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Quantum computation for periodic solids in second quantization
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In this work, we present a quantum algorithm for ground-state energy calculations of periodic solids on error-
corrected quantum computers. The algorithm is based on the sparse qubitization approach in second quantization
and developed for Bloch and Wannier basis sets. We show that Wannier functions require less computational
resources with respect to Bloch functions because (i) the L1 norm of the Hamiltonian is considerably lower and
(ii) the translational symmetry of Wannier functions can be exploited in order to reduce the amount of classical
data that must be loaded into the quantum computer. The resource requirements of the quantum algorithm are
estimated for periodic solids such as NiO and PdO. These transition metal oxides are industrially relevant for their
catalytic properties. We find that ground-state energy estimation of Hamiltonians approximated using 200–900
spin orbitals requires ca. 1010–1012 T gates and up to 3 × 108 physical qubits for a physical error rate of 0.1%.
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I. INTRODUCTION

Quantum mechanical simulation of molecules and mate-
rials is a promising application area of quantum computers
[1–3] that will enable the calculation of key properties of
chemical systems with controllable errors using physically
accurate models. Following Feynman’s original idea of mod-
eling quantum systems on quantum computers [4] and the
first formalized procedures for carrying out such simulations
[5–7], a plethora of quantum algorithms for calculating en-
ergies of molecular systems have been developed in recent
years [8–34]. Similarly, but to a lesser degree, quantum algo-
rithms taking into account the specifics of condensed matter
applications have also been conceived. These include the
development of different flavors of variational quantum eigen-
solvers (VQE) [35–38], the quantum imaginary time evolution
algorithm [39], and fault-tolerant algorithms [24,34,40–43]
for simulation of model Hamiltonians, such as the Hubbard
model, as well as first-principles Hamiltonians.

Quantum computers can provide a computational advan-
tage over classical computers only for hard classical problems.
These include the simulation of so-called strongly correlated
systems and, more practically, problems that are not solved
with sufficient accuracy using classical methods with low
computation cost—such as Kohn-Sham density functional
theory (KS-DFT) [44–46] or coupled-cluster theory [47,48].
Notwithstanding varying definitions and interpretations of
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“strong correlation”, and an ongoing debate regarding the ex-
tent to which KS-DFT can describe such systems [49,50], the
general consensus is that molecular and solid-state systems
with a large number of localized d or f electrons present a
significant challenge for classical simulations. Examples of
such systems include transition metal oxides such as NiO
and PdO used in heterogeneous catalysis applications. The
number of localized sites in such systems is formally infinite
as the solids should be simulated at the thermodynamic limit.
In practice, one restricts calculations to a periodic finite-sized
cell (also referred to as supercell) with ca. 30–100 unique
transition metal atoms; all other atoms in the solid are replicas
of those in this computational cell.

The ability to accurately model the electronic structure
of materials such as NiO and PdO would no doubt prove
extremely useful in the study of heterogeneous catalysis, a
field with no shortage of materials that are poorly described
by DFT. It is often the case that the interpretation of calculated
results (e.g., regarding trends in activity) must be presented
with significant caveats regarding the underlying nature of the
models used.

In this paper, we focus on the calculation of the
ground-state energy of electrons in materials within the Born-
Oppenheimer approximation [51]. This corresponds to finding
the lowest eigenvalue of the electronic Hamiltonian for a fixed
position of the nuclei. Two main families of quantum algo-
rithms can perform such calculation: VQE [13] and quantum
phase estimation (QPE) [52–54]. While VQE might have its
merits in certain use cases, it appears the emerging consensus
is that QPE has a superior scaling with the system size [1,55].
In order to estimate the eigenvalues of the Hamiltonian with
QPE, one has to implement a unitary operator encoding the
spectrum of the Hamiltonian. QPE requires deep quantum
circuits, and as such it will need to run on error-corrected
quantum computers. In such error-corrected implementations
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one must strive to minimize the number of T gates needed
to encode the Hamiltonian, as these gates are the costliest
to implement (see e.g., [56]). To this date, the most cost-
efficient approaches for such encodings are based on the
so-called qubitization technique [25–28,31,32,57]. Previous
work on second quantized Hamiltonians for realistic solid
state systems has mainly focused on the Trotterization ap-
proach [24,40]. In this paper, we adapt the sparse qubitization
approach to the simulation of crystalline solids with QPE and
estimate the resources required for calculating the ground-
state energy of crystals in error-corrected quantum computers.

The quantum resources required to simulate a Hamiltonian
strongly depend on the single-electron basis sets used to repre-
sent electron interactions. For crystalline solids, plane waves
(PW) currently appear to be one of the most efficient basis sets
both in first and second quantization [24,34]. An advantage
of using PW basis sets is the sparse representation of the
electronic Hamiltonian. This advantage is always exploited in
classical computations such as KS-DFT [58,59]. The number
of two-body terms in PW representation scales cubically with
the size of the basis set. The main disadvantage of such basis
sets, however, is that they require a large number of basis
functions, especially in all-electron calculations. For crys-
talline solids one can exploit Bloch functions instead, which
are plane waves times a periodic function with the periodicity
of the unit cell. In the Bloch representation, the number of
terms also scales cubically with the system size, and at the
same time such a representation allows using localized atomic
orbitals as the periodic constituent of the orbitals. The other
commonly used representation in computational condensed
matter physics is the Wannier representation, in which orbitals
are localized in space [60–62]. Wannier orbitals can be related
to Bloch functions through Fourier transformation, and can be
localized using unitary optimization in order to produce max-
imally localized Wannier functions [60]. When the periodic
function in the Bloch representation is a constant, the Wan-
nier representation coincides with the PW dual representation
introduced in the context of quantum computing in Ref. [24].
At the same time, Wannier orbitals can be spanned in the
localized atomic orbital basis, which in turn can significantly
reduce the size of the basis set for an accurate description of
finite band-gap solids. In this paper, we investigate Bloch and
Wannier representations in the context of qubitized QPE. We
note that such basis sets have recently been investigated in the
context of the VQE algorithm [36].

Quantum computation with qubitization-based QPE re-
quires a large number of gates in a circuit. In order to perform
large quantum computations, one has to encode a logical
qubit using several physical qubits with a technique known
as quantum error correction [63,64]. In order to estimate the
total number of physical and logical qubits required for the
implementation of quantum algorithms as well as their run-
time, we have followed Litinski’s approach [65]. This scheme
operates the surface code [66] with lattice surgery [56,67], and
compiles logical quantum circuits down to just multi-qubit T
gates and multi-qubit measurements—all Clifford gates are
commuted past the end of the circuit. In this way, runtime is
directly related to T-gate count.

The article is organized as follows. In Sec. II, we first
describe the relevance of modeling bulk materials such as

NiO and PdO for applications to heterogeneous catalysis—an
area where quantum computation can provide high accu-
racy results when error-corrected quantum computers become
available. In Sec. III, the Hamiltonian, basis sets, and quantum
algorithms for modeling of crystalline solids are introduced.
In Sec. IV, we discuss the performance of quantum algorithms
and provide quantum resource estimations for several solid
state systems. Finally, discussion and conclusions are pre-
sented in Sec. V. Detailed logical qubit and Toffoli gate counts
of the sparse qubitization are provided in the Appendix.

II. MATERIALS AND HETEROGENEOUS CATALYSTS

Catalysts are used in practically every industrial chemical
process, with applications in agriculture, transportation, and
energy production, among many others. The function of a
catalyst to ultimately reduce the energy requirements of a
process to make it viable or more efficient means that catalytic
processes are a key component for ensuring a sustainable
future and reducing human impact on the environment. Tran-
sition metal oxide catalysts are essential components for
many important industrial processes (such as refining and
petrochemistry, fuel cells, hydrogen production, biomass con-
version, photocatalysis) where they are used both directly, as
the active material (providing the active site), and indirectly,
as a support material (commonly as a reducible oxide taking
a secondary role in the catalysis). The overall performance of
the solid catalyst depends on many factors, including the par-
ticle size, particle shape, crystallinity, chemical composition,
and all preparation and activation procedures. High catalytic
efficiencies are achieved as the number of active surface sites
grows, while the structural flexibility of supported metal cat-
alysts (dynamic structural changes) is key for the catalytic
reactivity when we consider that the surface sites repeatedly
participate in adsorption/desorption cycles.

The systems considered in this paper, nickel oxide (NiO)
and palladium oxide (PdO), both form the basis of industrially
relevant catalyst materials. In the field of energy and environ-
ment, natural gas reforming is the most common process used
in industry to produce H2 from fossil fuels, known as methane
steam reforming (MSR). Here NiO is reduced to Ni, which
functions as a high-temperature catalyst. Despite its age and
ubiquity, the MSR process still has many technical challenges,
for instance around deactivation from carbon whisker forma-
tion and stability at high temperature. Under certain operating
conditions, a local oxidizing environment can form within the
reactor, leading to the deactivation of Ni due to NiO being
present. Thermodynamics can predict the conditions at which
this can occur [68]. However, in general, it is still a challenge
to obtain reliable or accurate thermodynamic parameters for
strongly correlated oxide materials, especially when they de-
viate form the bulk limit such as in nanoparticles.

Methane has an estimated greenhouse warming potential
(GWP 100) of 27.9 [69], meaning its emissions contribute
significantly to global warming and climate change; it is there-
fore necessary to reduce them wherever possible. Among the
many different technologies for methane abatement, methane
combustion catalysts based on palladium can be found. Such
technologies include after-treatment for combustion of natural
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FIG. 1. (a) Schematic of a reaction pathway with and without a catalyst, and (b) diagram of the necessary calculation steps required to
determine these properties. Relative energies between the reactants, products, and intermediates (if they are known) can be calculated via
density functional theory or other computational approaches. Reaction barriers for a catalyzed reaction can be approximated via adsorption
energy calculations in many cases [70], or by transition state searches, which require the calculation of forces as well as the energy.

gas engines (CNG) and diesel oxidation catalysts (DOC) as
well as in mine ventilation systems.

In the above applications, methane is efficiently combusted
over palladium (or alloyed) oxide catalyst to produce H2O and
CO2, with activity in this process influenced by a number of
factors. A technical target in practical catalysis is to reduce
the temperature at which this occurs, allowing for a lower
operating temperature and more efficient handling of emis-
sions. Partial oxidation can sometimes occur, and may indeed
be desirable in the development of processes to produce pre-
cursors for more complex chemicals. The ability to simulate
accurately not only the activity but also the selectivity, which
is a measure of a catalyst’s ability to promote the formation of
the desired product(s) over other possibilities, is crucial to the
prediction of new catalysts.

Figure 1(a) shows a schematic of a typical catalyzed reac-
tion. The presence of a catalyst provides additional reaction
coordinates, or reaction intermediates, with their own acti-
vation energies (ET S1, ET S2). For an effective catalyst, these
energies are necessarily lower than the uncatalyzed activation
energy Ea. In the case of heterogeneous catalysts, reaction
intermediates are typically adsorption steps, where one or
more of the reactants binds to a surface site of the catalyst.
Depending on the complexity of the reaction mechanisms,
there may be a large number of these intermediates as well
as branches and side reactions that must be considered when
studying a reaction in order to determine the key step(s).

It is often necessary to find these steps, which govern the
activity and/or selectivity of a catalyst, as in doing so, the
problem is reduced to fewer dimensions and descriptors that
facilitate a more rapid study. For example, in a kinetic analysis
the largest activation energy is usually of most interest, as
this will be the rate determining step. Whilst this knowl-
edge may be well established in well-known reactions, it can
be necessary to perform many calculations in more novel
applications. Furthermore, whilst the accuracy of current com-
putational approaches may be good enough to predict trends
in similar systems, obtaining chemical accuracy and absolute
values for detailed kinetic studies remains a challenge. Fig-
ure 1(b) shows a typical set of model systems that would be
used to estimate the energetics of a heterogeneous catalytic
process.

When running simulations of a catalyst, consideration
needs to be made of the question at hand and the level of
accuracy that is needed. Broadly speaking, we are interested
in activity, selectivity and stability. When simulating activity,
we often need a kinetic model, which can provide rates or
turn-over frequencies. If we are interested in screening for
materials, it is often sufficient to correlate these rates with
descriptors [71].

For example, following the Sabatier principle [72], which
is employed primarily for materials screening, calculating
the (heterogeneous) catalytic activity of a material is per-
formed by determining the binding strengths of the reactants,
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products and any important intermediates of a given reaction
with the surface of that material. These binding strengths can
be determined from energy calculations using a wide variety
of models, each with their own trade-offs between accuracy,
transferability and computational cost.

However, if we are interested in predicting reactor per-
formance or process conditions then we need significantly
greater precision in the simulated parameters. Likewise, sim-
ulating the often subtle differences in competing reactions
(which result in different products) typically requires greater
accuracy in calculations to predict selectivity.

Whilst the questions of activity and selectivity are crucial
for a material’s function as a catalyst, when looking for a
technical solution, the question of stability becomes criti-
cal. Catalysts often need to operate over many years under
harsh conditions (high temperature, pressure, contaminated
conditions and, in the case of electrocatalysis, high poten-
tials and corrosive environments). The simulation of stability
introduces a whole range of other problems; for instance, pre-
dicting morphological changes and thermal degradation of a
catalyst requires a large number of calculations, often of large
model systems, to allow sintering of nanoparticles or ceramic
supports to be conducted. Material complexity (e.g., simula-
tion of realistic metal/ceramic interfaces), bridging time and
length scales where accurate atomic-scale materials properties
can be fed into multiscale models, are all open challenges in
this area.

DFT is one of the most successful and widely used mod-
els for calculating the energies of molecular and solid state
systems relevant to industrial processes. It is an ab initio
method that uses functionals of the electronic density to cal-
culate energy rather than attempt to deal directly with the
many-body wavefunction. In KS-DFT, the electronic density
is constructed using a fictitious set of noninteracting single
electron wavefunctions and approximating an unknown cor-
rection term. This term, known as the exchange-correlation
(XC) functional, includes exchange and correlation effects
as well as discrepancy between the real and noninteracting
kinetic energy. There are many choices, though all of them
approximated, for its form.

Ultimately, it is the use of single-particle wavefunctions in
DFT that leads to some of its most prominent shortcomings.
In the case of NiO, and indeed most transition metal oxides,
the strong electron-electron interactions of the d electrons
in these materials is poorly described by approximate KS-
DFT, leading to over-delocalization of these bands (and to
the prediction of more metallic electronic structures than the
reality). A Hubbard U [73] correction can be used alongside
local density approximation (LDA) and generalized gradient
approximation (GGA) XC functionals to mitigate this issue
in some cases, although it is overly empirical in nature. While
the use of hybrid XC functionals such as PBE0 [74] can some-
times perform better [75], due to the inclusion of Hartree-Fock
exact exchange, the fraction of exact exchange to use can be
varied (depending on the XC functional used), which again
leads to empirical fitting. Hybrid functionals are also incom-
plete (and incorrect) in their description of the electronic
structure, and are by no means a guaranteed improvement over
GGA functionals in their prediction of transition metal oxide
properties [76].

To model the bulk properties of materials effectively, the
use of periodic boundary conditions (PBCs) is required, al-
lowing for a simulation box to include only the primitive unit
cell in highly ordered systems. Even in disordered systems,
periodicity is still imposed (on a larger unit cell), as the
approximation still provides more representative models than
any nonperiodic alternative, without extending the system far
beyond practical limits.

The study of heterogeneous catalysis primarily concerns
the properties of surfaces, so slab models are often used.
These are also periodic, albeit in two dimensions rather than
three. Bulk calculations are also required in order to determine
the surface energies of the facets of a material, which, for
example, allow for the prediction of the expected shape of
nanoparticles, as well as which facets are most predominant
and relevant for catalysis. The stability of a material is another
important aspect that can be predicted by energy calculations
on bulk systems.

III. METHODOLOGY

A. Hamiltonian for periodic systems

The Hamiltonian of interacting electrons in the Born-
Oppenheimer approximation can be written as follows:

Ĥ = Ĥ (0) + Ĥ (1) + Ĥ (2), (1)

where Ĥ (0) is a constant term describing nuclear repulsion,
Ĥ (1) and Ĥ (2) are one-body and two-body terms, respectively
[[77], p. 32],

Ĥ (1) =
∫∫

dx dx′ ψ̂†(x)h(x, x′)ψ̂ (x′), (2)

Ĥ (2) = 1

2

∫∫
dx dx′ ψ̂†(x)ψ̂†(x′)g(x, x′)ψ̂ (x′)ψ̂ (x), (3)

x denotes position and spin, (r, σ ), of an electron and the inte-
gration domain is over the volume of the macroscopic crystal,
V . In this paper, we do not consider the external magnetic field
or spin-orbit coupling and therefore, the one- and two-body
kernels are diagonal with respect to spin degrees of freedom.
The spatial part of one-body kernel is

h(r) = − 1
2∇2 + U (r), (4)

where U (r) is the nuclei potential

U (r) =
∑
a∈V

Za

|r − Pa| , (5)

Za and Pa are the nuclear charge and position of nucleus a.
The spatial part of two-body kernel is

g(r, r′) = g(|r − r′|) = 1

|r − r′| . (6)

We assume Born-von-Kármán periodic boundary conditions
at the boundaries of the macroscopic crystal, which is defined
by the vectors L1, L2, L3,

A(r + Lα ) = A(r), A = ψ̂, h,U, g α = 1, 2, 3. (7)
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In this case, the external potential and two-body kernel are
defined in terms of their Fourier series

U (r) =
∑
a∈V

∑
K

4πZae−iKPa

V K2 eiKr, (8)

g(r) =
∑

K

4π

V K2
eiKr, (9)

where K satisfies

KLα = 2πmα, mα ∈ Z, α = 1, 2, 3. (10)

Crystalline solids consist of unit cells and each unit cell Vuc is
defined by translation lattice vectors, a1, a2, a3. Each unit cell
can be labeled with R indicating a node of the Bravais lattice

R = AT n; n = (n1, n2, n3)T , nα ∈ Z; A = [a1, a2, a3]T .

(11)

Let Nα � 1 be the number of unit cells along aα , nα =
0, 1, .., Nα − 1 and thus, the total number of unit cells, which
spans the whole finite macroscopic crystal is N = N1N2N3.
We also introduce the reciprocal lattice, which is defined as

G = Bn; n = (n1, n2, n3)T , nα ∈ Z;

B = [b1, b2, b3] = 2πA−1. (12)

The vectors b1, b2, b3 and a1, a2, a3 satisfy the following re-
lations:

aαbβ = 2πδαβ. (13)

In the case of crystalline solids, the external potential can
also be rewritten in terms of reciprocal lattice vectors, because
it is has periodicity of the lattice,

U (r) =
∑
a∈Vuc

∑
G

4πZae−iGPa

VucG2 eiGr. (14)

This is similar to Eq. (8) but written for unit-cell periodicity
instead of periodicity within macroscopic crystal.

In order to perform practical calculations, one can choose
a single-particle basis, which is suitable for the problem of
interest,

ψ̂ (x) =
∑
p,σ

ψp(r)âpσ , (15)

where p can be a set of numbers describing a single-particle
state such as wave-vector index and band index, for example.
The Hamiltonian in the new basis set can be written as

Ĥ = H (0) +
∑
pqσ

(
hpq − 1

2

∑
r

gprrq

)
â†

pσ âqσ

+ 1

2

∑
pqrs;σ,τ

gpqrsâ
†
pσ âqσ â†

rτ âsτ , (16)

where two-body matrix elements (often referred to as the
electron-repulsion integrals or just Coulomb integrals) are

gpqrs =
∫∫

V
d3r d3r′ ψ∗

p (r)ψq(r)ψ∗
r (r′)ψs(r′)g(|r − r′|).

(17)

From this definition, gpqrs obeys the fourfold symmetry rela-
tions

gpqrs = grspq = g∗
qpsr = g∗

srqp. (18)

If coefficients are real then gpqrs obeys the eightfold symmetry
relations

gpqrs = gpqsr = gqprs = gqpsr = grspq = gsr pq = grsqp = gsrqp.

(19)

The set of orbitals {ψp(r)} should be an orthonormal basis
set, which satisfies the periodic boundary conditions. Below
we describe two basis sets, which are commonly used in
computational condensed matter physics. Further in the text,
the number of spatial orbitals per unit cell is denoted as M (the
number of bands) while the total number of spatial orbitals in
the crystal is P = MN .

1. Bloch Functions as a basis set

Bloch functions are the solution of a mean-field problem
in a periodic potential. The Bloch functions can be written as
follows [[78], p.167]:

ψk j (r) = eikruk j (r), (20)

where uk(r) is periodic function with periodicity of the unit
cell, uk(r) = uk(r + R), j is the band index, 0 � j � M and
k = (k1, k2, k3)T is the wave vector belonging to the first
Brillouin zone, which can be defined as

kα =
∑

β=1,2,3

Bαβ

gβ

Nβ

, (21)

where gβ is an integer such that

−Nα

2
< gα � Nα

2
. (22)

The larger the size of the macroscopic crystal, the larger the
number of k points in the Brillouin zone as can be seen from
(22). Using Bloch functions as the basis set

ψ̂ (x) =
∑
k j

ψk j (r)ĉk jσ , (23)

the Hamiltonian can be written as

Ĥ = H (0) +
∑
ki jσ

h̃ki j ĉ
†
kiσ ĉk jσ

+ 1

2N

∑
σ,σ ′

∑
i jlm

∑
kqk′q′

(∑
G

δq+q′−k−k′,G

)
g̃ki,q j,k′l,q′m

× ĉ†
kiσ ĉ†

k′lσ ′ ĉq′mσ ′ ĉq jσ , (24)

where we used the convention that the Bloch functions are
normalized in the unit cell. Due to

∑
G δq+q′−k−k′,G, the num-

ber of two-body terms scales as O(N3), the same as in the
plane-wave basis set [24]. One- and two-body matrix elements
are defined as

h̃ki j =
∫

Vuc

d3r ψ∗
ki(r)h(r)ψk′ j (r) (25)
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and

g̃ki,q j,k′l,q′m =
∫

Vuc

d3r ψ∗
ki(r)ψq j (r)

×
∫

Vuc

d3r ′ψ∗
k′l (r

′)ψq′m(r′)gq′−k′ (r − r′),

(26)

where

gq−k(r − r′) =
∑

G

4π

(q − k + G)2Vuc
ei(q−k+G)(r−r′ ) (27)

and Vuc is the volume of the unit cell. Coefficients in the
Hamiltonian are usually complex and the two-body terms
obey fourfold symmetry (18). The composite index from
Sec. III A indicates both band and wave vector, p = (k, i),
q = (q, j), r = (k′, l ), s = (q′, m).

2. Wannier functions as a basis set

Wannier functions are the set of localized orbitals, which
obey the translational symmetry of the crystal,

φR j (r − R′) = φR+R′ j (r). (28)

Such localized orbitals can be obtained by carrying out a
localization procedure in the supercell or applying a Fourier
transformation to the Bloch orbitals [62],

φR j (r) = 1

N

∑
k

e−ikR
∑

m

ψkm(r)U (k)
m j , (29)

where unitary matrices can be chosen according to lo-
calization criteria such as, for example, Foster-Boys [79]
(maximally localized Wannier orbitals [60]) or Pipek-Mezey
[80–82]. Contrary to Bloch functions, these functions can be
chosen to be real valued [62]. In the Wannier basis set

ψ̂ (x) =
∑
R j

φR j (r)âR jσ , (30)

the Hamiltonian is

Ĥ = H (0) +
∑

RR′i jσ

hRp,R′qâ†
Riσ âR jσ

+ 1

2

∑
σ,σ ′

∑
i jlm

∑
RTR′T′

gRi,T j,R′l,T′mâ†
Riσ â†

R′lσ ′ âT′mσ ′ âT jσ

(31)

with matrix elements

hRi,R′ j =
∫

V
d3r φ∗

Ri(r)h(r)φR′ j (r) (32)

and

gRi,T j,R′l,T′m =
∫

V
d3r φ∗

Ri(r)φT j (r)

×
∫

V
d3r ′φ∗

R′l (r
′)φT′m(r′)g(r − r′), (33)

which satisfy the following relations:

hRi,R′ j = h0i,R′−R j, (34)

vRiT jR′lT′m = v0i,T−R j,R′−Rl,T′−Rm. (35)

This is due to the fact that Wannier functions obey Eq. (28). In
this paper we do not construct Wannier functions from Bloch
orbitals but rather choose natural atomic orbitals in the su-
percell calculations (see Sec. III C for computational details).
Since the two-body term is real, it satisfies Eq. (19). The com-
posite index from Sec. III A indicates both band and unit-cell
indices, p = (R, j), q = (T, j), r = (R′, l ), s = (T′, m).

3. Majorana representation

Majorana operators represent a convenient choice for
working with quantum computing algorithms. The reason is
that each Majorana operator is Hermitian and can be mapped
onto one Pauli string using a qubit representation and, as a
result, any unique product of Majorana operators is one Pauli
string. The actual qubit representation depends on the choice
of transformation such as the Jordan-Wigner [7,83] or Bravyi-
Kitaev [11,84]. However, some properties of the Hamiltonian,
which do not depend on the choice of qubit mapping can
conveniently be obtained in Majorana representation. We will
use this representation in order to generalize the sparse qubiti-
zation approach on Hamiltonians with complex coefficients.
Majorana operators are defined as

γ̂pσ,0 = âpσ + â†
pσ , (36)

γ̂pσ,1 = −i(âpσ − â†
pσ ), (37)

with an additional binary index specifying the Majorana type.
They satisfy the following anticommutation relations:

{γ̂pσ,k, γ̂qτ, j} = 2δpqδστ δk j . (38)

Following Refs. [32,85], the constant, one-body and
two-body terms of the Hamiltonian (16) in Majorana repre-
sentation can be written as follows:

H̃0 = H0 +
∑

p

hpp + 1

2

∑
pq

(
gppqq − 1

2
gpqqp

)
, (39)

ˆ̃H (1) = i

2

∑
p�q

Re

(
hpq + 1

2

∑
r

(2gpqrr − gprrq )

)(
1

2

)δpq ∑
σ ; j �=k

(−1) j γ̂pσ, j γ̂qσ,k (40)

+ i

2

∑
p<q

Im

(
hpq + 1

2

∑
r

(2gpqrr − gprrq )

) ∑
σ ; j

γ̂pσ, j γ̂qσ, j, (41)
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ˆ̃H (2) = 1

4

∑
p�q,r�s

(p,q)�(r,s)

Bpqrs

(
1

2

)δpq+δrs+δ(p,q),(r,s) ∑
σ �=τ, j �=k,l �=m

γ̂pσ, j γ̂qσ,k γ̂rτ,l γ̂sτ,m(−1) j+m (42)

+1

4

∑
p<q,r<s

(p,q)�(r,s)

Fpqrs

(
1

2

)δ(p,q),(r,s) ∑
σ �=τ ; j,k

γ̂pσ, j γ̂qσ, j γ̂rτ,k γ̂sτ,k (−1) j+k (43)

+1

4

∑
p�q,r<s

(−1)Cpqrs

(
1

2

)δpq ∑
σ �=τ ; j �=k;l

γ̂pσ, j γ̂qσ,k γ̂rτ,l γ̂sτ,l (−1) j (44)

+1

4

∑
p<q,r<s

(p,q)�(r,s)

(Fpqrs + Bprqs − Bpsqr )

(
1

2

)δ(p,q),(r,s) ∑
σ, j �=k

γ̂pσ, j γ̂qσ, j γ̂rσ,k γ̂sσ,k (45)

+1

4

∑
p<q<r<s

(Fpqrs − Fprqs + Fpsqr )
∑
σ, j

γ̂pσ, j γ̂qσ, j γ̂rσ, j γ̂sσ, j (46)

+1

4

∑
p,q<r<s

(Cpqrs − Cprqs + Cpsqr )
∑

σ, j �=k

γ̂pσ, j γ̂qσ,k γ̂rσ,k γ̂sσ,k (−1) j, (47)

where the tensors

Bpqrs = Re(gpqrs + gpqsr )

2
= gpqrs + gqpsr + gpqsr + gqprs

4
,

(48)

Cpqrs = Im(gpqrs − gpqsr )

2
= gpqrs − gqpsr − gpqsr + gqprs

4i
,

(49)

Fpqrs = Re(gpqrs − gpqsr )

2
= gpqrs + gqpsr − gpqsr − gqprs

4
.

(50)

Bpqrs is symmetric with respect to (p, q) and symmetric with
respect to (r, s), Cpqrs is symmetric with respect to (p, q) and
antisymmetric with respect to (r, s), Fpqrs is antisymmetric
with respect to (p, q) and antisymmetric with respect to (r, s),
B and F are symmetric with respect to interchange of pairs
(p, q), (r, s), while Cpqrs is not.

The reverse relation is

gpqrs = Bpqrs + Fpqrs + i(Crspq + Cpqrs). (51)

This representation of the Hamiltonian is valid for both Bloch
and Wannier orbitals and the only differences are indices
labeling states and the value of coefficients. For real-valued
Wannier functions, only the Bpqrs tensor is nonzero while
for complex-valued orbitals, such as Bloch functions, all
tensors need to be taken into account as coefficients of the
Hamiltonian in Eq. (16) can be complex. The Hamiltonian in
Majorana representation (39)–(47) provides a decomposition
in a linear combination of unitaries (LCU [86]) and the entry-
wise L1 norm of such a Hamiltonian, which is the same in any
qubit representation [85], can be written as

α = λ0 + λ = λ0 + λ1 + λ2 (52)

where

λ0 =
∣∣∣∣H0 +

∑
p

hpp + 1

4

∑
pr

(2gpprr − gprr p)

∣∣∣∣, (53)

λ1 =
∑

pq

∣∣∣∣∣Re

(
hpq + 1

2

∑
r

(2gpqrr − gprrq )

)∣∣∣∣∣
+2

∑
p<q

∣∣∣∣∣Im
(

hpq + 1

2

∑
r

(2gpqrr − gprrq )

)∣∣∣∣∣, (54)

λ2 = 1

4

∑
pqrs

|Bpqrs| +
∑

p<q,r<s

|Fpqrs| +
∑

p,q,r<s

|Cpqrs|

+1

2

∑
p<q,r<s

|Fpqrs + Bprqs − Bpsqr | + (55)

+
∑

p<q<r<s

|Fpqrs − Fprqs + Fpsqr |

+
∑

p,q<r<s

|Cpqrs − Cprqs + Cpsqr |. (56)

In the context of quantum computation, the magnitude of
λ = λ1 + λ2 defines the number of repetitions of controlled-
unitary in QPE as discussed below.

B. Quantum algorithms

QPE [52,54] allows to determine the phase of a unitary
operator, which is implemented in the quantum circuit. Origi-
nally, Hamiltonian simulation with the choice of unitary

U = eiHt (57)

was used, as the time evolution operator can be implemented
with Trotterization [87,88] and its phases Ejt are directly
related to the system’s energies Ej . Other methods for Hamil-
tonian simulation have since been developed, including Taylor
series [20,23,24] and randomized methods [89–91].
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Instead of the time evolution operator (57), one can ap-
ply QPE to a unitary walk operator W with eigenvalues
e±i arccos(Ej/λ), from whose phases the Hamiltonian energies
can readily be retrieved. This is the approach of more recent
qubitization methods [25,26]. The normalization factor λ is
the L1 norm of Hamiltonian’s coefficients in an LCU decom-
position, and ensures that all energies correspond to phases
between 0 and 2π . The walk operator is constructed from a
reflection along with a block encoding of H/λ. The starting
point for a block encoding is an LCU decomposition of the
Hamiltonian

H =
d∑

i=1

wiHi, wi ∈ R+ (58)

into simpler unitary operators Hi that can be readily im-
plemented on a quantum computer. In our case, the LCU
decomposition of the Hamiltonian is given in Sec. III A 3, and
the Hi consist of strings of up to four Majorana fermions that
can be implemented in the Jordan-Wigner representation with
a ranged operation [27]. The two operators

SELECT |i〉|ψ〉 = |i〉Hi|ψ〉 and PREPARE |0〉

=
d∑

i=1

√
wi

λ
|i〉 with λ =

d∑
i=1

|wi| (59)

facilitate a block encoding of H/λ because

〈0|(UNPREPARE ⊗1) SELECT(PREPARE ⊗1)|0〉 = H/λ

(60)

with UNPREPARE = PREPARE−1.
The leading order cost of qubitization algorithms is typi-

cally proportional to O(λ
√

d/ε). A multiplicative λ is needed
to maintain a fixed energy accuracy ε in phase estimation
despite the normalization of the Hamiltonian by λ. Mean-
while, the

√
d stems from data loading. The values of the d

coefficients of the LCU ωi can be loaded with Toffoli cost of
order O(

√
d ) with a select-swap network [92] (also dubbed

QROAM [28]) at the expense of O(
√

d ) ancilla qubits.
Various implementations of the qubitization walk operator

[27,28,31,32] factorize the Hamiltonian to find alternative
LCUs with lower d and/or λ. They also show bespoke imple-
mentations of PREPARE and SELECT matching the choice of
LCU. We base our method on the sparse qubitization method
[28,31], which does not factorize the Hamiltonian, but instead
exploits sparsity. In the next section, we will give an overview
of that method. Then we will describe how we have adapted
and extended the method to deal with Bloch and Wannier
basis sets. We focus on the asymptotically dominant costs
and confine detailed Toffoli and qubit number costings to
Appendix. The number of T gates is four times the number
of Toffoli gates [27,93].

1. Overview of sparse qubitization

In this section we outline the original sparse qubitization
algorithm, which has been used for simulation of real Hamil-
tonians, which satisfy eightfold symmetry relations (19). It
was first developed in [28] and improved in [31], Appendix,
on which we base our exposition. Our modifications to this

algorithm are presented in the Secs. III B 2 and III B 3. For
simplicity of this summary, we focus on the Hamiltonian’s
two-body terms, of which there are significantly more than
one-body terms. The main insight the sparse qubitization
algorithm [28,31] uses is that the Hamiltonian’s LCU decom-
position into unitaries Q,

H = 1

8

∑
pqrs,σ,τ

VpqrsQpqσ Qrsτ (61)

is very sparse with respect to the orbital indices (p, q, r, s),
and spin indices (σ, τ ), especially if small coefficients Vpqrs

are approximated to zero. Thus one can save on quantum
resources required for the data loading: Instead of loading the
coefficients for all values of p, q, r, s, σ, τ , only a unique set of
nonzero coefficients is loaded onto the quantum computer and
the rest of the Hamiltonian can be restored using symmetry
restoration circuits. Let these nonzero coefficients be indexed
by l = 1 . . . d in an arbitrary way, such that we must load only
d data items. While the scaling of d with the total number of
spatial orbitals P is still expected to be the same as the full
number of electron repulsion integrals,

d ∼ O(P4), (62)

one can truncate small coefficients and reduce d . Each data
item to be loaded consists of the value of the coefficient
Vpqrs as well as the corresponding indices p, q, r, s, σ, τ that
allow to apply the correct unitary Qpqσ Qrsτ . QROAM al-
lows to load these as qubit bitstrings. However, PREPARE
requires the coefficient values as amplitudes of the state, not
bitstrings. This gap is bridged by instead loading so-called
“keep-probabilities” and performing coherent alias sampling
[27]. Figure 2 shows a sketch of the PREPARE operator.

The number of data items d to load can be reduced further
by leveraging symmetries of the Hamiltonian that cause mul-
tiple identical coefficients. First of all, coefficient values are
independent of spin. Thus we must only load one coefficient,
and the other identical terms can be restored in the quantum
circuit. Likewise, for a given permutation of orbital indices,
eight coefficients, which posses eightfold symmetries [see
Eqs. (19)] can also be restored in the quantum circuit using
only one set of orbital indices. This reduces the number of
terms to be loaded d by approximately a factor of 8.

The PREPARE operator is implemented in the following
steps illustrated in Fig. 2 (see [28,31] for details):

a. Equal superposition state. Prepare 1√
d

∑d−1
l=0 |l〉, where

d is the number of nonzero LCU terms (up to eightfold and
spin symmetries). This uses ancillas for amplitude amplifica-
tion not shown in the figure.

b. Data loading. A QROAM loads data of width m qubits.
In principle, these m qubits include the value of the coeffi-
cient indices p(l ), q(l ), r(l ), s(l ) along with the value wl =
|Vp(l )q(l )r(l )s(l )|/8 and its sign θ .

However, in practice, in order to perform coherent alias
sampling, slightly different data items must be loaded [27].
Instead of the coefficient value Vpqrs, a data field of ℵ qubits
(so-called “keep-probability”) is needed. ℵ determines the ac-
curacy with which the coefficients Vpqrs are ultimately loaded
and can be computed with (A1). Further, coherent alias sam-
pling requires two values of the other data to be loaded
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FIG. 2. PREPARE operator for the original sparse qubitization method [28,31], outlined in Sec. III B 1. It prepares a superposition of
product states describing the Hamiltonian’s LCU: The amplitudes in the superposition are the (square root modulus of the) LCU’s coefficients
∝ Vpqrs, whilst the corresponding product state specifies the unitary operator Qpqσ Qrsτ . The state is entangled to an additional junk register,
such as the additional qubits needed for coherent alias sampling. Only the qubits indicated with (SEL) are used as controls by the SELECT
operator. At the vertical dashed line (red), the prepared state describes just one symmetry sector with respect to spin symmetry and eightfold
symmetry. This reduces the amount of data to be loaded, which is the most expensive step in the circuit. The superposition is then enlarged to
more product states covering all symmetry sectors with the symmetry restoration circuits. Note that ancilla qubits (such as in the QROAM or
eightfold symmetry restoration circuit) are not depicted. Despite becoming entangled with the other qubits, like |junk〉, they do not affect the
rest of the circuit.

(indices p, q, r, s and θ and a qubit not mentioned here to
distinguish between one- and two-body terms) [27]. Thus

m = ℵ + 2(4�log P� + 2), (63)

where P is the number of spatial orbitals (2P is the number of
spin orbitals).

The QROAM is the asymptotically most expensive step
with Toffoli cost

�d/κ� + m(κ − 1). (64)

Adjusting κ (which must be a power of 2) leads to a tradeoff
between Toffoli cost and ancilla qubit count [92]

mκ + �log(d/κ )�. (65)

Choosing κ ∼ √
d to optimize Toffoli cost, both Toffoli and

ancilla count of the data lookup asymptotically follow (drop-
ping logarithmic factors)

∼O(
√

d ) ∼ O(P2). (66)

While the QROAM lookup will also have to be uncomputed in
UNPREPARE, the cost is lower because it does not depend on
the size m of the data items when using a measurement-based
uncomputation scheme [28].

Coherent alias sampling. From the information thus
loaded, coherent alias sampling then creates the state

d−1∑
l=0

√
wi

λ
|l〉|0/1〉|p〉|q〉|r〉|s〉|θ〉|junkl〉, (67)

which is entangled to some |junkl〉 that is not relevant. The
second register, 0 or 1, flags one- or two-body terms, respec-
tively.

Symmetry restoration. Now, the spin symmetry and eight-
fold symmetry must be restored. Two new qubits encoding
spin |σ 〉 and |τ 〉 in the state (|0〉 + |1〉)/

√
2 are added as

further tensor product factors. When the tensor product is ex-
panded, it quadruples the number of states in the superposition
(67).

To restore eightfold symmetry, similarly three qubits
(|0〉 + |1〉)/

√
2 for each of the symmetries p ↔ q, r ↔

s, (p, q) ↔ (r, s) are added as tensor product factors. Swaps
controlled on these qubits then swap p, q, r, s registers de-
pending on the symmetry.

The result is a state describing the full LCU in (61). A sub-
tlety of symmetry restorations is that slightly different values
of wi must be loaded by the QROAM, because the symmetry
restoration accumulates factors of 1/

√
2. Yet, this does not

affect the overall subnormalization λ of the Hamiltonian.
Next, a SELECT operator selects the correct unitary for

the p, q, r, s, σ , and τ indices. The UNPREPARE operator
uncomputes PREPARE. Using measurement based uncompu-
tation, this is much more efficient than PREPARE [28]. The
total leading order Toffoli cost is⌈

πλ

2εQPE

⌉
·
(⌈

d

κ

⌉
+ m(κ − 1)

)
, (68)

the product of the QROAM cost for data loading (64) with
the number of iterations of the walk operator �πλ/(2εQPE)�.
The normalization factor λ together with the desired accuracy
εQPE determine the number of iterations of the walk operator
required for phase estimation.

2. Generalization of sparse qubitization for Bloch basis functions

While the original sparse qubitization method supports
Hamiltonians with real electron repulsion integrals only,
Bloch orbitals usually lead to complex coefficients. We
generalise the sparse method to complex Hamiltonians by
expanding the Hamiltonian in Majorana strings (Sec. III A 3)
and instead of working with eightfold symmetry restoration
circuits, we introduce Majorana type restoration circuits. For
a real Hamiltonian the expansion (40)–(47) only contains the
terms (40), (42), and (45). The other terms arise for complex
Hamiltonians. The coefficients of the Majorana strings are all
real (or purely imaginary for the one-body terms) due to the
Hamiltonian’s Hermeticity.
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FIG. 3. PREPARE operator for the Bloch basis algorithm. In addition to the PREPARE operator of the original sparse qubitization (see
Fig. 2), it has Majorana type indices that are used by SELECT to apply the correct Majorana types for the Majorana string described by a
product state. jt = 0, 1 and t = 1, 2, 3, 4 enumerates the positions of the Majorana operators in a Majorana string. The circuit for Majorana
type symmetry restoration is given in the circuit (71); its input qubits must be loaded by QROAM. The spin symmetry restoration circuit is
given in circuit (75). The Hamiltonian has been written such that no fourfold or eightfold symmetry is present any more (see Sec. III A 3). To
simplify the sketch we have depicted that both spin qubits are loaded by QROAM [see the circuit (76) for details].

We use a SELECT operator [27,32] that allows to select
Majorana strings based on: the indices p, q, r, s; spin indices
σ, τ ; and four Majorana type indices j1 through j4—as they
appear in the Hamiltonian (Sec. III A 3). In addition, the cor-
rect sign of the LCU coefficient is selected based on a |θ〉
qubit. In Fig. 3, the control qubits for SELECT are indicated
by . The indices p, q, r, s index the Bloch basis functions
(20), and as such they are composite indices, each consisting
of band index and k-wave-vector index. For the Bloch basis
we do not need to split up the composite indices and arbitrarily
enumerate them as

p, q, r, s ∈ {0, . . . , P − 1}. (69)

A main benefit of using Bloch basis functions even in clas-
sical methods is that momentum conservation causes many
terms to be zero [see (20)]. Therefore we can expect the
number of nonzero terms to scale as

d ∼ O(M4N3), (70)

for an LCAO basis set, while for PW basis sets M4 can be
reduced to M3. Since the number of bands M is defined per
unit cell, the scaling of the algorithm with the system size N
is cubic.

The PREPARE operator is sketched in Fig. 3. The elec-
tron repulsion integrals in the original sparse method possess
eightfold symmetry in the p, q, r, s indices, and this is re-
stored in PREPARE with controlled SWAPS (see Sec. III B 1).

In our case, at first, the electron repulsion integrals merely
have fourfold symmetry (18) because the basis functions are
complex. Once the Hamiltonian is expanded in Majorana
strings (Sec. III A 3), this results in different types of sym-
metry for different coefficients as explained in Sec. III A 3.
Instead of restoring these symmetries with controlled SWAPS,
we rewrite the LCU decomposition of the Hamiltonian such
that the symmetries are not explicitly present anymore, see
Sec. III A 3. The sums can be restricted to one branch of the
symmetry by instead summing over the Majorana type. For
example, the coefficient Bpqrs in (42) has eightfold symmetry.
Yet the sum is restricted to p � q, r � s, (p, q) � (r, s), such
that only one branch of the symmetry is present in the LCU,
and it does not have repeated coefficients for eightfold permu-
tations of p, q, r, s. The “missing” terms are compensated by
summing over multiple values of the Majorana type indices
j1, . . . , j4. The resulting symmetry in the Majorana type can
then be more easily restored, because it does not involve
CSWAPS of multi-qubit p, q, r, s registers. Further, even if
we did not restrict the sums in this fashion, some Majorana
type symmetry would be still present and have to be restored
anyway due to the complex nature of the Hamiltonian.

The LCU has multiple repeated coefficients for different
values of j1, . . . , j4 of the Majorana type indices, up to signs
like (−1) j1+ j4 . Rather than repeatedly loading the same co-
efficient with a different sign multiple times, we restore the
Majorana type in PREPARE with the following symmetry
restoration circuit:

(71)
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The circuit needs three input qubits |s1〉|s2〉|s3〉 along with
the qubit flagging one-body or two-body terms that together
distinguish all of the types of terms and thereby Majorana
type symmetry in the LCU. The four output qubits | ji〉 are
initialized as |0〉 and will indicate Majorana type to be used
by SELECT (see Fig. 3). The initial values of the |si〉 qubits
must be loaded from QROAM [94]. They identify terms in the
Hamiltonian as follows:

term |s1〉 |s2〉 |s3〉
1-body Re |0〉 |0〉 |0〉
1-body Im |1〉 |0〉 |0〉

B |0〉 |0〉 |0〉
F |0〉 |0〉 |1〉
C |0〉 |1〉 |0〉

F − B + B |0〉 |1〉 |1〉
F − F + F |1〉 |0〉 |0〉
C − C + C |1〉 |0〉 |1〉

(72)

Let us give an example of Majorana type symmetry restora-
tion for a term of type B, i.e., (42). The table above shows that
the qubits are loaded such that at the vertical dashed line (red)
in Fig. 3 the input qubits are

|1 or 2 body〉|s1〉|s2〉|s3〉 = |1〉|0〉|0〉|0〉. (73)

The symmetry restoration circuit (71) acting on these then
results in the state

|1000〉 ⊗ 1

2
(−|0101〉 + |1001〉 + |0110〉 − |1010〉)

= |1000〉 ⊗ 1

2

∑
j1 �= j2, j3 �= j4

| j1 j2 j3 j4〉(−1) j1+ j4 . (74)

This selects the correct Majorana type indices and signs for
the B-type term in (42). Note that when inverting the circuit
for UNPREPARE, one must omit the CZs. Otherwise the
−1 in the Majorana symmetries of the coefficients [like in
(74)] introduced in both PREPARE and UNPREPARE would
cancel. The cost of this circuit is subleading, except to the
extent that the necessary data loading increases m. Its cost can
be reduced by using a unary iteration over the |si〉 qubits.

As in the original sparse method, the spin symmetry is
also restored on the quantum computer. Identical coefficients
corresponding to different spin configurations must only be
loaded once. Here we have two spin qubits |σ 〉 and |τ 〉 for the
first two and second two Majoranas, respectively. Because we
have more possible combinations than in the original sparse
method, we need a short spin symmetry restoration circuit

(75)

Similarly to Majorana restoration, |σ 〉 is initialized as |0〉 and
different initial values for |τ 〉 must be loaded for different
coefficient types,

|0〉 for 1-body terms and 2-body terms with
∑

σ

and (76)

|1〉 for 2-body terms with
∑
σ �=τ

.

Note that (contrary to the simplified Fig. 3), the qubit |σ 〉 is
not loaded from QROAM but initialized as zero.

As in the original sparse qubitization algorithm, the dom-
inant cost is (68), the product of the number of iterations in
phase estimation and the QROAM cost of data loading. Here,
the parameters are as follows:

(i) εQPE is the error budget for the phase estimation.
(ii) λ is the normalization factor of the Hamiltonian, i.e.,

the L1 norm of the LCU (Sec. III A 3). It depends on the
specific material under consideration.

(iii) d is the number of nonzero coefficients of the LCU
to load from QROAM. (Up to spin symmetry and Majorana
type symmetry, which are restored with circuits as discussed
above.)

(iv) m is the size of each of the d data items that need to
be loaded. Specifically, we have

m = ℵ + 2(4�log(P)� + 6). (77)

The values of the coefficients Vpqrs are effectively encoded
in the ℵ qubits and restored with coherent alias sampling
[27]. The other qubits correspond to the necessary indices and
further qubits to be loaded. For technical reasons of coherent
alias sampling, they must be loaded with two values each, ex-
plaining the factor of 2 in above equation. First, 4 log(P) is the
total width of the four basis function indices p, q, r, s. A small
number of qubits are needed for Majorana type restoration,
spin symmetry restoration, distinguishing one- and two-body
terms, and the sign of the coefficient.

(v) κ is a power of 2, and can be tuned to achieve a tradeoff
between Toffoli and ancilla count (65). We choose it such that
Toffoli count is minimized. Then the overall cost (dropping
logarithmic factors) is

∼O(λ
√

d/εQPE) ∼ O(λM2N3/2/εQPE). (78)

3. Generalization of sparse qubitization for Wannier
basis functions

The algorithm closely follows the one for Bloch states.
However, since Wannier functions can be chosen to be real,
only the terms (40), (42), and (45) in LCU expansion from
Sec. III A 3 are nonzero. Additionally, these terms possess the
same translational symmetry as ERIs (35). This is taken into
account through a translational symmetry restoration circuit,
which further reduces the cost of quantum computation. We
sketch the PREPARE operator in Fig. 4.

Translational symmetry can be leveraged to avoid load-
ing repeated coefficient values. In order to restore it with a
symmetry restoration circuit, the compound indices p, q, r, s
must be split into an orbital index it and cell index nt =
(nt,1, nt,2, nt,3)T as indicated in Fig. 4, t = 1, 2, 3, 4 enumer-
ates the positions of the Majorana operators in a Majorana
string. The figure also shows that SELECT must now be con-
trolled on all qubits constituting the compound indices. While
it ∈ {0, . . . , M − 1} for the number of orbitals per cell M,
the cell index nt,i ∈ {0, . . . , Ni − 1} for each spatial direction.
Even though the total number of nonzero terms is larger than
in the Bloch basis set, the translational symmetry reduces the
number of unique nonzero terms d to the same asymptotic
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FIG. 4. PREPARE operator for the Wannier basis algorithm. We make use of translational symmetry of the LCU’s coefficients (80) to
reduce data loading. This necessitates splitting the combined indices p, q, r, s into a band index it and a cell index nt = (nt,1, nt,2, nt,3).
t = 1, 2, 3, 4 enumerates the positions of the Majorana operators in a Majorana string. jt = 0, 1. The translational symmetry restoration circuit
is given in the circuit (81).

scaling

d ∼ O(M4N3) (79)

as in the Bloch basis (70).
The spin restoration circuits work identically to circuits

used for the Bloch representation, while the Majorana type
symmetry restoration circuit (71) can be simplified: Since the
only terms appearing are the one-body term Eq. (40), and two
two-body terms Eq. (42) and Eq. (45), we can remove all of
the gates from (71) that are controlled for other contribution
in the Hamiltonian. Further, we can remove the qubits |s1〉|s2〉
keeping only |s3〉.

The translational symmetry of the LCU coefficients B from
Eq. (42) can be expressed as

Bi1n1,i2n2,i3n3,i4n4 = Bi1(n1+v),i2(n2+v),i3(n3+v),i4(n4+v)

= Bi1(n1−n4 ),i2(n2−n4 ),i3(n3−n4 ),i40, ∀v ∈ �Z
(80)

with additions taken mod (N1, N2, N3)T independently for
each spatial component of n. (The same holds for one-body
and the other two-body coefficients.) We reduce the data load-
ing by only loading one of these coefficients, and restoring the
others with the following translational symmetry restoration
circuit [95]:

(81)

The in-place additions [93] are to be performed separately for
the three spatial directions of nt . In this circuit, n4 is an ancilla
and the index must not be loaded from QROAM, leading to a
reduction in m compared to the Bloch basis.

The dominant cost of the algorithm in the Wannier basis
has the same formula (68) and scaling (78) as in the Bloch
basis. Yet, m is lower in the Wannier basis. This reduces the
dominant Toffoli (64) and qubit costs (65), which stem from
data loading. Further, d is expected to be lower (if only by
a factor) because of the two-body terms, only Eq. (42) and
Eq. (45) are nonzero for real orbitals, and, as we will find
in Sec. III C 1, more small coefficients can be truncated. The
dependence of the normalization factor, λ, which has a large
effect on the dominant cost, on the choice of the basis set is
discussed in Sec. IV.

4. Error correction scheme

The details of the error correction implementation we used
in this paper can be found in Sec. 4 of Ref. [55], but for
completeness a short description is also provided here.

We estimate the error correction overheads following Litin-
ski’s game of surface codes scheme [65]. The computational
qubits are arranged in fast blocks [65], that enable the con-
sumption of one magic state per time step—the clock rate of
an error corrected quantum processor. We select magic state
factories from a subsect of the ones described in [65,96]. We
allow ourselves as many magic state factories as necessary,
so that computational qubits do not idle between magic state
injections. Magic state factories are arranged around the com-
putational qubits, accounting for the routing space necessary
to move the distilled T states to the computational area.

The code distance d and magic state factory types
are determined by allocating a failure rate budget of 1%
to error correction; this budget is divided between magic
state distillation failure (0.1%) and probability of logical
circuit failure (0.9%). Logical circuit failure is estimated us-
ing the conventional formula for error rate in the surface
code [56],

Plogical = 0.1 × (100 p)
d+1

2 , (82)
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TABLE I. The magnitude of the translational symmetry error, εt ,
in one-body terms arising from generation of localized orbitals in the
supercell calculations. εt = maxi jRR′ |hRi,R′ j − h0i,R′−R j |.

System Error (Ha)

H (16 atoms) 1.53 × 10−11

H (54 atoms) 1.70 × 10−6

H (128 atoms) 3.53 × 10−10

H (250 atoms) 2.43 × 10−10

LiH (64 atoms) 3.08 × 10−9

NiO (64 atoms) 9.76 × 10−8

PdO (16 atoms) 5.11 × 10−11

PdO (72 atoms) 2.41 × 10−5

where p is the probability of physical error, that we take to
be 10−3 or 10−4. The former is an accepted rate for supercon-
ducting systems, while the latter is considered optimistic in
these platforms.

To obtain runtime from T-gate count, we assume serial
implementation and multiply the number of T gates by the du-
ration of the time step, which in the surface code is d times the
duration of the code cycle. We take the code cycle (the time
needed to carry out one round of stabiliser measurements) to
be 1µs long—this is a conventional figure for superconducting
qubits [97,98].

C. Classical computational details

In order to generate ERIs, we have carried out restricted
Hartree-Fock calculations in the Gaussian basis set using the
PySCF software [99–102]. The Fermi-Dirac distribution of
occupation numbers has been used. In order to numerically
study the scaling properties of the algorithms, we carry out
calculations on a model hydrogen (H) crystal in body-centre
cubic (BCC) structure. Quantum resource estimations have
also been applied to realistic solids such as lithium hydride
(LiH), NiO, and PdO. In the case of H and LiH, all-electron
calculations have been carried out with STO-3G [103–107]
basis set, while for NiO and PdO the GTH pseudopotentials
[108,109] with GTH-SZV basis set have been used [110,111].
Gaussian density fitting has been employed for the calculation
of ERIs [112]. The pseudopotential setups with 18 valence
electrons for Ni and Pd, and six valence electrons for O have
been used. The geometry of H has been optimized with GPAW
software [113–115], the geometry of PdO has been optimized
with Quantum Espresso [116,117], while experimental struc-
tures have been used for LiH [[118], p.7] and NiO [119]. We
provide geometry files on Zenodo [120]. In order to obtain
spatially localized orbitals satisfying translational symmetry
(28), the natural atomic orbitals [121] in a supercell have
been constructed. We have then validated that the translational
symmetry [(34), (35)] of the integrals is satisfied (see Table I).
Calculations in the supercell have been carried out using cubic
cells of different sizes for H, LiH, and NiO, while a tetragonal
cell has been used for PdO. For calculations using Bloch
functions, we used primitive 2-atom cells for LiH and NiO
with varying k-point meshes (up to a 3x3x3 mesh). The unit
cell used for H consists of two atoms while the tetragonal unit
cell of PdO has been chosen such that it contains four atoms.

1. Errors and truncation strategies

The total additive error of the energy estimation can be split
into three errors [31],

ε = εQPE + εtrunc + εprep, (83)

where εQPE is the error due to limited precision of the QPE,
εtrunc is the error due to discarding Hamiltonian coefficients
with a certain precision, and εprep is the error due to finite
precision of state preparation amplitudes. Given the accuracy
ε we distribute the total error as

εQPE = 10

16
ε, εtrunc = 3

16
ε, εprep = 3

16
ε. (84)

Since in condensed matter calculations one is often interested
in the energy of the crystal per formula unit (f.u.), we allow
the total error ε to grow proportionally to the system size,
that is the error in energy estimation per f.u. is fixed when the
size of the supercell increases. The required total accuracy of
calculations strongly depends on the problem of interest. For
example, the band gap of transition metal oxides is on the or-
der of a few eV, while the energy difference between different
crystal structures can be up to a few hundred meV/f.u. [122].
Therefore, we carry out truncation with different accuracy
of 50 meV/f.u. (1.8 mHa/f.u., which is close to chemical
accuracy), 5 meV/f.u., and 0.5 meV/f.u.

One of the bottlenecks in the quantum algorithm is the
number of data items d that must be loaded into a quantum
computer. The number of data items can be reduced by trun-
cating small terms in the Hamiltonian. In order to estimate
the error εtrunc due to truncation of the Hamiltonian coeffi-
cients, one usually exploits classical heuristics based on the
norm of the Hamiltonian’s coefficients [32] or classical quan-
tum chemistry calculations such as coupled-cluster theory
[28,31]. For large systems, such as crystalline solids, high-
order coupled-cluster calculations require large computational
efforts and, therefore, we have used a simpler truncation
methods based on the LCU’s L2 norm following Ref. [32].
Namely, if H = ∑

i wiUi as in Eq. (58) then we define the
truncated Hamiltonian Htrunc = ∑

i w
trunc
i Ui based on the fol-

lowing equation:√∑
i

|wi − wtrunc
i |2 < εtrunc. (85)

One can also estimate the error based on L1-norm truncation
and even though such an estimation is rigorous, it does not
allow truncating many coefficients. As shown in Fig. 5, there
are many two-body terms in the Wannier representation with
magnitude less then 10−8 Ha, and as a result, the error estimate
based on L1-norm would already be on the order of 0.01 Ha if
all these terms are neglected. The L2 norm allows truncating
much more coefficients but it is not a rigorous error estimate
and, therefore, it might provide optimistic resource estima-
tions. Instead of using L1-norm-based truncation, we will also
present results for a truncation threshold of 10−9 Ha in order
to understand how much L2-norm truncation reduces resource
as compared to an accurate representation of the Hamiltonian.
We use this procedure for moderate size systems. However,
large systems such as NiO and PdO with supercells made of
64 and 72 atoms with around 900 spin orbitals require large
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FIG. 5. The absolute value distribution of two-body matrix ele-
ments for H using Bloch and Wannier functions. The Hamiltonian
terms were truncated at 10−16 Ha. The k-point mesh of (4, 4, 4) is
used for Bloch functions with a 2-atom unit cell, and a 128-atom
supercell is used for constructing Wannier functions.

amount of memory. In this case, we save only those integrals
whose absolute value is less then 10−7 Ha and then the Hamil-
tonian coefficients in Majorana representation are truncated
with the threshold (1.81 × 10−6 Ha and 3.82 × 10−7 Ha for
NiO-64 and PdO-72, respectively) obtained from calculations
on smaller supercells at a total accuracy, ε, of 5 meV/f.u.

IV. RESULTS

A. Scaling

Both Wannier and Bloch functions provide the same spec-
trum of the Hamiltonian since they are related to each other

through unitary transformation. However, the Hamiltonian
have different properties in different basis sets and the main
task is to chose such basis functions, which minimize the total
cost of quantum computation. It is proportional to the square
root of the number of Hamiltonian coefficients d loaded into
the quantum computer times the L1 norm, λ, of the Hamil-
tonian divided by the precision of QPE simulation εQPE [see
Eq. (78)]. With the example of model H in a BCC lattice
structure, one can see that the number of nonzero terms in the
Hamiltonian in Bloch representation scales as a cubic power
of the system size, which is almost an order of magnitude
better than in Wannier representation if no symmetries are
taken into account [see Fig. 6(a)]. However, the trend is op-
posite for the L1 norm, λ, and the Hamiltonian has a much
smaller norm using Wannier functions [see Fig. 6(b)], which
in turn significantly reduces the number of controlled-unitary
steps in Hamiltonian simulation. This is on par with molecular
calculations where the set of localized orbitals reduces the
L1 norm [85]. The number of T gates shown on Fig. 7 is
significantly lower in Wannier representation and has a better
asymptotic scaling. This is achieved by (i) loading only unique
Hamiltonian terms into the quantum computer as discussed
in Sec. III B 3, and (ii) providing a lower L1 norm, λ, than
in Bloch representation. Further reduction in T count can
be accomplished by truncating the Hamiltonian coefficients
using the L2-norm based truncation as shown on Fig. 7. After
applying the L2-norm truncation, the number of T gates in
model H systems scales as O(N1.5) with the system size. Such
a low asymptotic scaling can also be explained by the fact
that the permissible error grows proportionally to the system
size and the number of terms, remained after truncation in
such model systems with Wannier functions, scales as O(N3).
In molecular systems, one can expect that localized orbitals
produce Hamiltonians with quadratic scaling with respect to
number of nonzero terms [123]. We can expect the same for

FIG. 6. (a) The total number of nonzero terms before taking into account translational symmetry of Wannier functions or symmetry of
Brillouin zone and (b) the L1 norm of the Hamiltonian in Majorana representations. Hydrogen in BCC lattice structure with varying supercell
size or k-point sampling (x axis) is used. The Hamiltonian terms were truncated at 10−9 Ha.
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FIG. 7. (a) The number of T gates (b) The number of logical qubits in the circuit; no error correction has been applied here. Hydrogen
in BCC lattice structure with varying supercell size or k-point sampling (x axis) is used. Resource estimations carried out so that the total
accuracy ε is 0.5 meV/f.u.

materials with large band gaps while the model H system in
our calculations have zero-gap at both PBE and Hartree-Fock
level of theory.

B. Resource estimations

The number of T gates required for a single shot of the
qubitized QPE circuit is presented in Fig. 8. When Wannier

functions are used as a basis set and the targeted accuracy is 50
meV/f.u., the number of T gates in the circuit is less than 1011

for all materials, system sizes and truncation strategies used in
this paper. As one can see, reducing the total permissible error
of the Hamiltonian simulation by a factor of 10 increases the
number of T gates by approximately an order of magnitude
in agreement with Eq. (78). The L2-norm truncation strategy
reduces the number of T gates but not much except for H in

FIG. 8. The number of T gates as a function of the total accuracy of the Hamiltonian simulation ε using different basis functions:
(a) Wannier functions. (b) Bloch functions. Solid lines have been obtained for Hamiltonians in which coefficients are truncated at 10−9 Ha
except for NiO-64 and PdO-72, where truncation was chosen based on smaller cell calculations due to high memory requirements. Dashed
lines were obtained using adaptive truncation threshold based on L2 norm as explained in the main text. Legends indicate the name of the
materials and the number next to the name is the total number of atoms in the supercell or the size of the k-point mesh for Wannier and Bloch
functions, respectively.
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FIG. 9. Resource estimation for calculation of the ground-state energy of several solid state systems using Wannier and Bloch functions.
The results have been obtained based on L2-norm truncation and the accuracy of Hamiltonian simulations is 50 meV/f.u. (1.8 mHa/f.u.). The
code cycle duration is 10−6 s. The physical error rates are assumed to be 0.1% and 0.01%. (a) Runtime in days. (b) The number of physical
qubits. (c) The number of logical qubits. x axis is the total number of spin orbitals. The number next to the name of the crystal indicates how
many atoms in the supercell contains and how large the k-point mesh has been used for Wannier and Bloch basis sets, respectively.

Wannier basis, where the truncation of coefficients leads to
an order of magnitude reduction of T gates. Similar trends
are observed when Bloch functions are employed. However,
in this basis set, the T-gate count is consistently higher than
the T-gate count obtained with Wannier functions: for H the
number of T gates is 25 times larger, for LiH with 54 k-points
the T count is four times larger than for LiH with 64 atoms in
the supercell whereas for NiO the difference between the two
approaches is almost two orders of magnitudes. We can see
that more than an order of magnitude comes from the fact that
the L1 norm in Wannier representation is smaller and the other
improvement comes from truncation of small coefficients and
symmetry considerations.

Figure 9(a) demonstrates the runtime required for a single
shot of the QPE circuit with permissible total error of 50
meV/f.u. As can be seen, small-unit-cell simulations of NiO
and PdO consisting of 8 and 16 atoms, respectively, can be
performed within less than 10 days. Systems with larger com-
putational cells such as LiH with 64 atoms in the cell can be
simulated within 50 days even if the physical error rate of gate
operations is 0.1%. Materials such as NiO with 64 atoms and
PdO with 72 atoms in the supercell require a runtime of about
100 days when the physical error rate is 0.1%. Reducing the
physical error rate by an order of magnitude to 0.01% leads
to the reduction of the runtime by approximately a factor of 2
for all systems considered in this paper.

The number of physical and logical qubits for simulations
described above are shown in Figs. 9(b) and 9(c). As can
be seen from Fig. 9(b), the smallest simulations will require
few million physical qubits if the physical error rate reaches
0.01%, while the largest simulations of NiO and PdO need
about 65 million physical qubits. For the error rate of 0.1%,

quantum error correction requires the number of physical
qubits to be 4–5 times larger. The number of logical qubits
[see Fig. 9(c)] required for the simulation of small cells is
around few thousands while large super cells would need
around 105 logical qubits. We note that the improvement in
the physical error rate occasionally reduces the number of
logical qubits. This is because the number of logical qubits
is the sum of the computational qubits and the magic state
factory qubits. The computational qubit count is a feature
of the system we study, and does not depend on the error
rate of the quantum computer. The number of logical qubits
dedicated to magic state distillation could in principle change
when the error rate changes—because the fidelity with which
we need to distill magic states depends on the error rate.
Yet, many of our resource estimations just require the highest
fidelity factory (225-to-1) in our list [96] for either error rates
(0.1% or 0.01%), and hence the logical qubit count does not
change. For much smaller error rates, smaller factories would
suffice and we would see such changes.

V. DISCUSSION AND CONCLUSIONS

The estimation of the ground-state energy of crystalline
solids with a supercell of ca. 50–70 atoms requires ca. 1010–
1012 T gates when the size of the basis set is ca. 300–500
spatial orbitals. This is comparable to the T-gate count re-
quired for the estimation of the energy of molecular systems
within the active space of several tens of orbitals. For example,
simulation of a Ru complex with 65 spatial orbitals and using
double factorization (DF) requires around 4.6 × 1010 T gates
[32] while simulation of cytochrome P450 with 58 spatial or-
bitals and using tensor hypercontraction (THC) [31] requires

013200-16



QUANTUM COMPUTATION FOR PERIODIC SOLIDS IN … PHYSICAL REVIEW RESEARCH 5, 013200 (2023)

around 7.8 × 109 T gates [124]. Thus, if molecular Hamil-
tonians can be simulated within a reasonable time then so
can a Hamiltonian describing crystalline solids. However, the
number of logical qubits is larger for solids, 104–105, which
is due to the fact that the number of orbitals considered in this
paper is larger almost by an order of magnitude as compared
to molecular resource estimates.

We have considered the use of minimal Gaussian basis
sets. However, for realistic solids one would need to use at
least DZP or TZP basis sets, which would lead to a higher T-
gate count. However, numerical studies for molecular systems
indicate that methods like THC provide the best asymptotic
scaling with respect to the number of orbitals for molecules
[124]. Thus, using such approaches one might still obtain a
reasonable resource estimates for crystalline solids. In order to
carry out such estimations, one would have to (i) adapt such
methods for periodic systems by also taking the translation
symmetry into the consideration and (ii) develop classical
electronic structure software for efficient generation of factor-
ized Hamiltonians. For example, in order to generate ERIs for
NiO with 64 atoms in the supercell and using GTH-DZP basis
set one would need to use several TB of memory. Another
approach, which would allow to perform useful simulations
of solids on error-corrected quantum computers with larger
basis sets is by choosing the active space within the size of
several hundred of orbitals or by using quantum embedding
methods.

In this paper, we have investigated how the translational
symmetry of the Hamiltonian can be exploited in order to
reduce the quantum resources. Similarly, other symmetries
such as point group symmetry can be taken into account.
However, we do not expect that this will lead to an order
of magnitude reduction of T gates as qubitization-based al-
gorithms scale as the square root of the number of terms.
The use of Brillouin zone symmetry can also reduce the
cost of quantum algorithms in Bloch basis set but we expect
that Wannier representation will provide a better resource
estimates for moderate-size systems. For example, 27 k
points were used for NiO and even if each k point provided
the same coefficients it would reduce the cost by a factor
of 5.

The efficiency of the QPE to estimate the ground-state en-
ergy depends also on the overlap between an initial state such
as Hartree-Fock state and the true ground-state wave function.
We have not investigated this in this paper. For molecular sys-
tems, this overlap can appear to be either sufficient [32,124]
or small [125] and more investigation needs to be carried out
for crystalline solids. In this paper, we have focused only on
the single-shot cost of the total QPE circuit.

In classical computations of ground-state energy of peri-
odic solids, using Bloch functions is currently considered to
be the most efficient approach in both KS-DFT [126] and
wave function methods such as coupled-cluster theory [102].
Wannier functions are often used as a postprocessing tool for
calculation of properties such as conductivity or band struc-
ture interpolation [62]. In quantum computing, however, the
Wannier functions represent an efficient choice as a basis set
for the ground-state energy calculations. Other areas, such as
linear-scaling DFT also uses the Wannier functions [61,127]
as the primary basis set.

In conclusion, we have considered ground-state energy
estimation of crystalline solids on error-corrected quantum
computers using qubitization based QPE. We present two
materials such as NiO and PdO, which are known to be
challenging systems for electronic structure methods on clas-
sical computers and are relevant for heterogeneous catalysis.
The investigation of properties beyond ground-state energy
calculations will be addressed in the future; this paper is a
first step towards practical algorithms for simulation of crys-
talline solids on error-corrected quantum computers. We have
adapted the qubitization algorithm to solid-state systems by
taking into account the symmetries of the integrals in Wan-
nier representation and generalized sparse qubitization for use
with complex Hamiltonians, which are needed when Bloch
functions are employed. Realistic resources estimations have
been carried out and presented for error-corrected quantum
computers. The simulation of crystalline solids in the minimal
basis set on a quantum computer with the approach presented
in this paper would require an order of 10–100 millions of
physical qubits and 1010–1012 number of T gates. We expect
that these numbers can be reduced further by using, for exam-
ple, different qubitization techniques such as DF [32] or THC
[31] adapted for solid-state systems.

The geometry and integral files for all systems considered
in this paper are available at Zenodo [120].
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APPENDIX: DETAILED COSTINGS

In this Appendix, we give detailed costings for our Bloch
and Wannier algorithms that include subdominant contribu-
tions. Since the two algorithms are very similar, we present
them together and will note wherever there is a difference. All
logarithms are base 2 as they refer to necessary qubit count
for an integer range. The costings of standard circuit elements
follow the costings of the sparse algorithm in Appendix A of
Ref. [31].

1. Parameters

(i) Error parameters εQPE, εprep, εtrunc are discussed in
Sec. III C 1.

(ii) d is the number of nonzero coefficients in the Hamil-
tonian’s LCU, after truncation and up to the symmetries
restored. This means in the Wannier basis, one has to divide
the number of nonzero coefficients (not taking into account
translation symmetry) by the total number of cells N .

(iii) λ is the L1 norm of the LCU, which is the the normal-
ization factor of the block-encoded Hamiltonian. See (53).

(iv) M is the number of spatial orbitals per unit cell.
(v) N1, N2, and N3 are the number of unit cells in

each direction of the lattice as described int he main text.
Therefore, the total number of spatial orbitals in the crystal
is P = MN1N2N3 and the number of spin orbitals is 2P.
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(vi) ℵ is the size of the “keep” register in coherent alias
sampling. Coherent alias sampling effectively sets the ampli-
tudes of the state based on the ℵ register. Therefore it affects
the accuracy of the prepared state; following (A12) [31],

ℵ =
⌈

log
λ

2εprep

⌉
. (A1)

(vii) m is the output size (qubit number) of the QROAM,
the data loading in PREPARE. For Bloch functions, it is

m = ℵ + 2(4�log(P)� + 6) (A2)

and for Wannier functions,

m = ℵ + 2(4�log M� + 3
∑

i=1,2,3

�log Ni� + 4), (A3)

where the compound index register must be split into its con-
stituents. The +6 (Bloch) or +4 (Wannier) is made up of one
qubit to distinguish one- and two-body terms, one qubit for
the sign of the coefficient, three qubits (Bloch) or one qubit
(Wannier) identifying term types for Majorana type restora-
tion and one qubit for spin restoration. (Note that contrary
to the simplified depiction in Figs. 3 and 4, the |σ 〉 qubit in
(76) is added as an ancilla rather than loaded.) The factor of 2
stems from needing “ind” and “alt” values for coherent alias
sampling.

(viii) κ1 and κ2 are powers of 2. They determine the space-
time tradeoff in the QROAM and QROAM uncompute. We
choose them to minimize Toffoli cost.

(ix) I = � πλ
2εQPE

� the number of repetitions of the walk
operator for quantum phase estimation.

(x) 2η is the maximal power of 2 that’s a factor of d .
(xi) br are bits of precision for the equal state preparation,

we take it 7 as suggested in Ref. [31].

2. Toffoli count

The total Toffoli count is the product of I (the number of
iterations in phase estimation) and the the number of Toffolis
needed to construct the walk operator. The walk operator
consists of the following circuit elements:

(i) PREPARE and UNPREPARE. The PREPARE operator
is sketched in Figs. 3 and 4, while UNPREPARE uncomputes
the state. We state the total cost of both, leading to a factor of
two in most items.

(1) Equal state superposition over d basis states via
amplitude amplification:

2(3�log d� − 3η + 2br − 9) (A4)

(2) Data lookup via QROAM. This is the asymp-
totically dominant contribution to the walk operator.
Uncomputing can be significantly simplified using a mea-
surement based uncomputation scheme, such that the total
cost is

�d/κ1� + m(κ1 − 1) + �d/κ2� + κ2. (A5)

(3) Coherent alias sampling. It can be uncomputed
without Toffolis, giving

ℵ + (m − ℵ − 2)/2. (A6)

The ℵ is for an inequality test, and the register sizes to be
swapped are (m − ℵ)/2. Swapping the sign qubits can be
done without Toffolis, leading to the −2.

(4) Majorana type symmetry restoration circuit (71) for
Bloch basis,

2(5 + 25). (A7)

This cost includes a unary iteration, controlled on the 1-
body/2-body qubit and iterating over six values of the |si〉
qubits (5 Toffolis). For the Wannier basis, the circuit can
be simplified and the cost is only

2(1 + 7). (A8)

A controlled Hadamard can be implemented with a single
Toffoli using a catalytic T state, see Fig. 17 in Ref. [31].

(5) Spin symmetry restoration: 0
(6) Translational symmetry restoration (Wannier basis

only). The cost of computing and uncomputing the addi-
tions in (81) is

2

⎛
⎝ ∑

i=1,2,3

3(log Ni − 1)

⎞
⎠. (A9)

For this formula we have assumed that N1, N2, N3 are all
powers of 2. Then the in-place additions (or in the uncom-
putation, subtractions) modulo Ni can be performed with
log Ni − 1 Toffolis each [93]. If Ni is not a power of 2, the
cost will be higher to perform the correct modular arith-
metic. Yet this symmetry restoration circuit is a subleading
contribution and for simplicity we use (A9) even if the cell
numbers are not powers of 2.
(ii) SELECT. We have two ranged operations that are un-

controlled and two that are controlled on the qubit flagging
one- or two-body terms and thereby the number of Majoranas
in the unitary. Each of these unary iterations is over 4P values.
These are spin, Majorana type, and the indices specifying each
Majorana (see Figs. 3 and 4). The total cost is

2(4P − 2) + 2(4P − 1). (A10)

(iii) Reflection. The walk operator is built from the
block-encoded Hamiltonian along with a reflection. This is
implemented by a multicontrolled Z controlled on a number of
qubits. These are �log d� for the QROAM index, one further
qubit from preparing the equal superposition state, ℵ for the
equal superposition state in coherent alias sampling, one qubit
from spin, four qubits from Majorana type, and (only for
Wannier) �log N1� + �log N2� + �log N3�. The gate controlled
on c qubits can be implemented with c − 1 Toffolis, giving

�log d� + ℵ + 5 + (Wannier only:
∑

i=1,2,3

�log Ni�). (A11)

Toffolis.
(iv) Two more Toffolis for each step (to make the re-

flection controlled, and for the unary iteration in the phase
estimation)

Note we do not include the cost of initial state preparation
for the Heisenberg-limited phase estimation or of the inverse
QFT. These are small additive costs that are not multiplied by
I ∝ λ/εQPE in contrast to all the above contributions.

013200-18



QUANTUM COMPUTATION FOR PERIODIC SOLIDS IN … PHYSICAL REVIEW RESEARCH 5, 013200 (2023)

3. Qubit count

(i) For phase estimation and unary iteration circuit:
�log(I + 1)� + �log(I + 1)� − 1

(ii) System qubits (on which the Majoranas act): 2P
(iii) QROAM input state: �log d�

(iv) ℵ + 2 + br for equal superposition state and coherent
alias sampling

(v) QROAM qubits including output and ancillas: mκ1 +
�log(d/κ1)�

(vi) Further ancillary qubits are not needed as QROAM
ancilla qubits can be reused.
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