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Nonlinear transport in the presence of a local dissipation
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We characterize the particle transport, particle loss, and nonequilibrium steady states in a dissipative one-
dimensional lattice connected to reservoirs at both ends. The free-fermion reservoirs are fixed at different
chemical potentials, giving rise to particle transport. The dissipation is due to a local particle loss acting on the
center site. We compute the conserved current and loss current as functions of voltage in the nonlinear regime
using a Keldysh description. The currents show steplike features that are affected differently by the local loss:
the steps are either smoothened, nearly unaffected, or even enhanced, depending on the spatial symmetry of the
single-particle eigenstate giving rise to the step. Additionally, we compute the particle density and momentum
distributions in the chain. At a finite voltage, two Fermi momenta can occur, connected to different wavelengths
of Friedel oscillations on either side of the lossy site. We find that the wavelengths are determined by the chemical
potentials in the reservoirs rather than the average density in the lattice.
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I. INTRODUCTION

Understanding the role of dissipation is one of the most
important questions in quantum physics, since dissipation can
hardly be avoided in any physical system. The dissipative
coupling of a quantum system to an environment generally
leads to the exchange of energy and to quantum decoherence
[1]. It is therefore often detrimental to applications taking
advantage of quantum coherence. Controlled dissipation can,
however, be an essential tool in the preparation and stabi-
lization of novel, nonequilibrium quantum states [2,3], or the
study of dissipative phase transitions [4]. Examples include
the preparation of squeezed states with ultracold atoms [5],
a Tonks-Girardeau gas of molecules [6], or entanglement
among trapped ions [7], and the dissipative stabilization of
a photon Mott insulator [8]. Dissipation engineering can also
be used as a tool in quantum information processing [3,9] and
to control quantum transport [10,11].

In recent years, a new experimental platform has emerged
to study the effects of dissipation. Cold-atom experiments
allow us to almost perfectly isolate quantum systems from
their environment, but also to engineer dissipation pro-
cesses in a controlled way, for example in the form of
local particle losses [4,12–15]. Theoretically, local losses
and dephasing have been investigated in weakly interacting
[16–18] and hard-core [19,20] bosonic atoms, the Bose-
Hubbard model [21–24], and fermions in one [25–29] and
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two [30] dimensions, with a focus on the presence of the
quantum Zeno effect [1,31]. Further recent studies have elu-
cidated the effect of dissipation and dephasing on transport
properties.

Steady-state transport through a system, e.g., a wire or
a quantum dot, coupled to leads is a nonequilibrium sit-
uation with much practical importance in nanotechnology
[32,33], and it is one of the most common ways to charac-
terize the properties of new materials or devices. Whereas
transport experiments were initially mostly used for prob-
ing solid-state devices, transport setups have recently also
been engineered with cold atoms. For example, cold-atom
analogs of a two-terminal transport measurement [34] realize
a typical setup of mesoscopic devices, where the system of
interest is coupled to two leads at different chemical po-
tentials. In these cold-atom experiments, it is now possible
to investigate the effects of dissipation on particle transport
in a controlled way. In particular, such experiments offer a
possibility to study the effects of particle losses or dephasing
on a nonequilibrium steady state, generated by a chemical
potential difference. Theoretically, it has been shown that
dephasing can lead to diffusive transport in quantum coher-
ent systems, while in the presence of disorder, delocalization
and noise-assisted transport can arise from dephasing (see
Ref. [35] and references therein). In the case of local particle
losses, it was shown that transport through a one-dimensional
lattice can be robust to a local loss [36]. On the other hand,
a cold-atom setup with a lossy quantum point contact was
used to demonstrate a reduction of conductance plateaus
[14] and a robustness of superfluid transport to particle loss
[37].

The theoretical treatment of transport can be performed
via different routes. While in the linear-response regime,
where the external field is small, conductivity is generally
given by the Kubo formula [38], at finite voltages other
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theoretical methods are required. In the case of noninter-
acting fermions, coherent transport can be described in the
Landauer-Büttiker formalism [39]. For interacting particles,
in the nonlinear regime, most theoretical descriptions are
based on either nonequilibrium Green’s function methods
[40–42], where the system coupled to leads is described by
a Hamiltonian operator and the time evolution is unitary, or
quantum master equations [35,43], where the coupling to the
leads is modeled by particle losses and gains at the bound-
aries. Quantum master equation approaches are valid when
the system-reservoir coupling is weak, while nonequilibrium
Green’s function techniques can be applied at any coupling
strength, but interactions are typically taken into account
only approximately. The analytic correspondence between the
Hamiltonian evolution of a system coupled to fermionic (or
bosonic) reservoirs and the Lindblad evolution of an open
quantum system with losses and gains at the boundaries is an
interesting question and has inspired recent theoretical studies
[44,45].

Here, we study theoretically a local particle loss in
a one-dimensional lattice coupled to fermionic reservoirs.
An approximate way to model systems of this type is a
non-Hermitian Hamiltonian within the Landauer-Büttiker for-
malism [14], but an exact solution can be found through
nonequilibrium Green’s functions written in the Keldysh for-
malism [46] extended to open quantum systems [47]. The
lossy site in our model is governed by Lindblad evolution,
while the other lattice sites and the reservoirs evolve unitarily.
This system’s conductance, which measures transport in the
zero-voltage limit, was analyzed in detail in our previous
work [36], and we focus here on the finite-voltage regime.
We explore the effects of a local dissipation on the nonlinear
current-voltage characteristics, which in the absence of dissi-
pation have steplike features. A steplike voltage dependence
is also found for the loss current. Interestingly, the analytic
form of the currents coincides with a system where the particle
loss is replaced by a third terminal, given that certain con-
ditions, such as the absence of gain from the third terminal,
are satisfied [45]. Furthermore, we analyze the loss current
and the momentum and density distributions in the lattice.
The momentum distribution shows the presence of two Fermi
surfaces, with Fermi momenta determined by the chemical
potentials of the reservoirs. This is reflected in the Friedel
oscillations, the wave vector of which changes across the lossy
site.

The paper is organized as follows: The model for the
open quantum system is introduced in Sec. II. Section II
also introduces the relevant quantities to characterize trans-
port, particle loss, and the nonequilibrium steady states, and
it summarizes the calculation of nonequilibrium correlation
functions in the Keldysh formalism. This section contains
and expands some of the points discussed in Ref. [36]. Be-
fore discussing the results, a simple equilibrium model is
presented in Sec. VII to gain understanding of certain fea-
tures of the nonequilibrium observables. In Secs. III–VI,
we analyze the current-voltage characteristics and loss cur-
rent and discuss properties of the steady states. Conclusions
and an outlook are given in Sec. VIII. Results for addi-
tional parameters as well as technical details are presented in
the Appendixes.

FIG. 1. (a) A lattice of M sites is connected to reservoirs at both
ends, and a local particle loss with amplitude γ acts on the center
site. The coupling to the reservoirs τ1 is in general different from
the tunneling amplitude τ within the lattice. (b) Representation of
the different energy scales. In the reservoirs, states up to the chem-
ical potentials μL,R are filled at zero temperature, as shown by the
Fermi distributions nF (ω) on either side. The eigenenergies of an
isolated lattice are depicted by the horizontal lines within the box in
the middle. The current through the lattice changes in steps when
the chemical potentials coincide with eigenenergies of the lattice.
Adapted from Ref. [36].

II. MODEL AND METHODS

A. Quantum master equation

The system is depicted in Fig. 1: a one-dimensional lattice
is coupled at both sides to a free-fermion reservoir and sub-
jected to a local particle loss acting on the central site. In the
absence of loss, the system is described by the Hamiltonian

H =
∑

i=L,R

Hi + Hchain + Ht, (1)

where the indices L and R denote the left and right reservoirs,
respectively. The reservoirs are described by the free-fermion
Hamiltonian

Hi =
∑

k

(εk − μi )ψ
†
ikψik, (2)

where ψ
†
ik (ψik) is the fermionic creation (annihilation) oper-

ator acting on reservoir i, k denotes momentum, and εk is the
energy. We set h̄ = 1 for simplicity. The chemical potential
μi of the reservoirs is in general different for i = L, R, which
imposes a voltage V = μL − μR between the reservoirs. In the
following, we choose the chemical potentials symmetrically
as μL,R = ±V/2. We assume that the density of states of the
reservoirs is a constant and thus have the linear dispersion
relation εk = vF (k − kF ), where vF is the Fermi velocity and
kF is the Fermi momentum.

The Hamiltonian operator for the lattice is

Hchain = ε

l∑
j=−l

d†
j d j − τ

l−1∑
j=−l

(d†
j+1d j + H.c.), (3)

where d†
j (d j) is the fermionic creation (annihilation) operator

acting on site j, and τ is the tunneling amplitude within the
chain. The lattice spacing is set to 1. We also consider the
case of a single site, or quantum dot, and the tunneling term
in Eq. (3) only exists if the chain has more than one site.
Additionally, we consider an energy offset ε that is equal for
all sites in the chain. The length of the chain is M = 2l + 1,
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so that the results presented here are for odd M. The value
M = 1 corresponds to a quantum dot. The Hamiltonian

Ht = −τ1[ψ†
L (0)d−l + d†

l ψR(0) + H.c.], (4)

written in position basis, describes the tunneling between the
ends of the chain and the respective reservoirs. In momen-
tum basis, the field operators at r = 0 are given by ψ

†
i (0) =∑

k ψ
†
ik. The tunneling occurs at one spatial point r = 0 in

each reservoir, with tunneling amplitude τ1.
In the presence of the particle loss on the center site, we

use the quantum master equation

dρ

dt
= −i[H, ρ] + γ

[
LρL† − 1

2
{L†L, ρ}

]
, (5)

which gives the time evolution of the density operator ρ. The
loss rate is denoted by γ , and the Lindblad jump operator L
here is the annihilation operator at site j = 0, i.e., L = d0,
representing the losses. In the following, numerical values of
the parameters are reported as dimensionless, so that V , ε,
and γ are in units of the lattice tunneling amplitude τ , the
lattice-reservoir coupling τ1 is in units of τ

√
V , where V is

the volume of the reservoirs, and τ is fixed to τ = 1/(πρ0V ),
where ρ0 is the constant density of states of the reservoirs per
unit volume. We additionally define the parameter 	 = πρ0τ

2
1

with units of energy.

B. Observables

To characterize transport, we calculate the conserved par-
ticle current I through the lattice system. The current is
connected to the change of particle numbers in the reservoirs,

I = −1

2

d

dt
〈NL − NR〉 (6)

= − iτ1

2
(〈d†

−lψL(0)〉 − 〈ψ†
L (0)d−l〉 + 〈ψ†

R(0)dl〉

− 〈d†
l ψR(0)〉), (7)

where the second and third lines are obtained through Eq. (5)
(see Refs. [36,44,45] for details). The expectation values are
defined as 〈A〉 = Tr(Aρ) for a generic operator A, and the par-
ticle number operator is Ni = ∫

drψ†
i (r)ψi (r) with i = L, R.

We also compute the loss current

Iloss = − d

dt
〈NL + NR〉 = γ 〈n0〉 , (8)

which is connected to the particle number at the center site,
〈n0〉 = 〈d†

0 d0〉 (see Appendix A).
To characterize the effect of the local dissipation on the

nonequilibrium steady states, we calculate the particle density
〈n j〉 = 〈d†

j d j〉 and momentum distribution in the lattice,

〈nk〉 = 〈d†
k dk 〉 =

M∑
i, j=1

ϕi,kϕ j,k 〈d†
i d j 〉 , (9)

where the indexing of the lattice sites is shifted to i, j ∈
{1, . . . , M} for simplicity. We use the basis functions of an
isolated lattice, not coupled to leads, with open boundary

conditions,

ϕ j,k =
√

2

M + 1
sin(k j).

The quasimomentum has the discrete values k = nπ/(M + 1)
with n ∈ {1, 2, . . . , M}.

C. Keldysh formalism

To compute nonequilibrium expectation values in the
steady state, we use the functional integral formulation of the
Keldysh formalism [46], where the integration extends over a
closed time contour. The Keldysh action S is written as a sum
of the coherent and dissipative terms,

S =
∑

i=L,R

Si + Schain + Sτ1 + Sloss. (10)

The first terms Si correspond to the reservoirs i = L, R, the
second one represents the one-dimensional chain, and the
third represents the coupling of the chain and the reservoirs.
The local dissipation at the center site is described by the
term Sloss. The action is written in the basis of fermionic
coherent states parametrized by the Grassmann variables ψ =
(ψ+, ψ−), where the vector elements correspond to the for-
ward and backward time contours.

We apply the bosonic convention to perform the Keldysh
rotation into a basis (ψ1, ψ2), where the action for the uncou-
pled reservoirs has the form

Si =
∫ ∞

−∞

dω

2π

(
ψ̄1

i ψ̄2
i

)
G−1

i (ω)

(
ψ1

i

ψ2
i

)
. (11)

In this basis, the inverse Green’s function G−1
i (ω) has the

standard matrix structure

G−1
i (ω) =

(
0

[
GA

i

]−1[
GR

i

]−1 [
G−1

i

]K
)

, (12)

where GA
i , GR

i , and GK
i are the advanced, retarded, and

Keldysh Green’s functions. Since the steady-state correlation
functions do not depend on time, it is convenient to use the
frequency representation. The Keldysh component is given by

GK
i = (

GR
i − GA

i

)
[1 − 2nF (ω − μi )] (13)

and [G−1
i ]K = −[GR

i ]−1GK
i [GA

i ]−1. Here, nF (ω) = (eω/T +
1)−1 denotes the Fermi-Dirac distribution at temperature T .
We set the temperature to zero in both reservoirs, and we use
natural units where kB = 1.

The reservoirs are modeled by local Green’s functions at
the point r = 0 where the tunneling occurs,

GR,A
L/R (r = 0, ω) = 1

V
∑

|k|��/vF

1

ω − εk ± iη
. (14)

Here, V denotes the volume of the reservoirs, and iη is an in-
finitesimal imaginary part. As the linear dispersion relation is
unbounded, we set formally a cutoff ±�/vF on the reservoir
spectrum. We mostly focus on the limit � → ∞, where the
real part of Eq. (14) vanishes. A finite cutoff and a finite real
part of GR,A

L/R are connected to the appearance of bound states
outside the reservoir energy continuum, which we discuss in
detail in Sec. VII.
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The action for the one-dimensional chain consists of two
contributions,

Schain =
l∑

j=−l

S j +
l−1∑
j=−l

S j,τ . (15)

Here, S j is the action for the different lattice sites, and it
has the same form as Eq. (11) for the reservoirs, where the
retarded and advanced Green’s functions for the lattice sites
are GR,A

j = (ω − ε ± iη)−1, and GK
j is given by Eq. (13). The

second term in Eq. (15) corresponds to tunneling within the
lattice. The loss term Sloss is added to the action of the central
site [47],

Sloss =
∫

dω

2π

(
d̄1

0 d̄2
0

)( 0 − iγ
2

iγ
2 iγ

)(
d1

0

d2
0

)
.

The action S for the full system can be written in matrix
form as

S =
∫

dω/(2π )�̄(ω)G−1(ω)�(ω). (16)

Here, we write the inverse Green’s function G−1 in the basis
of all the different fields,

� = (
ψ1

L ψ2
L d1

−l d2
−l · · · d1

l d2
l ψ1

R ψ2
R

)T

(17)

in a tridiagonal block form

G−1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

L T1 0 · · · 0
T1 D−l T 0

0 T . . . T
0 T D0 T

... T . . . T
T Dl T1

0 T1 R

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(18)

consisting of complex-valued matrix blocks of size 2 × 2. The
corner blocks L and R correspond to the leads, which in the
case of an unbounded reservoir spectrum read

L/R =
(

0 − i
πρ0

i
πρ0

2i
πρ0

tanh
(

ω−ε
2T

)), (19)

where ρ0 is the constant density of states per unit volume of
the reservoirs. The matrix blocks corresponding to the lattice
sites apart from j = 0 are

Dj �=0 =
(

0 ω − ε − iη

ω − ε + iη 2iη tanh
(

ω−ε
2T

)), (20)

and the block for the central site is

Dj=0 =
(

0 ω − ε − iγ /2

ω − ε + iγ /2 iγ

)
. (21)

For Dj=0, the infinitesimal imaginary term iη is suppressed
due to the finite imaginary part arising from the loss term. The
tunneling matrix elements are contained in the off-diagonal
blocks

T1 =
(

0 τ1

τ1 0

)
, T =

(
0 τ

τ 0

)
.

The expectation value of the current I of Eq. (6) is written
in terms of the Grassmann variables as

I = iτ1

4

∫ ∞

−∞

dω

2π

( 〈
d1

−l ψ̄
1
L (0)

〉 − 〈
ψ1

L (0)d̄1
−l

〉
+ 〈

ψ1
R(0)d̄1

l

〉 − 〈
d1

l ψ̄1
R(0)

〉 )
(22)

and the particle density in the lattice is given by

〈n j〉 = 1

2

∫ ∞

−∞

dω

2π

( 〈
d1

j d̄1
j

〉 − 〈
d1

j d̄2
j

〉 + 〈
d2

j d̄1
j

〉 )
. (23)

The matrix formulation of the action provides a simple al-
gorithm for obtaining two-operator correlation functions by
matrix inversion. For the quadratic action of Eq. (10), corre-
lation functions such as in Eqs. (22) and (23) are written as
Gaussian path integrals,

〈ψaψ̄b〉 =
∫

D[ψ̄, ψ]ψaψ̄beiS[ψ̄,ψ] = iGab, (24)

where a, b denote the relevant indices in the basis (17). Two-
operator correlation functions can be obtained as the matrix
elements of G simply by inverting G−1 [36,37,48–51]. The
matrix inversion can be done analytically for small lattice
sizes, and for large lattices, such as those studied in Secs. V
and VI, it provides a convenient numerical algorithm. Note
that this formulation is equivalent to solving the Keldysh
Green’s functions from the Dyson equation [40–42,45]. Fur-
ther details can be found in Refs. [36,45].

III. CURRENT-VOLTAGE CHARACTERISTICS

A change in the particle number of the reservoirs is con-
nected to particle currents. More precisely, a nonzero time
derivative of the reservoir particle number results from two
factors: The first is the flow of particles from one reservoir
to the other when there is a chemical potential difference
between the reservoirs. This is the conserved current defined
by Eq. (6). The second is the loss current due to the particle
loss. It is nonzero also in the absence of a chemical potential
difference and is given by Eq. (8). In this section, we focus
on the conserved current, which is typically used to charac-
terize transport, here through the lossy system. Evaluating the
expectation values in Eq. (7) gives the expression

I =
∫ ∞

−∞

dω

2π
g(ω)[nL(ω) − nR(ω)] (25)

for the conserved current. Here, we define ni(ω) = nF (ω −
μi ). In this section, we discuss the limit of an infinite energy
continuum in the reservoirs � → ∞. The consequences of a
finite cutoff � are detailed in Appendix B 2.

A. Quantum dot

We first discuss a single lossy quantum dot coupled to
leads. In this case, g(ω) has the form of a Lorentzian distri-
bution

g(ω) = 4	(γ + 4	)

(γ + 4	)2 + 4(ω − ε)2
. (26)

The distribution is centered around the chemical potential of
the dot ε. Physically, the width of the distribution γ + 4	,
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FIG. 2. Conserved current I through a quantum dot coupled to
leads as a function of voltage for (a),(c) ε = 0 and (b),(d) ε = 1.
The current is scaled by the coupling 	 = πρ0τ

2
1 . The tunneling

amplitude is τ1 = 0.1 in panels (a),(b) and τ1 = 0.5 in panels (c),(d).
The vertical line in panels (b) and (d) marks the voltage at which the
chemical potential of the left reservoir coincides with the quantum
dot energy level. Here, V , γ , and ε are in units of τ , τ1 is in units of
τ
√

V , and τ = 1/(πρ0V ).

where 	 = πρ0τ
2
1 , corresponds to the inverse lifetime of the

particle at the quantum dot. Both a larger tunneling τ1 be-
tween the quantum dot and the reservoirs and a larger loss
rate γ from the dot lead to a broadening of the distribution,
connected to a shorter lifetime.

Using Eqs. (25) and (26), the conserved current at zero
temperature is

I = 	

π

[
arctan

(
V − 2ε

γ + 4	

)
+ arctan

(
V + 2ε

γ + 4	

)]
. (27)

Figure 2 shows the conserved current as a function of the
applied voltage for a quantum dot. In the symmetric case
ε = 0, the chemical potential of the quantum dot lies in the
middle of the chemical potentials of the leads. In the absence
of dissipation, the current increases quickly with voltage and
then saturates to I = 	. The broadening due to coupling to
the reservoirs τ1 leads to a slower increase of the current with
voltage, as seen in Fig. 2(c). The influence of the losses on
the current is drastic. With increasing amplitude of the losses
on the quantum dot, the current is strongly reduced for the
voltages shown here. This reduction of the current at low
voltages stems from the effective broadening of the energy
level of the quantum dot by the dissipation. At large values of
γ , there is only a slow, almost linear rise. However, at infinite
voltage, the current saturates to I = 	 independently of the
finite loss rate γ .

The current-voltage curves change significantly in the case
of an energy offset ε = 1, shown in panels (b) and (d). In
this situation, the curves have a step at V = 2ε, where the
chemical potential of the left reservoir coincides with the
chemical potential of the quantum dot. Both the broadening
induced by the dissipation and the coupling to the reservoirs
smoothen out the steplike feature and lead to a slow rise of the
current.

FIG. 3. Integrand g(ω) of Eq. (25) for the three-site system.
There are three maxima approximately at the eigenenergies of the
isolated system, marked by dashed vertical lines. Here, ε = 0 in the
left column and ε = 1 in the right, τ1 = 0.1 in panels (a),(b) and
τ1 = 0.5 in panels (c),(d).

B. Three or more sites

For a lattice with M sites, the existence of M eigenstates
leads to more complex current-voltage characteristics. This is
connected to the structure of the integrand g(ω), which we
plot for a three-site system in Fig. 3. The function has three
maxima at frequencies ω = E0 and ω ≈ E±, where E0 = ε

and E± = ε ± √
2τ are the eigenenergies of an isolated three-

site system not coupled to leads. The positions of the outer
peaks are shifted by the coupling to the reservoirs: For γ = 0,
these peaks are shifted to ω = ε ± √

2τ 2 − 	2 and are simul-
taneously broadened.

A nonzero dissipation rate γ leads to a further shift and
broadening, as shown in Fig. 3. However, a different broad-
ening arises for the different peaks: The outermost peaks
at ω ≈ E± are reduced and broadened much more than the
central one at ω = ε. This is related to the symmetry of the
isolated eigenstates pointed out in Ref. [36] in the context of
the conductance. The eigenstates of an isolated lattice are ei-
ther symmetric or antisymmetric, having either a finite overlap
or a node at the center site, respectively. As the dissipation
takes place at the center site, particles occupying the isolated
antisymmetric eigenstates are not depleted by the loss. For the
three-site system, the eigenstate with energy ε is antisymmet-
ric, and therefore the corresponding central peak is reduced
much less by the dissipation than the outermost peaks, which
arise from the symmetric eigenstates.

The resonance structure due to single-particle eigenstates
leads to a characteristic voltage dependence of the conserved
current. In the absence of dissipation, the current-voltage
curve has multiple pronounced steps at voltages correspond-
ing approximately to the single-particle eigenenergies of the
isolated system, as seen in Figs. 4(a), 4(b), and 5. More
precisely, a step occurs approximately when the chemical
potential in either the left or the right lead coincides with one
of the eigenenergies in the isolated chain. These positions of
the discontinuities are exact only in the τ1 → 0 limit, and a
larger coupling to the leads induces a broadening and shift of
the steps, seen in Figs. 4(c) and 4(d). The conserved current
saturates at large voltages. For the three-site system, in the
absence of dissipation, the saturation value is obtained as
	̃ = 	τ 2/(	2 + τ 2).
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FIG. 4. Conserved current I as a function of voltage in a three-
site system for (a),(c) ε = 0 and (b),(d) ε = 1. The current is scaled
by 	̃ = 	τ 2/(	2 + τ 2). In panels (a),(b), τ1 = 0.1, and in (c),(d),
τ1 = 0.5. The units of the parameters are the same as in Fig. 2. The
current has a steplike structure with steps approximately at voltages
2|En|, marked by dashed vertical lines, where En are the single-
particle eigenenergies of an isolated system. For large dissipation γ ,
the steps arising from symmetric eigenstates disappear, while a larger
coupling τ1 leads to a smoothening of all steps.

The current-voltage curves are dramatically altered by the
dissipation. Different effects occur depending on which eigen-
states contribute to the transport, arising from the modification
of the integrand g(ω). This can be seen in Fig. 4 where some
of the steps are broadened and reduced more than others.
Concentrating on ε = 0, we can compare the step arising at
V = 0 for odd and even l . The odd-l case is seen, e.g., in
Figs. 4(a) and 5(b) for three and 23 sites, and the even-l case in
Figs. 2(a) and 5(a) for the quantum dot and five sites. Whereas
for odd l , the step is relatively robust even if a large dissipation
is applied, the corresponding step for even l is smoothened
out and nearly disappears with large dissipation. A similar
effect is observed for the steps at higher voltages, where every
second step is preserved while the others are suppressed by
the dissipation. This behavior is connected to the form of the
integrand g(ω), where the peaks corresponding to symmetric
eigenstates are reduced by the dissipation much more than the
ones corresponding to antisymmetric eigenstates. The broad-
ening of the peaks also leads to a nonmonotonic dependence
of the current on γ at certain voltages.

FIG. 5. Conserved current I as a function of voltage in a system
of (a) 5 and (b) 23 sites, with ε = 0 and τ1 = 0.1. The saturation
current at γ = 0 is close to 	 and is scaled by this value.

FIG. 6. For three or more sites, the saturation value of the current
at large voltage decays with γ . For M = 23, the value of the current
at V = 5 is used as Isat. We set here τ1 = 0.1.

The saturation value of the current Isat at large voltage
decreases in the presence of dissipation, decaying as ∼1/γ

for γ � 	. Figure 6 shows the saturation current as a function
of dissipation rate, which is found to be approximately the
same for lattices of three or more sites. For three sites, Isat is
obtained analytically as the limit limV →∞ I , while for larger
lattice sizes we use the value of the current at a voltage that is
larger than the lattice bandwidth. The maximum of Isat at zero
dissipation is very close to 	 when 	 � τ .

IV. LOSS CURRENT

In this section, we first discuss the dependence of the loss
current on the dissipation rate γ . In the first subsection, we
focus on the symmetric case ε = 0, where the loss current is
independent of voltage, as explained in Appendix A. The loss
current displays a counterintuitive nonmonotonic dependence
on the dissipation rate, known as the quantum Zeno effect.
Secondly, we focus on the voltage dependence of the loss
current in the case of a nonzero energy offset ε.

The loss current, defined in Eq. (8), is proportional to the
occupation of the lossy site and thus is given by the integral

Iloss = γ

∫ ∞

−∞

dω

2π
f (ω)[nL(ω) + nR(ω)]. (28)

Since the conserved current I of Eq. (25) depends on the
difference of the two Fermi distributions, and the chemical
potential in either reservoir limits the range of the integration,
I has no strong dependence on the value of the cutoff when
V < �. The loss current instead depends on the sum of the
two Fermi distributions, and therefore the occupation and loss
current potentially have a stronger dependence on the cutoff.
In this section, we therefore analyze in detail the effect of a
finite cutoff.

A. Nonmonotonic dependence on γ

A chain of atoms with a local particle loss has been shown
to display the so-called quantum Zeno effect [12,21,25–28],
where the loss current behaves nonmonotonically with the
dissipation strength. Whereas for weak dissipation the loss
current is proportional to the loss amplitude, at large dis-
sipation the loss current paradoxically becomes inversely
proportional to γ . This is because in the γ → ∞ limit, the
tunneling to the dissipative site is strongly suppressed due to
the energy mismatch between the neighboring sites.

The origin of the quantum Zeno effect as an energy mis-
match can be exemplified by the system of a single quantum
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FIG. 7. The loss current as a function of γ at V = ε = 0 for
different system sizes and cutoffs �. (a) For the quantum dot, the
� → ∞ limit is given by Eq. (31). In this limit, the loss current sat-
urates at 2	, while for finite � there is a nonmonotonic dependence.
(b) For three or more sites, Iloss is nonmonotonic independently of
the value of the cutoff. The solid, dashed, and dotted lines mark the
different values of � as in panel (a). The many-site system and the
quantum dot with a finite cutoff have the same ∼1/γ dependence
at large γ , where the curves for different lattice sizes and different
values of � overlap. We set here τ1 = 0.5.

dot coupled to reservoirs. In this case, the function f (ω) in
Eq. (28) has the form

f (ω) = 8	

(γ + 4	)2 + 4(ω − ε)2
(29)

in the � → ∞ limit, and the integral (28) evaluates to

Iloss = 2	γ

π (γ + 4	)

[
π + arctan

(
V − 2ε

γ + 4	

)

− arctan

(
V + 2ε

γ + 4	

)]
. (30)

For V = 0 and ε = 0, this simplifies to

Iloss = 2	γ

γ + 4	
. (31)

For an infinite cutoff �, the loss current therefore saturates at
large γ with the saturation value 2	. Thus, when the energy
of the particles tunneling to the quantum dot is unbounded,
there is no energy mismatch that would suppress tunneling
even for γ → ∞, and the quantum Zeno effect does not occur.
The nonmonotonic dependence is recovered if a finite cutoff
is imposed. This is shown in Fig. 7(a) where the loss current
is plotted for different values of the cutoff. The value of γ

at which it has its maximum depends on the cutoff, and the
quantum Zeno effect is only present if this energy scale is
smaller than the dissipative coupling.

For a lattice of three or more sites, we find a nonmonotonic
dependence for all values of the cutoff, even in the � → ∞
limit, as shown in Fig. 7(b). The additional lattice sites in this
case provide an effective cutoff on the energies from which
particles can tunnel to the lossy site. The loss current can be
obtained analytically in the � → ∞ limit when the lattice size
is small, and we plot the curves with both finite and infinite
cutoff for three sites. For the largest lattice size M = 51 we
only show the numerical solution in the case of finite �. For
different values of �, the curves overlap for γ � 10, and the

FIG. 8. The quantum dot occupation (a),(c) and the loss current
(b),(d) as functions of voltage for different values of γ . In panel
(a) the lines for γ = 5 and 100 are very close to zero, and in panels
(b) and (d) the loss current is zero for γ = 0. Here, ε = 1 and the
coupling to the reservoirs is τ1 = 0.1 (a),(b) and τ1 = 0.5 (c),(d). The
vertical lines mark the voltage at which μL coincides with ε.

same dependence Iloss ∝ γ −1 is recovered for different lattice
sizes M � 3 as for the quantum dot system with a finite cutoff.

B. Voltage dependence

We find that the loss current for an energy offset ε = 0
is independent of the voltage (see Appendix B 3). However,
in the presence of an energy offset ε �= 0, the loss current
acquires a dependence on the voltage. Figure 8 shows the
occupation of a quantum dot coupled to reservoirs and the
loss current from the dot. For ε = 1, we see that the quantum
dot is nearly empty when the chemical potential of the left
reservoir is below ε. A steplike increase in the occupation
occurs when μL = V/2 coincides with ε. The quantum dot
becomes occupied, and at larger voltages the occupation ap-
proaches one-half. This change is reflected in the loss current
Iloss, which shows a steplike dependence on voltage for inter-
mediate dissipation rates. Mathematically, the existence and
position of the step can be understood from Eq. (29), where
similarly to g(ω) in Eq. (25), the function f (ω) has a maxi-
mum at ε.

The steplike change is the most pronounced for a small
coupling τ1 [Figs. 8(a) and 8(b)]. When the coupling to
the leads is larger, the occupation of the dot changes more
smoothly since particles can more easily tunnel in and out
of the dot. This results in a wider step in the loss current as
seen in Figs. 8(c) and 8(d). For large γ , one can see that the
integrand f (ω) is broadened into a constant and the step is
smoothened out completely. We consider here the limit � →
∞, where the loss current saturates at large γ . The case of a
finite cutoff is presented in Appendix B 2 for completeness.

For three sites and an energy offset ε = 1, a more com-
plex voltage dependence appears due to the resonances of
the reservoir chemical potential with single-particle eigenen-
ergies. This is shown in Fig. 9. At zero voltage, without
dissipation, the center site is half-filled as the chemical
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FIG. 9. The occupation of the lossy site and the loss current in a
three-site system with ε = 1, (a),(b) τ1 = 0.1, and (c),(d) τ1 = 0.5.
The line colors are as in Fig. 8. The vertical lines mark the voltages
V/2 = |En|, where En are the single-particle eigenstates in the τ1 →
0 limit.

potential in the reservoirs is above the lowest eigenenergy of
the lattice. The corresponding eigenstate is one of the two
symmetric eigenstates which have a nonzero overlap with
the lossy site and contribute to the occupation on that site.
With increasing voltage, the chemical potential of the right
reservoir becomes lower than the lowest eigenstate energy,
leading to a drop in the center site occupation to approxi-
mately 0.25 at V = 2|ε − √

2τ |. When the voltage increases
further, the chemical potential on the left exceeds the highest
eigenenergy corresponding to the other symmetric eigenstate,
and the occupation increases to one-half again. For τ1 = 0.1,
shown in Fig. 9(a), there is no visible change in the occupation
at V = 2ε where μL crosses the eigenenergy in the middle of
the spectrum. This is because the corresponding eigenstate is
antisymmetric and does not contribute to the occupation of the
center site in the τ1 → 0 limit. For larger τ1, as in Fig. 9(b),
the eigenstates are modified so that the centermost eigenstate
develops a finite overlap with the lossy site. This leads to a
small increase of the occupation 〈n0〉 between voltages V =
2|ε − √

2τ | and 2(ε + √
2τ ).

When the particle losses act, the center site occupation is
significantly reduced already for small dissipation, making
the distinctive features almost invisible. One can see that
for a weak coupling to the leads, the dissipation is much
more effective in depleting the central site [Fig. 9(a)] than at
larger coupling [Fig. 9(b)]. In the loss current, an interesting
change in behavior can be observed when the dissipation rate
increases. For small dissipation γ = 0.5, the loss current has
the same decrease and subsequent increase as the center site
occupation in the absence of dissipation, determined only by
the symmetric eigenstates. However, this dependence changes
crucially for larger values of γ , where the antisymmetric
eigenstate also becomes of importance. The voltage depen-
dence changes into a single step centered around V = 2ε,
corresponding to the eigenenergy of the antisymmetric eigen-
state, as seen in Figs. 9(b) and 9(d). This is due to the fact
that for large γ , the occupation of the symmetric eigenstates

FIG. 10. The quasimomentum distribution 〈nk〉 in the lattice at
different dissipation rates. The leftmost column [panels (a),(d),(g)]
shows 〈nk〉 in the full lattice, as given by Eq. (9). The middle and
rightmost columns correspond to the left and right halves of the
lattice, with momentum distribution given by Eqs. (32) and (33),
respectively. On the first row (a)–(c), the voltage is V = 0, on the
second row (d)–(f), V = 1, and on the third row (g)–(i), V = 5. The
Fermi momenta given by Eq. (34) are marked by vertical gray lines.
The lattice chemical potential is set to ε = 1, so that at zero voltage
and in the absence of dissipation, the lattice filling is 1/3.

is almost completely depleted, while particles in the anti-
symmetric eigenstate are less affected. Therefore, features
arising from the antisymmetric eigenstate become visible,
causing this drastic change in the loss current as a function of
dissipation.

V. MOMENTUM DISTRIBUTION
AND FRIEDEL OSCILLATIONS

For larger systems, it is interesting to study not only the
occupation of the center site but also of the remaining lat-
tice. While diffusive transport, such as in metallic wires [52],
leads to a linear change in the steady-state particle density,
and the transport of free fermions is ballistic with a uniform
density distribution, the local particle loss creates a density
drop across the lossy site [36]. The latter situation is different
from what is typical for either diffusive or ballistic transport.
In addition to the density drop, the density distribution shows
interesting features connected to the momentum distribution,
and we present both in this section. In the first subsection we
concentrate on ε = 1, where the average filling is one-third in
the lossless lattice, and in the second subsection we discuss
the half-filled lattice with ε = 0.

A. One-third filling

The momentum distribution is drawn in Fig. 10. The first
column of the figure shows the distribution in the full lattice,
given by Eq. (9), and the second and third columns corre-
spond to the left and right halves excluding the lossy site. The
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momentum distribution in the left (L) and right (R) halves is
given by

〈nkL〉 =
(M−1)/2∑

i, j=1

ϕi,kϕ j,k 〈d†
i d j 〉 , (32)

〈nkR〉 =
(M−1)/2∑

i, j=1

ϕi,kϕ j,k 〈d†
(M+1)/2+id(M+1)/2+ j〉 , (33)

where ϕ j,k = (2/
√

M + 1) sin(k j) and the quasimomentum
is discretized as k = 2nπ/(M + 1) with n ∈ {1, 2, . . . , (M −
1)/2}.

When the chemical potentials of the reservoirs are equal,
as in the first row, the lattice filling is one-third. The lowest
momentum states are occupied up to the Fermi momentum
kF ≈ π/3 in the absence of dissipation. For an isolated lattice
at zero temperature, 〈nk〉 would have a sharp discontinuity
at kF . Here, however, the momentum states are not the exact
eigenstates due to the coupling to the reservoirs, and therefore
the discontinuity is rounded. When V = 0, the momentum
distributions are equal in the left and right halves of the lat-
tice, as seen in Figs. 10(b) and 10(c). The main effect of the
local dissipation is to deplete the occupation of the symmetric
eigenstates which have a large overlap with the lossy site. This
results in the minima at every second momentum value in
panels (a),(d),(g). For small loss rates (γ = 0.1), the depletion
is strongest for the lowest-momentum eigenstate, which has
the largest amplitude at j = 0. The momentum distributions
in the left and right halves are calculated in the basis of states
where the wave function is zero at j = 0. They therefore
exclude the states that are depleted by the dissipation and do
not show an alternating pattern.

In the situation in which the chemical potential is different
in the left and right reservoirs but the voltage is smaller than
the lattice bandwidth, such as V = 1 in Figs. 10(d)–10(f),
the momentum distribution of the dissipation-free system has
two steps. Their positions coincide with the Fermi momenta
that would exist in an equilibrium system where the lattice
is coupled to only the left or right reservoir. These Fermi
momenta in the lattice can be estimated by equating the
chemical potentials in either reservoir with the Fermi energy
εF = ε − 2τ cos(kF ) in the lattice. The Fermi momentum is
then given by

kF,i = arccos

(
− μi

2τ
+ ε

2τ

)
. (34)

A similar feature was measured in the energy distribu-
tion of quasiparticles in mesoscopic wires [52], where two
discontinuities appear at the Fermi levels of the leads. The
height of the second discontinuity, however, changes across
the wire, whereas here it is fixed at 0.5. This is because
unlike in mesoscopic wires, where transport is diffusive and
the electron density changes linearly across the wire, the
free-fermion system studied here is ballistic in the absence
of particle loss and the density is uniform. Figures 10(e) and
10(f) also show that in the limit of strong dissipation, each half
of the lattice develops a single Fermi momentum determined
by the chemical potential of the reservoir on that side. This
corresponds to an imbalance in the average density between
the left and right halves [36]. The particle density distribution

FIG. 11. Particle density 〈nj〉 for a lattice of 51 sites with ε =
1 and τ1 = 0.5 as in Fig. 10. The average filling for γ = 0 is 1/3.
The density imbalance between the left and right sides develops as a
combined effect of the finite voltage and dissipation.

in the lattice is plotted in Fig. 11, where a nonzero voltage
and a strong dissipation are indeed seen to give rise to a sharp
density drop across the lossy site in panels (b) and (c).

Apart from a minimum at the lossy site and an imbal-
ance between the left and right sides at nonzero voltage
and dissipation, we observe that the background density—the
particle density in the lattice away from the lossy site—has
a nonmonotonic dependence on the dissipation rate. This is
seen most clearly in Fig. 11(a): after an initial depletion of
the density with γ > 0, the average density approaches the
γ = 0 value in the limit of large γ . A similar nonmonotonic
behavior in the absence of a voltage was reported previously
in Ref. [27] and has its origin in the quantum Zeno effect.
When there is a chemical potential difference between the
reservoirs, as in Figs. 11(b) and 11(c), the limiting value
of the average density does not approach the γ = 0 value
anymore, but a density drop develops across the lossy site.
In the γ → ∞ limit, the density distribution is equal to that
of two disconnected halves of the lattice, in each of which
the filling is determined only by the density in the reservoir
coupled to that half.

The presence of a boundary in a fermionic system typically
leads to Friedel oscillations. In an equilibrium system, Friedel
oscillations have a wave vector 2kF , where kF = n0π is the
Fermi momentum and n0 is the average density. This matches
the wave vector seen in Fig. 11(a) for γ = 0. Furthermore, we
see that in the lossy system, the wave vector is approximately
equal for different dissipation rates. The wavelength of the
Friedel oscillations is therefore determined by the density of
the reservoirs rather than the average density in the lattice.
This is consistent with the observation that the local loss does
not change the Fermi momentum in Fig. 10 but rather depletes
alternating momentum states across the spectrum.

In the case V = 1, the wave vector of the Friedel oscilla-
tions is different in the left and right halves. For large γ , the
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FIG. 12. The quasimomentum distribution nk in the lattice, as in
Fig. 10, for ε = 0. The first row (a)–(c) corresponds to V = 0, the
second row (d)–(f) to V = 1, and the third row (g)–(i) to V = 5. At
zero voltage and in the absence of dissipation, the lattice is half-filled.

wave vector on either side is 2kF,i, with kF,i given by Eq. (34):
On the left side, the Fermi momentum is kF,L ≈ 0.2π , so that
the wavelength of the oscillations is λL ≈ 2.4. This matches
the approximately 10 wavelengths contained in 25 sites in
Fig. 11(b). On the right, kF,R ≈ 0.4π . The expected wave-
length is λR ≈ 4.3, which agrees with the ∼5 wavelengths
within 25 sites in the right half of the lattice.

Interestingly, in either half, Friedel oscillations occur with
a different wave vector at γ = 0 than γ = 500, and it seems
that the wave vectors are inverted between the left and right
sides. This feature is not reflected by the left and right mo-
mentum distributions, which at γ = 0 are nearly identical. In
Fig. 11(c), the right half of the lattice is empty for γ = 500,
while the left half is less than fully filled and displays Friedel
oscillations with a wave vector given by the hole density. With
the energy offset ε = 1, the lattice filling in the γ → ∞ limit
reaches zero in the right half at V = 2, where the argument of
the arccos function in Eq. (34) is equal to 1. A full filling of
the left half is correspondingly reached at V = 6.

B. Half-filling

The momentum distribution for ε = 0, where the lattice
without losses is half-filled, is plotted in Fig. 12. For equal
chemical potentials in the reservoirs, the momentum states
are filled up to kF = π/2, while at V = 1 there are two dis-
continuities at the Fermi momenta given by Eq. (34) with
μL,R = ±V/2 and ε = 0. When the voltage is larger than the
bandwidth, such as in Figs. 12(g)–12(i), all momentum states
are equally occupied in the absence of dissipation. For small
dissipation γ = 0.1, the maximum depletion occurs for the
lowest and highest momentum states symmetrically, while for
stronger dissipation, the depletion of symmetric eigenstates is
nearly uniform across the spectrum.

Figure 13(a) shows the density distribution at ε = μL =
μR = 0, where the lossless lattice is half-filled and Friedel

FIG. 13. Particle density 〈nj〉 for a lattice of 51 sites as a function
of the position j for different voltages V and losses γ with ε = 0 and
τ1 = 0.5.

oscillations are suppressed due to particle-hole symmetry.
Interestingly, Friedel oscillations are absent even for nonzero
γ when the steady-state particle density deviates from half-
filling. At a finite voltage V = 1, Friedel oscillations appear
at the boundaries with the reservoirs and around the dissi-
pative site. While in the right half of the lattice, the average
density in the large-γ limit is below one-half and the wave
vector of the Friedel oscillations is determined by the particle
density, on the left side the average density is above one-half
and the Friedel oscillations are governed by the hole density.
They therefore have the wave vector 2(1 − n0)π = 2kF,R. Fig-
ure 13(c) shows the density distribution in the case in which
the voltage V = 5 is larger than the bandwidth 4τ with τ = 1.
For large dissipation γ = 500, the left half of the lattice is
nearly fully filled and the right half empty, apart from small
deviations at the edges of the lattice. In the fully filled or
empty system, there are no Friedel oscillations. We observe
that the oscillations are also absent for smaller values of
γ where the average density of the lattice is close to 1/2.
This is connected to the absence of a Fermi momentum in
Figs. 12(g)–12(i).

VI. PARTICLE DENSITY IMBALANCE

In the presence of both a finite voltage and a particle loss,
a density drop develops across the lossy site. This is seen
in Figs. 11 and 13. Here, we analyze the resulting average
density imbalance δn between the left and right halves of the
lattice, excluding the lossy site,

δn = 〈nL〉 − 〈nR〉 = 2

M − 1

( ∑
j<0

〈n j〉 −
∑
j>0

〈n j〉
)

. (35)

We focus on the case ε = 0, where the lattice is half-filled in
the absence of loss. In Fig. 14, we plot the density imbalance
as a function of voltage for the representative case of seven
lattice sites. The imbalance has a steplike behavior similar to
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FIG. 14. The average imbalance δn as a function of voltage in a
lattice of seven sites, with (a) τ1 = 0.1 and (b) τ1 = 0.5. A larger cou-
pling τ1 leads to the broadening of the steps. The vertical lines mark
the values V/2 = En, where En are the single-particle eigenstates in
the τ1 → 0 limit.

the conserved current and loss current discussed in Secs. III
and IV B: For a sufficiently large loss, it grows in steps ap-
proximately when the chemical potential in either reservoir
coincides with an eigenenergy of an isolated lattice. These
steps, however, occur only for the energies of antisymmetric
eigenstates, since symmetric eigenstates are depleted by the
dissipation and do not contribute to changes in the average
density. This can be seen in Fig. 14, where the steps occur
at ε = 0 and approximately at ε = √

2τ . A larger coupling
to the reservoirs leads, as for the currents, to a broadening of
the steps. In Sec. VII, we show that the broadening can be
reproduced by a simple model of a quantum dot coupled to a
single reservoir at equilibrium.

The imbalance is shown for a lattice of 51 sites in
Fig. 15(a), where the antisymmetric eigenstate energies are
marked by vertical lines. The imbalance saturates when the
voltage exceeds the bandwidth of the lattice, with a saturation
value that depends on γ . We find that the overall slope is
very well reproduced by (kF,L − kF,R)/π , with kF,i given by
Eq. (34), when this function is multiplied by the saturation
value extracted from the numerical result. In panel (b), we plot
the saturation value at V = 5 as a function of the dissipation
rate. The result for 51 sites coincides with the result for three
sites. These results with fixed voltage are reproduced by the
analytic limit V → ∞ of the three-site lattice, which for large

FIG. 15. (a) The average imbalance as a function of voltage for
a 51-site lattice, calculated as in Eq. (35), for τ1 = 0.5. The voltages
where V/2 coincides with the eigenvalues of antisymmetric eigen-
states are marked with vertical lines. The overall slope matches the
estimate (kF,L − kF,R )/π with kF,i given by Eq. (34) (see the text).
(b) The saturation imbalance at V = 5 as a function of the dissipation
rate coincides for 51 and 3 sites, and it is reproduced by the simple
formula (36).

FIG. 16. The energy diagram of a quantum dot with energy level
ε coupled to a single reservoir. At zero temperature, states up to μ in
the reservoir are filled and the rest are empty.

γ can be approximated by (see Appendix C)

lim
V →∞

δn ≈ γ

2τ 2

	
+ γ

. (36)

A larger coupling to the reservoirs, therefore, leads to a larger
saturation imbalance in this limit, which is seen in Fig. 14 for
seven sites.

VII. QUANTUM DOT COUPLED TO A SINGLE
RESERVOIR AT EQUILIBRIUM

In this section, we introduce a simple model of a single
quantum dot coupled to a reservoir at equilibrium, illustrated
in Fig. 16. This model displays similar features in the oc-
cupation of the quantum dot to those found for the particle
density and average density imbalance in a lattice coupled
to reservoirs in the presence of the local loss. Namely, the
broadening of the steps in the particle density imbalance with
stronger coupling to the reservoirs, such as in Fig. 14, is also
present in the single-dot equilibrium model. The connection
exists only for the particle densities and not for currents, since
in the equilibrium system there is no transport or particle loss.
In the previous sections, we mostly discuss the limit of an
unbounded spectrum of reservoir eigenvalues, but here we
analyze in detail the effects of a finite cutoff in the spectrum.
The simple model allows us to distinguish the contribution of
the continuous reservoir spectrum and that of discrete bound
states to the quantum dot occupation, and to determine at
which value of the cutoff the contribution of bound states is
negligible.

We consider a linear dispersion relation of the reservoirs,
so that the density of states is constant within the energy
interval [−�,�] indicated in Fig. 16, ρ(ω) = ρ0�(� − |ω|).
The density of states is therefore discontinuous at ω = ±�,
and as derived in Appendix D, these discontinuities lead to the
existence of two bound states at discrete energies outside the
reservoir energy continuum. Spatially, the bound states have
overlap with both the quantum dot and the reservoir. They
therefore contribute to the occupation of the quantum dot.
While a constant density of states is the simplest choice and
can be used as an approximation of more complex situations,
it is exact, for example, for the quadratic dispersion relation in
two dimensions. Discontinuities or singularities in the density
of states lead to the occurrence of bound states also, for
example, in the case of a quadratic dispersion relation in one
dimension, or a one- or two-dimensional cosine dispersion.
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FIG. 17. (a) The two contributions to the quantum dot occupa-
tion, given by Eqs. (37) and (38), indicated by the dotted and dashed
lines. The different colors correspond to different values of τ1. The
contribution of the bound states nP decays for increasing � while
the contribution of the reservoir energy continuum nBC increases.
When μ = ε = 0, the occupation is 0.5 independent of the cutoff
�. (b),(c) The occupation nd as a function of the reservoir chemical
potential μ with ε = 0. The steplike change in the occupation is
smoothened out for larger tunneling amplitudes, similar to the av-
erage density imbalance in Fig. 14. (b) For a small cutoff � = 1,
the bound-state contribution is finite when the coupling is large
(τ1 = 1). (c) For a larger cutoff � = 3, the bound-state contribution
is negligible for all values of τ1 shown here.

The equilibrium occupation of the quantum dot is given
by nd = ∫ ∞

−∞ dωnF (ω − μ)A(ω), where A(ω) is the spectral
function at the quantum dot. As detailed in Appendix D,
this integral has contributions arising both from the reservoir
energy continuum and the bound states outside the contin-
uum, corresponding to a branch cut and poles of the retarded
Green’s function on the real axis, respectively. We can sepa-
rate these two contributions to the quantum dot occupation:
nd = nBC + nP, where

nBC = 1

π

∫ �

−�

dω
nF (ω − μ)	

[ω − ε − �1(ω)]2 + 	2
(37)

and

nP =
∑
Eb

nF (Eb − μ)

|1 − ∂ω�1(ω)|ω=Eb

. (38)

Here, �1(ω) = 	
π

(ln |ω + �| − ln |ω − �|) is the real part
of the retarded self-energy. The two bound states occur at
frequencies Eb, which are solved from Eb − ε − �1(Eb) = 0.
Figure 17(a) shows how nBC and nP depend on the cutoff and

the coupling to the reservoir in the symmetric situation where
the quantum dot energy level ε and the reservoir chemical
potential μ are both in the middle of the reservoir energy
continuum, ε = μ = 0. While the bound-state contribution
decays with increasing cutoff, the continuum contribution
correspondingly increases so that they sum up to nd = 0.5.
A smaller coupling τ1 leads to a faster decay of nP.

In Figs. 17(b) and 17(c), we plot the occupation of the
quantum dot as a function of the chemical potential μ of the
reservoir, with a fixed value of the cutoff �. For μ = −�,
the occupation is given by the contribution of the bound state
below the reservoir continuum. In panel (b) we fix � = 1,
for which this contribution is negligible for small couplings
τ1 = 0.2 and 0.5. The quantum dot is therefore empty when
the chemical potential of the reservoir is equal to the lower
cutoff. For τ1 = 1, the bound-state contribution is nP ≈ 0.2,
so that the quantum dot is partly filled already at μ = −�. On
the other hand, for chemical potentials μ � � the dot is never
fully filled since the finite contribution of the bound state
above the reservoir continuum is not included. For a larger
cutoff, such as � = 3 in panel (c), the bound-state contribu-
tion is negligible for all values of the coupling shown here, and
the occupation grows from close to zero to approximately one
when the reservoir chemical potential changes from μ = −�

to �. For a large coupling τ1 = 1 there is a smooth change
in occupation, whereas for decreasing values of τ1 the change
becomes steplike. This behavior is similar to that observed for
the density imbalance in larger lattices in Sec. VI.

Furthermore, the particle density at the outermost sites of a
three-site lattice coupled to reservoirs at either end is given
by equations similar to Eqs. (37) and (38) in the γ → ∞
limit (see Appendix D 4). The contribution of the reservoir
continuum is given by Eq. (37), replacing μ by the chemical
potential of either the left or right reservoir. In the bound-state
contribution of Eq. (38), μ is replaced by ε. The simple model
of a quantum dot coupled to a single reservoir at equilibrium
produces, therefore, an expression for the particle density that
is almost identical to the nonequilibrium occupation in the
three-site lattice in this limit.

VIII. CONCLUSIONS

In this paper, we characterize transport in the nonlinear
regime and properties of nonequilibrium steady states in a
lattice coupled to free-fermion reservoirs, subjected to a local
particle loss at the center site. We find that the nonlinear
current-voltage characteristics shows interesting steplike fea-
tures. These steps are either smoothened out or preserved
in the presence of the particle loss. Similar features appear
in the loss current and the particle density imbalance between
the left and right halves of the lattice. An explanation for
these features and their modification by the dissipation is
found through the single-particle eigenstates of an isolated
lattice. We show that features arising from spatially symmetric
eigenstates are smoothened out by the local dissipation, while
those arising from antisymmetric eigenstates are more robust
to dissipation or enhanced by it.

For nonzero voltages within the lattice energy band, the
momentum distribution in the lattice shows two disconti-
nuities at Fermi momenta corresponding to the chemical
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potential in either reservoir. In the absence of dissipation,
transport in the lattice is ballistic and the momentum distribu-
tion is independent of position. This is connected to a uniform
density distribution. A local particle loss depletes alternating
momentum states depending on their spatial overlap with the
lossy site, while the Fermi momentum is unchanged by the
local dissipation. The preservation of the Fermi momentum
is observed in the wave vector of Friedel oscillations in the
density distribution, which in most cases is unchanged by the
dissipation. We furthermore introduce an equilibrium model
of a quantum dot coupled to a single reservoir. This sim-
ple model displays the same broadening characteristics with
increasing coupling to the reservoirs as is observed in the
average density imbalance of the nonequilibrium model in the
presence of dissipation.

The nonequilibrium phenomena reported here are relevant
for transport in mesoscopic wires [52], where local elec-
tron losses could be implemented through additional leads
[53–56]. In cold-atom experiments, transport and nonequilib-
rium steady-state properties have recently been explored in the
presence of local particle losses and lattice potentials [4,12–
15,57]. It would be interesting to compare the effects of a
local particle loss to those of local dephasing [17,18,58]. Fur-
thermore, the theoretical analysis applied here could also be
used for studying transport through periodically driven (lossy)
impurities [59–62], where resonance effects are expected to
occur.
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APPENDIX A: LOSS CURRENT, DERIVATION

In this Appendix, we show that in the considered setup,
the loss current Iloss = − d

dt 〈NL + NR〉 is proportional to the
particle number at the lossy site, Iloss = γ 〈n0〉. To show this,
we use Eq. (5),

d

dt
〈n0〉 = d

dt
Tr(n0ρ(t ))

= −iTr(n0[H, ρ]) + γ Tr

(
n0d0ρd†

0 − 1

2
n0{d†

0 d0, ρ}
)

= −i 〈[n0, H]〉 − γ 〈n0〉 .

In the Hamiltonian part, only the tunneling terms contribute,
giving

〈[n0, H]〉 = −τ (〈d†
0 d−1〉 − 〈d†

−1d0〉 + 〈d†
0 d1〉 − 〈d†

1 d0〉).
(A1)

Similarly, we can obtain the equation of motion for the other
sites j �= 0,

d

dt
〈n j〉 = iτ (〈d†

j d j−1〉 − 〈d†
j−1d j〉 + 〈d†

j d j+1〉 − 〈d†
j+1d j〉).

In the steady state, the time derivative vanishes for all lat-
tice sites, i.e., d

dt 〈n j〉 = 0. Thus, in Eq. (A1) we may replace

〈d†
0 d−1〉 − 〈d†

−1d0〉 = 〈d†
−1d−2〉 − 〈d†

−2d−1〉 = · · ·
= 〈d†

−lψL(0)〉 − 〈ψ†
L (0)d−l〉

and similarly

〈d†
0 d1〉 − 〈d†

1 d0〉 = 〈d†
l ψR(0)〉 − 〈ψ†

R(0)dl〉 .

The time derivative of 〈n0〉 can then be written as

d

dt
〈n0〉 = − d

dt
〈NL + NR〉 − γ 〈n0〉 = 0,

which leads to the relation Iloss = γ 〈n0〉.

APPENDIX B: RESERVOIRS WITH
A FINITE ENERGY CONTINUUM

1. General expressions

The local reservoir Green’s function of Eq. (14) can gen-
erally be written as a sum of its real and imaginary parts,
GR,A

L/R (r = 0, ω) = A(ω) ∓ iB(ω) (see also Appendix D). For
reservoirs with a constant density of states, we have the real
part A(ω) = ρ0(ln |ω + �| − ln |ω − �|), and the imaginary
part is B(ω) = πρ0�(� − |ω|). In the limit � → ∞, the
real part vanishes and the imaginary part is the constant
πρ0. When the cutoff � is finite, the imaginary part B(ω)
is zero for |ω| > �, and to evaluate correctly the integrals
of Eqs. (25) and (28), one has to take into account the in-
finitesimal imaginary term iη at |ω| > �. We therefore keep
iη in the local Green’s functions for the lattice site j = 0
with the particle loss: GR,A

j=0 = (ω − ε ± iγ /2 ± iη)−1 and

[G−1
j=0]K = iγ + 2iη[1 − 2nF (ω − ε)]. The expression for the

conserved current is now

I =
∫ �

−�

dω

2π
g̃(ω)[nL(ω) − nR(ω)], (B1)

where the modified function g̃(ω) contains the finite real part
of the local reservoir Green’s function. It is proportional to
the imaginary part and therefore zero for |ω| > �. The loss
current is

Iloss = γ

∫ �

−�

dω

2π
f̃ (ω)[nL(ω) + nR(ω)]

+ γ

∫ −�

−∞

dω

2π
fη(ω)nF (ω − ε)

+ γ

∫ ∞

�

dω

2π
fη(ω)nF (ω − ε). (B2)
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The Fermi function nF (ω − ε) appears in the integrals over
|ω| > �, and fη(ω) is a function that depends on the in-
finitesimal iη. In the limit � → ∞, we have g̃(ω) → g(ω)
and f̃ (ω) → f (ω), and the second and third lines in Eq. (B2)
vanish.

2. Conserved and loss current for the quantum dot

In this section, we discuss a single lossy quantum dot
coupled to leads. When the cutoff � is finite, the integrand
g̃(ω) in the expression (B1) for the conserved current has the
form

g̃(ω) = 4	(γ + 4	)

(γ + 4	)2 + 4
[
ω − ε − 2τ 2

1 A(ω)
]2 . (B3)

Compared to the limit of infinite reservoirs taken in Eq. (B3),
a finite cutoff and the presence of a finite A(ω) term leads to
a shift of the maximum of the Lorentzian distribution. The
position of the maximum approaches ω = ε in the limit τ1 →
0. For unbounded reservoirs, as in Fig. 2, the current saturates
at I = 	 in the limit of infinite voltage, independently of the
loss rate γ . Keeping a finite cutoff � instead leads to a decay
of the saturation value with increasing loss as ∼1/γ .

For a single quantum dot coupled to reservoirs, the function
f̃ (ω) in Eq. (B2) is

f̃ (ω) = 8	

(γ + 4	)2 + 4
[
ω − ε − 2τ 2

1 A(ω)
]2 (B4)

and

fη(ω) = 8η

(γ + 2η)2 + 4
[
ω − ε − 2τ 2

1 A(ω)
]2 . (B5)

Figure 7 shows that the dependence of the loss current on
dissipation is very different when there is a finite cutoff com-
pared to an unbounded reservoir spectrum. At zero voltage, an

FIG. 18. (a) The quantum dot occupation and (b) the loss current
as functions of voltage for a finite cutoff � = 10. When � is finite,
the loss current has a nonmonotonic dependence on γ . The coupling
to the reservoirs is τ1 = 0.1 and ε = 1.

unbounded spectrum leads to saturation of the loss current
at 2	 when γ → ∞. This is also seen at nonzero voltages
in Fig. 8. Here, we show the dependence of the loss current
on voltage when the cutoff is finite. In this case, it is given
by Eqs. (B2), (B4), and (B5). At weak dissipation, the loss
current has a steplike behavior, as seen in Fig. 18(b), while
at larger γ the step is smoothened out. The loss current ap-
proaches zero at all voltages when γ → ∞. The loss current
therefore has a nonmonotonic dependence on the loss rate γ

at all voltages.

3. Voltage-independent loss current at ε = 0

When the function f̃ (ω) in Eq. (B4) is an even function of
ω, the loss current is independent of voltage. We show here
explicitly that this occurs for the quantum dot and the three-
site system when the momentum cutoff in the reservoirs is
chosen symmetrically around zero, k ∈ [−�/vF ,�/vF ], and
the chemical potentials in the reservoirs are chosen symmet-
rically around this zero level, μL,R = ±V/2. In the expression
for the loss current, Eq. (B2), the function f̃ (ω) is given by
Eq. (B4) for a single quantum dot coupled to reservoirs. For
three sites coupled to reservoirs, the function f̃ (ω) is

f̃ (ω) = 8	τ 2

4[2τ 2 + ω(A(ω)τ 2
1 − ω)]2 + (	γ + 4τ 2)2 + γ 2(A(ω)τ 2

1 − ω))2 − 16τ 4 + 4ω2
.

For both the quantum dot and three sites, the function fη(ω) is independent of voltage, and at ε = 0, f̃ (ω) is an even function of
ω in both cases. We can rewrite∫ �

−�

dω

2π
f̃ (ω)[nL(ω) + nR(ω)]

=
∫ �

0

dω

2π
f̃ (ω)

[
nF

(
ω − V

2

)
+ nF

(
ω + V

2

)]
+

∫ �

0

dω

2π
f̃ (−ω)

[
nF

(
− ω − V

2

)
+ nF

(
− ω + V

2

)]
=

∫ �

0

dω

2π
f̃ (ω)

[
nF

(
ω − V

2

)
+ nF

(
− ω + V

2

)
+ nF

(
ω + V

2

)
+ nF

(
− ω − V

2

)]
= 2

∫ �

0

dω

2π
f̃ (ω).

Here, we have used nF (ω) + nF (−ω) = 1. In the symmetric situation ε = 0, the loss current is therefore independent of voltage.

APPENDIX C: DENSITY IMBALANCE IN THE
THREE-SITE SYSTEM

The saturation value of the particle number imbalance in
Fig. 15 is reproduced by the simple function of Eq. (36).
This function is motivated by taking the V → ∞ limit of the

imbalance in the three-site model and expanding the result at
large γ . The density imbalance between the left- and right-
most sites is given by

δn =
∫ ∞

−∞

dω

2π
h(ω)[nL(ω) − nR(ω)], (C1)
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where

h(ω) = 2	

	2 + ω2

× 4γ	τ 2 + γ 2(	2 + ω2) + 4ω2(	2 − 2τ 2 + ω2)

(γ	 + 4τ 2)2 + [γ 2 + 4(	2 − 4τ 2)]ω2 + 4ω4
.

Here, we have set ε = 0. To find the saturation value at infinite
voltage, we set nL(ω) → 1 and nR(ω) → 0. We furthermore
expand the integrand h(ω) in the vicinity of γ → ∞. The
terms up to the first order in 1/γ integrate to

1 − 2τ 2/(γ	), (C2)

which coincides with the γ → ∞ expansion of the function
(36). Equation (36) reproduces the exact results for M = 3
and 51 better than the first-order expansion (C2) since it is
zero at γ = 0.

APPENDIX D: QUANTUM DOT COUPLED TO A SINGLE
RESERVOIR AT EQUILIBRIUM

A quantum dot coupled to a single reservoir at equilibrium
displays similar features in the occupation of the quantum dot
to those found for the particle density in a lattice coupled to
reservoirs in the limit of infinitely strong dissipation. In this
limit, the lattice is effectively cut in half at the lossy site. We
analyze in detail the effects of a finite cutoff in the reservoir
spectrum, which leads to the appearance of bound states with
discrete energies outside the reservoir energy continuum. We
also derive Eqs. (37) and (38).

1. Occupation of the quantum dot

The occupation of the quantum dot can be written in terms
of the spectral function at the quantum dot A(ω) [38],

nd =
∫ ∞

−∞
dω nF (ω − μ)A(ω). (D1)

The Fermi function nF (ω − μ) takes into account the occu-
pation of energy levels in the reservoir. The spectral function
is related to the retarded Green’s function of the quantum dot
Gd (ω),

A(ω) = − 1

π
Im Gd (ω), (D2)

where

Gd (ω) = 1

ω − ε − �(ω) + iη
. (D3)

Physically, A(ω) gives the excitation spectrum of the quantum
dot, which for an isolated dot would be a δ function at ω = ε

but due to the coupling to the reservoir has a finite width.
This width is connected to a finite lifetime of particles at
the quantum dot, and it is determined by the imaginary part
of the retarded self-energy �(ω) in Eq. (D3). Points in the
spectrum where the imaginary part is zero and the real part
finite correspond to bound states with an infinite lifetime, as
discussed below.

We find the quantum dot occupation as

nd = − 1

π

∫ ∞

−∞
dω nF (ω − μ)

× Im

[
1

ω − ε − �1(ω) − i�2(ω) + iη

]
, (D4)

where the retarded self-energy is written as a sum of the real
and imaginary parts, �(ω) = �1(ω) + i�2(ω). The imagi-
nary part �2(ω) is responsible for a branch cut on the real
axis in the interval ω ∈ [−�,�], where �2(ω) is nonzero.
Additionally, Gd can have poles on the real axis when ω − ε −
�1(ω) = 0. We can then write Eq. (D4) as nd = nBC + nP,
where the term nBC is the contribution of the branch cut,

nBC = 1

π

∫ �

−�

dω
nF (ω − μ)�2(ω)

[ω − ε − �1(ω)]2 + [�2(ω)]2
. (D5)

The second term nP is the contribution of the poles, which
arises from the part of the integral with |ω| > �. Here,
�2(ω) = 0 and

− 1

π
Im Gd (ω) = 1

π

η

[ω − ε − �1(ω)]2 + η2
. (D6)

As η is infinitesimal, this term is a δ function that gives the
contribution of the poles,

nP =
∫ −�

−∞
dω nF (ω − μ)δ(ω − ε − �1(ω))

+
∫ ∞

�

dω nF (ω − μ)δ(ω − ε − �1(ω))

=
∑
Eb

nF (Eb − μ)

|1 − ∂ω�1(ω)|ω=Eb

. (D7)

Bound states occur at frequencies Eb, which are solved from

Eb − ε − �1(Eb) = 0. (D8)

2. Retarded self-energy

The retarded self-energy of the quantum dot is

�(ω) = τ 2
1

V

�/vF∑
k=−�/vF

1

ω − Ek + iη
(D9)

→ τ 2
1 ρ0

∫ �

−�

dE

ω − E + iη
, (D10)

where τ1 denotes the coupling between the quantum dot and
the reservoir, and the sum is over the reservoir eigenmodes k.
To evaluate the real and imaginary parts, we replace the sum
over eigenmodes by an integral over energy, multiplied by the
constant density of states ρ0. We can rewrite the integral as

�(ω) = τ 2
1 ρ0

∫ �

−�

dE

[
P

(
1

ω − E

)
− iπδ(ω − E )

]
= �1(ω) + i�2(ω),

where

�1(ω) = 	

π
(ln |ω + �| − ln |ω − �|) (D11)

and �2(ω) = −	�(� − |ω|) with 	 = πρ0τ
2
1 .
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FIG. 19. The bound-state energies are found at the intersections
marked by circles, as indicated by Eq. (D8). The y axis is in units of
1/(πρ0).

3. Bound states

We substitute Eq. (D11) into Eq. (D8) to find the bound-
state energies,

Eb − ε − 	

π
ln

(
Eb + �

Eb − �

)
= 0, (D12)

where we have used |Eb| > �. The bound-state contribution
to the integral is obtained as

nP =
∑
Eb

1∣∣1 − 	
π

(
1

Eb+�
− 1

Eb−�

)∣∣ . (D13)

The bound-state contribution, therefore, depends on the value
of the cutoff �. Figure 19(a) shows the graphical solution of
the bound-state energies from Eq. (D12): they are given by
the values of ω where the line ω − ε intersects with the real
part of the self-energy �1(ω) in the region |ω| > � where the
imaginary part �2(ω) is zero. From these bound-state ener-
gies, we calculate the bound-state weight given by Eq. (D13).
Figure 19 shows that this contribution decays rapidly with an
increasing cutoff, while the contribution of the reservoir con-

tinuum increases. To solve the particle densities numerically
for the 51-site lattice discussed in Secs. V and VI, we use in
practice a finite cutoff. We choose a value of � that is suffi-
cient to consider only the contribution of the continuum. This
means that to compute the occupation nd = ∫ ∞

−∞
dω
2π

nd (ω), we
limit the integration to the interval ω ∈ [−�,�].

4. Three-site lattice in the γ → ∞ limit

The occupation probability of the outermost sites in a
three-site chain coupled to reservoirs at either end can be
related to the equilibrium occupation of the single quantum
dot in the limit of infinite particle loss γ → ∞. In this limit,
we obtain the expression n±1 = nBC

±1 + nP
±1, where the contri-

bution of the reservoir continuum is

nBC
±1 =

∫ �

−�

dω

2π

2	nF (ω − μL,R)

[ω − ε − �1(ω)]2 + 	2
, (D14)

equivalent to Eq. (D5), and the contribution of the poles is
obtained as

nP
±1 =

∫ −�

−∞

dω

2π

2η nF (ω − ε)

η2 + [ω − ε − �1(ω)]2
(D15)

+
∫ ∞

�

dω

2π

2η nF (ω − ε)

η2 + [ω − ε − �1(ω)]2
. (D16)

We take the limit

lim
η→0

1

π

η

η2 + [ω − ε − �1(ω)]2
= δ(ω − ε − �1(ω)) (D17)

to obtain

nP
±1 =

∑
Eb

nF (Eb − ε)

|1 − ∂ω�1(ω)|ω=Eb

. (D18)

This factor is equivalent to Eq. (D7), apart from the argument
of the Fermi distribution, which is ω − ε instead of ω − μL as
in the equilibrium model. At zero temperature, when μ, ε ∈
[−�,�], the two are equal.
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