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Combined effect of simplicial complexes and interlayer interaction: An example
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In this paper, we investigate the effect of self-awareness (interlayer interaction) for information-epidemic
dynamics with simplicial complexes both near and away from the epidemic threshold. It is shown that, contrary
to previous views, self-awareness plays a key role near the epidemic threshold. In small homogeneous networks,
multiple susceptibility peaks can emerge in the susceptibility of the epidemic layer under the combined effect
of simplicial complexes and self-awareness, even two types of multiple susceptibility peaks with completely
opposite mechanisms. This means that one needs to be very careful when obtaining epidemic thresholds based
on susceptibility. Moreover, the self-awareness can regulate the presence or absence of bistable phenomena
both in epidemic prevalence and epidemic threshold. We also found that the time series of disease may be
nonmonotonic, with a peak, and that self-awareness is one of the factors controlling the relative height between
maximum and steady state. In addition, we modify heterogeneous mean-field theory and partial effective degree
theory to accommodate the introduction of simplicial complexes in dynamics. We believe that our study has
implications for other dynamics concerning higher-order and interlayer interactions.
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I. INTRODUCTION

As a disease spreads through a population, information
about the disease will be diffused and individual behavior
will change with the diffusion [1]. Mutual feedback emerges
between information diffusion process and epidemic spread-
ing process [2,3]: individuals may know information about
the disease through their own illness (called self-awareness),
and individuals who know the information may change their
behavior to protect themselves and others. In earlier stud-
ies, Funk et al. [4,5] and Kiss et al. [6] have independently
built theoretical models incorporating these two spreading
processes in a well-mixed population. Subsequently, many
researchers began to study human responses to outbreaks in
network epidemic models [7–9]. Considering the diversity
and complexity of information diffusion [10,11], more ratio-
nal multiplex networks [12–16] have been used to explore
the interaction between epidemic spreading and information
diffusion [17–29]. In previous studies, the probability of self-
awareness was usually set at one [25–27] or some other fixed
values [20,24], because this probability did not affect the
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epidemic threshold [18,19]. This characteristic of self-
awareness is caused by the fact that information diffusion is
thought of as a “simple contagions,” a simple superposition of
pairwise interaction, similar to epidemic spreading [30,31].

However, information diffusion usually requires contact
with multiple sources of “infection” [32–34], which is
called social reinforcement [33,35] or “complex contagions”
[32,36]. Here, the exposure to multiple sources of infec-
tion is different from that of multiple exposures to a single
source [37,38]. A natural explanation for complex contagions
is that multiple simultaneous interactions (or group inter-
actions) give rise to an additional probability of infection,
which can be described in terms of higher-order interac-
tions [39–44], including simplicial complexes [45–48] and
hypergraphs [49–51]. Recently, the research enthusiasm for
higher-order interactions has swept through many fields, such
as network epidemiology [52–56], network synchronization
[57], brain network [58], and ecological system [59]. The
study of high-order interactions is conducive to better un-
derstand, analyze and predict dynamic behaviors on complex
networks, and may also lead to new research problems and
objects.

As mentioned above, the additional ability of social
groups to transmit information can be described by simplicial
complexes. In general, group interactions require a certain
proportion of aware individuals in a system to function, so the
dynamic on simplicial complexes often depend on the initial
seeds to determine evolutionary stable states [53–56], such
as discontinuous transitions and bistable phenomena. For a
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FIG. 1. (a) Schematic illustration of UAU-SIS model on a multiplex network with simplicial complexes. The upper layer corresponds to
the network where the information of epidemic diffuses. Nodes can be either aware (A) or unaware (U), and interations include pairwise
interations and 2-simplices which represent by links and checked pattern areas, respectively. The lower layer represents the network where the
epidemic spreads. Nodes have two possible states—infected (I) and susceptible (S), and interactions are only pairwise interactions between
adjacent nodes. There are four classes of states on the multiple networks: unaware and susceptible (US), unaware and infected (UI), aware and
susceptible (AS), and aware and infected (AI). Here, XI ∈ {AI, UI}, XS ∈ {AS, US}, AY ∈ {AS, AI}, and UY ∈ {US, UI}. [(b)–(j)] Schematic
representations of the transitions between node states and their associated probabilities. [(b)–(e)] An unaware node is informed by an aware
neighbor with probability α through links. An unaware node can receive the information with extra probability α� if the two other nodes in
the 2-simplex are aware in panel (b). Note that there is no extra probability α� if a triangle is “empty” as in panel (d) or less than two aware
individuals as in panel (c). (f) UI nodes become AI due to self-awareness with probability κ . (g) An aware individual forgets information with
probability δ. A susceptible node is infected by an infectious neighbor with probability ηβ in panel (h) or β in panel (i) when the susceptible
node is aware or unaware, respectively. (j) Infected nodes recover with probability μ.

multiplex network, the interlayer interaction (e.g., self-
awareness of information-epidemic dynamics) brings in
external inputs between layers of the network, which can act
as initial seeds. Here, we introduce simplicial complexes into
the classical coupled information-epidemic dynamics model
(that is, UAU-SIS model). We find that the presence or ab-
sence of bistable phenomena is regulated by self-awareness,
both in terms of epidemic prevalence and epidemic threshold.
Under the combined effect of simplicial complexes and self-
awareness, the susceptibility of epidemic layer presents two
kinds of bimodal curves with completely different physical
mechanisms, which means that the judgment of threshold
value should be very careful. Meanwhile, it is found that the
time series of diseases may show a peak, which seems to be
unusual in SIS model.

Our paper is organized as follows. In Sec. II, we describe
the UAU-SIS model with simplicial complexes in detail and
give the procedures for generating multiplex networks. In
Sec. III, we develop a modified heterogeneous mean-field
theory to analyze the dynamics of the single information
layer. In Secs. IV and V, we discuss the cases near and far
from the epidemic threshold for UAU-SIS model on multiplex
networks, respectively. The bistable region in Sec. III is the
main parameter range studied. In Sec. VI, we summarize our
results.

II. MODEL

A. Discrete-time UAU-SIS model with simplicial complexes

Simplicial complexes are to treat social groups as
simplexes, and a simplex defines a k-simplex as a set

of k + 1 nodes [53]. For example, 0-simplices and 1-simplices
correspond to nodes and links, which have been considered in
“simple contagions”; 2-simplices correspond to “full” trian-
gles; 3-simplices correspond to “full” tetrahedra. A k-simplex
down contains all the subfaces, for example, a 2-simplex has
three 1-simplices and three 0-simplices. In this paper, we in-
troduce 2-simplices into the information layer of the classical
UAU-SIS model, which is embedded in a two-layer multiplex
network making up an epidemic layer and an information
layer. The discrete-time UAU-SIS model with simplicial com-
plexes is shown in Fig. 1(a). In the information layer, if one
individual is aware of epidemic information, then its state
is aware (A), otherwise its state is unaware (U). In the epi-
demic layer, individuals are either in the infected (I) state or
susceptible (S) state. Therefore, individuals in the multiplex
network can be divided into four different classes: unaware
and susceptible (US), unaware and infected (UI), aware and
susceptible (AS), and aware and infected (AI).

In the information layer, the interactions includes pairwise
interaction between adjacent nodes (1-simplices) and group
interaction (2-simplices), and the schematic illustration of the
state transitions is shown in Figs. 1(b)–1(g). For the pairwise
interaction, an unaware node is informed with probability α

from an aware neighbor, see Figs. 1(b)–1(e). For the group
interaction, an unaware node can also be informed with prob-
ability α� if the rest nodes in the 2-simplex are aware, see
Fig. 1(b). Note that an “empty” triangle is not a 2-simplex,
see Fig. 1(d). Meanwhile, as a result of self-awareness, UI
nodes can become to AI with probability κ; see Fig. 1(f).
Therefore, the probabilities that from US to AS and from
UI to AI are 1 − (1 − α)na (1 − α�)n� and 1 − (1 − κ )(1 −
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TABLE I. Parameters found in discrete-time UAU-SIS model
with simplicial complexes.

Parameter Description

α Transmission probability of an unaware node
interacting with an aware neighbor

α� Transmission probability of an unaware node
interacting with a group containing a”full”

triangle and two other aware nodes
κ Self-awareness probability of an unaware

node when it is infected
δ Recovery probability for an aware node
β Transmission probability of an susceptible

node interacting with an infected neighbor
μ Recovery probability for an infected node
η Strength of protective measures

taken byaware nodes

α)na (1 − α�)n� , respectively, where na is the number of aware
neighbors of the unaware individual and n� represents the
number of 2-simplices satisfying Fig. 1(b). An aware individ-
ual forgets information with probability δ, see Fig. 1(g).

Figures 1(h)–1(j) are the schematic representations of the
state transitions in the epidemic layer. Susceptible individu-
als in the US class and AS class are infected by one of its
infected neighbors with probabilities β and ηβ, respectively.
The parameter η ∈ [0, 1] represents the strength of protective
measures taken by aware individuals. Then, the probabilities
that from US to UI and from AS to AI are 1 − (1 − β )ni and
1 − (1 − ηβ )ni , respectively, where ni denotes the number of
infected immediate neighbors of the susceptible individual.
An infected individual recovers to be susceptible with prob-
ability μ, regardless of whether it is aware or unaware. Table I
presents a complete list and description of all parameters in
the model.

B. Generation of multiplex networks with simplicial complexes

In a multiplex network, the network topology of each layer
is usually different, which means the neighbors for any node
maybe different in the two layers.

For the information layer, we employ the random simpli-
cial complex (RSC) model used in Refs. [47,53]. The RSC
model can control and tune the average degree 〈k1〉 and the
expected number of 2-simplices 〈k�〉, and the generation pro-
cess is as follows:

Step 1: Create an Erdős-Rényi (ER) network [60] by con-
necting any pair of nodes with probability p1 = 〈k1〉−2〈k�〉

(N−1)−2〈k�〉 ,
where N is network size. Note that the “empty” triangle pro-
duced by this step is not a 2-simplex.

Step 2: 2-simplexes are created by connecting any triplet
of vertices (avoiding multiple edges) with probability p2 =

2〈k�〉
(N−1)(N−2) .

The joint distribution of degree and 2-simplices degree
(which is the number of 2-simplices incident on the node)
P1(k1, k�) on the information layer can be written as

P1(k1, k�) = P′(k1 − 2k�)P′′(k�), (1)

where P′(k1) and P′′(k�) are the distribution of degree only
from step 1 and the distribution of 2-simplices degree from

step 2, respectively. And they can be obtained from the fol-
lowing formulas:

P′(k1) =
(

N − 1

k1

)
(1 − p1)N−1−k1 pk1

1 ,

P′′(k�) =
((N−1

2

)
k�

)
(1 − p2)(

N−1
2 )−k� pk�

2 .

Then, the degree distribution of the information layer can be
calculated as

P1(k1) =
∑
k�

P1(k1, k�). (2)

For the epidemic layer, we use Poisson distribution
P2(k2) ≈ e−〈k2〉〈k2〉k2/k2!, where 〈k2〉 is the average degree
of an ER random network. Considering that we live in the
era of information, we fix 〈k1〉 = 20, 〈k�〉 = 6, 〈k2〉 = 6, and
N = 2000 in the paper.

III. MODIFIED HETEROGENEOUS MEAN-FIELD
THEORY ON SINGLE UAU LAYER

The original heterogeneous mean-field theory [61] pro-
posed for the SIS model on a single-layer network focuses
on the probability that individuals with same degree are in
a compartment, which can not capture the effect of simpli-
cial complexes. Here, we propose a modified heterogeneous
mean-field theory by introducing the number of 2-simplices
of each individual, k�, as an additional trace. For example,
Ak1,k�

(Uk1,k�
) denotes the relative density of aware (unaware)

individuals with degree k1 and 2-simplices degree k�.
We denote φ as the probability that an aware individ-

ual is in contact with any unaware individual, that is, φ =
1

〈k1〉
∑

k1

∑
k�

k1P1(k1, k�)Ak1,k�
, which is independent of de-

gree k and 2-simplices degree k�. For an unaware individual
with given k1 and k�, the probabilities that it is not infected by
any pairwise interaction and any 2-simplex are (1 − αφ)k1 and
(1 − α�φ2)k� , respectively. Then, the Markov-chain equa-
tions of the modified heterogeneous mean-field theory are as
follows:

Ak1,k�
(t + 1) = −[1 − αφ(t )]k1 [1 − α�φ(t )2]k�Uk1,k�

(t )

−δAk1,k�
(t ) + 1, (3)

where Ak1,k�
(t ) + Uk1,k�

(t ) = 1. When the population reaches
its steady state, i.e., Ak1,k�

(t + 1) = Ak1,k�
(t ) = Ak1,k�

, Eq. (3)
becomes

Ak1,k�
= 1 − (1 − αφ)k1 (1 − α�φ2)k�

δ + 1 − (1 − αφ)k1 (1 − α�φ2)k�
. (4)

After substituting Eq. (4) into φ, we can obtain a self-
consistent equation for φ,

1

〈k1〉
∑
k1,k�

k1P1(k1, k�)[1 − (1 − αφ)k1 (1 − α�φ2)k� ]

δ + 1 − (1 − αφ)k1 (1 − α�φ2)k�
= φ.

(5)

Combining Eqs. (4) and (5), we can obtain Ak1,k�
in the steady

state. And then, the fraction of aware individuals is calculated
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FIG. 2. (a),(b) f (φ) as a function of φ for different α and α� on RSC model. (c)-(d) The fraction of aware individuals ρA as a function of
the awareness probability α on RSC model. (e) The relation between αc− and α� from Eq. (9). Parameters: N = 2000, 〈k1〉 = 20, 〈k�〉 = 6,
and δ = 0.2. When α = 0.0092, the curve f (φ) is tangent to the horizontal axis at φ = 0 both in panels (a),(b). When α = 0.0048, the curve
f (φ) is tangent to the horizontal axis at φ �= 0 in panel (b). In panels (c),(d), the lines are theoretical results from Eqs. (4)–(6) where the stable
solutions are represented by solid lines and unstable solutions by dashed lines, and the scatters are the results from stochastic simulations
which are averaged over 100 independent runs.

by

ρA =
∑
k1,k�

P1(k1, k�)Ak1,k�
. (6)

Since the fraction of aware individuals is increasing with
φ monotonically, the qualitative property of ρA is identical to
that of φ. Here, we define the left-hand side of Eq. (5) minus
its right-hand side as f (φ), that is,

f (φ) =
∑
k1,k�

k1P1(k1, k�)[1 − (1 − αφ)k1 (1 − α�φ2)k� ]

〈k1〉[δ + 1 − (1 − αφ)k1 (1 − α�φ2)k�]
− φ.

(7)

For different strength of higher-order efferts α�, f (φ) shows
different dynamical behaviors. There is a critical value, α�c,
that distinguishes Fig. 2(a) from Fig. 2(b), whose value can be
approximated by δ/〈k�〉 obtained from the mean-field theory
for homogeneous networks in Ref. [53]. For α� < α�c, a
saddle node bifurcation emerges in f (φ) with the increase of
α in Fig. 2(a), while the bifurcation turns into a supercritical
fork bifurcation for α� > α�c; see Fig. 2(b). From the fact
that αc− is less than αc+ (they are defined later), it is possible
to solve numerically for an exact α�c; see Fig. 2(e). The value
of α�c depends not only on the dynamical parameters but also
on the specific network structure.

Figure 2 shows that there are three cases for different
α and α�. For the parameters with one solution at φ = 0,
i.e., the black and red lines with α = 0.001 and α = 0.0092
in Figs. 2(a) and 2(b), it is obviously that ρA is also zero,

which indicates a disease free state. For the parameters with
two solutions, i.e., the dark yellow lines with α = 0.017 in
Figs. 2(a) and 2(b), the stability analysis shows the high one
is stable, which indicate that global outbreaks are inevitable.
For the above two cases, ρA is independent of the initial
conditions [i.e., ρA(0)]; see Figs. 2(c) and 2(d). The red lines
with α = 0.0092 in Figs. 2(a) and 2(b), which are tangent to
the horizontal axis at φ = 0, are the critical point for the above
global outbreaks, whose corresponding αc+ can be obtained
by df (φ)

dφ
|φ=0 = 0, so that we have

αc+ = δ
〈k1〉
〈k2

1〉
, (8)

where 〈k2
1〉 is the second moment of degree k1.

For the parameters with three solutions, i.e., the green line
with α = 0.007 in Fig. 2(b), the stability analysis shows the
middle fixed point is unstable and the others are stable as in
the supercritical fork bifurcation. In this case, ρA depends on
the initial conditions and a hysteresis loop can be observed;
see Fig. 2(d). The blue line with α = 0.0048 in Fig. 2(b) is
tangent to the horizontal axis at φ �= 0, which is the critical
point of one solution and three solutions. The corresponding
αc− can be obtained from

df (φ)

dφ

∣∣∣∣
φ �=0

= 0,

f (φ)|φ �=0 = 0.

(9)
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FIG. 3. The susceptibilities χ I and χA as function of infection probability β without 2-simplices in panels (a),(b) or without self-awareness
in panels (c),(d). The peaks of the curves have been specially marked for clearer comparison. The information layer uses a RSC network with
〈k1〉 = 20 and 〈k�〉 = 6, and the epidemic layer is an ER network with 〈k2〉 = 6. Parameters: N = 2000, δ = 0.2, η = 0.3, μ = 0.8.

The numerical relation between αc− and α� is shown in
Fig. 2(e), and αc− is equal to zero when α� is greater than
0.140.

From Figs. 2(c) and 2(d), one learns that the results from
the modified heterogeneous mean-field theory match quite
well with those obtained from Monte Carlo simulations on
a random simplicial complex network.

IV. EPIDEMIC THRESHOLD OF MULTIPLEX NETWORKS

In previous studies on information-disease dynamics on
multiplex networks [17,18,24], the information layer was as-
sumed to be updated before the disease layer within a same
time step. This assumption is based on the perception that
information spreads faster than disease, which is reasonable
in most cases. But the small awareness probability α does not
seem to meet the assumption, especially in our focus bistable
region in information layer [see Fig. 2(d)]. Here, we assume
that both the disease layer and the information layer are up-
dated only depending on the state of the last time step, and
we show in the Appendix A that the update order of UAU-SIS
model on multiplex networks is actually trivial.

Generally speaking, the order parameter fluctuates greatly
near the phase transition point. Here, we employ the the
quasistationary (QS) simulation method [62] to analyze
the fluctuation of the UAU-SIS system. The procedure is

implemented as follows: First, a list of M active configu-
rations is established to store states previously visited by
the dynamics. Whenever the system tries to enter the ab-
sorbing state (ρI = 0 or/and ρA = 0), it jumps to an active
configuration selected from the list randomly. And the list
is updated constantly in a way that a randomly selected
configuration is replaced by the present active configuration
with a probability pr�t . Next, after a long relaxation time
tr , we capture samples of the number of infected and aware
individuals at each time step during a period of time ta. The
probabilities PA(m) and PI(n) that the system has m aware
individuals and has n infected individuals can be counted
by samples, respectively. Then, the moments of the activity
distribution can be computed as 〈(ρA)k〉 = ∑

m(m/N )kPA(m)
and 〈(ρI )k〉 = ∑

n(n/N )kPI(n). Finally, the susceptibilities χ I

and χA can be obtained by χ I = N (〈(ρI )2〉 − 〈ρI〉2)/〈ρI〉 and
χA = N (〈(ρA)2〉 − 〈ρA〉2)/〈ρA〉. The values of the QS param-
eters used in Figs. 3–6 are M = 100, pr = 0.05, tr = 2 × 106,
and ta = 3 × 106 (near the first peak of the bimodal curve in
Fig. 3, we use tr = 5 × 107 and ta = 5 × 106 to ensure that
the curve is smooth).

A. Analysis of multiple susceptibility peaks

Figure 3 plots the susceptibilities χ I and χA as
function of infection probability β without 2-simplices
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(α� = 0) or self-awareness (κ = 0). Figure 4 plots the
susceptibilities and average propagation sizes as function of
infection probability β in the presence of both 2-simplices and
self-awareness. Here, the selection of parameters α� = 0.1
and α ∈ [0.005, 0.008] limits to the bistable region in Fig. 2.

When self-awareness probability is high but without 2-
simplices, i.e., Figs. 3(a) and 3(b), the peak values of χ I

are consistent with those of χA under the same parameters
and the results are not affected by the initial seeds ρA(0). In
this case, the information layer cannot propagate information
through either pairwise interactions or 2-simplices. The fluc-
tuation of ρA is related to that of ρI through the feedback of
self-awareness κ . When there is 2-simplices in the system but
no self-awareness, i.e., Figs. 3(c) and 3(d), the information
layer is independent of the epidemic layer. With the feed-
back through aware individuals taking protective measures,
the fluctuation of ρI on the epidemic layer can produce the
bistabling with the dependence of the initial seeds ρA(0), such
as α = 0.007 in Fig. 3(c).

For the case of α� = 0.1 and κ = 0.5, it shows a variety
of phenomena for the slow growth of α in Figs. 4(a) and 4(b).
For α = 0.005 in Fig. 4(b), the fluctuation of the information
layer comes from whether a large number of 2-simplices are
activated in the information layer itself, and self-awareness
feedback depending on whether the epidemic layer breaks out.

And there is a mechanism of mutual restriction between them.
The increase of β not only promotes the spread of the disease,
but also increases the number of aware individuals through
self-awareness as well. The latter promotes the spread on
information layer by 2-simplices, and as a result, the aware in-
dividuals generated by 2-simplices in turn suppress the spread
of the disease. This mutual conditioning mechanism allows
the fraction of aware individuals to increase smoothly, see
α = 0.005 of Fig. 4(d). However, when the activation point
of 2-simplices is far below the epidemic threshold, the above
competition can be ignored. As a result, there is a sudden
increase in the informant layer when α = 0.006, 0.007 and
ρA(0) = 0.05 in Fig. 4(d), which depends on group interac-
tions generating a cascade of activations. Thus, it shows a
sharp and discontinuous drop of χA in Fig. 4(b). Meanwhile,
we know that whether a number of 2-simplices are activated
depends on the fraction of aware individuals in the population
which is proportional to α, β, and κ , so Fig. 4(b) shows that
the peak location of χA moves to the left as α increases.

The fluctuation of epidemic layer depends on whether
the epidemic layer breaks out or not and on the fluctuation
of aware individuals, the latter depends on whether the 2-
simplices of the information layer are activated. Compared
with Figs. 4(a) and 4(b), we find that χ I reaches its peak not
earlier than the peak of χA with the increase of β, because
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FIG. 6. The epidemic threshold βc as a function of awareness
probability α. The information layer uses a RSC network with
〈k1〉 = 20 and 〈k�〉 = 6, and the epidemic layer is an ER network
with 〈k2〉 = 6. Line is the theoretical estimations of Eq. (10), while
scatters are simulation results obtained by the peaks of χ I (the peak
of the unimodal curve or the second peak of the bimodal curve). The
other parameters: N = 2000, δ = 0.2, η = 0.3, μ = 0.8, α� = 0.1.

the activation of 2-simplices produces a number of aware
individuals, which suppress the spread of the disease. With
the increase of α, the epidemic threshold gradually increases
while the activation point of 2-simplices gradually decreases.
The first peak is dominated by activation of 2-simplices. To be
specific, the cascade of activation of group interactions leads
to a decrease in the average infection rate of the epidemic
layer, and we can see a sudden decrease in the fraction of
infected individuals in Fig. 4(c), which drives a large fluc-
tuation in the epidemic layer. The epidemic threshold is the
phase transition point from disease-free state to endemic state
in the thermodynamic limit. Although a finite-size system will
have a certain propagation size at its epidemic threshold, this
size cannot show a downward trend. Therefore, we conclude
that the epidemic threshold is the β corresponding to the
second peak rather than the first peak in the epidemic layer. In
addition, it can be seen from Fig. 4(c) that the critical masses
around these threshold points of the disease spreading are not
much different. From Fig. 4(a), we can see that the initial
seeds ρA(0) can affect the first peak but not affect the epidemic
threshold.

The epidemic threshold (the second peak) fluctuates ran-
domly by 0.001, while the first peak fluctuates by about 0.005.
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B. Another kind of multiple susceptibility peaks

In Fig. 5, we test the susceptibility χ I and χA when α is
lower than 0.005. Figure 5(a) also shows a bimodal curve, but
its physical mechanism is completely different from that in
Fig. 4(a). It is clear to see that the peak of χA appears later
than the first peak of χ I for α ∈ [0, 0.0025] with the increase
of β, which indicates that the epidemic layer breaks out before
χA reaches its peak. At this point, the activation of 2-simplices
depends mainly on the large number of aware individuals
brought by the outbreak of epidemic layer. Because of the
mutual constraint mechanism mentioned earlier, we can see
that Fig. 5(d) is all smooth curves. In these bimodal curves,
the first peak and the second peak are dominated by the
epidemic threshold and the activation of 2-simplices, respec-
tively, which is exactly opposite to Fig. 4(a). In addition, the
critical masses around these threshold points in Fig. 5(c) and
Fig. 4(c) does not differ much.

Meanwhile, Figure 5(b) shows that the peak location of χA

moves to the right as α increases, which is also contrary of
Fig. 4(b). Generally, the increase of α suppresses the spread
of the disease. Although we can see in Fig. 5(a) that a low
α has little effect on the epidemic threshold, it still reduces
the infected individuals when β is greater than the threshold
which can refer to the slope change in Fig. 5(b). According
to the feedback of self-awareness, the increase of α indirectly
slows down the accumulation of external input aware individ-
uals, so the peak location of χA moves to the right.

C. Epidemic threshold

In Fig. 6, we plot the epidemic threshold βc as a function of
awareness probability α for α� = 0.1. The simulation results
of the epidemic threshold βc are obtained from the peaks
of curves χ I . According to the Sec. IV A and Sec. IV B, βc

can be obtained from the following three cases: (i) the peak
location of single-peak curve; (ii) the first peak’s location of
the bimodal curve when the first peak of χ I appears earlier

than the peak of χA; (iii) the second peak’s location of the
bimodal curve when the first peak of χ I appears not earlier
than the peak of χA.

Without self-awareness in Fig. 6, the epidemic threshold
reveals an abrupt transition and the critical point at which the
transition occurs is related to the initial seeds ρA(0). However,
for κ = 0.5, the epidemic threshold is independent of ρA(0),
because the self-awareness of infected individuals provides
a number of aware individuals to ensure the activation of
2-simplices. Moreover, it is easy to see in Fig. 6 that the
threshold of κ = 0.5 is larger than that of κ = 0 for low α,
while the above two thresholds are coincident for high α. The
reason is that the number of aware individuals generated by
self-awareness can be ignored when α is high.

To obtain an analytical epidemic threshold, we approxi-
mate the information layer as an annealed network (all the
nodes are same in this layer) and ignore the aware individuals
obtained from self-awareness (i.e., κ = 0). Since the infor-
mation layer is in thermodynamic dynamic equilibrium, the
average infected probability in epidemic layer is approxi-
mately ρU + ηρA [24]. Then, the epidemic threshold βc can
be calculated as

βc = β
single
c

1 − (1 − η)ρA
, (10)

where β
single
c denotes the epidemic threshold of the single SIS

layer which is decoupled from the multiplex network, and ρA

indicates the fraction of aware individuals of the single UAU
layer which is decoupled from the multiplex network. The
stationary solutions of ρA can be calculated by the modified
heterogeneous mean field theory, i.e., Eqs. (4)–(6) in Sec. III.
β

single
c in Eq. (10) can be calculated by many theoretical ap-

proaches, such as microscopic Markov-chain approach [63],
epidemic link equations approach [64], and effective degree
Markov-chain approach [65]. In Fig. 6, we use dynamic cor-
relation method [66] to calculate β

single
c , which considers the

dynamic correlation of immediate neighbors and ignores the
higher-order neighbors. The relation is as follows

〈k2〉
(
1 − βsingle

c

)
(1 − μ) + 〈k2(k2 − 1)〉βsingle

c =
〈

k2

[
1 − βsingle

c + βsingle
c μ + (

1 − βsingle
c − μ

)
μ

〈k2〉
〈k2

2〉

]k2
〉
. (11)

V. RESULTS FAR FROM THE THRESHOLD

A. Epidemic prevalence

In what follows we investigate how the group interaction
in 2-complex affect the epidemic prevalence in the UAU-SIS
model. In Fig. 7, we plot the epidemic prevalence ρI as a
function of α� for different awareness probabilities α and ini-
tial seeds ρA(0). When α� < α�c or α < αc−, i.e., the shaded
area of Fig. 7(a), the information layer cannot affect the epi-
demic layer because the information cannot spread out. For
the unshaded area of Fig. 7(a), which satisfies α� > α�c and
α ∈ (αc−, αc+), the epidemic prevalence may be suppressed
by increasing α�, but there is a certain failure rate, which is
related to the initial seeds on the information layer. Namely,

the more initial seeds there are in the information layer, the
more effective and stable it is to suppress the epidemic preva-
lence. Notice that αc+ can be obtained by Eq. (8) and αc− can
be expressed as a function of α�. For α > αc+ in Fig. 7(b),
the results of prevalence are independent of the initial
seeds.

From Fig. 7(b), one learns that the increase of α� can
effectively inhibit the disease only when α is low. With the
increase of α, such as α = 0.1 and 0.5, the inhibitory effect of
α� on disease decreases significantly. For low α, the pairwise
interaction cannot effectively spread information, resulting in
a large number of unaware individuals in the network when
the 2-simplices is missing. But the fraction of unaware nodes
in the population is already very small for high α (less than
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FIG. 7. The epidemic prevalence ρI as a function of α� for
different initial seeds ρA(0) and awareness probability α. The in-
formation layer uses a RSC network with 〈k1〉 = 20 and 〈k�〉 = 6,
and the epidemic layer is an ER network with 〈k2〉 = 6. Parame-
ters: N = 2000, κ = 0, η = 0.3, δ = 0.2, β = 0.2, μ = 0.3; (a) α =
0.005. Lines are the theoretical estimations of Eqs. (B1)–(B5), while
scatters in panels (a),(b) are simulation results obtained by averages
over 1000 and 100 independent runs, respectively.

17% for α = 0.5), regardless of whether or not the 2-simplices
are present.

The physical nature of the initial seeds in the information
layer is that these aware individuals are from external input
rather than being informed by other individuals in the pop-
ulation. In UAU-SIS model, the self-awareness of infected
individuals in the epidemic layer will also cause the external
input of information layer. In Fig. 8, we discuss the effect
of κ on the epidemic prevalence, where parameters α and
α� meet the requirements of the unshaded area of Fig. 7(a).
From Fig. 8(a), one can see that the dependence of the epi-
demic prevalence on the initial seeds disappeares suddenly
with the increase of κ . In Fig. 8(b), with the increase of κ ,
the region that can produce bistability gradually shrinks until
it disappears. When κ is not zero, the information layer may
obtain aware individuals through self-awareness at any time
step, which can play the role of the initial seeds. Therefore,
we can see that in Fig. 8(c) the information layer always has
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FIG. 8. The epidemic prevalence ρI as a function of self-
awareness probability κ in panel (a) and awareness probability α in
panel (b). The fractions of aware individuals as functions of time
for different κ in panel (c). Parameters: N = 2000, δ = 0.2, η = 0.3,
α� = 0.1, μ = 0.3.

a certain number of aware individuals. For low κ , aware indi-
viduals stabilize at a smaller proportion, which cannot activate
enough 2-simplices. When κ is larger than a certain critical
κc, a large number of 2-simplices is suddenly activated after
a period of accumulation of aware individuals, and as a result
the proportion of aware individuals is suddenly increased to a
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high level. Here, we give an example in Fig. 8(c) to visually
understand these phenomena in Figs. 8(a) and 8(b).

Moreover, Fig. 8(a) also shows that κc moves to the left
(i.e., the smaller κ value) as the infection probability β are
increased, since the external input of aware individuals is
proportional to the product of κ and infected individuals. And
we note that κc is usually very small when the parameter in
the epidemic layer is far away from its threshold. Figure 8(b)
shows that the increase of κ can well inhibit the disease
spreading when the awareness probability α is low. And κ

has no significant effect on the epidemic prevalence for high
α [e.g., α > 0.1 in Fig. 8(b)], which is consistent with the
conclusion of UAU-SIS model without 2-simplices [18].

B. Time series

In the classical SIS model, the density of infected indi-
viduals converges to a constant, the endemic state, after an
exponential growth [67]. However, in the epidemic layer of
the UAU-SIS model, there may be an attenuation region be-
tween the exponential growth region and the endemic state,
forming a peak; see Fig. 9(a). It can be clearly seen that
the attenuation region of the epidemic layer is caused by
the exponential growth region of the information layer. The
density of infected individuals first increases rapidly to peak,
then it decays because of the exponential growth of aware
individuals, and finally the densities of both infected individu-
als and aware individuals reach their steady states. Namely, a
necessary condition for the peak to occur is that the number of
aware individuals on the information layer grows more slowly
than the number of infected individuals on the epidemic layer.
In the original UAU-SIS model without simplicial complexes
(i.e., α� = 0.0), a low diffusion speed, which is from low
awareness probability α, always corresponds to a low density
of aware individuals. Furthermore, the low density of aware
individuals makes the peak very insignificant. Thus, a signifi-
cant peak is directly caused by the 2-simplices.

Let attenuation level �ρI denote the maximum of the
density of infected individuals minus the value of its steady
state, i.e., �ρI = ρI (t )max − ρI (∞). In Fig. 9(b), we plot �ρI

as a function of α� on the UAU-SIS model, which shows a
nonmonotonic change. The reason is that the density of aware
individuals and the speed of information diffusion increase
simultaneously when α� increases. We noticed that �ρI is
only 0.0030 if the 2-simplices is excluded (α� = 0). With the
increase of α� (0 < α� < 0.3), the density of aware individ-
uals increases, leading to the increase of �ρI . The density of
aware individuals is as high as 77.2% for α� = 0.3. With the
further increase of α�, the increase of the speed of information
diffusion makes �ρI decrease.

There are many parameters in the UAU-SIS model that
can improve the speed of information diffusion. For example,
the increase of initial seeds, ρA(0), can directly accelerate
the diffusion of information without changing the density of
aware individuals in the steady state. The increase of aware-
ness probability, α, can directly accelerate the diffusion of
information and increase the density of aware individuals
simultaneously. The increase of κ can indirectly accelerate the
diffusion of information by obtaining more aware individuals
through the feedback of the epidemic layer. In Fig. 10(a),

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.3 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

(o
r

)

Time

A

I

(a)

Δ = 0.3

(b)

Δ

Δ

FIG. 9. (a) The fractions of aware individuals and infected in-
dividuals as functions of the time step in UAU-SIS model. (b) The
attenuation level �ρI as a function of α�. The information layer uses
a RSC network with 〈k1〉 = 20 and 〈k�〉 = 6, and the epidemic layer
is an ER network with 〈k2〉 = 6. Lines are the theoretical estima-
tions of Eqs. (B1)–(B5), while scatters in panel (a) are simulation
results obtained by averages over 100 independent runs. Parameters:
N = 2000, κ = 0.0, η = 0.3, δ = 0.2, β = 0.2, μ = 0.3, α = 0.01,
ρA(0) = 0.05.

there is a sudden increase in attenuation level �ρI , which is
the phase transition of whether a number of 2-simplices are
activated, and the phase transition point moves to the left (i.e.,
the smaller α value) as the initial seeds ρA(0) are increased.
Meanwhile, there is also a nonmonotonic phenomenon in
Fig. 10(a) under the same reason in Fig. 9(b). In Fig. 10(b), we
can see that �ρI decays almost exponentially as κ increases.
From Fig. 10, the increase of initial seeds makes �ρI rapidly
and monotonically decrease, which is an effective way to
avoid the peak in the epidemic layer.

VI. CONCLUSION

In summary, we have studied how the “complex contagion”
(2-simplices) of the information layer affects the epidemic
spreading in the UAU-SIS model on multiplex networks. We
find that self-awareness plays a key role in epidemic threshold,
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The information layer uses a RSC network with 〈k1〉 = 20 and
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epidemic prevalence, and time series, which is different from
the previous view.

A lot of anomalous phenomena appear around the epi-
demic threshold. Multiple susceptibility peaks can emerge
in the susceptibility of the epidemic layer when both the
2-simplices and self-awareness are present, while the phe-
nomenon vanishes in the case of missing 2-simplices or absent
self-awareness. To be specific, there are two kinds of multiple
susceptibility peaks with completely opposite mechanisms
that occur in intervals αc− < α < αc+ and α < αc−, respec-
tively. In the former, the second peak represents the epidemic
threshold and the first peak is not earlier than the peak of
the information layer, while the latter is completely opposite.
The extra peak comes from a fluctuating migration in the
information layer that does not introduce a new threshold in
the epidemic layer. Finally, though the bistable phenomenon
in the UAU model will migrate to the UAU-SIS model when
self-awareness is absent, self-awareness can make the bistable
phenomenon disappear.

For the epidemic prevalence, the increase of α� can effec-
tively inhibit the disease when α is low. Bistable phenomenon
also appears in the epidemic prevalence of UAU-SIS model if
self-awareness κ is absent. With the increase of κ , the region
that can produce bistability gradually shrinks until it disap-
pears. The self-awareness of infected individuals causes the
external aware individuals input of information layer, which
is equivalent to supplementing the initial seeds ρA(0). As the
system is far from the epidemic threshold, a small κ can make
bistable phenomenon disappear.

For the time series, we find that the evolution of disease
is nonmonotonic, with a peak, which is unusual in the SIS
model. There are two conditions for producing a significant
peak: one is that the information layer grows more slowly than
the epidemic layer; the other is that the density of aware indi-
viduals is high. Thus, one basically do not see this peak until
the simplicial complexes is introduced. As self-awareness κ

increases, the relative height decreases almost exponentially
between the peak and the steady state.

To understand the dynamics theoretically after introducing
the simplicial complexes, we develop a modified heteroge-
neous mean-field theory for the UAU model on a single-layer
network and a modified partial effective degree theory for the
UAU-SIS model on multiplex networks, respectively. Further-
more, we find that the threshold relationship, which proposed
in Ref. [24], between single-layer networks and multilayer
networks remains valid even after considering the simplicial
complexes.

To summarize, our work captures some interesting and
surprising results on homogeneous multiplex networks. It is
an important research line of inquiry whether the introduction
of other network structures will exhibit completely different
properties. Meanwhile, the study of phase transition types is
also an important research line [68–71], and it is necessary
to study the phase transition types of various parameters of
our model. We believe our analysis will provide meaningful
guidance for future research.
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APPENDIX A: SIMULATION PROCEDURE

There are three ways to update the state of discrete-time
UAU-SIS model in the same time step, that is, the information
layer is updated before the epidemic layer (UAU first), the
information layer is updated after the epidemic layer (SIS
first), and the two layers are updated simultaneously (Simul-
taneously). Here, we compare the three simulation ways in
Fig. 11 and find that it has no influence on our results for the
update order of states of different layers in the same time step.

For the case of “Simultaneously,” the simulation procedure
works as follows:
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FIG. 11. The fractions of aware individuals and infected individ-
uals as functions of the time step for three simulation ways. The
information layer uses a RSC network with 〈k1〉 = 20 and 〈k�〉 = 6,
and the epidemic layer is an ER network with 〈k2〉 = 6. Scatters
are simulation results obtained by averages over 100 independent
runs. Parameters: N = 2000, κ = 0.0, η = 0.3, δ = 0.2, β = 0.2,
μ = 0.3, α = 0.01, α� = 0.3, ρA(0) = 0.05.

Step 1: At time step t , calculate each individual’s
transition probabilities. The probabilities at which
a US individual becomes AS, AI, UI, and US are
[1 − (1 − α)na (1 − α�)n� ](1 − β )ni , [1 − (1 − α)na (1 −
α�)n� ][1 − (1 − β )ni ], (1 − α)na (1 − α�)n� [1 − (1 − β )ni ],
(1 − α)na (1 − α�)n� (1 − β )ni , respectively. Here, ni, na, and
n� are the number of infected immediate neighbors, the
number of aware immediate neighbors, and the number of
2-simplices with two other aware nodes, respectively. The
probabilities at which a AS individual becomes AS, AI,
UI, and US are (1 − δ)(1 − ηβ )ni , (1 − δ)[1 − (1 − ηβ )ni ],
δ[1 − (1 − ηβ )ni ], δ(1 − ηβ )ni , respectively. The prob-
abilities at which a UI individual becomes AS, AI,
UI, and US are [1 − (1 − κ )(1 − α)na (1 − α�)n� ]μ,
[1 − (1 − κ )(1 − α)na (1 − α�)n� ](1 − μ), (1 − κ )(1 −
α)na (1 − α�)n� (1 − μ), (1 − κ )(1 − α)na (1 − α�)n�μ,
respectively. The probabilities at which a AI individual
becomes AS, AI, UI, and US are (1 − δ)μ, (1 − δ)(1 − μ),
δ(1 − μ), δμ, respectively.

Step 2: At time step t + 1, all individuals update their states
in a synchronous way according to the probabilities of Step 1.

Step 3: Repeat Steps 1–2 until the predetermined time
period is reached.

For the case of “UAU first,” the simulation procedure
works as follows:

Step 1: At time step t , update the state of each node in the
information layer by the following probabilities calculation.
The probability at which a US individual becomes AS is
1 − (1 − α)na (1 − α�)n� . The probability at which a UI in-
dividual becomes AI is 1 − (1 − κ )(1 − α)na (1 − α�)n� . The
probability at which a AS individual becomes US is δ. The
probability at which a AI individual becomes UI is δ.

Step 2: Update the state of each node in the epidemic layer
by the following probabilities calculation. The probability

at which a US individual becomes UI is 1 − (1 − β )ni . The
probability at which a AS individual becomes AI is 1 − (1 −
ηβ )ni . The probability at which a UI individual becomes US
is μ. The probability at which a AI individual becomes AS is
μ. Note that the updated state from Step 1 is used in this step.

Step 3: The current time step is increased by 1.
Step 4: Repeat Steps 1–3 until the predetermined time

period is reached.
For the case of “SIS first,” the simulation procedure works

as follows:
Step 1: At time step t , update the state of each node in

the epidemic layer by the following probabilities calculation.
The probability at which a US individual becomes UI is 1 −
(1 − β )ni . The probability at which a AS individual becomes
AI is 1 − (1 − ηβ )ni . The probability at which a UI individual
becomes US is μ. The probability at which a AI individual
becomes AS is μ.

Step 2: Update the state of each node in the information
layer by the following probabilities calculation. The probabil-
ity at which a US individual becomes AS is 1 − (1 − α)na (1 −
α�)n� . The probability at which a UI individual becomes AI
is 1 − (1 − κ )(1 − α)na (1 − α�)n� . The probability at which
a AS individual becomes US is δ. The probability at which
a AI individual becomes UI is δ. Note that the updated state
from Step 1 is used in this step.

Step 3: The current time step is increased by 1.
Step 4: Repeat Steps 1–3 until the predetermined time

period is reached.

APPENDIX B: MODIFIED DISCRETE-TIME PARTIAL
EFFECTIVE DEGREE THEORY ON UAU-SIS MODEL

WITH SIMPLICIAL COMPLEXES

Here, we modify partial effective degree theory [21,24]
to accommodate the introduction of simplicial complexes.
Specifically, the information layer uses the modified hetero-
geneous mean-field theory in Sec. III and the epidemic layer
adopts the effective degree theory in Ref. [65]. As a result,
individuals are classified as Xk1,k�

Ys,i, where X ∈ {U, A} and
Y ∈ {S, I}. The subscripts k1 and k� are the number of neigh-
bors and 2-simplexes in the information layer for a selected
individual, and the subscripts s and i denote the number of
its susceptible and infected neighbors in the epidemic layer,
where s + i = k2. Note that Xk1,k�

Ys,i(t ) is also used to denote
the fraction of individuals in corresponding states at the time
step t . For the sake of clarity and convenience, all possible
state transitions of individuals at each time step are shown in
Fig. 12.

In the information layer, we use HU→A,S (or HU→A,I ) to
denote the probability that an unaware individual in class
Uk1,k�

Sm,n (or Uk1,k�
Im,n) becomes an aware individual dur-

ing the next time step. Considering pairwise interactions,
2-simplices, and self-awareness, we have

HU→A,S = 1 − (1 − αϕ)k1 (1 − α�ϕ2)k�,

HU→A,I = 1 − (1 − αϕ)k1 (1 − α�ϕ2)k� (1 − κ ), (B1)

where ϕ is the probability of an unaware individual in contact
with any aware individual (corresponding to φ in Sec. III), and
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FIG. 12. Schematic illustration of the transition of the whole
classes at one time step, where m + n = s + i.

its value can be calculated by

ϕ =
∑

k1,k�,m,n k1
(
Ak1,k�

Sm,n + Ak1,k�
Im,n

)
∑

k1,k�
k1P1(k1, k�)

.

In the epidemic layer, we use HU,S→I (or HA,S→I ) to de-
note the probability that a susceptible individual in class
Uk1,k�

Sm,n (or Ak1,k�
Sm,n) becomes an infected individual dur-

ing the next time step. Considering pairwise interaction and
self-protection, we have

HU,S→I = 1 − (1 − β )n,

HA,S→I = 1 − (1 − ηβ )n. (B2)

In effective degree theory, changes in individual states and in
its subscripts occur simultaneously. We use FS,m→s to denote
the probability of the subscript transformation from Xk1,k�

Sm,n

to Xk1,k�
Ss,m+n−s, and FI,m→s to denote the probability of the

subscript transformation from Xk1,k�
Im,n to Xk1,k�

Is,m+n−s. Let
p be the number of infected individuals recovered, we have

FS,m→s =
min{s,n}∑

p=max{0,s−m}

[(
n

p

)
μp(1 − μ)n−p ×

(
m

p − s + m

)
Gp−s+m

S (1 − GS )s−p

]
,

FI,m→s =
min{s,n}∑

p=max{0,s−m}

[(
n

p

)
μp(1 − μ)n−p ×

(
m

p − s + m

)
Gp−s+m

I (1 − GI )s−p

]
, (B3)

where GS and GI are the probabilities that a susceptible neighbor of susceptible and infected individuals becomes an infected
neighbor during the next time step, and their values are calculated by

GS =
∑

k1,k�,m,n m
(
Ak1,k�

Sm,nHA,S→I + Uk1,k�
Sm,nHU,S→I

)
∑

k1,k�,m,n m
(
Uk1,k�

Sm,n + Ak1,k�
Sm,n

) ,

GI =
∑

k1,k�,m,n n
(
Ak1,k�

Sm,nHA,S→I + Uk1,k�
Sm,nHU,S→I

)
∑

k1,k�,m,n n
(
Uk1,k�

Sm,n + Ak1,k�
Sm,n

) .

According to Eqs. (B1)–(B3), the modified discrete-time partial effective degree Markov chain equations for the UAU-SIS
model are shown as follows:

Ak1,k�
Ss,i(t + 1) =

∑
m+n=s+i

{
(1 − δ)(1 − HA,S→I )FS,m→sAk1,k�

Sm,n(t ) + HU→A,S (1 − HU,S→I )FS,m→sUk1,k�
Sm,n(t )

+ (1 − δ)μFI,m→sAk1,k�
Im,n(t ) + HU→A,IμFI,m→sUk1,k�

Im,n(t )
}
,

Ak1,k�
Is,i(t + 1) =

∑
m+n=s+i

{
(1 − δ)HA,S→I FS,m→sAk1,k�

Sm,n(t ) + HU→A,SHU,S→I FS,m→sUk1,k�
Sm,n(t )

+ (1 − δ)(1 − μ)FI,m→sAk1,k�
Im,n(t ) + HU→A,I (1 − μ)FI,m→sUk1,k�

Im,n(t )
}
,

Uk1,k�
Is,i(t + 1) =

∑
m+n=s+i

{
δHA,S→I FS,m→sAk1,k�

Sm,n(t ) + (1 − HU→A,S )HU,S→I FS,m→sUk1,k�
Sm,n(t )

+ δ(1 − μ)FI,m→sAk1,k�
Im,n(t ) + (1 − HU→A,I )(1 − μ)FI,m→sUk1,k�

Im,n(t )
}
,

Uk1,k�
Ss,i(t + 1) =

∑
m+n=s+i

{
δ(1 − HA,S→I )FS,m→sAk1,k�

Sm,n(t ) + (1 − HU→A,S )(1 − HU,S→I )FS,m→sUk1,k�
Sm,n(t )

+ δμFI,m→sAk1,k�
Im,n(t ) + (1 − HU→A,I )μFI,m→sUk1,k�

Im,n(t )
}
. (B4)
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Finally, the fractions of aware individuals and infected individuals in UAU-SIS model at time step t are calculated by

ρI (t ) =
∑

k1,k�,s,i

[
Uk1,k�

Is,i(t ) + Ak1,k�
Is,i(t )

]
, ρA(t ) =

∑
k1,k�,s,i

[
Ak1,k�

Ss,i(t ) + Ak1,k�
Is,i(t )

]
. (B5)

In Secs. V A and V B, we show that the numerical solutions
of the partial validity theory are consistent with the Monte

Carlo simulation results in both time series and epidemic
prevalence.
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