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Using parity-nonconserving spin-spin coupling to measure the Tl nuclear
anapole moment in a TlF molecular beam
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An experiment utilizing a TlF molecular beam is being developed by the CeNTREX collaboration to search
for hadronic interactions that violate both time-reversal (T ) and parity (P) invariance. Here, we propose to
use the same beam to look for a T -invariance conserving but P-nonconserving (PNC) effect induced by the
anapole moment of the Tl nucleus, via a vector coupling of the two nuclear spins in TlF. To measure the nuclear
anapole moment, the dc electric and magnetic fields in CeNTREX are replaced by rf fields resonant with a
nuclear spin-flip transition. We adapt the relativistic coupled-cluster method in combination with relativistic
density functional theory for the calculation of the molecular PNC spin-spin vector coupling constant that links
the experimental signal with the anapole moment. The value of the P-conserving spin-spin coupling constant
calculated within the same approach is found to be in good agreement with available experimental data.
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I. INTRODUCTION

Spatial parity (P) symmetry is violated in weak interac-
tions. Several atomic experiments have been performed to
study this phenomenon as reviewed in Refs. [1–4]. The nu-
clear spin-independent P-odd effect that arises mainly due
to the exchange of Z0 bosons between electrons and the
nucleus has been measured several times using atoms and
is well established [3]. However, the much smaller nuclear
spin-dependent P-odd effects—dominated, for atoms with
large atomic number Z , by the interaction of electrons with
the nuclear anapole moment—have been observed in atoms
only once, with 14% uncertainty [5].

Molecules are promising systems to study parity-
nonconserving (PNC) effects [4,6–8], as they have close levels
of opposite parity. The small energy interval leads to the
mixing of these states by electroweak interactions being am-
plified. Even so, molecular PNC remains as yet undetected.
Various types of molecular experiments have been proposed.
A Stark-interference approach was considered and imple-
mented in Refs. [9,10]. It also has been suggested to use the
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optical rotation technique for diatomic molecules [6,8,11], or
to employ enantiomers of chiral molecules [12–24]. Follow-
ing the proposal in Ref. [25], we consider here another type of
experiment to probe the nuclear spin-dependent PNC effect,
using a nonchiral molecule. It aims specifically to measure the
PNC contribution to the indirect nuclear spin-spin coupling in
a diatomic molecule.

To introduce this effect, let us first consider a diatomic
molecule with closed electronic shells, with nuclei carrying
nonzero nuclear spins I and S, respectively. In general, the
effective Hamiltonian of the indirect interaction of these spins
can be written in the following form (we use units with h̄ = 1
throughout the paper):

HJ = 2π IiJikSk . (1)

Here, Jik is a reducible rank-2 tensor. The rank-1 contribution
is given by

H (1) = 2πJ(1) · (I × S), (2)

where

J (1)
i = 1

2εi jkJ (1)
jk , (3)

and εi jk is the Levi-Civita tensor. We limit ourselves to the
discussion of time-reversal-invariant interactions, so the only
option for the J(1) vector is to be directed along the molecular
axis λ (a unit vector directed from the heavier nucleus to the
lighter one). This is a polar vector, so the resultant interaction
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(2) is parity nonconserving. Hence we write

HPNC ≡ H (1) = 2πJ (1),PNCλ · (I × S), (4)

where we write the additional superscript (PNC) to emphasize
the parity-violating nature of this term.

Here, we choose the TlF molecule as an example system
to discuss the possible measurement of the PNC J-coupling
effect. Currently, TlF is used in the Cold Molecule Nuclear
Time-Reversal Experiment (CeNTREX) [26,27]. CeNTREX
aims to measure the effect induced by the T ,P-violating
interaction of the nuclear Schiff moment with electrons, with
the goal of increasing the sensitivity by three orders of mag-
nitude with respect to the best previous experiment on TlF
[28]. In CeNTREX, the measurement scheme is to use an
external electric field to orient the molecules along or against
the Tl nuclear spin, and then measure the spin-flip energy.
The idea of the present proposal is to use similar methods
to measure J (1),PNC, which is induced mainly by the P-odd,
T -even nuclear anapole moment of Tl. Below we outline a
possible scheme of the experiment and then make estimates
of the expected signals and associated sensitivity to PNC.
These estimates are based on a precise ab initio study of the
electronic structure of TlF, with an accurate treatment of the
relativistic and electron-correlation effects, which is described
here. The expected PNC effect is expressed in terms of the
dimensionless constant g characterizing the nuclear anapole
moment of the 205Tl nucleus (see Sec. IV A). According to
Refs. [2,29], g(205Tl) ≈ 0.5.

II. THE SYSTEM

The 205TlF molecule has closed electronic shells in its
ground electronic state (X 1�+). The ground-state levels can
be described in terms of the rotational quantum numbers J, MJ

and the spins I = 1/2, MI and S = 1/2, MS of the 205Tl and
19F nuclei, respectively. The rotational Hamiltonian is Hrot =
BJ2, and the spins and rotation are coupled via hyperfine
interactions, described by the Hamiltonian [27,30,31]

HHFS = c1I · J + c2S · J + c3T (2)(C) · T (2)(I, S) + c4I · S.

(5)

In TlF, the hyperfine couplings ci are of order kHz while
the rotational constant is B ≈ 6.67 GHz. Here, the third term
is the scalar product of two rank-2 tensors, one constructed
from two copies of the modified spherical harmonics C and
the other from I and S [32]. The second-order hyperfine in-
teraction contributes to the third and the fourth terms of the
Hamiltonian (5), while the direct dipole-dipole interaction be-
tween nuclear magnetic moments contributes only to the third
one. An external electric field E leads to the Stark Hamiltonian
HSt = −d · E = dλ · E , where d = 4.228 D is the TlF electric
dipole moment [33].

For now, we restrict our discussion to TlF levels in the low-
est rotational state, J = 0. Applying an electric field, E = E ẑ,
will electrically polarize the molecule such that the expec-
tation value of the molecular axis direction, 〈λ〉 = 〈λz〉ẑ, is
nonzero (see Fig. 1). The polarization arises, to first order,
from a mixture of J = 1 odd-parity states into the J = 0
even-parity states. For sufficiently small values of E , such that

~~
~~
~~

FIG. 1. Polarization 〈λz〉 as a function of the electric field, for the
lowest J states with mJ = 0. The curves are calculated by numerical
diagonalization of the rotational + Stark Hamiltonian.

E � Ep ≡ B/d , from perturbation theory it is found that the
dimensionless polarization 〈λz〉 is linear in E . We define

〈λz〉(E ) ≈ λz1(E/Ep), (6)

where λz1 = −1/(2
√

3) from angular factors. In TlF, Ep ≈
3.12 kV/cm [33].

The |J = 0, MJ = 0〉 state in TlF has four spin sublevels.
In a weak E field such that J = 0 remains an approximately
good quantum number, the J-dependent terms in Eq. (5),
proportional to c1, c2, and c3, vanish. This can be seen from
the explicit expression of matrix elements which are diagonal
in J for the case of J = 0 (see also an explicit form of the
matrix element of the term proportional to c3 in Ref. [31]). The
remaining (second-order) hyperfine interaction term c4I · S
couples the spin sublevels into a total spin triplet T and a
singlet S. We denote these states—including their z-projection
quantum numbers M as subscripts—as |T0〉, |T±1〉, and |S0〉.

Now consider the two-level system |S0〉 and |T0〉, with
nonzero splitting � resulting from the hyperfine spin-spin
interaction.1 These levels can be coupled to each other by an
external magnetic field, B = Bẑ. In the presence of E , parity
mixing due to the Stark interaction induces a nonzero value
of 〈λz〉, so these states will then also be coupled by the PNC
interaction of Eq. (4).

The effective Hamiltonian for the system is then

H =
( 〈S0| 〈T0|

0 0
0 �

)
+ HZ + HPNC. (7)

1A small modification to � from the Stark interaction is discussed
later.
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FIG. 2. Schematic diagram of the proposed experiment.

Here, the Zeeman Hamiltonian HZ may be written as

HZ = −B · (γII + γSS)

= B
2

(γS − γI ),

⎛
⎝

〈S0| 〈T0|
0 1

1 0

⎞
⎠, (8)

where γI and γS are respective gyromagnetic ratios. The
effective Hamiltonian (2) for the parity-nonconserving anti-
symmetric J coupling in the basis of the two considered states
has the form

HPNC = 2π
i〈λz〉(E )

2
J (1),PNC(I+S− − I−S+) (9)

= 2π
〈λz〉(E )

2
J (1),PNC,

( 〈S0| 〈T0|
0 i
−i 0

)
. (10)

Hence, the total Hamiltonian for the system can be
written as

H =

⎛
⎜⎝

〈S0| 〈T0|
0 γeff

2 B + i DPNC
eff
2 E

γeff

2 B − i DPNC
eff
2 E �

⎞
⎟⎠. (11)

Here, we have introduced the effective gyromagnetic ratio
γeff = γS − γI and the effective PNC-induced E1 coupling
DPNC

eff = 2πJ (1),PNCλz1/Ep.

III. MEASUREMENT SCHEME

A. The simplest case, J = 0

The basic idea of the proposed measurement scheme is to
determine the effective PNC-enabled E1 transition strength
DPNC

eff between the states |S0〉 and |T0〉. This can be accom-
plished by applying an E field oscillating at frequency ω =
�, which will resonantly drive the |S0〉 ↔ |T0〉 transition.
Measuring the Rabi frequency associated with this drive will
determine DPNC

eff and hence J (1),PNC. As in many other prior or
proposed schemes to measure PNC in atoms, the observable
effect of the PNC-enabled transition can be amplified through
interference with a larger, parity-allowed transition amplitude
[34]. Here, we use the M1 transition between |S0〉 and |T0〉 for
this purpose.

The beam experiment with TlF molecules may look
as follows (see Fig. 2). We prepare the molecule in the
singlet state |S0〉, so that the wave function of the two-
level system is 	0 = (1

0). Then, each molecule in the
beam passes through an interaction region, where oscil-

lating electric and magnetic fields are applied along the
z axis: Ez(t ) = E1 cos ωt and Bz(t ) = B1 sin ωt . We write
the time-dependent wave function as 	(t ) = (a(t )

b(t )). A given
molecule enters the interaction region at time t0, then,
at time t0 + T , exits; we then measure the population
|b(t0 + T )|2 of the triplet state |T0〉.

Here, for simplicity, we describe what happens to a
monokinetic slice of molecules. (In reality there will be a
distribution of molecular velocities, and one would need to
average the results correspondingly.) Assuming that we are
near the resonance, such that the detuning δ = ω − � satisfies
|δ| � |�|, and applying the rotating-wave approximation, in-
tegrating the Schrödinger equation with the Hamiltonian (11)
from t0 to t0 + T yields the result for the population of the
triplet,

|b(t0 + T )|2 = �2
M1

2�′2 (1 − cos �′T ) − �PNC�M1

�′2

×
[
�2

M1T

2�′ sin �′T + δ2

�′2 (1 − cos �′T )

]
,

(12)

independent of t0. Here,

�PNC = DPNC
eff

2
E1, (13)

�M1 = γeff

2
B1, (14)

�′ =
√

δ2 + �2
M1, (15)

and we have discarded the small terms quadratic in �PNC.
The first term in Eq. (12) is independent of �PNC, and the
second one is linear in �PNC. At resonance, where δ = 0 and
�′ = �M1, this expression simplifies to

|b(t0 + T )|2 = 1

2
(1 − cos �M1T ) − �PNCT

2
sin �M1T .

(16)

Throughout this discussion, we have assumed that the level
splitting � remains constant. However, Stark-induced mixing
of the J = 0 state with other rotational levels, in combination
with hyperfine couplings, causes the value of � to change as
a function of E : Approximately, � in the expressions above
should be replaced by

�(J = 0) = �0 + αE2 = �0 + αE2
1 cos2(ωt ) (17)

= �0 + α

2
E2

1 + α

2
E2

1 cos(2ωt ). (18)

Under realistic conditions (as discussed below), the fre-
quency modulation depth αE2

1 /2 can be large compared to
the linewidth due to the time of flight, δω ≈ 1/T . (The dc
offset α/2 can be accounted for simply by a small change
of the driving frequency ω.) It is not immediately obvi-
ous that this deep modulation does not dramatically change
the outcome described above, when zero modulation was
assumed.

In fact, under the conditions we consider here and below,
this rapid but seemingly large oscillation of � has a negligible
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effect on the transition probability. This can be seen as fol-
lows. Modulation of the resonant frequency � is equivalent
to an equal-amplitude (but opposite sign) modulation of the
driving frequency ω. A sinusoidal drive frequency modulation
of the form ω(t ) = ω0 + κ sin ωmodt is equivalent to a phase
modulation, such that the frequency-modulated oscillation
sin [ω(t )t] can be replaced by sin [ω0t + (κ/ωmod) cos ωmodt].
In our case, the phase modulation frequency is ωmod = 2ω0,
and the phase modulation index is β = αE2

1 /(4ω0). This is
equivalent to driving with a comb of frequencies ωn = ω0 ±
nωmod = ω0(1 ± 2n), with corresponding amplitudes An ∝
Jn(β ), where Jn is the Bessel function of order n (see, e.g.,
Ref. [35]). When β � 1, i.e., when the frequency modulation
depth satisfies αE2

1 /4 � ω0, the amplitude of the fundamental
frequency is J0(β ) = 1 + O(β2), and that of the nth sideband
is Jn(β ) ∼ βn � 1. Hence the modulation has a negligible
effect on the amplitude of the resonant component of the
driving field, and only introduces small-amplitude sidebands
of far off-resonant driving. That is, its effect is negligible in
our scheme.

Now, we return to the main discussion. The P-odd signal
arising from Eq. (16) corresponds to the change in the popula-
tion of the triplet and singlet levels when we reverse the sign
of either one (but not both) of the fields E1 or B1, since �PNC ∝
E1 and �M1 ∝ B1. Fluctuations of the population (the first
term independent of �PNC) give the noise. Both the signal and
the noise turn to zero for �M1T = 2πn; the signal is maximal
when �M1T = π (n + 1

2 ). We consider the case where both
the triplet state population PT = |b(t0 + T )|2 and the singlet
state population PS = 1 − PT are detected, analogous to the
plans for detecting both spin quadratures after the Ramsey
spin-rotation protocol in CeNTREX [27]. In this case, the
PNC signal-to-noise ratio is

S/N = �PNCT
√

N, (19)

where N is the number of detected molecules.
This type of experiment is similar to what was discussed

for atomic hydrogen in the 1970s [36,37] and later for al-
kali metals [38,39]. In these papers, the idea was to look
for interference between a PNC-induced E1 amplitude and
a parity-allowed M1 amplitude, driven on resonance between
hyperfine sublevels of the same state. Because time-reversal
(T ) symmetry is conserved, and hence the ratio of the M1 and
PNC E1 amplitudes is pure imaginary [40], these amplitudes
can only interfere when the driving E and B fields are π/2
out of phase, as here. Our scheme is also closely related to the
proposal by Fortson to measure E1PNC-E2 interference in a
single trapped ion [41]. As discussed there, the S/N is at the
standard quantum limit for measuring the ac Stark shift �PNC,
for N particles observed over coherence time T . Because the
resonant frequency � is so small here (as compared to all
cases in the prior literature), both applied fields are entirely
in the near-field regime, with control afforded by simple pat-
terns of conductors and ordinary function generators. We also
note that despite some superficial resemblances, the proposed
method here is quite different from those used to measure
PNC effects in near-degenerate states in Dy [42] and in di-
atomic molecules [9] such as BaF [10]. In those experiments,
the pair of levels considered have opposite parity rather than

J=0, M =0 J
~ ~

J=1, M =0 J
~ ~

J=2, M =0 J
~ ~

E(V/cm)

FIG. 3. Splitting � for three lowest rotational levels with M̃J = 0.

the same parity as here; the level splitting � can be tuned
through zero, whereas here it is fixed, and the field driving the
system is at a frequency far above resonance, rather than on
resonance as here.

B. The J > 0 case

The measurement scheme as just described is applica-
ble only to the spin sublevels of the J = 0 rotational state.
However, it is highly desirable to also perform analogous
measurements in states with larger values of J . The reason
is that in such states, the slope λz1 of the plot of polarization
〈λz〉 vs E (see Fig. 1) can be of opposite sign to that in the
J = 0 state. This can provide a powerful means to detect and
minimize important systematic errors (see Sec. V). However,
for J > 0 states in zero E field, spin-rotation couplings aris-
ing from the terms proportional to c1, c2, and c3 in Eq. (5)
result in energy eigenstates that are not well described as spin
singlet and triplet states. In this regime, our present treat-
ment does not apply and its consideration goes beyond the
scope of the present work. However, the triplet-singlet state
character can be recovered in the presence of a substantial
E field. Hence, to perform an analogous PNC measurement
in states with J > 0, we must consider the situation where
not only the near-resonant oscillating field E1 cos ωt , but also
a large static field E0, is present. We consider this situation
here. Though most of the discussion will be valid for any
states with J > 0, for concreteness we focus on the case
of J = 1.

In the presence of a sufficiently large polarizing E field,
such that the Stark energy dE is large compared to the spin-
rotation couplings [arising from the terms proportional to c1,
c2, and c3 in Eq. (5)], the spins S and I can decouple from the
rotation. In this regime, the vector λ rapidly precesses around
the electric field E and the E field mixes rotational levels of
opposite parity (corresponding to J even or odd).
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The Stark-split energy eigenstates in the large field regime
can be described in terms of approximate quantum numbers
J̃, M̃J . Here, J̃ corresponds to the value of J that any given
state connects to, if the E field were adiabatically reduced
to zero [27]; M̃J corresponds to the value of MJ in the limit
where all spin-rotation constants vanish. In this regime, states
with M̃J = 0, for any value of J̃ , have no diagonal matrix
elements of the spin-rotation interactions (to first order in the
small ratio c j/dE). Instead, here—to first order—the hyper-
fine structure is determined by the spin-spin interaction [i.e.,
the term proportional to c4 in Eq. (5)], just as in the field-free
J = 0 state described above. Hence here, as before, the spin
configurations are (to good approximation) singlet and triplet
states.

To remain in the large-field regime, the magnitude of the E
field should always remain sufficiently large. To ensure this
in the presence of the oscillating E field used to drive the
PNC-induced E1 singlet-triplet transition, it is necessary to
simultaneously apply a larger dc field. That is, we consider
the case where the total applied E field has the form E0 +
E1 cos ωt , where E0 > |E1|. In practice, for the J̃ = 1, M̃J =
0 states in TlF, it is sufficient to maintain E0 − |E1| � 500
V/cm.

The primary complication to the PNC measurement aris-
ing from the static field E0 is its effect on the singlet-triplet
level splitting �. As mentioned earlier, the presence of J �= 0

components of the wave function of every eigenstate—in
combination with off-diagonal couplings, due to spin-rotation
interactions, with states where M̃J �= 0—leads to a shift in
�. Because the admixtures of different J states into a given
J̃, M̃J = 0 state change with the size of the applied E field,
� also changes with E . The dependence of � on E , deter-
mined by numerical diagonalization of the full Hamiltonian,
is shown in Fig. 3 for states with M̃J = 0 and J̃ = 0, 1, 2.
This illustrates clearly the very strong dependence of � on E
when E is small and J̃ > 0. However, the dependence weakens
for small ranges around sufficiently large values of E . Here,
we consider the regime where, in the range E0 − |E1| < E <

E0 + |E1|, �(E ) is approximately a linear function,

�(E0 + E1) ≈ �E0 + α′E1, (20)

where �E0 ≡ �(E0). From Fig. 3, for the states with
M̃J = 0 and J̃ = 1 (J̃ = 0) in TlF, this is a good approxi-
mation for E0 ≈ 3000 V/cm and |E1| = 1000 V/cm. Here,
�E0 ≈ 12.1 kHz (13.1 kHz) and α′ ≈ 0.1 kHz/(kV/cm)
[−0.1 kHz/(kV/cm)] for the J̃ = 1 (J̃ = 0) state. Note also
that in this range, the molecular polarization 〈λz〉 is approxi-
mately linear in E over the entire range (see Fig. 1).

The Hamiltonian H̃ for this system can be written, in anal-
ogy to Eq. (11), as

H̃ =

⎛
⎜⎝

〈S̃0| 〈T̃0|
0 γeff

2 B1 sin ωt + i DPNC
eff
2 [E0 + E1 cos ωt]

γeff

2 B1 sin ωt − i DPNC
eff
2 [E0 + E1 cos ωt] �E0 + α′E1 cos ωt

⎞
⎟⎠, (21)

where the eigenstates 〈S̃0| and 〈T̃0| here are the singlet and
triplet states when E = E0 and the PNC effect is absent. Note
that, in this more general situation, the factor λz1/Ep that
appears in the definition of DPNC

eff is replaced by the slope of
〈λz〉 versus the applied E field, at the bias field E0. That is,
now λz1/Ep → d〈λz〉/dE , evaluated at E = E0. As mentioned
above, this slope can be of opposite sign in the J̃ = 1 state
and the J̃ = 0 state, so that DPNC

eff is of opposite sign in these
states.

Importantly, the off-diagonal matrix elements related to
the E field include only PNC couplings. This fact seems
far from obvious, given that the eigenstates here are mixed-
parity states. A proof of the remarkable fact that ordinary
E-field-induced mixing of these states vanishes is given in the
Appendix.

Another important observation is that the occupation of
the triplet (or singlet) state which is the module square of
the solution of the Schrödinger equation with the Hamiltonian
(21) is an even function of B1 (�M1) in the absence of PNC
effects. This directly follows from the form of the equation.
Thus, the modulation of �E0 should not lead to a systematic
effect that imitates the PNC signal which is an odd function
of B1 (�M1).

As before, by driving the system on resonance (ω = �E0),
applying the rotating-wave approximation, and writing H̃ in

the rotating frame, this simplifies to

H̃rot =
⎛
⎝

〈S̃0| 〈T̃0|
0 − i

2�M1 + i
2�PNC

i
2�M1 − i

2�PNC α′E1 cos ωt

⎞
⎠. (22)

The sinusoidal modulation of the level splitting, as before,
is equivalent to driving the system with small sidebands at
frequencies (here at ωn = ω ± nω), and leads to negligible
effects. Hence, finally, this system in the presence of the
static field E0 and for a state with any value of J̃ is entirely
equivalent to the simpler version discussed before, and the
PNC signal can be measured in the same way.

IV. AB INITIO CALCULATION OF J-COUPLING
PARAMETERS IN TlF

A. Electronic structure theory

Let us now consider parameters that are required to es-
timate the expected PNC signal (19). Different sources of
interactions between the nucleus and electrons in the molecule
can induce J coupling (1). Here, we are interested in two of
them—the P-even interaction of the electrons with the nuclear
magnetic dipole moment and the P-odd interaction with the
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anapole moment of the nucleus [43]. The former one has the
form

HHF,K =
∑

p

γK
IK · [(rp − RK ) × αp]

|rp − RK |3 , (23)

where the summation goes over all electrons of the molecule,
RK is the position of the nucleus, rp is the position of elec-
tron p, and αp are Dirac matrices. The P-odd interactions
inside the nucleus K can induce the anapole moment that
can be characterized by dimensionless constant gK . The PNC
interaction between the nucleus and electrons induced by this
moment is [2]

HP,K = GF√
2

∑
p

gKαpIKρK (rp − RK ), (24)

where GF = 2.222 49 × 10−14 a.u. is the Fermi coupling con-
stant in atomic units and ρK (r) is the charge density of the
nucleus. In addition to the anapole moment there are other
contributions to the interaction (24). These contributions can
be accounted for by redefining the coupling constant gK [2].

Interactions (23) and (24) can contribute to the effective
Hamiltonian (1) in different combinations. One of them is the
parity-conserving indirect coupling of magnetic moments of
the nuclei A and B through electronic shells via interactions
(23); it will be designated as JNMR. Its components can be
calculated as the mixed derivative of the molecular energy E
with respect to I and S and with gI = 0, gS = 0:

2πJNMR
ik = ∂2E

∂Ii∂Sk

∣∣∣∣
gI =0,gS=0

. (25)

In the case of a diatomic molecule oriented along axis z, the
tensor JNMR

ik has two unique components, JNMR
⊥ = JNMR

xx =
JNMR

yy and JNMR
|| = JNMR

zz . It is convenient to use their isotropic
combination,

JNMR
iso = (JNMR

‖ + 2JNMR
⊥ )/3, (26)

and anisotropy,

�JNMR = JNMR
‖ − JNMR

⊥ . (27)

JNMR
iso is the scalar (rank-0) J-coupling part of (1); note that

JNMR
iso = c4 in Eq. (5). The �JNMR constant can be obtained

from the experimental value of the c3 constant [30,31] by
subtracting the contribution of the direct interaction of the

magnetic dipole moments of Tl and F nuclei, which has been
done in Ref. [44].

Components of the JPNC
ik tensor that characterize the PNC

contribution induced by the anapole moment of the nucleus A
to Jik in Eq. (1) can be calculated as

2πJPNC
ik = ∂2E

∂Ii∂Sk

∣∣∣∣
γI =0,gS=0

. (28)

In TlF, J(1),PNC is collinear with the molecular axis. The JPNC
ik

tensor is antisymmetric. It follows from Eqs. (1)–(3) that
J (1),PNC

z = JPNC
xy .

B. Computational details

In the one-particle case and Dirac theory, JNMR
ik can be

calculated using the operator (23) within the sum-over-states
approach:

2πJNMR
ik =

∑
n

〈0|γI
[(r−RI )×α]i

|r−RI |3 |n〉〈n|γS
[(r−RS )×α]k

|r−RS |3 |0〉
E0 − En

+ c.c.

(29)

In this equation, the sum goes over positive- and negative-
energy states, excluding the occupied one-particle state |0〉.
Below we will distinguish the positive- and negative-energy
parts of Eq. (29). JPNC

xy can be calculated in a similar way for
the one-particle case:

2πJPNC
xy

=
∑

n

〈0| GF√
2
gIαxρI (r − RI )|n〉〈n|γS

[(r−RS )×α]y

|r−RS |3 |0〉
E0 − En

+ c.c.

(30)

The simplest generalization of Eqs. (29) and (30) on the
many-electron case requires summing also over all occupied
molecular bispinors, i.e., replacing |0〉 by the sum over all
occupied |i〉. This is the so-called uncoupled approximation
and will be referenced as PT2. In a more accurate treatment,
one can use the linear-response technique developed for both
the Dirac-Hartree-Fock (DHF) and density functional theory
(DFT) approaches to calculate the components of J coupling
and other NMR properties [21,22,45–48]. This approach cor-
responds to the “analytical” treatment of derivatives (25) and
(28) at the DHF and DFT levels instead of simple summations
in (29) and (30). For example, within the linear-response DHF
method [47], one obtains the following closed-form expres-
sion for JPNC

xy ,

2πJPNC
xy =

∑
k,l,a,b

〈k| GF√
2

gIαxρI (r − RI )|a〉P−1
a,k;b,l〈b|γS

[(r − RS ) × α]y

|r − RS|3 |l〉 + c.c.,

where
P−1 =

[
A B∗
B A∗

]−1

,

Ak,l,a,b = δa,bδk,l (Ea − Ek ) + 〈al|g|kb〉 − 〈al|g|bk〉,
Bk,l,a,b = 〈kl|g|ab〉 − 〈kl|g|ba〉.

In the expression above, k, l run over occupied orbitals,
a, b run over virtual positive- and negative-energy orbitals,
Ek, Ea are corresponding orbital energies, and g is the
electron-electron Coulomb operator. The positive-energy state
contribution can be obtained by restricting a, b above by the

013191-6



USING PARITY-NONCONSERVING SPIN-SPIN COUPLING … PHYSICAL REVIEW RESEARCH 5, 013191 (2023)

positive-energy virtual orbitals only. We define and calculate
the “negative-energy contribution” in the many-electron case
as the difference between the total linear-response value (i.e.,
with no restrictions applied on indices a, b) for derivatives
(25) or (28) and the corresponding positive-energy state con-
tribution. One can see that neglecting two-electron integrals
〈· · · |g| · · · 〉 in the expression above leads to the PT2 ap-
proach. Below we will call the linear-response DHF or DFT
methods just DHF or DFT. The positive-energy part of the
related property, a shielding tensor for a molecule containing
a heavy atom, can be calculated with a smaller uncertainty
than DHF/DFT within the relativistic coupled-cluster theory
[49–51]. Here, we have generalized this approach to calculate
PNC and P-conserving contributions to the nuclear indirect
spin-spin coupling. For this we have numerically calculated
mixed derivatives (25) and (28) for the energy E obtained
within the coupled-cluster theory. In the used procedure we
obtained a set of occupied and virtual orbitals within the
molecular Dirac-Hartree-Fock method for TlF. After that,
the interactions (23) and (24) were added to the electronic
Hamiltonian and coupled-cluster calculations were performed
to obtain the positive-energy contribution.

All molecular calculations have been performed within
the Dirac-Coulomb Hamiltonian. We have used the combi-
nations of Dyall’s Gaussian-type basis sets. For example, the
TZTZ basis set corresponds to the uncontracted augmented
all-electron triple-zeta Dyall’s AAETZ basis set for both Tl
and F atoms [52–54] (thus basis sets on both atoms are of the
triple-zeta quality, which is implied in the “TZTZ” abbrevia-
tion above; similar abbreviation are used below), while TZQZ
corresponds to the AAETZ basis set for Tl and augmented
all-electron quadruple-zeta AAEQZ for F, etc. In all-electron
(90e) correlation calculations within the coupled-cluster with
single- and double-cluster amplitudes method (CCSD), we
have not used any truncation of the virtual orbitals by their en-
ergies. To consider the contribution of high-order correlation
effects at the level of coupled cluster with single, double, and
triple amplitudes (CCSDT) we have performed correlation
calculations for 20 valence electrons and set the cutoff for vir-
tual orbitals energies to 30EH , and used the double-zeta (DZ)
quality basis set for both atoms with the extended number of
s- and p-type functions for both Tl and F. This basis set will
be called DZDZext. For calculation of the negative-energy
contribution, we have also used the relativistic density func-
tional theory with the hybrid Perdew-Burke-Ernzerhof PBE0
functional [55].

For the problem under consideration, the basis set for all-
electron coupled-cluster calculations should include functions
with large exponential parameters to accurately reproduce the
wave-function asymptotic near and inside the nucleus. The
most important here are s1/2- and p1/2-type functions which
can penetrate inside the nucleus. We have found that for the
fluorine atom the saturation is achieved if one includes s and
p basis functions corresponding to the AAEQZ [52–54] basis
set. Therefore, we have used this basis set for fluorine in the
main calculations of J-coupling contributions. At the same
time for the thallium atom a rather accurate description is
achieved already for the AAETZ [52–54] basis set.

In all calculations, the experimental internuclear distance
R(Tl-F) = 3.94 bohrs [56] has been employed. For the nu-

TABLE I. Isotropic and anisotropic components (in Hz) of P-
conserving indirect nuclear spin-spin coupling in 205Tl19F.

Contribution JNMR
iso �JNMR

Negative-energy state contributions
DHF-uncoupled (PT2)/QZQZ 0 189
DHF/QZQZ 0 188
DFT/QZQZ (total negative) 0 191

Positive-energy state contributions
DHF/TZQZ −27582 11647
DFT/TZQZ −15462 13123

90e-CCSD/TZQZ −13586 9820
+20e-(CCSDT-CCSD)/DZDZext 122 867
Total positive −13463 10687

Total −13463 10877
Experiment [30,31,44] −13300(700) 11100(500)

clear magnetic moments we used the values from Ref. [57]:
μ(205Tl) = 1.638 21μN , μ(19F) = 2.628 87μN .

We have used the Gaussian model for the nuclear charge
distribution which is well suited for molecular calculations
[58]. Relativistic four-component calculations have been per-
formed within the locally modified DIRAC [48,59] and MRCC

[60] codes. For calculation of matrix elements of operators
(23) and (24) the code developed in Refs. [61–63] was used.

C. Results and discussion of calculation

Table I gives the calculated values of the parity-conserving
indirect nuclear spin-spin coupling tensor components (26)
and (27) in comparison with the experimental values
[30,31,44]. We have found that the negative-energy state con-
tributions to JNMR

ik calculated within the linear-response DHF,
DFT, or uncoupled DHF (PT2) coincide within a few Hz.
Similar behavior has been found for the shielding constant
[49]. However, the positive-energy state contribution strongly
depends on the level of the theory to treat correlation effects.
It can be seen that the value of the anisotropy obtained within
the density functional theory deviates from the experimental
value by about 20%. Therefore, we have used the relativis-
tic four-component coupled-cluster approach to calculate the
positive-energy P-conserving contribution. As it can be seen
from Table I, such an approach provides rather accurate values
of both isotropic and anisotropic components of JNMR.

Table II gives the calculated values of the PNC contribution
to the indirect nuclear spin-spin coupling J (1),PNC (4).

It can be seen that the leading contribution to this cou-
pling is due to negative-energy states. This contribution is
practically the same for the linear-response DHF, DFT, or
uncoupled DHF (PT2). In contrast, the positive-energy con-
tribution to J (1),PNC strongly depends on the level of the
electronic correlation treatment, even more strongly than the
P-conserving term, e.g., the DFT value is four times smaller
than the DHF value. The explicit treatment of electron corre-
lation effects within the relativistic coupled-cluster approach
with single and double amplitudes leads to even stronger
suppression of the positive-energy contribution. The inclusion
of triple cluster amplitudes gives a small, but non-negligible,

013191-7



JOHN W. BLANCHARD et al. PHYSICAL REVIEW RESEARCH 5, 013191 (2023)

TABLE II. PNC contribution to J coupling, J (1),PNC, in 205Tl19F
induced by the anapole moment of the 205Tl nucleus.

Contribution Value, 10−3gTl Hz

Negative-energy state contributions
DHF-uncoupled (PT2)/QZQZ −2.82
DHF/QZQZ −2.82
DFT/QZQZ (total negative) −2.83

Positive-energy state contributions
DHF/TZQZ −2.05
DFT/TZQZ −0.52

90e-CCSD/TZQZ −0.13
+ 20e-(CCSDT-CCSD)/DZDZext −0.07
Total positive −0.19

Total −3.03

contribution compared with the total positive-energy one.
It can be seen that the density functional theory consider-
ably overestimates the positive-energy contribution. A similar
overestimation has been also outlined in Ref. [22]. Note
that the total positive-energy contribution calculated at the
coupled-cluster level itself is more than an order of magni-
tude smaller than the negative-energy one. According to our
estimates, the final uncertainty of J (1),PNC given in Table II is
less than 8%.

The final value of |J (1),PNC| is of the same order as the
estimation obtained in Ref. [25], 9 × 10−3gTl Hz. The equa-
tion that has been used in Ref. [25] to estimate J (1),PNC can be
obtained from the equation similar to Eq. (30) with considera-
tion of only the negative-energy contribution and some further
approximations [25]: setting |1s(Tl)〉 as |0〉, replacement of
(E0 − En) by 2mc2, and replacement of the

∑
n |n〉〈n| by 1.

A similar approach for the diamagnetic contribution to the
shielding constant is known as the Sternheim’s approximation
[47,64]. It is instructive to calculate the following sum,

2πJPNC
xy

=
∑

n

′ 〈1s| GF√
2
gIαxρI (r −RI )|n〉〈n|γS

[(r−RS )×α]y

|r−RS |3 |1s〉
2mc2

+ c.c.,

(31)

where |1s〉 is the lowest positive-energy molecular bispinor
obtained within the Dirac-Hartree-Fock approach and the
summation over |n〉 includes only the negative-energy
states. The obtained value in this approximation, −8.9 ×
10−3gTl Hz, almost coincides with the result of Ref. [25].
If one further includes a summation over all occupied
bispinors |i〉 (instead of only |1s〉), then the value is −10.9 ×
10−3gTl Hz. However, if one further uses the actual values
of (Ei − En) instead of the (Ei − En) ≈ 2mc2 approximation,
then we come to the “PT2” value for the negative-energy
contribution given in the first line of Table II, i.e., about
the three times smaller value −2.82 × 10−3gTl. It means that
the approximation (Ei − En) ≈ 2mc2 used previously over-
estimates the effect. In other words, negative-energy states
for which (Ei − En) � 2mc2 also contribute to the consid-
ered PNC effect. More specifically, according to our analysis

within the PT2 approach, negative-energy states |n〉 whose
energy gap between the En energy and the energy of the first
occupied positive-energy state are smaller than 3mc2 give
about 46% of the total negative-energy states contribution;
negative-energy states with an energy gap smaller than 6mc2

contribute 72%; negative-energy states with a gap smaller than
13mc2 contribute 91%. The remaining part of the effect (9%)
is due to states with a higher-energy gap. Such behavior can be
explained by the localization of the PNC operator (24) inside
the nucleus.

Substituting an estimation g(205Tl) ≈ 0.5 [2,29] to the final
value of J (1),PNC in terms of g(205Tl), one obtains |J (1),PNC| ≈
1.5 mHz.

V. CONSIDERATIONS FOR AN EXPERIMENT WITH TlF

Let us estimate the PNC signal for the apparatus and the
beam used in the CeNTREX experiment [27]. The length of
the working region there is L = 2.5 m and the averaged beam
velocity is 〈vz〉 = 184 m/s. This gives us an interaction time
T = 14 ms. The coefficient in the Zeeman term (8) is

(γI − γS ) ≈ 2π (−1.5 kHz/G). (32)

This means that to have �M1T = π
2 , we need B1 ≈ 24 mG.

To estimate the signal for J̃ = 0 in the presence of
the static and oscillating electric fields with amplitudes
E0 ≈ 3000 V/cm and E1 = 1000 V/cm we use the value
d〈λz〉/dE |E0E1 = 0.079 calculated for this field (see Fig. 1).
In this case �PNC(J̃ = 0) ≈ 0.37 × 10−3 s−1. For the case of
J̃ = 1 and the same fields �PNC(J̃ = 1) ≈ −0.17 × 10−3 s−1.

In the CeNTREX experiment it is anticipated to detect
Nd ≈ 6 × 108 molecules per pulse [27]. Now we can use
Eq. (19) to estimate the statistical sensitivity of the proposed
experiment. To reach the ratio S/N = 1 for J̃ = 0, one needs
a number of pulses Np given by

Np = 1

(�PNCT )2Nd
≈ 62 pulses, (33)

or about 1.24 s at the anticipated repetition rate of 50 Hz. In
about 3.5 h one can accumulate S/N = 100. We conclude that
the statistical sensitivity of the proposed experiment is easily
sufficient for an accurate measurement of the anapole moment
of the thallium nucleus.

A detailed analysis of the possible systematic effects is still
to be done. However, we point out that PNC experiments use
reversals of experimental parameters to isolate the effect of
interest from systematics, and two primary reversals are avail-
able in this case. These are (i) reversal of the phase (i.e., sign
flip) of the oscillating E field and (ii) reversal of the phase (i.e.,
sign flip) of the oscillating B field. With only these two rever-
sals, a possible systematic effect of concern is the following.
Applying the oscillating electric field will lead to correlated
charging currents and likely a component of magnetic field
out of phase with the electric field. If this charging-current B
field has a component along z, it will add to/subtract from the
deliberately applied oscillating B field and hence change the
magnitude of �M1 when the phase of the E field is reversed.
This will exactly mimic the signature of the PNC signal. To
combat this effect, we can make measurements not only on the
rotational state J̃ = 0, but also on J̃ = 1. In these two cases,
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the M1 transition matrix elements are nearly the same, while
the PNC signal is of opposite sign due to the opposite direction
of the polarization of these states in the electric field (Fig. 1)
as discussed above. Hence a properly weighted difference
of the results from the two rotational states will cancel the
charging-current effect but preserve the PNC effect.

An accurate determination of the coupling constant gTl

for the two stable isotopes (203,205Tl) will allow one to study
different contributions to this constant. Within the standard
model, this constant is determined by the strength of nucleon-
nucleon parity-violating weak interactions [65,66], which
remain poorly understood [67]. Two prior measurements of
gTl based on the detection of parity-violating optical rota-
tion in Tl atoms [68,69] gave results consistent with zero,
but with uncertainties comparable to the anticipated value
g(205Tl) ≈ 0.5 [2,29]. More accurate measurements of the
nuclear anapole moment will provide additional information
on PNC nuclear forces [70]. In addition, such an experiment
will be sensitive to spin-dependent interactions with bosonic
dark matter, which is predicted by some models. One of
them considers an interaction of nucleons with a hypothetical
static pseudovector cosmic field [71]. The constraint on the
proton-cosmic field interaction parameter b0

p, currently ob-
tained [71] from the limits on the 203,205Tl anapole moment
[68,69], can be improved when the constant gTl is measured
as proposed here. Another prospect is to study a possible
contribution due to hypothetical light vector bosons [72]. The
nuclear spin-independent parity-violation effects due to such
beyond-the-standard-model bosons were recently constrained
in atomic parity-violation measurements in a chain of Yb
isotopes [73].

VI. CONCLUSIONS

Indirect electron-mediated interactions between two nu-
clear spins in a diatomic molecule provide an attractive
route towards the measurement of long sought-after molecular
PNC. The technique is especially promising since, as demon-
strated in the present work, (i) the PNC effect is predicted
to be large enough to be measured in an ongoing experiment
(CeNTREX) and (ii) it can be reliably calculated. This opens
a clear path to measuring the nuclear anapole moments of the
two stable isotopes, 205Tl and 203Tl, a result that would be of
high importance for understanding weak interactions within
nuclei [65,66] and in the search for additional vector bosons
[72], as well as possible cosmic fields that may be related to
the “dark sector” [71].
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APPENDIX: VANISHING ELECTRIC DIPOLE MATRIX
ELEMENT BETWEEN S̃0 AND T̃0 STATES

Below we show that there is no coupling by an additional
E field of mixed-parity singlet |S̃0〉 and triplet |T̃0〉 states in the
absence of the PNC effect. For this, let us consider eigenfunc-
tions |F, p, MF 〉 of the field-free Hamiltonian

H0 = BJ2 + c1I · J + c2S · J

+ c3T (2)(C) · T (2)(I, S) + c4I · S, (A1)

which conserves quantum numbers F , p, and MF , where F
is the value of the total angular momentum F = J + I + S,
MF is the projection of F on the laboratory axis, and p is the
spatial parity. We are interested in wave functions with MF =
0. For the considered case of I = 1/2 and S = 1/2 they can be
written in the basis of functions with definite F and J quantum
numbers as well as the total spin of Tl and F nuclei designated
as RIS:

|F, p, MF = 0〉 = e|F, J = F + 1, RIS = 1, MF = 0〉
+ f |F, J = F − 1, RIS = 1, MF = 0〉
+ g|F, J = F, RIS = 1, MF = 0〉
+ h|F, J = F, RIS = 0, MF = 0〉. (A2)

Coefficients e, f , g, h depend on the parameters of H0. How-
ever, for a given parity p, only one of the pairs of coefficients
e, f or g, h is nonzero, i.e., there are two classes of eigen-
functions of H0 with opposite parities. Each basis function in
Eq. (A2) can be further expressed in terms of the following
uncoupled spin-rotational functions

|J, S0〉 = 1√
2
|J, MJ = 0〉(| ↑I↓S〉 − | ↓I↑S〉), (A3)

|J, T0〉 = 1√
2
|J, MJ = 0〉(| ↑I↓S〉 + | ↓I↑S〉), (A4)

|J, T−1〉 = |J, MJ = 1〉| ↓I ,↓S〉, (A5)

|J, T1〉 = |J, MJ = −1〉| ↑I ,↑S〉, (A6)

using standard angular momentum algebra [75]. By applying
this expansion we arrive at the following eigenfunctions of H0

with definite parities,

|�s〉 = |F, p = (−1)F , MF = 0〉
= αJ |J, S0〉 + βJ (|J, T1〉 − |J, T−1〉), J = F, (A7)
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|�t 〉 = |F, p = (−1)F+1, MF = 0〉
=

∑
J=F±1

γJ |J, T0〉 + δJ (|J, T1〉 + |J, T−1〉), (A8)

where the coefficients αJ , βJ , γJ , δJ are determined by param-
eters of the Hamiltonian H0.

Now let us consider the case with an applied uniform
external electric field along the laboratory axis, i.e.,

Hstat. = H0 + dE0 cos θ, (A9)

where θ is the angle between the molecular and laboratory
axes. In the present case MF is still a good quantum number
while F and p are not. Eigenfunctions of this Hamiltonian
in a given basis set can be obtained by its diagonalization.
Let us calculate the following matrix element of interest in
the basis of eigenfunctions of the unperturbed Hamiltonian
H0 considered above:

〈�s|Hstat.|�′
t 〉 = 〈�s|dE0 cos θ |�′

t 〉 = 〈F, p = (−1)F , MF = 0|dE0 cos θ |F ′, p′ = (−1)F ′−1, MF = 0〉
=

∑
J ′=F ′±1

βJδJ ′ (〈J = F, T1|dE0 cos θ |J ′, T1〉 − 〈J = F, T−1|dE0 cos θ |J ′, T−1〉) = 0. (A10)

In the last equality we have used Eqs. (A5) and (A6) and the
property 〈J, MJ | cos θ |J ′, MJ〉 = 〈J,−MJ | cos θ |J ′,−MJ〉.
Note also that these matrix elements are nonzero only for
J = J ′ ± 1, but in any case they either cancel each other out or
both vanish in Eq. (A10). Thus, the matrix of the Hamiltonian
Hstat. in the considered basis set is quasidiagonal and after
its diagonalization the resulting eigenfunctions will not have
a mixture of �s and �′

t functions for any external electric
field E0, i.e., resulting electric field-dependent functions �̃s

will be linear combinations of only {�s} functions (A7)
with various F , while electric field-dependent functions �̃t

will be linear combinations of only {�t } (A8). According

to Eq. (A10) there would be no coupling by an additional
E field of mixed-parity singlet |S̃0〉 and triplet |T̃0〉 states.
Note that this result also holds for the more general case
when additional parity-conserving interactions inside the
molecule (e.g., nonadiabatic ones) are included in the
Hamiltonian. This follows from the symmetry arguments.
In the static uniform external electric field the system has a
group of symmetry C∞v with the axis of symmetry along the
laboratory axis. Functions �̃s and �̃t transform according
to different irreducible representations �+ and �− of this
group, respectively, and cannot be coupled by the operator ∼z,
transforming according to the �+ irreducible representation.

[1] M.-A. Bouchiat, Atomic parity violation. Early days, present
results, prospects, Nuovo Cimento C 35, 78 (2012).

[2] J. S. M. Ginges and V. V. Flambaum, Violations of fundamental
symmetries in atoms and tests of unification theories of elemen-
tary particles, Phys. Rep. 397, 63 (2004).

[3] M. S. Safronova, D. Budker, D. DeMille, D. F. J. Kimball,
A. Derevianko, and C. W. Clark, Search for new physics
with atoms and molecules, Rev. Mod. Phys. 90, 025008
(2018).

[4] I. B. Khriplovich, Parity Non-Conservation in Atomic Phenom-
ena (Gordon and Breach, New York, 1991).

[5] C. Wood, S. Bennett, D. Cho, B. Masterson, J. Roberts, C.
Tanner, and C. E. Wieman, Measurement of parity nonconser-
vation and an anapole moment in cesium, Science 275, 1759
(1997).

[6] O. P. Sushkov and V. V. Flambaum, Parity breaking effects in
diatomic molecules, Zh. Eksp. Teor. Fiz. 75, 1208 (1978) [Sov.
Phys. JETP 48, 608 (1978)].

[7] L. N. Labzowsky, � doubling and parity nonconservation ef-
fects in the spectra of diatomic molecules, Zh. Eksp. Teor. Fiz.
75, 856 (1978) [Sov. Phys. JETP 48, 434 (1978)].

[8] M. G. Kozlov and L. N. Labzowsky, Topical review: Par-
ity violation effects in diatomics, J. Phys. B 28, 1933
(1995).

[9] D. DeMille, S. B. Cahn, D. Murphree, D. A. Rahmlow,
and M. G. Kozlov, Using Molecules to Measure Nuclear

Spin-Dependent Parity Violation, Phys. Rev. Lett. 100, 023003
(2008).
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