue theorem and after a lengthy deriva-
tion, we obtain

〈n〉 = w. (46)

This means that the mean return time is equal to the winding
number of φ̂(eiθ ), and this result will be demonstrated in
Fig. 5.
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Figure 5 shows the curves of φ̂(eiθ ) as a function of the
phase θ when the site number N = 12 and the distribution pe-
riod of perturbations a = 6 (i.e., perturbed sites are ξ1 = 0 and
ξ2 = 6). When the initial positions xin are 2, 3, and 5, the cor-
responding curves are shown in Figs. 5(a)–5(c), respectively.
According to Table I, when xin is 2, 3, and 5, the corresponding
mean return time 〈n〉 is 11, 7, and 12. It can be found that
the winding number w is 11, 7, and 12 in Figs. 5(a)–5(c),
respectively. These results confirm the conclusion of Eq. (46).

B. The first detection probability

In addition to the mean return time, the probability of
the first detection at the nth attempt Fn is also a significant
parameter in the return problem. In this section, we will study
Fn in perturbed systems.

1. The first detection amplitude

The first detection probability is the modular square of
the first detection amplitude, i.e., Fn = |φn|2. Hence we first
study the first detection amplitude in perturbed systems. Upon
substituting pk =∑gk

l=1 |〈xd | Ekl〉|2 into Eq. (2), we obtain

φn =
w∑

k=1

pke−inEkτ −
n−1∑
m=1

w∑
k=1

pke−i(n−m)Ekτ φm. (47)

We now consider a perturbed ring system with N sites,
and the system has m = N

2 (being odd) perturbations arranged
sequentially. In order to facilitate the analysis, we set the
located sites of perturbations ξ j ∈ {mod( 3N−2

4 + 1, N ), mod
( 3N−2

4 + 2, N ), . . . , mod( 3N−2
4 + N

2 , N )}. Hence the central
perturbation is at site 0; namely, the perturbed ring system still
maintains its symmetry. The inner product of initial state |0〉
and each eigenvector of the perturbed ring system is given by

〈0 | E0〉 = 1√
N

+ ε

2N
√

N

∑
n �=0

gn
csc nπ

N sin nπ
2

1 − cos 2πn
N

, (48)

〈
0
∣∣E N

2

〉 = 1√
N

+ ε

2N
√

N

∑
n �= N

2

gn
sec nπ

N sin (N+2n)π
4

1 − cos 2πn
N

, (49)

〈0 | El1〉 = 0, (50)

〈0 | El2〉 =
√

2

N
+ ε

(2N )
3
2

∑
n �=l

gn

× csc (l−n)π
N sin (l−n)π

2 + csc (l+n)π
N sin (l+n)π

2

cos 2π l
N − cos 2πn

N

.

(51)

These results are acquired with perturbation theory;
hence they are approximate results. Coincidentally,
Eq. (50) is also the exact solution; this is because the
reflection symmetry of the perturbed system is
not broken in the initial conditions. Solving
for the eigenvalues and the corresponding eigenvectors of the
sequentially perturbed system with N = 6 and ε = 0.025, we
find that two eigenvectors of H are |Ek1〉 = {0,−0.503 115,

0.496 865, 0,−0.496 865, 0.503 115} and |El1〉 =
{0,−0.496 865,−0.503 115, 0, 0.503 115, 0.496 865} and
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FIG. 6. Fn vs n for a sequentially perturbed system, and its decay
rate S vs ε. m = N

2 perturbations are sequentially arranged on the
ring system with N = 22 sites. The sample period is set at τ = 1,
and the initial position is set at xin = 0. (a) Curves of Fn vs n when
the perturbation strength ε varies from 0 to 0.02 with an interval of
0.005. (b) The relation between the slope of the asymptotic line and
the perturbation strength.

their corresponding eigenvalues are Ek1 = 1.012 58 and
El1 = −0.987 578, respectively. It can be found that both of
the two eigenvectors have two zero entries. When xin = 0 or
3, we do not break the reflection symmetry of the system,
and the overlaps pk1 and pl1 equal zero, which leads to
〈n〉 = 4. Similarly, in the periodically perturbed system, due
to the overlaps being zero, 〈n〉 always equals N

2 + 1 when the
symmetry is preserved.

Apparently, compared with the unperturbed system, the
perturbed system will generate an extra term including ε in
all pk terms. Hence ε can affect pk and further influence the
amplitude φn in Eq. (47).

2. The decay rate of Fn

The detection probability Fn is the square of the abso-
lute value of the amplitude φn; thus Fn is affected by ε. We
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9.05

9.1

9.15
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10-3
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FIG. 7. The decay rate S vs ε. In the periodic perturbed system,
the variables are set as a = N

2 , τ = 1, and xin = 0. (a) Curve for N =
22, and (b) curve for N = 24.
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FIG. 8. Fn vs n for the periodically perturbed ring systems with
a = 2. (a) For N = 48 and (b) for N = 50. The curves delineated
with pluses and open circles show the results for xin = 0 and 1,
respectively.

demonstrate Fn in a ring system with sequentially arranged
perturbations in Fig. 6. We set the sample period τ = 1 and
initial position xin = 0. Figure 6(a) shows the curves when
the amplitude of perturbations ε varies from 0 to 0.02 with
an interval of 0.005. Apparently, the case of ε = 0 means no

perturbation added. We can find that the decay rate S , i.e.,
the slope of the asymptotic line, of the perturbed system is
lower than that of the unperturbed system. The detailed result
about the decay rate of detection probability Fn versus the
amplitude of perturbations ε is shown in Fig. 6(b). The result
shows that the decay rate S is sensitive to the amplitude of
perturbations ε, and the decay rate decreases with the increase
in ε monotonically.

A similar relationship between decay rate S and ε appears
in the system with the periodic perturbation arrangement. The
corresponding results are shown in Fig. 7. For simplicity, we
set the interval equal to a half of the total site number, i.e.,
a = N

2 . Figures 7(a) and 7(b) show the results for N
2 being odd

and even, respectively. We can find that no matter whether N
2

is odd or even, the decay rate of the first detection probability
Fn decreases with the increase in ε monotonically.

3. The coincidence of Fn

In the periodically perturbed system, Fn can display
plentiful results. As the simplest periodic arrangement, the
arrangement of perturbations with a = 2 cannot break the
translation invariance of the perturbed ring system. So, dif-
ferent initial positions xin will not change Fn. Figure 8 shows
the curves of Fn versus n with ε = 0.05. The ring sizes are set
at N = 48 in Fig. 8(a) and N = 50 in Fig. 8(b). The curves
delineated with pluses and open circles show the results for
xin = 0 and 1, respectively. The curves show that, no matter
whether N

2 is even or odd, the curves of Fn are basically
coincident for arbitrary initial position xin.

However, a = 2 is not necessary to keep the curves of Fn

coincident for different initial positions. In order to show this,
we present Fn in Fig. 9 for different xin in the periodically
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FIG. 9. Fn vs n for the periodically perturbed ring systems with a = 4. (a) The curves for the cases of xin = 0–4, when N = 48 and ε = 0.05.
(b) The curves for xin = 0 and 4. (c) The curves for xin = 1 and 3. (d) The curves for xin = 0, 1, and 2. (b) and (c) show the coincidence of Fn,
and (d) shows the noncoincidence of Fn.
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perturbed ring system with total sites N = 48, perturbation
amplitude ε = 0.05, and the interval a = 4. The curves for the
cases of xin = 0–4 are shown in Fig. 9(a). In order to better il-
lustrate, we pick up the curve delineated with pluses (xin = 0)
and the curve delineated with crosses (xin = 4) in Fig. 9(a)
and list them in Fig. 9(b). We can find that the two curves
are essentially coincident. The coincidence also appears in
Fig. 9(c) for the cases of xin = 1 (curve delineated with open
circles) and xin = 3 (curve delineated by dots). However,
when xin = 0, 1, and 2, the corresponding curves of Fn are not
coincident completely, as shown in Fig. 9(d). These results
confirm that equal �x for different initial positions leads to
the coincidence of Fn curves. Hence, to a certain extent, the
coincidence reflects the symmetry of the perturbed system.

IV. SUMMARY

In this paper, we studied the quantum first detection times
in the perturbed ring systems. With time-independent pertur-
bation theory, we obtained the general form of the eigenvalues
and eigenvectors of the Hamiltonian and then discussed the
perturbed systems with different spatial distributions in detail.

For the systems with sequential arrangements of pertur-
bations, when the perturbed sites occupy half of the system,
we find that in the leading order of the perturbation strength,
all the energy levels increase by the same amount, although
the numerical exact results show the split of energy levels.
When the initial condition breaks the reflection symmetry of
the system, the “weak” splitting of energy levels leads to novel
behaviors of the finite sum,

∑N
n=1 nFn, that exhibits steplike

growth as N increases. We observe at least two plateaus
pointing to the value of 〈n〉 in unperturbed systems and the
size of the ring system, with the latter as the convergence of∑N

n=1 nFn when N goes to infinity, namely, the exact 〈n〉 is
equal to the size of the system. When the initial condition
preserves the reflection symmetry, the mean return time is the
same as the unperturbed system. For the systems with periodic
arrangements of perturbations, the results of 〈n〉 are diverse.
For the case of both a = 2 and N

2 being odd, all degeneracy
of energy levels is not removed, and 〈n〉 is the same as the
unperturbed system. For other cases, the degeneracy of energy
levels is not completely maintained. The removal of degener-
acy could lead to the increase in 〈n〉. Besides the removal of
degeneracy, the initial positions can also influence the result of
〈n〉. The mean return time 〈n〉 has three possible results (see
Table I); however, when the symmetry of the system is main-
tained, 〈n〉 chooses the smallest value N

2 + 1. To summarize,
in the study of the perturbed systems with different spatial
distributions, we find that the distribution of perturbations ξ j

determines the removal of degeneracy [see Eq. (27)], and the
choice of the initial condition determines whether the overlap
pk is nonzero. The mean return time 〈n〉 is equal to the amount
of the nonzero overlaps w in Eq. (46), which means that 〈n〉
is less than or equal to NE in Table I. Hence the choice of the
perturbation site ξ j and the initial condition affects the mean
return time 〈n〉.

Moreover, in the study of the first detection probability Fn,
we find that the decay rate S of Fn is affected by perturbation
amplitude ε. The decay rate S decreases with the increase in
perturbation amplitude ε (see Figs. 6 and 7). Furthermore, in

a periodically perturbed system, when the initial positions are
equivalent, i.e., with the same �x, the curves of Fn versus n
coincide (see Figs. 8 and 9), and the values of 〈n〉 are equal.

In a finite system, if the degeneracy of the system is re-
moved by the presence of perturbations, which means that
the number of energy levels increases, both the mean return
time 〈n〉 and the exceptional sampling time τc for different
initial positions will be different, except for the equivalent
initial positions. The fastest detection, the minimal value of
〈n〉, can be achieved only when the initial position does not
break the reflection symmetry of the system. However, we
can manipulate the spatial distribution of the perturbations
to maintain degeneracy, so that the mean return time is the
same as that in the unperturbed system to achieve the fastest
detection.
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APPENDIX A: CALCULATION OF EIGENVALUES
AND EIGENVECTORS

Here we calculate the approximate results of eigenvalues
and the corresponding eigenvectors. For the nondegenerate
energy levels, the approximate results of eigenvalues and the
corresponding eigenvectors are accurate to the second-order
correction. According to Eq. (22), we have E (1)

0 = E (1)
N
2

=
−ε m

N . In order to get the results of |E (1)
0 〉 and |E (1)

N
2

〉, we

substitute Eqs. (18)–(21) into Eq. (23), and straightforward
calculation yields

∣∣E (1)
0

〉 = ε

2N
√

N

∑
n �=0

m∑
j=1

N−1∑
x=0

gn
cos

2πn(x−ξ j )
N

1 − cos 2πn
N

|x〉, (A1)

∣∣∣E (1)
N
2

〉
= ε

2N
√

N

∑
n �= N

2

m∑
j=1

N−1∑
x=0

gn
(−1)ξ j cos

2πn(x−ξ j )
N

−1 − cos 2πn
N

|x〉.

(A2)

Considering |H ′
ni,l |2 ∼ ε2, we have E (2)

l → 0 in Eq. (24).

Because of H ′
mi,n j , H ′

n j,l , H ′
mi,l , H ′

l,l ∼ ε, we have 〈x | E (2)
l 〉 ∼

ε2, and we can consider |E (2)
l 〉 in Eq. (25) as a zero vector.

Hence, up to the second-order correction, we can write the
nondegenerate energy levels E0, E N

2
and their eigenvectors as

E0 = −2 − ε
m

N
, (A3)

E N
2

= 2 − ε
m

N
, (A4)

|E0〉 = ε

2N
√

N

∑
n �=0

m∑
j=1

N−1∑
x=0[

gn
cos
[

2πn
N (x − ξ j )

]
1 − cos 2πn

N

+ 2N

ε

]
|x〉, (A5)
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∣∣E N
2

〉 = ε

2N
√

N

∑
n �= N

2

m∑
j=1

N−1∑
x=0[

gn
(−1)ξ j cos

[
2πn
N (x − ξ j )

]
−1 − cos 2πn

N

+ (−1)x 2N

ε

]
|x〉.

(A6)

For the degenerate energy levels, the approximate results of
eigenvalues and the corresponding eigenvectors are accurate
to the first-order correction. When the degeneracy is removed,

we have E (1)
l1 = − ε

N (m − |∑m
j=1 ei

4πξ j l

N |) and E (1)
l2 = − ε

N (m +
|∑m

j=1 ei
4πξ j l

N |), and we obtain the new zero-order eigenvectors

for energy level E (0)
lα in Eq. (28) as

∣∣E (0)
l1

〉 = 1√
2N

N−1∑
x=0

(− eiβei 2π l
N x + e−i 2π l

N x
)|x〉, (A7)

∣∣E (0)
l2

〉 = 1√
2N

N−1∑
x=0

(
eiβei 2π l

N x + e−i 2π l
N x
)|x〉. (A8)

According to Eq. (30), the first-order correction of eigenvec-
tors can be written in detail as

∣∣E (1)
l1

〉 = ε

(2N )
3
2

∑
n �=l

N−1∑
x=1

m∑
j=1

{
gn
(− eiβei

2πξ j l

N + e−i
2πξ j l

N
)

× cos
[

2πn
N (x − ξ j )

]
cos 2π l

N − cos 2πn
N

}
|x〉, (A9)

∣∣E (1)
l2

〉 = ε

(2N )
3
2

∑
n �=l

N−1∑
x=1

m∑
j=1

{
gn
(
eiβei

2πξ j l

N + e−i
2πξ j l

N
)

× cos
[

2πn
N (x − ξ j )

]
cos 2π l

N − cos 2πn
N

}
|x〉. (A10)

Hence, when the degeneracy is removed in the first-order
correction, the doubly degenerate energy level El splits into
energy levels El1 and El2. In the first-order correction, El1 and
El2 are written as

El1 = −
⎡
⎣2 cos

2π l

N
+ ε

N

⎛
⎝m −

∣∣∣∣∣∣
m∑

j=1

ei 4π l
N ξ j

∣∣∣∣∣∣
⎞
⎠
⎤
⎦, (A11)

El2 = −
⎡
⎣2 cos

2π l

N
+ ε

N

⎛
⎝m +

∣∣∣∣∣∣
m∑

j=1

ei 4π l
N ξ j

∣∣∣∣∣∣
⎞
⎠
⎤
⎦, (A12)

respectively. Their corresponding eigenvectors are expressed
as

|El1〉 = ε

(2N )
3
2

∑
n �=l

N−1∑
x=1

m∑
j=1

{
2N

ε

[− ei( 2π l
N x+β) + e−i 2π l

N x
]

+ gn
[− ei(

2πξ j l

N +β ) + e−i
2πξ j l

N

]
cos

2πn(x−ξ j )
N

cos 2π l
N − cos 2πn

N

}
|x〉,

(A13)

|El2〉 = ε

(2N )
3
2

∑
n �=l

N−1∑
x=1

m∑
j=1

{
2N

ε

[
ei( 2π l

N x+β) + e−i 2π l
N x
]

+ gn
[
ei(

2πξ j l

N +β ) + e−i
2πξ j l

N

]
cos

2πn(x−ξ j )
N

cos 2π l
N − cos 2πn

N

}
|x〉,

(A14)

respectively.
However, when the degeneracy is removed in the second-

order correction but not in the first-order correction, namely,
El1 = El2 = −(2 cos 2π l

N + ε m
N ), using Eq. (28), we obtain the

new zero-order eigenvectors as

∣∣E (0)
l1

〉 = 1√
2N

N−1∑
x=0

(− eiγ ei 2π l
N x + e−i 2π l

N x
)|x〉, (A15)

∣∣E (0)
l2

〉 = 1√
2N

N−1∑
x=0

(
eiγ ei 2π l

N x + e−i 2π l
N x
)|x〉. (A16)

They are similar to Eqs. (A7) and (A8). Upon substituting
Eqs. (A15) and (A16) into Eq. (30), we can obtain the first-
order correction of eigenvectors

∣∣E (1)
l1

〉 = ε

(2N )
3
2

∑
n �=l

N−1∑
x=1

m∑
j=1

{
gn
(− eiγ ei

2πξ j l

N + e−i
2πξ j l

N
)

× cos
[

2πn
N (x − ξ j )

]
cos 2π l

N − cos 2πn
N

}
|x〉, (A17)

∣∣E (1)
l2

〉 = ε

(2N )
3
2

∑
n �=l

N−1∑
x=1

m∑
j=1

{
gn
(
eiγ ei

2πξ j l

N + e−i
2πξ j l

N
)

× cos
[

2πn
N (x − ξ j )

]
cos 2π l

N − cos 2πn
N

}
|x〉. (A18)

Hence the corresponding eigenvectors in the first-order cor-
rection are expressed as

|El1〉 = ε

(2N )
3
2

∑
n �=l

N−1∑
x=1

m∑
j=1

{
2N

ε

[− ei( 2π l
N x+γ ) + e−i 2π l

N x
]

+ gn
[− ei(

2πξ j l

N +γ ) + e−i
2πξ j l

N

]
cos
[

2πn
N (x − ξ j )

]
cos 2π l

N − cos 2πn
N

}
|x〉,

(A19)

|El2〉 = ε

(2N )
3
2

∑
n �=l

N−1∑
x=1

m∑
j=1

{
2N

ε

[
ei( 2π l

N x+γ ) + e−i 2π l
N x
]

+ gn
[
ei(

2πξ j l

N +γ ) + e−i
2πξ j l

N

]
cos
[

2πn
N (x − ξ j )

]
cos 2π l

N − cos 2πn
N

}
|x〉,

(A20)

respectively.
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APPENDIX B: DERIVATION OF TABLE I

Here we derive the relation between the size of the ring N ,
the interval a, the initial position xin, and the mean return time
〈n〉 for the systems with periodic arrangements of perturba-
tions. When 2la

N is an integer, we have ei 4π l
N a = 1 and Eq. (38).

According to Eq. (36), the corresponding degenerate energy
level splits. Using Eq. (38), we obtain

eiβ =
∑m

j=1 e−i 4π l
N a j∣∣∑m

j=1 ei 4π l
N a j
∣∣ = 1. (B1)

Upon substituting Eq. (B1) into Eqs. (A13) and (A14), we get
the corresponding eigenvectors in the periodically perturbed
systems

|El1〉 = −iε√
2N

3
2

∑
n �=l

N−1∑
x=1

m∑
j=1

[
2N

ε
sin

2π lx

N

+ gn
cos

2πn(x−ξ j )
N sin 2πξ j l

N

cos 2π l
N − cos 2πn

N

]
|x〉, (B2)

|El2〉 = ε√
2N

3
2

∑
n �=l

N−1∑
x=1

m∑
j=1

[
2N

ε
cos

2π lx

N

+ gn
cos

2πn(x−ξ j )
N cos 2πξ j l

N

cos 2π l
N − cos 2πn

N

]
|x〉. (B3)

The mean return time 〈n〉 in the return problem depends on the
effective dimension of the underlying Hilbert space, which is
given by the number of distinct energy phases exp(iElτ ) with
nonzero overlaps between the corresponding eigenvectors and
the target state. We calculate the overlap 〈xd|Elα〉 to determine
the mean return time 〈n〉 in arbitrary target states.

In the case of the degenerate energy levels splitting, 2la
N is

an integer, i.e., l = κ1
N
2a , where κ1 is a non-negative integer

and 0 < κ1 < a. It can be found that the second term in the
square brackets in Eq. (B2) is identically vanishing. We can
simplify Eq. (B2) into

|El1〉 = −i

√
2

N

N−1∑
x=1

sin
2π lx

N
|x〉. (B4)

When the overlap 〈x|El1〉 = 0, i.e., 2π lx
N = κ2π , the position

x = κ2
N
2l = κ2

a
κ1

, where x = 0, 1, . . . , N − 1 and κ2 is a non-
negative integer. For the case of even a, x equals a multiple of
a
2 or a multiple of bi, where bi is a divisor of a and 1 < bi < a

2 .
For the case of odd a, when a is a composite number, x equals
a multiple of a or a multiple of bi; otherwise (a is a prime
number), x just equals a multiple of a. According to Eq. (B4),
for the case of x being a multiple of a

2 or just a multiple of a,
we have the overlap 〈x|El1〉 = 0 in all eigenvectors |El1〉. For
other cases, when a is a composite number and a = bi × ci,
where 1 < ci < a, we have the overlap 〈x|El1〉 = 0 under the
conditions of κ1 being a multiple of ci and x being a multiple

of bi. Apparently, the number of κ1 is bi − 1. Hence, when x
is a multiple of bi, we have the overlap 〈x|El1〉 = 0 in bi − 1
eigenvectors |El1〉.

We then discuss the overlap 〈x|El2〉. For the first term
in the square brackets in Eq. (B3), when cos 2π lx

N = 0, i.e.,
2π lx

N = (κ2 + 1
2 )π , we get x = (κ2 + 1

2 ) N
2l = (2κ2+1)a

2κ1
. Only if

the interval a is even do there exist solutions of x, and x equals
an odd multiple of a

2 . Hence, when the overlap 〈x|El2〉 = 0, a
must be even.

For the second term in the square brackets in Eq. (B3),
we obtain cos 2πξ j l

N = (−1)κ1 j , i.e., 2πξ j l
N = 2al

N jπ = κ1 jπ .
Hence the second term in the square brackets in Eq. (B3) can
be rewritten as

gn
cos

2πn(x−ξ j )
N cos 2πξ j l

N

cos 2π l
N − cos 2πn

N

= gn
cos

2πn(x−ξ j )
N (−1)κ1 j

cos 2π l
N − cos 2πn

N

. (B5)

According to the relation between trig functions and complex
exponentials, we obtain the summation

m∑
j=1

cos
2πn(x − ξ j )

N
(−1)κ1 j

= 1

2

[
ei 2πnx

N

m∑
j=1

ei(κ1− 2na
N ) jπ + e−i 2πnx

N

m∑
j=1

e−i(κ1− 2na
N ) jπ

]
.

(B6)

For the general case, i.e., ei(κ1− 2na
N ) jπ �= 1, Eq. (B6) takes the

simple form

m∑
j=1

cos
2πn(x − ξ j )

N
(−1)κ1 j

= cos

[
κ1(m − 1)

2
+ n(2x + a)

N
− n

]
sin
(

κ1m
2 − n

)
π

sin
(

κ1
2 − n

N a
)
π

.

(B7)

Because l (= κ1
N
2a = κ1

m
2 ) is an integer, if κ1 is odd, the

number of perturbations m must be even. Then, the value of
Eq. (B7) is equal to zero. However, when κ1 − 2na

N is even, we

get
∑m

j=1 ei(κ1− 2na
N ) jπ =∑m

j=1 e−i(κ1− 2na
N ) jπ = m, and the value

of Eq. (B6) is nonzero.
To sum up, if the overlap 〈x|El2〉 = 0, four conditions must

be satisfied simultaneously: The interval a is even, x equals
an odd multiple of a

2 , the number of perturbations m is even,
and κ1 is odd. Apparently, when N

2 is odd, a and m cannot be
even simultaneously. When N

2 and a are even, κ1 is odd, and
x equals odd multiples of a

2 , we have the overlap 〈x|El2〉 = 0.
In addition, when the energy levels are nondegenerate, and
the degeneracy is not removed, we find that the overlaps are
nonzero in Eqs. (18), (19), (A19), and (A20). Finally, we
summarize the above results and obtain Table I based on
the relation between the number of distinct energy phases
exp(iElτ ) with nonzero overlaps and the mean return time 〈n〉.
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