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Quantum state preparation is a key step in all digital quantum simulation algorithms. Here we propose methods
to initialize on a gate-based quantum computer a general class of quantum spin wave functions, the so-called
valence-bond-solid (VBS) states, that are important for two reasons. First, VBS states are the exact ground states
of a class of interacting quantum spin models introduced by Affleck, Kennedy, Lieb, and Tasaki (AKLT). Second,
the two-dimensional VBS states are universal resource states for measurement-based quantum computing. We
find that schemes to prepare VBS states based on their tensor-network representations yield quantum circuits
that are too deep to be within reach of noisy intermediate-scale quantum (NISQ) computers. We then apply the
general nondeterministic method herein proposed to the preparation of the spin-1 and spin-3/2 VBS states, the
ground states of the AKLT models defined in one dimension and in the honeycomb lattice, respectively. Shallow
quantum circuits of depth independent of the lattice size are explicitly derived for both cases, making use of
optimization schemes that outperform standard basis gate decomposition methods. The probabilistic nature of
the proposed routine translates into an average number of repetitions to successfully prepare the VBS state that
scales exponentially with the number of lattice sites N . However, two strategies to quadratically reduce this
repetition overhead for any bipartite lattice are devised. Our approach should permit to use NISQ processors to
explore the AKLT model and variants thereof, outperforming conventional numerical methods in the near future.
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I. INTRODUCTION

Quantum many-body phenomena are ubiquitous in na-
ture, but their study has been hampered by the difficulty [1]
in carrying out large-scale numerical simulations to probe
their defining emergent features [2]. Digital quantum com-
puters hold the promise of a more scalable simulation of
quantum many-body phenomena than what is possible with
conventional numerical methods by exploiting the principle
of superposition and the natural encoding of entanglement [3].
Indeed, some of the key limitations faced by leading numeri-
cal methods, notably the sign problem [4] in quantum Monte
Carlo methods, the exponential wall problem [5] faced by
exact diagonalization, and the entanglement area laws [6] that
hinder the viability of tensor networks beyond one dimension,
are overcome by gate-based quantum computation [7,8].

However, digital quantum simulation is yet to become a
standard method in the study of quantum many-body sys-
tems. This is due to the limitations [9] of the current noisy
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intermediate-scale quantum (NISQ) computers [10], namely
the accumulation of both coherent and incoherent errors due
to faulty gate operations [11], and the limited coherence times
of qubits that restrict the depth of circuits that can be faithfully
executed. Although these issues will eventually be overcome
through quantum error correction [12], meanwhile can the
strengths of NISQ devices be exploited to solve practical
problems beyond what is possible via conventional numerical
methods?

Two complementary approaches have been followed to-
wards this goal. The first involves the development of hybrid
variational algorithms (cf. Ref. [13] and references therein)
that trade circuit depth for the parallel execution of inde-
pendent circuits and delegate part of the computational task
to conventional processors. The second consists of identify-
ing problems for which the prospect of a quantum speed-up
[14] is plausible, either because conventional methods are not
scalable or because the problem itself is especially suited for
NISQ devices.

In the vein of the second approach, several proposals
[15–22] involving the preparation of exact eigenstates of
integrable quantum many-body models on digital quantum
computers have arisen in the literature recently. Even though
analytical methods allow to probe many features of these
models, the computation of other properties remains chal-
lenging. For example, although the spectrum of the quantum
XXZ model was determined exactly over sixty years ago [23],
calculating some of its correlation functions remains an active
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area of research [24], which motivated the development of
a routine to prepare the corresponding Bethe ansatz states
on quantum hardware [20,21]. Likewise, the addition of a
sufficiently strong magnetic field to the Kitaev model [25]
disrupts the fractionalization upon which its integrability is
based, in which case a hybrid variational scheme on a NISQ
device [22] may constitute a competitive strategy.

The class of quantum many-body states that will be the fo-
cus of this article are the so-called valence-bond-solid (VBS)
states, which are the exact ground states of Affleck-Kennedy-
Lieb-Tasaki (AKLT) models [26,27]. The ground state of the
bilinear-biquadratic spin-1 AKLT model is the landmark VBS
state, because it provided the first strong piece of evidence
to support Haldane’s conjecture [28] that the integer-spin
Heisenberg models are gapped in one dimension. Neverthe-
less, the VBS construction can be generalized to arbitrary
lattices in higher dimensions [26,27]. One that will deserve
our special attention is the spin-3/2 VBS state on the honey-
comb lattice, as this is a resource state for universal quantum
computation [29,30] within the measurement-based paradigm
of Raussendorf and Briegel [31–33].

Measurement-based quantum computation rests upon the
preparation of an initial state that has neither too high nor too
low a degree of entanglement [34,35]. Given such a resource
state, single-qubit operations and local measurements suffice
to drive the quantum computation, thus avoiding the need
to implement two-qubit operations. Ideally, a resource state
should be the nondegenerate ground state of some naturally
occurring or experimentally realizable physical system, as its
preparation would then boil down to cooling the system [36].
The spin-3/2 VBS state is one such resource state [29,30],
and its experimental realization has been pursued in differ-
ent solid-state platforms [30,37,38]. Numerical simulations
performed on conventional hardware [37,39–41] that could
support this quest for the realization of the spin-3/2 VBS state
are not scalable. Using hybrid variational methods [13,42–
46], near-term quantum computers can in principle offer an
advantage in the simulation of such quantum spin-3/2 models.
To this end, the preparation of an educated initial state is
crucial. Such state is the spin-3/2 VBS, and its preparation on
quantum hardware will be explored in the remainder of this
paper. It should be stressed, though, that our methods apply
generally to any VBS state, regardless of the local spin or the
dimensionality of the underlying lattice.

Recently, the problem herein considered of preparing
VBS states on quantum hardware has received great atten-
tion. In particular, we would like to draw attention to three
manuscripts [47–49] made available online after the submis-
sion for publication of this paper. Chen et al. [47] adopted a
probabilistic strategy akin to ours, although the symmetriza-
tion operator was approximated through an ansatz that yields
a greater CNOT count than our method, which is exact. Only
the one-dimensional VBS state was considered, but proof-
of-concept simulations were performed on an IBM quantum
processor. Smith et al. [48] devised a constant-depth determin-
istic scheme to initialize the one-dimensional VBS state by
exploiting its Z2 × Z2 symmetry to recover from unsuccessful
measurement outcomes. The implementation of the method
on IBM quantum hardware was considered, but its application
to the preparation of two-dimensional VBS states was left

for future work. Wei, Malz, and Cirac [49] built upon earlier
work [50] that proved injective PEPS defined on a N-site
lattice can be prepared adiabatically in O(polylog(N )) time,
identifying a specific adiabatic path to prepare the spin-3/2
VBS state. Given the need to implement the time-evolution
operator of local terms with support on six qubits, this method
to prepare the spin-3/2 VBS state is likely to become the
leading option only when (early stage) fault-tolerant quantum
computers become available.

II. MOTIVATION AND OUTLINE

In this paper, we aim to convey two key points regarding
the preparation of VBS states on a quantum computer. First,
implementing generic digital quantum simulation methods or
exploiting the tensor-network representation of VBS states
generates quantum circuits that are too deep for near-term
quantum hardware. Second, VBS states can be prepared with
a shallow constant-depth circuit by considering a probabilistic
implementation of the local symmetrization operator through
an unconventional adaptation of the Hadamard test [51].

The VBS states are a canonical example of quantum many-
body states that can be represented exactly in terms of tensor
networks [52,53]. As a result, the natural approach to prepar-
ing the VBS states on quantum hardware corresponds to
making use of a quantum routine that capitalizes on such exact
tensor network representation. That is precisely our starting
point in this paper: we prepare the one-dimensional spin-1
VBS state using the general method introduced by Schön
et al. [54] to initialize a matrix product state (MPS) [52,55]
on quantum hardware. It turns out that the resulting circuit
involves sequential three-qubit operations, which may take up
to O(20N ) CNOTs of depth for N sites. Hence, even for a
small chain, the MPS-based preparation of the spin-1 VBS
state is challenging on NISQ hardware.

Furthermore, we have found that applying the method by
Schön et al. [54] to the preparation of the spin-1 VBS state
defined on a ring is challenging. One of the novel results
presented in this paper is the adaptation of this method to
the case of an MPS with periodic boundary conditions. All
concepts and the outline of the technical steps are discussed
in Sec. IV. To avoid an overly long digression in the main
text, the full account of the technical aspects of the method,
both for open and periodic boundary conditions, can be found
in Appendix C.

More generally, in Sec. IV, we also argue that generic
methods such as quantum phase estimation [3,56] and
quantum cooling [57–59] are not scalable if the initial
state is the conventional product state of valence bonds.
Quantum schemes [50,60] based on the representation of two-
dimensional VBS states in terms of projected entangled-pair
states (PEPS) [61], typically based on the construction of
an adiabatic path with gapped Hamiltonians related to the
parent AKLT Hamiltonian, are also critically discussed, as
far as their implementation on near-term quantum hardware
is concerned.

Having attested the inadequacy of these quantum schemes
for NISQ hardware, we proceed to the second key point of
this paper. The main result, which is introduced in Sec. VI, is a
nondeterministic method based on adapting the Hadamard test
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to prepare a general spin-S VBS state. Not only is the resulting
circuit depth independent of the lattice size but, through state-
of-the-art basis gate decomposition techniques (Sec. VII), we
achieve as few as 8 and 27 CNOT gates of depth for the spin-1
and spin-3/2 VBS states.

In the remaining sections, we address additional issues that
are important to implement this probabilistic method on near-
term quantum hardware: mitigation of repetition overhead due
to nondeterministic nature of method (Secs. VIII and IX),
adaptation of method to high local spin S to avoid basis gate
decomposition of large (2S + 1)-qubit operation (Sec. X), and
consideration of qubit connectivity constraints (Sec. XI). A
discussion of the most promising applications with a prospect
of quantum advantage is also included in Sec. XI. For the sake
of clarity, Sec. V provides a more detailed summary of the
sections that follow it.

Since the topic of this paper lies at the intersection of
quantum information and condensed matter physics, to ac-
commodate the different backgrounds of its broad target
readership, in the next section, we introduce the AKLT models
and their ground states, the VBS states.

III. AKLT MODELS: VBS STATES

In one dimension, the spin-1 AKLT model [26,27] is a spe-
cial case of the bilinear-biquadratic Hamiltonian (cf. Ref. [62]
and references therein)

HS=1
BLBQ(β ) =

N−1∑
n=1

�Sn · �Sn+1 + β(�Sn · �Sn+1)2, (1)

with β = 1/3 and �Sn = (Sx
n, Sy

n, Sz
n), where Si

n are the spin-1
matrices. The phase diagram of HS=1

BLBQ(β ) comprises a gap-
less phase for β > 1, a dimerized phase for β < −1 and the
gapped Haldane phase for β ∈ (−1, 1). The latter includes
both the spin-1 Heisenberg model [28] (β = 0) and the spin-1
AKLT model [26,27] (β = 1/3).

The spin-1 AKLT model, HS=1
AKLT ≡ HS=1

BLBQ(β = 1
3 ), can be

expressed (up to a factor and an additive constant) in terms of
a sum of the local projectors PS=2

n,n+1 that map neighboring spins

to the subspace of total spin |�Sn + �Sn+1|2 = 2(2 + 1) [26,27],

HS=1
AKLT = 2

N−1∑
n=1

(
PS=2

n,n+1(�Sn, �Sn+1) − 1

3

)
, (2)

where

PS
n,n′ = C

∏
S′ �=S

((�Sn + �Sn′ )2 − S′(S′ + 1)). (3)

C is a constant that ensures that PS
n,n′ acts trivially on states

with Sn,n+1
total = S, where �Sn,n+1

total ≡ �Sn + �Sn+1. Ignoring the con-
stants, all eigenenergies must be non-negative because each
term is a projector. As a result, a state satisfying PS=2

n,n+1 |ψ0〉 =
0 for all pairs of neighboring spins must be a ground state of
the AKLT model.

The VBS construction scheme ensures this ground state
condition is satisfied as follows. Originally, the total spin of
any pair of neighboring spins 1, �Sn,n+1

total = �Sn + �Sn+1, can take
the values 1 ⊕ 1 = 0, 1, 2, where ⊕ denotes angular momen-
tum addition. To dispose of Sn,n+1

total = 2, each local spin 1

FIG. 1. (a) Illustrated description of construction of spin-1
valence-bond-solid (VBS) states in one-dimensional lattice. (i) Local
degree of freedom at each lattice site is spin 1. (ii) Each spin 1
is decomposed into two spins 1/2. (iii) A valence bond |↑↓〉−|↓↑〉√

2
is prepared at every pair of nearest-neighboring sites, each site
contributing a spin 1/2. This ensures the ground state condition
for the AKLT Hamiltonian [cf. Eq. (2)] is satisfied. (iv) The local
symmetrization operator S (N=2) is applied at every pair of qubits
that encode a single site to retrieve the original spin-1 local degree of
freedom. (b) Extension of VBS construction to a honeycomb lattice.
Since coordination number is 3, there are three spins 1/2 per lattice
site, each involved in a single valence bond. Application of S (N=3) at
every site produces a spin 3/2. This spin-3/2 VBS state is the ground
state of AKLT Hamiltonian stated in Eq. (7).

is decomposed into two spins 1/2, so that a valence bond
1√
2
(|↑↓〉 − |↓↑〉) can be created between the two adjacent

spins 1/2 for each pair of neighboring sites [cf. Fig. 1(a)].
Since the valence bond is a (spin-0) singlet, now Sn,n+1

total can
only take values 1

2 ⊕ 0 ⊕ 1
2 = 0, 1, as desired. Finally, to en-

sure that the physical degrees of freedom at each site are the
expected spins 1, the respective pair of spins 1/2 must be
symmetrized,

S (N=2)(|σ 〉L |σ ′〉R) = 1
2 (|σ 〉L |σ ′〉R + |σ ′〉L |σ 〉R), (4)

with σ, σ ′ ∈ {↑,↓}. S (N=2) refers to the symmetrization op-
erator that acts on N = 2 spins 1/2.

This VBS construction can be straightforwardly extended
to arbitrary lattices in any dimensions [26,27,55]. Given some
lattice (�,L), where � is the set of sites and L the set of links,
every site n ∈ � with coordination number Nn is associated
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with a local spin Nn/2.1 Each local spin is decomposed into
Nn spins 1/2, one for each lattice link (n, n′) ∈ L emanating
from site n, with n′ ∈ � a nearest-neighboring site of n. In the
first step, a valence bond is created along each link, such that
each spin 1/2 is involved in one valence bond. Henceforth,
this product state of valence bonds will be referred to as

|ψpre-VBS〉 =
⊗

(n,n′ )∈L

|↑〉(n;n′ ) |↓〉(n′;n) − |↓〉(n;n′ ) |↑〉(n′;n)√
2

,

where |σ 〉(n;n′ ) denotes the state of the spin 1/2 from site n
that is associated with neighboring site n′. The second and
final steps amount to encoding a spin Nn/2 by applying the
local symmetrization operator,

S (Nn )
n

( Nn⊗
i=1

|σi〉
)

= 1

Nn!

∑
P

( Nn⊗
i=1

|P (σi )〉
)

, (5)

at every site n. P is the generator of all Nn! permutations
of the Nn spins 1/2 belonging to site n. The combination of
these two steps yields the (unnormalized) valence-bond-solid
(VBS) state:

|ψVBS〉 =
⊗
n∈�

S (Nn )
n |ψpre-VBS〉. (6)

Figure 1(b) shows a schematic representation of the VBS
state associated with the honeycomb lattice. Each dashed
black line illustrates a valence bond, while the blue loops
represent the local symmetrization. For both sublattices, every
site has coordination number Nn = 3, so the local physical
degree of freedom corresponds to a spin-3/2, encoded by 3
spins 1/2. As in one dimension, the valence bonds guarantee
the total spin �Sn,n′

total = �Sn + �Sn′ resulting from the sum of the
two neighboring spins 3/2, �Sn and �Sn′ , does not take its
maximum value Sn,n′

total = 3, thus ensuring this VBS state is the
ground state of the Hamiltonian [26,27]

HS= 3
2

AKLT =
∑

(n,n′ )∈L
PS=3

n,n′ (�Sn, �Sn′ )

=
∑

(n,n′ )∈L

(
�Sn · �Sn′ + 116

243
(�Sn · �Sn′ )2 + 16

243
(�Sn · �Sn′ )3

)
.

(7)

Despite the historic significance of the spin-1 VBS state
in one dimension (1D), both for its support to Haldane’s
conjecture [28] and for its pioneering role in the development
of matrix product states (MPS) [63,64], the spin-3/2 VBS
state on the honeycomb lattice is a potentially more relevant
trial state for digital quantum simulation. Indeed, while most
properties of the 1D spin-1 AKLT model can be computed an-
alytically or, if needed, numerically (e.g., via DMRG [52,65–
67]), analytical results for the spin-3/2 AKLT model on the

1Our notation includes the most general case of a graph with locally
varying coordination number, in which case the local spin varies from
site to site. However, the particular cases considered in this paper
will correspond to regular lattices where every site is equivalent, and
therefore all local spins are the same.

honeycomb lattice are far scarcer and conventional numerical
methods less scalable. In fact, in 1D, the existence of the
spectral gap was proven already in the original AKLT papers
[26,27] and even exact results for some excited states have
been derived [68–70]. For the honeycomb lattice, in turn, the
nonzero gap of the AKLT model was only recently established
[40,41] and no exact excited states are known.

There are two noteworthy differences between the spin-1
and spin-3/2 VBS states. The first concerns their com-
putational power within the context of measurement-based
quantum computation [31–33]; while the spin-1 VBS state
can only simulate restricted computations involving arbitrary
single-qubit gates [71,72], the spin-3/2 VBS state has been
shown to be a resource state for the simulation of universal
quantum circuits [29,30]. The second difference lies in the
relation to the corresponding Heisenberg model: In 1D the
spin-1 AKLT and Heisenberg models are both in the Haldane
phase [62], whereas in the honeycomb lattice the ground state
of the spin-3/2 Heisenberg model is Néel-ordered [27], thus
implying a phase transition separating it from the spin-3/2
AKLT model, which has a unique disordered ground state
[27].

In the remainder of this paper, the methods will first be
presented for the general case of a spin-S VBS state, with
S ∈ {1, 3

2 , 2, 5
2 , 3, . . . }. In addition, the two important exam-

ples highlighted above, the spin-1 VBS state (the simplest and
canonical example of a VBS state) and the spin-3/2 VBS
state (the natural candidate VBS state to achieve quantum
advantage), will be discussed in detail.

IV. VBS STATES ON QUANTUM HARDWARE:
OUTLINE OF PROBLEM

A. Failure of standard quantum simulation

The preparation of the spin-S VBS state defined on a lattice
with coordination number N = 2S involves the following two
steps.

(1) Initializing |ψpre-VBS〉, the product state of valence
bonds, one for each lattice link.

(2) Applying the local symmetrization operator S (N ) at
each lattice site of |ψpre-VBS〉, yielding |ψVBS〉.

In the language of quantum information theory, a valence
bond is nothing more than the Bell state |�−〉 = 1√

2
(|01〉 −

|10〉), where the mapping {|↑〉 ↔ |0〉, |↓〉 ↔ |1〉} is implied.
Hence, the first step can be straightforwardly implemented by
applying the two-qubit subcircuit shown in Fig. 3(a) at each
pair of qubits |n; n′〉 and |n′; n〉 representing the two spins 1/2
along a lattice link (n, n′) ∈ L. All such subcircuits can be
applied in parallel, thus resulting in a layer of depth 1 CNOT,2

assuming merely connectivity between two such qubits.
The challenge lies in the second part of the VBS con-

struction. This is due to the nonunitarity of the local
symmetrization operator S (N ), which has two consequences.

2Since the execution time and error rates of two-qubit gates are
significantly greater than those of single-qubit gates (especially
standard ones like Z, X or H ), we ignore the latter in the calculation
of the depth of this circuit.
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FIG. 2. [(a) and (b)] Matrix product state (MPS) representation of a one-dimensional spin-1 VBS state with open (a) and periodic
(b) boundary conditions for N = 4 sites. Due to the translational invariance, all tensors in (b) are given by Eq. (11), where two physical
indices, each of dimension d = 2, are used instead of the conventional single index with d = 3. The MPS with open boundary conditions in
(a) can be obtained by opening the bond corresponding to the sum over δ in (b) and setting the two resulting free indices xL and xR to one of the
two possible values, thus producing one of the four degenerate VBS states for a spin-1 AKLT chain. The arrows in (a) allude to the fact that
the MPS is in left-canonical form, in which case the local tensors vary from site to site, hence the site subscript used. [(c) and (d)] High-level
scheme of quantum circuits that initialize spin-1 VBS states with open (c) and periodic (d) boundary conditions for N = 4 sites by exploiting
their MPS representation. D†

[i] is the inverse of the unitary matrix product operator [73,74] D[i] that disentangles site i from the remainder of the
MPS. The explanation of how to obtain D[i] from the corresponding local tensor Ai in the MPS can be found in Appendix C. For N sites and
open boundary conditions, as in (c), the circuit involves the sequential application of N − 1 three-qubit operations D†

[i], i = N, N − 1, . . . , 2,
followed by the execution of the two-qubit operation D†

[1], so the depth is O(N ). The case of periodic boundary conditions introduces two

differences. First, the final two-qubit operation, D†
[1], is nonunitary, so it has to be embedded in a three-qubit unitary operation D′†

[1] to be
executed on quantum hardware. The additional ancilla must be initialized in |0〉 and measured in |0〉 (with probability of 50%, regardless of
N) for the method to be successful. Second, the first operation, D†

[N], acts on four qubits instead of three.

First, its implementation on quantum hardware is nontrivial,
since quantum circuits are inherently unitary, as they ulti-
mately amount to time-evolution operators of closed quantum
systems (at least, within the gate-based paradigm) [9]. Sec-
ond, applying S (N ) amounts to projecting |ψpre-VBS〉 onto the
local subspace of exchange-symmetric states. As a result,
ignoring finite-size effects, the overlap between the easy-to-
prepare |ψpre-VBS〉 and the final (normalized, hence the tilde)
|ψ̃VBS〉 decreases exponentially with the number of lattice
sites N ,

〈ψ̃VBS|ψpre-VBS〉 =
(

2S + 1

22S

)N/2

≡ pN/2. (8)

p corresponds to the fraction of symmetric spin states selected
by S (N=2S). In particular, p = 3/4 for the spin-1 VBS state
and p = 1/2 for the spin-3/2 VBS state. Appendix B presents
an explicit derivation of these two results and explains how
the general approach is applied.

This exponentially vanishing overlap implies that attempt-
ing to prepare |ψVBS〉 starting from the easy-to-prepare
|ψpre-VBS〉 via a standard digital quantum simulation strat-
egy (e.g., quantum phase estimation [3,56], quantum cooling

methods [57–59]) becomes impractical for sufficiently large
systems. Instead, Wang [59] started from a computational
basis state, a good enough input state for the proof-of-concept
simulation of spin-1 AKLT chain with just N = 3 sites but,
given the exponential scaling of the size of the Hilbert space,
certainly not for large enough systems to probe the thermody-
namic limit.

B. Matrix product states in 1D

An alternative approach to the preparation of VBS states on
quantum hardware involves exploiting their exact representa-
tion in terms of tensor networks of bond dimension � = 2.
In particular, in one dimension, the spin-1 VBS state with
periodic boundary conditions can be expressed as an MPS
[52,55] [cf. Fig. 2(b)]

∣∣ψS=1
VBS

〉 =
∑

�σ
Tr(Aσ1 Aσ2 . . . AσN )|�σ 〉, (9)

where |�σ 〉 ≡ ⊗N
n=1 |σi〉 represents the N physical spin-1 de-

grees of freedom [i.e., |σi〉 = (σ+1
i , σ 0

i , σ−1
i )T ] and the (left-

and right-normalized) local rank-3 tensors Aσ are of the
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form

A+1 =
(

0
√

2
3

0 0

)
, A0 =

(− 1√
3

0

0 1√
3

)
,

A−1 =
⎛
⎝ 0 0

−
√

2
3 0

⎞
⎠. (10)

On a digital quantum computer, these spins-1, |σi〉, have to
be encoded (with redundancy) in terms of two qubits each,
(|sL

i 〉, |sR
i 〉). Hence, for our purposes, it is more useful to ex-

press the local tensor in the form

A↑↑ =
⎛
⎝0

√
2
3

0 0

⎞
⎠, A↑↓ =

(− 1√
6

0

0 1√
6

)
,

A↓↑ =
⎛
⎝− 1√

6
0

0 1√
6

⎞
⎠, A↓↓ =

⎛
⎝ 0 0

−
√

2
3 0

⎞
⎠, (11)

where the left- and right-normalization conditions are still
satisfied. To obtain the MPS for the spin-1 VBS state with
open boundary conditions, one can simply remove the virtual
index corresponding to the bond linking the two ends of the
chain (i.e., the bond between Aσ1 and AσN ) and set each of the
resulting free indices xL and xR to one of two possible values
[cf. Fig. 2(a)], thus yielding the expected four-fold degeneracy
of the spin-1 AKLT chain. At this point, the two tensors
at the ends of the chain, Aσ1 and AσN , are only right- and
left-normalized, respectively, so the MPS has to be brought
into left-canonical form to apply the scheme discussed in the
following paragraphs and explained in detail in Appendix C.
In the left-canonical MPS, the tensors Aσi at different sites are
no longer equal, which justifies the addition of a site subscript,
as shown in Fig. 2(a).

A MPS with open boundary conditions, virtual index di-
mension � = 2 and physical index dimension d = 2 (e.g.,
for spins 1/2 or spinless fermions) can be initialized exactly
on quantum hardware following the single-layer scheme dis-
cussed by Ran [75], which translated an earlier method by
Schön et al. [54] to the language of gate-based quantum com-
puting. As explained in Appendix C, it is straightforward to
extend such method to d = 4 (i.e., two qubits at each site,
so that a spin-1 can be encoded locally), which results in
the quantum circuit schematically shown in Fig. 2(c) for the
particular case of N = 4 sites. Apart from the last step, which
amounts to a two-qubit operation D†

[1], for a chain with N
sites, this method corresponds to the sequential application of
N − 1 three-qubit operations D†

[i], i = 2, 3, . . . , N , thus allow-

ing to prepare a 1D spin-1 VBS state with O(N ) depth. D†
[i]

is the inverse of the unitary matrix product operator [73,74]
D[i] that disentangles site i from the remainder of the MPS.
Appendix C shows how to obtain D[i] from the corresponding
local tensor Ai in the MPS.

The prefactor of such linear scaling can be prohibitively
large for NISQ hardware, though. Using the state-of-the-
art quantum Shannon decomposition [76], which takes at
most 20 CNOT gates to decompose a three-qubit operation,
the circuit depth in CNOT gates of this MPS-based method
should scale at most as O(20N ) for N lattice sites. For

concreteness, as discussed in Appendix C, using the Cirq
three_qubit_matrix_to_operations method [77], the
quantum Shannon decomposition was applied explicitly for
the case of periodic boundary conditions described below [cf.
Fig. 2(d)] to the three-qubit operation D†

[i], i = 2, 3, . . . , N −
1 3. This decomposition resulted in the maximum count of
20 CNOT gates.

It is also possible to adapt this scheme to the preparation
of a 1D spin-1 VBS state with periodic boundary conditions
[cf. Fig. 2(d)]. There are two main differences relative to the
previous case. The first difference lies in the fact that the first
operation, D†

[N], acts on four qubits instead of three. However,
since it is the first operation of the circuit, it is not necessary
to find a circuit that acts on an arbitrary initial state, but only
one that produces the desired effect on the fiducial state |0〉⊗4.
In other words, the basis gate decomposition of a 16 × 16
unitary matrix is replaced by the determination of the circuit
that initializes a four-qubit state, which can be accomplished
straightforwardly by exploiting its Schmidt decomposition, as
discussed in Sec. IX.

The second difference appears in the final operation D†
[1],

which is nonunitary in this case. As discussed in Appendix C,
this two-qubit nonunitary operation can be embedded in a
three-qubit unitary one via the generic method presented in
Appendix C of Ref. [78]. This involves the addition of an
ancillary qubit initialized in state |0〉, which is measured in
the computational basis at the end of the scheme. If the ancilla
is found in state |0〉, which occurs with a probability of 50%
(irrespective of N), the VBS state is prepared in the remaining
2N qubits.

C. Projected entangled-pair states in 2D

Beyond one dimension, VBS states can no longer be ex-
pressed as a MPS with constant bond dimension �, but they
can nonetheless be cast exactly in the form of a PEPS [61] (a
high-dimensional generalization of MPS) with bond dimen-
sion � = 2 as well. However, to the best of our knowledge,
there is no method in the literature to initialize PEPSs on
quantum hardware by deriving a quantum circuit from the
respective local tensors, as described above for MPSs. In fact,
the preparation of a considerable set of 2D PEPS is likely
to require a circuit depth that scales exponentially with the
number of lattice sites N [79,80].

Nevertheless, Schwarz et al. [60] developed a quantum
routine to prepare injective PEPS on digital quantum com-
puters with polynomial resources, provided that the parent
Hamiltonian of which the injective PEPS is the unique ground
state is gapped [81] and sequences of partial sums of local
terms of the parent Hamiltonian can be defined such that each
partial sum has a unique ground state of its own. The key idea
[60] is to perform quantum phase estimation (QPE) [3,56]
with such a partial sum of terms of the parent Hamiltonian,
enlarging the number of lattice sites acted upon by one at a
time. This therefore gives rise to a sequential application of
at least N QPE executions—possibly more than N since the

3Thanks to the translational invariance, the unitary disentangler D[i]

happens to be the same for i = 2, 3, . . . , N − 1.
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measurement outcome of QPE may not be the ground state
energy, in which case the measurement must be undone via the
Marriott-Watrous trick [82–84], so that QPE can be repeated
until achieving the successful outcome.

For the case of two-dimensional VBS states such as the
spin-3/2 VBS state on the honeycomb lattice and possibly
the spin-2 VBS state on the square lattice (given the tensor
network renormalization group (TNRG) results suggesting the
existence of a nonzero gap [85]), both these conditions are
satisfied: The parent Hamiltonian (i.e., the respective AKLT
model) is gapped, and the sequences of partial sums, which
include only the projectors PS=Smax

n,n′ (�Sn, �Sn′ ) acting on the sites
considered up to that point, also have a unique ground state.
Hence, starting from the product state of valence bonds,
|ψpre-VBS〉, the VBS state can be grown one site at a time via
QPE using the partial sums of terms of the AKLT Hamilto-
nian, thus effectively resulting in a O(N ) circuit depth.

Alternatively, injective PEPS can be simply prepared via
adiabatic evolution [86], thus forgoing the projection onto
the ground-state manifold via QPE that is adopted in the
method devised by Schwarz et al. [60]. Importantly, Ge et al.
[50] have shown it is possible to prepare injective PEPS in
O(polylog(N )) time provided that the spectral gap along the
whole adiabatic path is above a certain threshold, which can
be computed in advance [87]. Further numerical studies to
determine the minimum number of time steps required to
satisfy the adiabatic condition [86] to within a given precision
are required to assess the feasibility of the adiabatic state
preparation of the spin-3/2 VBS state for the intermediate
system sizes attainable in NISQ devices.

D. Implementation in NISQ hardware

In summary, the use of standard digital quantum simulation
algorithms such as QPE [3,56] or quantum cooling methods
[57–59] to prepare VBS states on quantum hardware using
their parent AKLT Hamiltonians is hampered by the exponen-
tially vanishing overlap with the easy-to-prepare initial state
|ψpre-VBS〉. As an alternative, VBS states can be constructed
one site at a time by exploiting their MPS representation in
one dimension or the fact that the AKLT Hamiltonian is a
sum of local projectors in any number of dimensions. In any
case, despite the O(N ) depth of these sitewise approaches,
even for a very small number of lattice sites N , the circuit
depth is bound to be prohibitively large for NISQ hardware
as the MPS construction [54,75] involves N − 1 sequential
three-qubit operations and the injective PEPS preparation
method by Schwarz et al. [60] requires at least N sequential
QPE executions. Adiabatic state preparation could be a better
alternative in light of the O(polylog(N )) asymptotic scaling
proven by Ge et al. [50], but the implementation of the time-
evolution operators in NISQ hardware may be daunting, as
the two-body operators acting on neighboring spin-3/2 that
appear in the AKLT Hamiltonian become six-qubit operators
upon encoding each spin-3/2 in terms of 3 qubits. In the
next sections, we take the opposite approach by devising a
method that implements the symmetrization at all sites in
parallel, resulting in a constant-depth circuit at the cost of
requiring the post-selection of the measurement outcomes of
ancillary qubits. In a sense, circuit depth is traded for the

FIG. 3. (a) Two-qubit subcircuit that prepares a single valence
bond 1√

2
(|↑↓〉 − |↓↑〉) ≡ 1√

2
(|01〉 − |10〉). Full circuit V that pre-

pares |ψpre-VBS〉 = V|0〉⊗2NS amounts to repetition of this subcircuit
across all pairs of qubits representing lattice links, with N the number
of lattice sites and S the local spin. (b) Hadamard test [90,91] for
generic unitary operator U . Setting U = e−iπS (N )

turns input |0〉 ⊗
|ψ〉 into |0〉 ⊗ (1 − S (N ) )|ψ〉 + |1〉 ⊗ S (N )|ψ〉, so measuring an-
cilla in |1〉 ensures symmetrization operator S (N ) acting on N = 2S
spins 1/2 (i.e., qubits) is applied at given site in main register. (c) Cir-
cuit that prepares spin-S VBS state, |ψVBS〉 = ⊗N

n=1 S (N )
n |ψpre-VBS〉,

in N-site lattice if all N ancillas are measured in |1〉. The basis gate
decomposition of controlled e−iπS for S = 1 and 3/2 can be found

in Sec. VII. All N controlled-e−iπS (N )
n are executed in parallel, so the

circuit depth is constant, i.e., independent of the system size N .

repetition of the same shallow circuit, in the spirit of hybrid
variational algorithms [13]. Thus the resulting method, though
probabilistic, is suitable for NISQ devices.

V. PROBABILISTIC PREPARATION OF VBS STATES:
SUMMARY OF METHODS

In light of the unsuitability of generic digital quantum
simulation methods and quantum routines that exploit tensor-
network representations to prepare VBS states on noisy
intermediate-scale quantum processors, in the remainder of
this paper we will introduce a probabilistic method that pro-
duces circuits with depth independent of the size of the lattice
in which the VBS state is defined. For clarity, this section sum-
marizes the results presented in the next sections.

The default version of this probabilistic scheme to prepare
VBS states is introduced in the next section. It comprises the
following two steps, for which the respective depth in CNOT

gates for the spin-1 and spin-3/2 VBS states is given below.
(i) Prepare a valence bond at each pair of qubits encoding

a lattice link through the two-qubit quantum circuit shown in
Fig. 3(a).

Circuit depth: S = 1: 1 CNOT; S = 3
2 : 1 CNOT.

(ii) Apply the symmetrization operator S (N ) via the
adapted Hadamard test shown in Fig. 3(c) at every set of N =
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2S qubits encoding one lattice site. The successful application
of S (N ) at all sites requires measuring all N ancillary qubits
in state |1〉.

Circuit depth: S = 1: 7 CNOTs; and S = 3
2 : 26 CNOTs.

The circuit depth in CNOT gates for the second step, partic-
ularly for the spin-3/2 case, results from the optimization of
the basis gate decomposition of the (2S + 1)-qubit operation
controlled-e−iπS (N )

, which is discussed in Sec. VII. In total,
the circuit depth required to prepare the spin-1 and spin-3/2
VBS states is eight CNOT gates and 27 CNOT gates, respec-
tively, ignoring qubit connectivity constraints.

Because the successful initialization of the VBS state de-
mands measuring all ancillas in state |1〉, the average number
of repetitions required to achieve success grows exponentially
with the number of lattice sites N . To address this issue,
particularly for the intermediate values of N for which quan-
tum advantage is attainable with NISQ hardware, we have
devised two strategies to quadratically reduce this repetition
overhead for bipartite lattices (cf. Secs. VIII and IX). The
repetition-overhead-mitigated preparation of the spin-1 and
spin-3/2 VBS states takes the following two steps.

(i) For every site of one sublattice, using the general
quantum state preparation method from Fig. 5, initialize the
4S-qubit states corresponding to the preparation of the 2S
valence bonds emanating from the given site followed by the
application of the symmetrization operator S (N=2S) at such
site.

Circuit depth: S = 1: 4 CNOTs; S = 3
2 : 19 CNOTs.

(ii) For every site of the other sublattice, apply the sym-
metrization operator S (N ) via the adapted Hadamard test
shown in Fig. 3(c) at every set of N = 2S qubits encoding
one such site.

Circuit depth: S = 1: 7 CNOTs; and S = 3
2 : 26 CNOTs.

Figure 4 helps to visualize the sets of 4S qubits on which
the first step is applied in parallel. Since half of the sites
are deterministically symmetrized in the first step, the prob-
abilistic approach in the second step takes quadratically fewer
measurements on average to complete the preparation of the
VBS state.

The probabilistic method herein introduced is valid for
any VBS state, regardless of the local spin-S, which is deter-
mined by the coordination number of the underlying lattice.
However, the basis gate decomposition of the (2S + 1)-qubit
operation controlled-e−iπS (N )

may lead to a very deep circuit
for a sufficiently large S. To address this issue, in Sec. X,
we discuss how to implement the local symmetrization op-
erator through the linear combination of unitaries (LCU)
method [88], thus skipping the basis gate decomposition of a
large unitary. The first repetition overhead mitigation strategy
(Sec. VIII) is also more suitable for high-spin VBS states, as
it avoids preparing a 4S-qubit state in the first step.

VI. LOCAL SYMMETRIZATION VIA HADAMARD TEST

In this section, we will adapt the Hadamard test [cf.
Fig. 3(b)], a canonical quantum routine to compute ex-
pectation values of unitary operators [51], to apply the
symmetrization operator in the main register upon measuring
the ancillary qubit in the state |1〉. This strategy is reminiscent

FIG. 4. Scheme of product state of valence bonds, |ψpre-VBS〉,
in one-dimensional lattice (a) and honeycomb lattice (b) to sup-
port explanation of repetition overhead mitigation scheme. Dashed
black lines represent valence bonds and black dots denote qubits.
Four-qubit islands within filled rectangles (a) and six-qubit islands
within filled triangles (b) are not entangled with one another. Hence,
application of Hadamard test at sites marked with blue circles, corre-
sponding to a single sublattice, can be repeated (with reset of qubits
between consecutive trials) as many times as required to achieve
success.

of the approach followed by Lacroix [89] to restore symme-
tries via quantum phase estimation [3,56].

The fact that the local symmetrization operator S (N ) is
nonunitary means it cannot be expressed as a product of
unitary operations (i.e., quantum gates). In any case, S (N ) is
Hermitian, so e−iθS (N )

is unitary for any θ ∈ R and we can, in
principle, find its quantum circuit.

Let us now consider the application of the Hadamard test
[cf. Fig. 3(b)] with U = e−iθS (N )

. Labelling the input state on
the main register as |ψ〉, the output of this circuit before the
measurement of the ancilla is

|0〉 ⊗
[

1 + e−iθS (N )

2

]
|ψ〉 + |1〉 ⊗

[
1 − e−iθS (N )

2

]
|ψ〉.

(12)

Since S (N ) is idempotent ((S (N ) )2 = S (N )), we have
e−iθS (N ) = 1 − (1 − e−iθ )S (N ). Replacing in (12) gives

|0〉 ⊗
[
1 − 1 − e−iθ

2
S

]
|ψ〉 + |1〉 ⊗

[
1 − e−iθ

2
S

]
|ψ〉.

(13)

Setting θ = π , we obtain

|0〉 ⊗ (1 − S (N ) )|ψ〉 + |1〉 ⊗ S (N )|ψ〉. (14)

Hence, applying the Hadamard test with U = e−iπS (N )
to an

input state |ψ〉 and retaining only the measurements of the
ancilla qubit that yield |1〉 results in the application of S (N ) to
|ψ〉 at the site in question.

This scheme can be generalized to the symmetrization of
the input state |ψ〉 at all sites n = 1, 2, . . . , N by considering
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N Hadamard tests in parallel, with one ancilla qubit per site.
The outcome is of the form

|�〉 ≡
2N −1∑
m=0

|m〉 ⊗
[

N⊗
n=1

(
1 − S (N )

n

)1−mn
(
S (N )

n

)mn |ψ〉
]
,

(15)

where |m〉 is a computational basis state and m =
mN mN−1 . . . m2m1 is the binary representation of m. In words,
whenever the nth ancilla qubit is measured in |1〉 (i.e., mn =
1), the nth site of the input state |ψ〉 is locally symmetrized.
As a result, if the N-qubit ancilla register is read out in
state |11 . . . 11〉 ≡ |2N − 1〉, the main register is found in
S (N )

1 S (N )
2 . . .S (N )

N |ψ〉 ≡ ⊗N
n=1 S (N )

n |ψ〉.
Figure 3(c) shows the quantum circuit that prepares the

spin-S VBS state. It consists of three parts. First, the prepara-
tion of the product state of valence bonds, |ψpre-VBS〉 = V|0〉,
then the application of the layer of local Hadamard tests, and
finally the measurement of the site ancillas in the computa-
tional basis, retaining only the trials that yield all site ancillas
in state |1〉. Each local spin-S is encoded by 2S qubits (e.g.,
three qubits for a spin-3/2), so the main register has a total
of 2NS qubits for a N-site lattice. For each lattice site, an
additional ancilla is required to perform the postprocessing
measurement.

The fact that |ψVBS〉 is only prepared if all N ancillas
are measured in |1〉 after the local Hadamard tests means
only a few trials are successful. The average number of trials
required to prepare |ψVBS〉 corresponds to the inverse of the
probability of measuring all N site ancillas in state |1〉. Using
Eq. (15) and the orthogonality of the computational basis
states, the probability of measuring all N site ancillas in state
|1〉 is

P11..1 = Tr(|11 . . . 1〉〈11 . . . 1| ⊗ 122NS×22NS |�〉〈�|)
= |〈ψVBS|ψVBS〉|2 = pN , (16)

where in the last step the result derived in Appendix B was
used. The average number of repetitions is thus exponential
in the system size N , which may become prohibitively large
for the intermediate values of N at which quantum advantage
may be attainable.

VII. BASIS GATE DECOMPOSITION OF e−iπS (N )

FOR LOCAL SPINs S = 1 and 3/2

We now turn to the problem of compiling the derived algo-
rithm into explicit quantum circuits for the important cases of
S = 1 and S = 3/2 VBS states in order to better understand
the practical cost of implementing the proposed methods.
Concretely, we decompose the abstract controlled-e−iπS (N )

gates, for local spins S = 1 and 3/2, in terms of an elementary
gate set {CNOT, U (θ, φ, λ)}, where U (θ, φ, λ) is the general
single-qubit operation

U (θ, φ, λ) =
(

cos(θ/2) −eiλ sin(θ/2)

eiφ sin(θ/2) ei(φ+λ) cos(θ/2)

)
. (17)

To make the circuits as efficient as possible, we need to
find their shallowest decompositions, as these enable faster

execution times and, more importantly, less error accumula-
tion in near-term noisy platforms. Decompositions with fewer
CNOT gates are prioritized because two-qubit operations are
currently one to two orders of magnitude more error-prone
than single-qubit ones [92,93].

We start with the decomposition of the controlled-
e−iπS (N=2)

for local spin S ≡ N
2 = 1. Taking the exponential

of the matrix representation of S (N=2) stated in Eq. (A3) in
Appendix A, one finds that

e−iπS (N=2) =

⎛
⎜⎜⎜⎝

−1 0 0 0

0 0 −1 0

0 −1 0 0

0 0 0 −1

⎞
⎟⎟⎟⎠ = eiπ SWAP. (18)

Hence, the controlled-e−iπS (N=2)
is just a Fredkin gate (i.e., a

controlled-SWAP, or CSWAP, for short) preceded by a Z gate
acting on the control-qubit to account for the global phase
factor eiπ in Eq. (18) above, which becomes a relative phase
factor upon controlling it. In practice, in the local Hadamard
test, this Z gate can be skipped altogether; the only difference
is that the desired outcome in the measurement of the site
ancilla is |0〉 instead of |1〉.

Optimized basis gate decompositions of the Fredkin gate
with the above gate set are given in Ref. [94] for three dif-
ferent coupling and qubit assignment setups. Building upon
the result assuming all-to-all qubit connectivity, with seven
CNOTs and a depth of ten operations, the circuit for the local
Hadamard test can be straightforwardly compiled with the
same depth and CNOT count, since the Hadamard and Z gates
can be absorbed into the outer single-qubit operations of this
Fredkin gate decomposition. Some processors, however, are
restricted to nearest-neighbor couplings only. In that case,
as will be described in Sec. XI, the natural placement of
the ancilla qubit is between the two qubits that encode the
spin-1 state at that site. The Hadamard test circuit can then
be implemented with only nine CNOT gates and a depth of 19
operations by using the decomposition for the Fredkin gate in
Ref. [94] where linear connectivity is assumed and the control
qubit is placed at the center, dropping the unnecessary last
three CNOT gates that perform a SWAP of the control back to
the central position.

Moving on to the case of the controlled e−iπS (N=3)
for the

scenario of local spin S ≡ N /2 = 3/2 found in the honey-
comb lattice, we first exponentiate the matrix representation
of S (N=3), stated in Eq. (A5), to obtain

e−iπS (N=3) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 0 0 0 0 0 0

0 1
3 − 2

3 0 − 2
3 0 0 0

0 − 2
3

1
3 0 − 2

3 0 0 0

0 0 0 1
3 0 − 2

3 − 2
3 0

0 − 2
3 − 2

3 0 1
3 0 0 0

0 0 0 − 2
3 0 1

3 − 2
3 0

0 0 0 − 2
3 0 − 2

3
1
3 0

0 0 0 0 0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(19)
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Decomposing the controlled version of Eq. (19) using the
state-of-the-art optimized quantum Shannon decomposition
[76,95] takes 63 CNOT gates [96]. Starting from this method
and then proceeding with a heuristic-based optimization
approach, we have found a circuit that implements the
controlled-e−iπS (N=3)

with just 26 CNOT gates.
First, the 63-CNOT circuit yielded by the optimized quan-

tum Shannon decomposition, assuming full connectivity, was
recompiled with QISKIT’s transpile function [97], which
can perform some basic simplifications. The CNOT count was
reduced to 54. Then, subsequent simplification steps were
carried out in the ZX-calculus language; after some effort,
the number of CNOT gates was reduced by more than half, as
described below.

To accomplish that, the 54-CNOT circuit was converted
into a ZX diagram with the aid of the PYZX software library
[98], which contains a number of methods to simplify ZX
diagrams and convert them back into quantum circuits [99].
We first tested the full bundle of ZX-diagram simplification
rules available, including spider-fusion, identity removal, piv-
oting, local complementation and removal of interior nodes,
followed by the gadgetization technique and its simplifica-
tion. All these procedures are conveniently combined into
the full_reduce function. The next step was extracting a
new quantum circuit from the reduced ZX graph [100]. PYZX

offers a few further methods to optimize the obtained circuit,
which we employed before passing the result back through the
QISKIT transpiler. However, in the end, the resulting quantum
circuit was not simplified; rather, the CNOT count increased
to 64.

Very different circuits are often extracted from equiva-
lent ZX graphs. Hence, one way to try to avoid generating
a deeper circuit than the initial 54-qubit one is to search
for extracted circuits that minimize the gate count in the
local space of ZX diagrams that are equivalent to the previ-
ously simplified version. PYZX implements two optimization
techniques to perform this local search: simulated annealing
and genetic algorithms. The next leg of our circuit simplifi-
cation pipeline built upon these methods with the intensive
search and optimization procedure described in Ref. [94],
which often succeeds in escaping from local minima, thus
optimizing decompositions further.

The final four-qubit circuit we have obtained for the
controlled-e−iπS (N=3)

operation (up to a global phase factor) in
terms of the aforementioned gateset and assuming full qubit
connectivity comprises 26 CNOT gates and 42 single-
qubit gates, with depth 26 CNOT gates (or depth 45, if single-
qubit layers are included). A similar optimization procedure
was then repeated for the case of linear qubit connectivity,
yielding a circuit with 39 CNOT gates and 53 single-qubit
gates, with depth 39 CNOT gates (or depth 62, including single-
qubit layers). These circuits can be extracted from the QASM
files 5 and 6 introduced in Appendix H.

Finally, while the exact complexity of circuit extraction
from a ZX diagram is not yet known, a recent preprint shows
it is at least #P-hard [101]. Nevertheless, we were still able
to dramatically reduce the number of operations necessary to
build these circuits using a heuristic search.

VIII. MITIGATING REPETITION OVERHEAD
VIA LOCAL HADAMARD TEST

The repetition overhead faced in the initialization of VBS
states is common to other quantum many-body states, the
preparation of which involves some nonunitary operation.
This includes the Gutzwiller wave function [102,103], the
ground state of the Kitaev honeycomb model [22], or the
Bethe ansatz for the XXZ model [20,21]. In the latter case, for
example, the number of repetitions was reduced via quantum
amplitude amplification [104] (a generalization of Grover’s
algorithm [105]), which we may also apply to the preparation
of VBS states. In fact, the layer of local Hadamard tests
introduced in the previous section allows for the construction
of an appropriate oracle that can be implemented with, at
most, O(N ) circuit depth (cf. Appendix D). However, the
resulting quantum amplitude amplification scheme leads to
a circuit with exponential depth in N , since the angle swept
in the relevant two-dimensional subspace at each iteration is
set by the exponentially vanishing overlap between the initial
state |ψpre-VBS〉 and the final state |ψVBS〉. This would defeat
our purpose of developing a low-depth preparation scheme for
NISQ processors.

Returning to the probabilistic method introduced in the
previous section, it is reasonable to expect to explore the lo-
cality of the Hadamard tests to reduce the repetition overhead.
Indeed, measuring a single ancilla in state |1〉 is straightfor-
ward: it only takes 1/p repetitions on average. For example,
for the spin-1 VBS state, 3 out of every 4 repetitions yield a
site ancilla in state |1〉. Similarly, for the spin-3/2 VBS state, 1
out of 2 trials produces the desired outcome. The difficulty in
preparing |ψVBS〉 lies in having to measure all N site ancillas
in state |1〉 simultaneously. Considering a coin toss analogy,
having a large number N of tossed coins land with “heads”
facing up is an exponentially suppressed event, but obtaining
“heads” from tossing a single coin is not.

If the input state happened to be a tensor product of sitewise
states, one could repeat the local Hadamard test at each site
as many times as required to obtain the successful outcome,
resetting the respective qubits after an unsuccessful trial and
before attempting a further one. Returning to the coin toss
analogy, instead of having to obtain N “heads” at once, one
would toss each coin separately until yielding “heads”, thus
repeating only the toss of those coins that kept on yielding
“tails.” In principle, different sites would attain success after
a different number of attempts, so the first ones to succeed
would have to be held until all remaining sites were sym-
metrized. The crucial point is that, because of the absence of
entanglement between different sites, resetting the qubits at
one site would not affect the wave function at any other site.

However, the initial state |ψpre-VBS〉 involves valence bonds
between neighboring sites, so resetting the qubits of one
site after an unsuccessful local Hadamard test affects the
remainder of the sites. In fact, it does not simply affect
the nearest-neighboring sites. The effective action of the
Hadamard test on the state |ψ〉 in the main 2S-qubit regis-
ter (i.e., S (N=2S)|ψ〉 if the ancilla is measured in |1〉, and
(1 − S (N=2S) )|ψ〉 otherwise) produces entanglement between
the 2S qubits at that site. These qubits were already entangled
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to those from neighboring sites, and within each such neigh-
boring site all 2S qubits become entangled to one another
due to the respective Hadamard test. Hence, the entanglement
spreads across the whole system, as expected from the hidden
order captured by the string order parameter in VBS states
[106].

If, however, one attempts to symmetrize the wave func-
tion only at the N/2 sites of one sublattice—assuming, of
course, the lattice is bipartite—the entanglement resulting
from the action, whether successful or unsuccessful, of each
local Hadamard test is no longer spread across the whole sys-
tem, being confined to a 4S-qubit island (cf. Fig. 4) that only
encompasses qubits from the respective site and its nearest
neighbors (at which the local Hadamard test is not applied).
The trial-and-error approach outlined above is now viable
because next-nearest-neighboring sites are not entangled to
one another in the input state, so all qubits within each island
can be reset without affecting the remaining qubits.

In brief, the repetition overhead mitigation strategy con-
sists of applying the Hadamard test with U = e−iπS (N )

, as in
the bare probabilistic method, but only to the N/2 sites of
one sublattice, provided that the lattice in question is bipartite.
Some of these local Hadamard tests will result in a successful
symmetrization of the corresponding site (those for which the
ancilla is measured in |1〉) while others will fail (those for
which the ancilla is measured in |0〉). In the latter, one simply
resets the qubits, reprepares the valence bonds that emanate
from the respective site, and tries the Hadamard test again,
repeating this as many times as required to obtain a successful
outcome. For clarity, Fig. 4 details the independent 4S-qubit
islands for the S = 1, 3/2 VBS states.

The cumulative probability of symmetrizing the N/2 sub-
lattice sites after r local Hadamard test rounds is

Pr = (pRr )N/2, (20)

where Rr follows the recursive relation:

Rr = 1 + (1 − p)Rr−1, R1 = 1. (21)

As expected, for the first round, P1 = p
N
2 , which corresponds

to the probability of measuring all N/2 ancillas in state |1〉 at
once, as in the probabilistic method. As r → ∞, Rr converges
to 1/p, so that the cumulative probability Pr approaches 1 in
that limit.

The average number of rounds 〈r〉 required to symmetrize
all N/2 sites of one sublattice can be computed numerically,
yielding a logarithmic scaling with respect to the system size
N . For the spin-1 VBS state (p = 3/4),

〈r〉 = 0.71 ln N + 0.49 (2 s.f.), (22)

and, for the spin-3/2 VBS state (p = 1/2),

〈r〉 = 1.4 ln N + 0.49 (2 s.f.). (23)

The logarithmic scaling with the system size N could be
anticipated from the fact that, on average, at each round,
S (N ) is successfully applied at a fraction p of the hitherto
unsymmetrized sites. Since the circuit depth of a single layer
of Hadamard tests [cf. Fig. 3(c)] is independent of N , this
strategy to reduce the repetition overhead translates into an
additional circuit layer of O(ln N ) depth.

Once this step is complete, one is left with the symmetriza-
tion of only half of the sites (those belonging to the other
sublattice), which requires, on average, only the square root
of the original repetitions using the probabilistic method intro-
duced in the previous section. For example, for the spin-3/2
VBS state on a honeycomb lattice with N = 20 sites, the
unmitigated probabilistic method requires an average of 220 =
1 048 576 repetitions, while the repetition overhead mitigation
strategy reduces this overhead to 210 = 1024 trials.

Two final notes about the integration of this repetition
overhead mitigation scheme in the probabilistic method are
in order. First, the repetition overhead mitigation strategy
must be applied before the probabilistic method, because the
former exploits the entanglement structure of the initial state
|ψpre-VBS〉, while the latter is agnostic to it, in that it applies
the local symmetrization operator S (N ) at every site where
the respective ancilla is measured in |1〉 regardless of the input
state. Second, the N/2 ancillas used in the repetition overhead
mitigation scheme can be reused in the probabilistic method,
thus reducing the number of ancillas by half.

IX. DETERMINISTIC MITIGATION OF
REPETITION OVERHEAD

Despite the low circuit depth added by the repetition over-
head mitigation layer, its implementation in the currently
available quantum computers may be challenging due to the
need to process the outcome of mid-circuit measurements in
real time. Indeed, although the mid-circuit measurement and
reset of qubits are already available in some state-of-the-art
platforms [107,108], the delay resulting from performing the
measurements in the quantum processor, deciding the next
step on the conventional processor, and finally conveying this
decision to the quantum processor may be great enough to the
point of extending the execution time of the circuit beyond the
limits set by the decoherence of the qubits.

However, if the 4S-qubit islands are sufficiently small, for
each island one can simply prepare the respective state deter-
ministically using generic quantum state preparation methods.
Specifically, to prepare the four-qubit and six-qubit (normal-
ized) states corresponding to each island in the spin-1 and
spin-3/2 VBS states, we will make use of a scheme [90,109]
based on the Schmidt decomposition [3] of a general 2n-qubit
state.

Let us consider the preparation of a 2n-qubit state

|φ〉 =
1∑

i1,...,in=0
j1,..., jn=0

Mi1,...,in
j1,..., jn

|i1, . . . , in; j1, . . . , jn〉, (24)

where the separation of indices {ik}n
k=1 and { jk}n

k=1 reflects the
symmetric bipartition we will adopt to perform the Schmidt
decomposition of |φ〉. Merging the indices {ik}n

k=1 and { jk}n
k=1

into a single index i and j, respectively, we have

|φ〉 =
2n−1∑
i=0

2n−1∑
j=0

Mi;j|i〉 ⊗ |j〉. (25)

The amplitudes of |φ〉 are now cast in the form of a 2n × 2n

matrix M. The singular value decomposition of M gives
M = USV†, in which case we can express |φ〉 in terms of its
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FIG. 5. (a) High-level scheme of general method [90,109] to
prepare 2n-qubit state |φ〉 = ∑2n−1

i=0

∑2n−1
j=0 Mi;j|i; j〉 by exploiting its

Schmidt decomposition. U and V are found through the singu-
lar value decomposition of M, i.e., M = USV†. B prepares state∑2n−1

k=0 sk |k〉, where S = diag(s0, . . . , s2n−1). (b) Application of this
general method to preparation of four-qubit islands in spin-1 VBS
state. Valence bonds are associated with qubit pairs (Q0, Q1) and
(Q2, Q3). Symmetrization operator S is applied at qubits (Q1, Q2),
which encode a single site. A total of seven CNOT gates and a depth
of four CNOT gates are required to prepare such state. Single-qubit
gates Gi are presented in compact form for the sake of clarity; details
can be found in the QASM file 3 introduced in Appendix H.

Schmidt decomposition:

|φ〉 =
2n−1∑
k=0

sk (U|k〉) ⊗ (V|k〉) ≡
2n−1∑
k=0

sk|uk〉 ⊗ |vk〉. (26)

{sk}2n−1
k=0 are the singular values of M, which are the real,

non-negative entries of the diagonal matrix S. {uk}2n−1
k=0 and

{vk}2n−1
k=0 are the left and right singular vectors of M, cor-

responding to the columns of the unitary matrices U and
V. Importantly, since M is itself unitary,

∑2n−1
k=0 s2

k = 1, so
(s0, s1, . . . , s2n−1)T = ∑2n−1

k=0 sk|k〉 defines a properly normal-
ized n-qubit state.

Figure 5(a) shows a high-level scheme of the circuit that
exploits the Schmidt decomposition to prepare |φ〉 on a 2n-
qubit register, which is split into two n-qubit subregisters. It
comprises three parts.

(1) Initialize the state
∑2n−1

k=0 sk|k〉 on one of the two sub-
registers via the n-qubit subcircuit B.

(2) Apply a network of n CNOT gates, the ith CNOT having
as control the ith most significant qubit of the subregister
previously acted on by B and as target the ith most significant
qubit of the other subregister. This prepares

∑2n−1
k=0 sk|k〉 ⊗

|k〉.
(3) Apply the n-qubit subcircuits U and V in parallel to

one subregister each. This produces Eq. (26).
In short, this method allows to turn the preparation of a

2n-qubit state into the basis gate decomposition of n-qubit
operations, thus simplifying the process considerably. For
example, for n = 1, one can prepare an arbitrary entangled

two-qubit state |φ〉 with a single CNOT gate, since B, U, and
V are all single-qubit operations that can be decomposed into
elementary operations trivially (e.g., via the ZYZ decomposi-
tion [3]). Of course, if |φ〉 is separable, then s0 = 1, s1 = 0,
in which case |φ〉 = |u0〉 ⊗ |v0〉 and the CNOT gate is redun-
dant, as we only need to initialize two single-qubit states in
parallel.

Let us now consider the application of this method to the
preparation of the four-qubit state |ψS=1

island〉 corresponding to
an island of a spin-1 VBS state [cf. Fig. 4(a)]. Concretely,
|ψS=1

island〉 results from preparing a product state of two valence
bonds, applying the symmetrization operator S (N=2) to the
central pair of qubits, which encode a single site, and normal-
izing the resulting state.

In general, preparing such a four-qubit state using the
method from Fig. 5(a) requires the preparation of a two-qubit
state (via subcircuit B), which takes at most one CNOT gate,
and the application of two two-qubit subcircuits U and V ,
each taking at most three CNOT gates [110]. Hence, a maxi-
mum of nine CNOT gates and a circuit depth of at most five
CNOT gates, ignoring connectivity constraints, are required
to prepare an arbitrary four-qubit state. For the specific case
of |ψS=1

island〉, its initialization involves a total of seven CNOT

gates and a depth of four CNOT gates, since U and V can
both be decomposed into a circuit with only two CNOT gates
each using the QISKIT two_qubit_cnot_decompose method
[111], which implements the KAK decomposition [112]. Fig-
ure 5(b) presents a scheme of the corresponding quantum
circuit.

The application of the Schmidt-decomposition-based ini-
tialization method to a six-qubit state such as the spin-3/2
VBS state islands involves the preparation of a three-qubit
state through subcircuit B and the application of two three-
qubit operations U and V in parallel. The latter take at most
20 CNOT gates [76]. As for the former, even though the generic
preparation method discussed in this section is only strictly
applicable to states encoded in an even number of qubits, it is
possible to consider an asymmetric bipartition, as discussed in
Appendix E for the three-qubit case, which yields a maximum
of four CNOT gates. Hence, ignoring connectivity constraints,
a general six-qubit state can be prepared with at most 47 CNOT

gates and a circuit depth of 25 CNOT gates. However, for the
particular case of the six-qubit islands in the spin-3/2 VBS,
the implementation of B takes three CNOT gates instead of the
maximum 4, and the CNOT count of the decomposition of U
and V was reduced from the 20 and 19 CNOT gates yielded
by the Cirq three_qubit_matrix_to_operations method
to 14 and 15 CNOT gates, respectively, using the same ZX-
calculus-based procedure described in Sec. VII. To sum up,
each spin-3/2 island can be prepared with a total of 35 CNOT
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gates and a depth of 19 CNOT gates. The respective QASM file
is introduced in Appendix H.

The use of this Schmidt-decomposition-based method to
initialize the 4S-qubit islands of the spin-S VBS states as a
strategy to reduce the repetition overhead of the probabilis-
tic method is justified by the significant savings it generates
relative to the default option of applying a standard state
preparation method, such as that implemented via the QISKIT

initialize function [113]. For the S = 1 case, QISKIT

initialize prepares the four-qubit island state with a total
of 22 CNOT gates, which compares with the seven CNOT gates
yielded by the Schmidt-decomposition-based method. As for
S = 3/2, the number of CNOT gates is reduced from 114
to 35.

Although this constant-depth strategy is clearly the
preferred option for the S = 1 and 3/2 cases, for larger local
spins (i.e., larger coordination numbers of the lattice) it
may be preferable to employ the logarithmic-depth scheme
discussed in the previous section, as it only requires the basis
gate decomposition of the controlled-e−iπS (N=2S)

operation,
for which a general implementation is discussed in the next
section.

X. LOCAL SYMMETRIZATION VIA LINEAR
COMBINATION OF UNITARIES

We have proposed a NISQ-friendly probabilistic method
to prepare any spin-S VBS state on quantum hardware, with
S = 1, 3

2 , 2, 5
2 , 3, . . . The implementation of this method

(and of the logarithmic-depth repetition overhead mitigation
strategy from Sec. VIII) merely relies upon the determination
of a (2S + 1)-qubit subcircuit that implements the controlled
e−iπS (N=2S)

. For the paradigmatic cases S = 1 and 3/2, we
have performed an efficient basis gate decomposition of the
respective three-qubit and four-qubit operations, as discussed
in Sec. VII.

However, for a larger local spin S, this process may become
a bottleneck. Even for S = 2, corresponding to the local spin
of a VBS state defined on a square lattice, the controlled-
e−iπS (N=2S)

is a five-qubit operation, for which it is already
particularly challenging to find a shallow decomposition via
standard methods.

This section presents a systematic method to find a circuit
that, upon the measurement of ancillary qubits in the fiducial
state, leads to the application of the local symmetrization
operator S (N ) in the main register. The key idea is that, even
though S (N ) is nonunitary, it can be expressed as a linear
combination of unitaries, each of which is easy to decompose
into basis gates. This approach therefore allows to bypass the
basis gate decomposition of a large subcircuit, particularly
for high local spin S. The potential savings generated by this
method for the spin-2 VBS state, a resource state for universal
quantum computation [114], will be discussed.

As a starting point, let us consider the simplest nontrivial
case of the symmetrization operator S (N=2) acting on two
spins 1/2, which is relevant for the preparation of the
one-dimensional spin-1 VBS. Noting that the symmetrization
operator is defined as the uniform linear combination of
the elements of the symmetric group Sn [cf. Eq. (4) for the

particular case of two spins 1/2 and Eq. (5) for the general
case], we have

S (N=2) = 1

2!

((
1 2
1 2

)
+

(
1 2
2 1

))
,

where Cauchy’s two-line notation is used to denote the
permutations. In terms of quantum circuits,

The notation used after the second equality will be relevant
in the derivation of a systematic method to find the circuits for
all permutations {P (N )

i }N !
i=1 of an arbitrary number N of spins

1/2.
Let us now consider the next case, N = 3. We have

S (N=3) = 1

3!

((
1 2 3
1 2 3

)
+

(
1 2 3
1 3 2

)
+

(
1 2 3
2 1 3

)

+
(

1 2 3
2 3 1

)
+

(
1 2 3
3 2 1

)
+

(
1 2 3
3 1 2

))
,

or, in terms of quantum circuits,

As in the N = 2 case, not only is each term in the linear
combination unitary but the corresponding quantum circuit
is simple. More importantly, a systematic, inductive way of
finding these circuits for arbitrary N can be derived. We begin
with the trivial case N = 1, for which the symmetric group S1

is the one-element group:

The expression for S (N=2) can be derived as follows:

Similarly, we can obtain S (N=3) as

The general induction relation to derive the linear expan-
sion of S (N ) in terms of the N ! circuits for all permutations
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of N spins 1/2 is

This iterative method generates the circuits with the lowest
number of SWAP gates for each permutation operation P (N )

i ,
but it does ignore qubit connectivity constraints. If one is
restricted to linear qubit connectivity, the “Amida lottery”
method devised by Seki et al. [115] could be considered
instead.

Having expressed the local symmetrization operator S (N )

as a sum of simple quantum circuits, we shall make use of the
LCU method [88], originally developed by Childs and Wiebe
within the context of the Hamiltonian simulation problem.
Given some operator A = ∑m−1

i=0 αiVi, where A may or may
not be unitary but each of the m Vi must be a n-qubit unitary
for which we can find the corresponding quantum circuit, the
LCU method applies A to some input n-qubit state |ψ〉 by
following the steps below.

(1) Set up a m-qubit ancillary register initialized in the
fiducial state |0〉⊗m. Initialize the state |ψ〉 in the main n-qubit
register.

(2) Apply the Prepare oracle, OP, to the m-qubit ancillary
register, thus preparing the state

|α〉 := 1√
s

m−1∑
i=0

√
|αi||2i〉, (27)

with s := ∑m−1
i=0 |αi|.4

(3) Apply the Select oracle, OS , defined as

OS :=
m−1∑
i=0

|2i〉〈2i| ⊗ eiθiVi, (28)

where the phase factors arise from αi = |αi|eiθi .
(4) Apply the inverse of the Prepare oracle, O†

P, to the m-
qubit ancillary register.

(5) Measure the m ancillary qubits in the computational
basis. If all m ancillas are measured in |0〉, the main register
is found in the (normalized) state A|ψ〉. The probability of
success is given by

P00...0 = 1

s2
|〈ψ |A†A|ψ〉|2, (29)

which reduces to 1
s2 if A is unitary.

Figure 6 shows a high-level scheme of the quantum circuit
corresponding to the LCU method.

4For αi ≡ |αi|eiθi with θi �= 0 (i.e., a negative real number or a com-
plex number), the nontrivial phase factor is absorbed in the definition
of the corresponding unitary Vi, thus carrying into the definition of
the select oracle OS (cf. step 3).

FIG. 6. High-level scheme of quantum circuit correspond-
ing to the LCU method [88] to prepare n-qubit state A|ψ〉 =∑m−1

i=0 |αi|eiθiVi|ψ〉, given circuits to prepare |ψ〉 and implement
each Vi. The prepare oracle OP turns the fiducial state |0〉⊗m into
|α〉 := 1√

s

∑m−1
i=0

√|αi||2i〉, where s := ∑m−1
i=0 |αi|. The select oracle

OS is given by
∑m−1

i=0 |2i〉〈2i| ⊗ eiθiVi. Measuring all m ancillas in |0〉
ensures main n-qubit register is found in A|ψ〉.

Applying the LCU method to the symmetrization operator
S (N )—i.e., setting A = S (N ) = ∑N !

i=1
1
N !P

(N )
i , so that αi =

1
N ! ,∀i and Vi = P (N )

i —demands that the implementation of
the corresponding prepare and select oracles OP and OS is
considered. Regarding OS , its construction is simple: for every
permutation circuit P (N )

i derived above, all SWAP gates are
controlled by the ith ancillary qubit, with i = 1, 2, . . . , m ≡
N !. The CSWAP gate was previously discussed in Sec. VII and
its basis gate decomposition can be found in [94].

As for OP, since the symmetrization operator is given as a
uniform linear combination of all N ! permutation operators,
the state |α〉 [cf. Eq. (27)] that OP prepares starting from
the fiducial state |0〉⊗N ! is just the N !-qubit Dicke state of
Hamming weight 1 [116–119]

|WN !〉 := 1√
N !

N !−1∑
i=0

|2i〉

= 1√
N !

(|10 . . . 0〉 + |01 . . . 0〉 + · · · + |00 . . . 1〉).

(30)

As detailed in Appendix F, which follows [116], in general,
the |Wm〉 state can be prepared in O(ln m) depth ignoring qubit
connectivity constraints, and in O(m) depth with only nearest-
neighbor couplings.

In summary, the second step of the preparation of a spin-
S = N

2 VBS state, corresponding to the symmetrization of
N spins 1/2 at every lattice site of coordination number
N , can be accomplished by applying the LCU method with
A = S (N ) instead of the local Hadamard test introduced in
Sec. VI. The probability of success (and hence the average
number of repetitions) of both methods is the same, since
s = ∑N !−1

i=0 | 1
N ! | = 1, in which case Eq. (29) coincides with

Eq. (16). The LCU-based approach is likely to yield shal-
lower circuits for high local spins S, as it forgoes the basis
gate decomposition of the (2S + 1)-qubit controlled e−iπS (N )

required to implement the local Hadamard test.
The advantage of the LCU-based scheme may, in fact,

be already attained for a local spin as low as S = 2, corre-
sponding to a coordination number N = 4, as in the square
lattice. The spin-2 VBS state is known to be a resource state
for universal quantum computation [114], so its implemen-
tation on quantum hardware, though more demanding than
that of the spin-3/2 case, may be just as relevant. Ignoring
qubit connectivity constraints, the prepare oracle OP, which
initializes the |W4!〉 state, takes 46 CNOT gates (cf. Appendix F
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for details). As for the select oracle OS , there are 4! − 1 = 23
terms (ignoring the identity), 6 with just 1 CSWAP gate, 11
with 2 CSWAP gates and the remaining 6 with 3 CSWAP gates.
Hence, OS takes 6 × 1 + 11 × 2 + 6 × 3 = 46 CSWAP gates,
which amounts to 46 × 7 = 322 CNOT gates. Noting that the
Prepare oracle must be reversed, the total number of CNOT

gates is thus 2 × 46 + 322 = 414. This number is below the
469 CNOT gates yielded by QISKIT transpile [97] for the
decomposition of the five-qubit controlled e−iπS (4)

and the
414 CNOT gates required by the LCU method are also below
the 444 CNOT gates [95] that the optimized quantum Shannon
decomposition [76] requires, in general, to decompose a five-
qubit gate.

The main limitation of the application of the LCU method
to the implementation of S (N ) is arguably the potentially
large number N ! of ancillary qubits per site (e.g., 4! = 24
for S = 2), which compares with a single ancilla for the local
Hadamard test. Nevertheless, the LCU method introduced
above corresponds to a sparse version, for which OP|0〉⊗m ∼∑m−1

i=0

√|αi||2i〉 and OS = ∑m−1
i=0 |2i〉〈2i| ⊗ eiθiVi. It is, how-

ever, possible to consider a dense version that uses only
a = �log2(m)� ancillas, with OP|0〉⊗a ∼ ∑m−1

i=0

√|αi||i〉 and
OS = ∑m−1

i=0 |i〉〈i| ⊗ eiθiVi. This leads to a more complex im-
plementation of the Select and Prepare oracles, though. For
the particular case of the symmetrization operator, each SWAP

gate in the select oracle will be controlled by all a ancillas
instead of just one. Moreover, the initialization of

∑m−1
i=0 =

1√
m
|i〉 is generally more difficult than that of |Wm〉. The one

relevant exception corresponds to the case where m = N ! is
a power of 2, in which case OP is just the Walsh-Hadamard
transform H⊗ log2 m. This happens to be case for N = 2 (i.e.,
spin-1), for which the implementation of S (2) via this dense
LCU method is entirely equivalent to the local Hadamard test.
In general, however, the dense LCU method gives rise to a
deeper circuit than the sparse version, which is just a manifes-
tation of the ubiquitous width-depth trade-off (cf. Ref. [120]
and references therein).

Finally, we note that East et al. [121] devised an im-
plementation in the language of the ZXH calculus of the
symmetrization operator acting on N spins 1/2 to generate
a single spin N /2 that is identical to the LCU-based method
introduced in this section. East et al. [121] considered ZXH
diagrams instead of quantum circuits to represent the VBS
states and compute their properties in a fully diagrammatic
way.

XI. DISCUSSION

In the previous sections, we have tackled the gener-
ally challenging problem [76,122,123] of preparing quantum
many-body states on quantum hardware, namely, for the
physically relevant class of VBS states of local spin S =
1, 3

2 , 2, 5
2 , 3, . . . (cf. Sec. III). In particular, we have de-

veloped a probabilistic quantum scheme (cf. Sec. VI), inspired
by the construction of the parent AKLT Hamiltonians [26,27],
that gives rise to a circuit with depth independent of the lattice
size N . In Sec. VII the detailed circuits to prepare the spin-1
and spin-3/2 VBS states were derived, achieving a depth of
just 8 and 27 CNOT gates, respectively.

Such low depths, valid for arbitrarily large lattices, ren-
der this method especially suitable for NISQ hardware. This
contrasts with previous proposals that exploited the tensor-
network representation of the VBS states. In one dimension,
as discussed in Appendix D, the three-qubit operations D†

[i]
shown in Fig. 2(d) can take as many as 20 CNOT gates, which
means that our probabilistic method yields a lower depth than
the sequential MPS-based one for as few as N = 3 sites, with
the difference in circuit depth increasing as O(20N ) with
further sites. In two dimensions, quantum phase estimation,
upon which the method by Schwarz et al. [60] is based, and
adiabatic state preparation [50,87] yield too deep circuits for
NISQ hardware, especially taking into account the need to
implement the time-evolution operator of two-spin-3/2 terms,
which have support on 6 qubits.

However, thus far the issue of qubit connectivity con-
straints has been ignored in the determination of the circuit
depth for the preparation of the VBS states. Although all-
to-all connectivity has been achieved in trapped-ion quantum
computers with as many as 20 qubits [124], it remains unclear
if such degree of connectivity can be maintained as the num-
ber of qubits increases [92], despite ongoing efforts towards
this end [125,126]. In superconducting-circuit-based quantum
computers, restrictions in the connections between qubits are
inevitable, with entangling gates between widely separated
qubits being possible only through networks of SWAP gates
[127]. Determining how the depth associated with preparing
the spin-1 and spin-3/2 VBSs is affected by these qubit con-
nectivity constraints is thus relevant to confirm its feasibility
in near-term quantum hardware.

To this end, we will consider the heavy-hex lattice [128]
adopted by IBM Quantum in their current and forthcoming
devices [129–131]. This architecture would be perfectly suited
for the preparation of the spin-3/2 VBS state, were it not for
the fact that there is only one qubit per lattice link instead
of the two required to create a valence bond. A conceptually
simple, yet technically challenging solution to this problem
would be to replace every qubit along a link by a ququart (i.e.,
a four-dimensional qudit), in the spirit of previous propos-
als [132–134] that exploit higher-dimensional local Hilbert
spaces to simplify quantum circuits. A more feasible approach
is to make use of only a fraction of the qubits available in
the heavy-hex lattice, distributing them spatially in a way
that suits the initialization of the spin-3/2 VBS. The resulting
layout of the qubits across the heavy-hex lattice is illustrated
in Figs. 7(a) and 7(b) for the cases where the bare probabilistic
method and the combination of the preparation of the six-qubit
islands and the probabilistic method at only one sublattice are
employed, respectively. The circuit depth in CNOT gates for
both cases is presented in Table I; the details of the calcula-
tions can be found in Appendix G. Even though, as expected,
the depth does increase when qubit connectivity constraints
are accounted for, the predicted depths of 51 CNOT gates
(for the bare probabilistic method) and 105 CNOT gates (with
mitigation of the repetition overhead) are still very likely to be
within reach of noisy intermediate-scale quantum computers
in the next few years.

For the spin-1 VBS state in one dimension, the restric-
tions related to the couplings between qubits are even less
impactful: the circuit depth for the probabilistic method with
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FIG. 7. Schemes of implementation of preparation of VBS states on IBM Quantum heavy-hex lattice [130]. (a) Two-step description of
preparation of spin-3/2 VBS state via bare probabilistic method. (i) In each set of six adjacent qubits shown as black dots, valence bonds are
prepared at pairs of qubits linked by orange curved lines by applying the two-qubit circuit from Fig. 3(a). Then, from each such six-qubit set,
two qubits are moved past three redundant qubits (shown as gray dots), one towards the right and the other towards the left, as depicted by the
curly arrows. This ensures that all three qubits that encode each site are nearby at the start of the second step. (ii) The local Hadamard test with
U = e−iπS (N=3)

[cf. Fig. 3(b)] is applied at the four-qubit sets enclosed by green boxes. Site ancillas, which were redundant qubits in (i), are
now represented by black squares. T-shaped green boxes are associated with sites of one sublattice, and linear green boxes with those of the
other. For the sake of clarity, a scheme of the segment of a honeycomb lattice corresponding to this circuit is shown on the right-hand side. (b) A
single scheme describing the preparation of the spin-3/2 VBS state via the probabilistic method combined with the deterministic preparation
of the six-qubit islands (cf. Sec. IX) to mitigate the repetition overhead. The main difference relative to (a) is the fact that the first step already
symmetrizes the sites of one sublattice (as depicted by the blue loops), in addition to preparing all valence bonds (here represented as dashed
black lines, as in Fig. 4). Hence, in second step only T-shaped green boxes require the application of the local Hadamard test. (c) Scheme of
preparation of spin-1 VBS state for 32-site ring via the probabilistic method preceded by the initialization of the four-qubit islands. As in (b),
islands are illustrated with the color scheme adopted in Fig. 4.

and without O(1)-depth mitigation of the repetition over-
head increases from 10 to 17 CNOT gates and from 8 to
11 CNOT gates, respectively. For concreteness, Fig. 7(c) shows
a scheme of the layout adopted in the IBM Quantum heavy-
hex lattice [130] to prepare the spin-1 VBS state for a 32-site
ring.

The downside of this low circuit depth is the probabilistic
nature of the method, which means that the circuit must be
repeated multiple times to successfully prepare the VBS state.
In a sense, this reduction of the circuit depth by increasing
the number of repetitions follows the spirit of hybrid varia-
tional algorithms [13], which are naturally suited for NISQ
hardware. Two strategies that achieve a quadratic reduction
of this repetition overhead were devised by exploiting the
entanglement structure of the initial state |ψpre-VBS〉. The latter

(cf. Sec. IX) produces a O(1)-depth overhead but requires
the generic preparation of 4S-qubit states, thus being more
suitable for low spin-S. The former (cf. Sec. VIII) results in a
O(ln N )-depth layer but only involves applying the controlled
e−iπS (N=2S)

used in the probabilistic method, for which a sys-
tematic scheme that avoids the basis gate decomposition of
the corresponding (2S + 1)-qubit unitary operation was devel-
oped in Sec. X, thus making it a more suitable option for high
spin S. It should be noted that the real-time processing of mid-
circuit measurements, which is a key element of the former
method, is an active field of research [135], particularly due to
its importance within the context of quantum error correction
[12]. In fact, a number of quantum routine proposals that make
use of mid-circuit measurements have been put forth recently
[136–139].
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TABLE I. Circuit depth in CNOT gates for preparation of spin-1
and spin-3/2 VBS states assuming different cases of qubit connec-
tivity constraints, with and without mitigation of repetition overhead.
Cf. Appendix G for details of calculations.

Probabilistic method 4S-Qubit Islands and
Local spin, at all lattice probabilistic method at
Qubit connectivity sites one sublattice

S = 1, all-to-all 8 11
S = 1, linear 10 17
S = 3/2, all-to-all 27 45
S = 3/2, heavy-hex 51 105

Table II presents the average number of repetitions re-
quired to prepare the spin-1 and spin-3/2 VBS states with and
without employing a mitigation overhead repetition strategy.
Although the scaling of the average number of repetitions is
exponential in the number of lattice sites N in both cases,
the mitigation of the repetition overhead can be decisive to
make the probabilistic preparation of VBS states feasible for
the intermediate values of N at which quantum advantage can
be achieved with near-term quantum computers.

An important application with a plausible prospect of
achievable quantum advantage to which the preparation of the
spin-3/2 VBS state on quantum hardware makes a relevant
contribution is the simulation of a naturally occurring gapped
Hamiltonian such as the spin-3/2 AKLT model, or possibly
a nearby but nonintegrable model, to aid the experimental re-
alization of a resource state for measurement-based quantum
computation (MBQC) [31–33]. This could be framed within
the wider effort of using near-term quantum hardware to
support the development of fault-tolerant quantum computers
[140,141].

The idea of employing the ground state of a naturally oc-
curring gapped Hamiltonian with an appropriate entanglement
structure [34] as the resource state for MBQC is appealing for
the flexible state preparation via cooling, on the one hand, and
the stability against local perturbations, on the other [142].
Having prepared such a resource state, no entangling opera-
tions are required to perform the computations; single-qubit
gates and local measurements suffice. The cluster state [143]
is the canonical example of a resource state for MBQC, but
it cannot occur as the exact ground state of any naturally
occurring physical system [36]. Given the proof that the spin-

TABLE II. Average number of repetitions required to success-
fully prepare spin-1 and spin-3/2 VBS states via probabilistic
method introduced in Sec. VI with and without employing the repe-
tition overhead mitigation strategies proposed in Secs. VIII and IX.
Scaling of average number of repetitions for spin-1 and spin-3/2 is
( 4

3 )N and 2N in unmitigated case, and ( 4
3 )N/2 and 2N/2 if mitigation is

applied.

N 10 20 30 40 50

S = 1, unmitigated 18 315 5600 99 000 1.8 × 106

S = 1, mitigated 4 18 75 315 1,300
S = 3/2, unmitigated 1000 106 109 1012 1015

S = 3/2, mitigated 32 1000 33 000 106 3.3 × 107

3/2 VBS state is a resource state for MBQC [29,30], its
experimental realization in solid-state platforms has been con-
sidered [30,37,38] to develop a measurement-based quantum
computer.

Computing the expected properties of the ground state of
such a naturally occurring parent Hamiltonian, calculating its
spectral gap, and determining the nature of its low-lying exci-
tations could provide valuable assistance in the experimental
realization of the desired robust resource state. However, com-
puting these properties using conventional numerical methods
is a formidable challenge, as demonstrated by the recent
confirmation of the nonzero spectral gap of the spin-3/2
AKLT model [40,41]. The semianalytical proof developed by
Lemm et al. [41] involved a DMRG calculation on a 36-site
cluster, although the convergence to the excited states in all
spin sectors would not have been possible without making
use of the AKLT construction [26,27], which is only strictly
possible at the integrable point. The challenge is certainly
even more daunting away from the integrable point, where
experimental systems are likely to be found [38]. Ganesh
et al. [39] investigated the phase diagram of a spin-3/2 model
that interpolates between the Heisenberg and AKLT models
using exact diagonalization on clusters with up to N = 18
spins 3/2.

Digital quantum simulation methods, in turn, may allow
for a more viable calculation of these quantities. In the NISQ
era, a hybrid variational algorithm such as the variational
quantum eigensolver (VQE) [42] may be used to compute
the ground state and low-lying excited states [43–46] of such
nonintegrable models close to the spin-3/2 AKLT model.
In this paper we have addressed one of the key challenges
involved in this VQE simulation: The preparation of an initial
state that overlaps significantly with the target ground state
of the nearby nonintegrable model. Such educated guess is
essential to simplify the optimization process by reducing the
number of layers of the ansatz applied on top of it and by
avoiding barren plateaus [144,145]. An additional challenge
that remains unaddressed in the literature is how to adapt VQE
to the simulation of spin-3/2 (or, more generally, higher-spin)
models, as all applications of VQE to the study of quantum
magnetism have been restricted to local spin 1/2 degrees
of freedom [22,115,146–153]. Improvements in the quantum
hardware are also necessary, although the consistent rise in
the quantum volume achieved by the leading manufacturers
[154,155] and a recent simulation involving a two-qubit gate
depth of up to 159 on 20 qubits [156] suggest the required
hardware may already be at our disposal in the next few years.
It should be noted that the measurements of the ancillas in the
bare probabilistic method or in the second part of the prob-
abilistic method with repetition overhead mitigation can be
deferred until the end of the circuit, thus avoiding mid-circuit
measurements.

An alternative application where quantum advantage can
be attained potentially sooner is the simulation of the quench
dynamics [157] of the spin-1 VBS state in one dimension.
Even though DMRG [52,65–67] and time-dependent variants
thereof (e.g., tDMRG [158,159] and tangent-space meth-
ods [160,161]) have been extremely successful at simulating
static properties and short-time dynamics of one-dimensional
systems (cf. Refs. [52,53,67] and references therein), for a
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sufficiently long duration of the time evolution the truncation
error due to the bounded bond dimension of the underlying
MPS becomes exceedingly large, signaling the “runaway”
time at which the numerical simulation ceases to be reliable
[162]. Digital quantum computation offers an exponential
speed-up in the simulation of quantum dynamics [163], so
it could become the leading method to validate experiments
performed with cold atoms in optical lattices [164]. Schemes
to realize the spin-1 VBS state with cold atoms have been put
forth [165,166]. By making use of the probabilistic method
herein proposed to prepare the spin-1 VBS state on quan-
tum hardware instead of the deterministic MPS-based method
discussed in Sec. IV, considerable savings of the circuit
depth devoted to the state initialization can be achieved,
leaving more circuit depth available to implement the time
evolution.

Understanding the impact of noise in its multiple forms
(e.g., gate errors, decoherence effects, measurement errors) in
the preparation of VBS states via the probabilistic method we
have proposed is an important line of future work. Although it
is likely that our probabilistic method will handle decoherence
effects far more effectively than the existing deterministic
methods thanks to the significant reduction of circuit depth,
it is interesting to understand the impact of cross-talk errors
[167] in the implementation of multiple CNOT gates in parallel
and whether the additional measurement errors arising from
the implementation of the local symmetrization via ancillary
qubits can be adequately addressed through scalable quantum
error mitigation strategies [168]. Large-scale in silico simu-
lations with realistic noise models and implementations on
actual quantum processors will be essential to address these
questions.

XII. CONCLUSIONS

In summary, we have proposed a method to prepare VBS
states of arbitrary local spin S on quantum hardware. Inspired
by the construction of the parent AKLT Hamiltonians, this
method consists of initializing a product state of valence
bonds, after which the local symmetrization operator is ap-
plied at all sites in parallel. As a result, the depth of the
resulting quantum circuit is independent of the lattice size
N , at the cost of requiring multiple independent repetitions to
achieve success. Two schemes to reduce the average number
of repetitions were developed by exploiting the entanglement
structure of the initial state, one introducing a constant depth
overhead but requiring the initialization of 4S-qubit states and
another leading to a O(ln N )-depth overhead but involving the
same building block as the main probabilistic method. The
former is therefore appropriate for low S, while the latter is
the method of choice for larger S. An alternative approach
to implement the local symmetrization operator was also de-
vised, bypassing the basis gate decomposition of the building
block of the probabilistic method, which can be too onerous
for high S.

These general methods were then applied to the partic-
ular cases of S = 1 and 3/2. Shallow circuits to implement
the probabilistic method were devised using state-of-the-
art basis gate decomposition methods, yielding circuits with
depth 8 and 27 CNOT gates for the preparation of the spin-

1 and spin-3/2 VBS states, respectively. Two applications
with prospective quantum advantage were identified, one
for each case. The impact of qubit connectivity constraints
and the size of the repetition overhead required to prepare
these valence bond states at the intermediate lattice sizes
N for which such quantum advantage is foreseeable were
considered.

More broadly, in comparison with the tensor-network-
based methods to prepare VBS states on quantum hardware,
the quantum routine herein proposed trades circuit depth for
the repetition of the same shallow circuit, which follows the
spirit of hybrid variational algorithms. Extending this depth-
repetitions trade-off to the preparation of other classes of
quantum many-body states could be a prolific strategy.
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APPENDIX A: MATRIX REPRESENTATION
OF SYMMETRIZATION S

Although the matrix representation of the local sym-
metrization operator S can be obtained via its general
definition [cf. Eq. (5)], a leaner approach can be adopted
instead. Concretely, at site n ∈ �,

S (N )
n = C′ ∏

S′ �=S

((�Sn
total

)2 − S′(S′ + 1)
)
, (A1)

where, in this case, �Sn
total = ∑Nn

i=1
�Si is the total spin resulting

from the sum of all Nn spins 1/2 and S = Nn/2 is the spin
that we wish to associate with the local degree of freedom. C′
is a normalization constant that ensures that spin-S states are
acted on trivially by Sn.

1. Spin 1

For the spin-1 case, we have two spins 1/2 per site, in
which case the matrix representations of the three Cartesian
components of �Stotal are of the form Si

total = Si ⊗ 1 + 1 ⊗ Si,
with

Sx = 1

2

(
0 1
1 0

)
, Sy = 1

2

(
0 −i
i 0

)
, Sz = 1

2

(
1 0
0 −1

)
.

The matrix representation of (�Stotal )2 = (Sx
total )

2 + (Sy
total )

2 +
(Sz

total )
2 is then

(�Stotal )
2 =

⎛
⎜⎜⎝

2 0 0 0
0 1 1 0
0 1 1 0
0 0 0 2

⎞
⎟⎟⎠. (A2)
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The symmetrization operator removes Stotal = 0 states, so
S (N=2) = C′(�S2

total − 0(0 + 1)1). Setting C′ = 1/2 gives

S (N=2) =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0

0 1
2

1
2 0

0 1
2

1
2 0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠. (A3)

2. Spin 3/2

For the spin-3/2 case, there are three spins 1/2 per site, so
the matrix representations of the three Cartesian components
of �Stotal are of the form Si

total = Si ⊗ 1 ⊗ 1 + 1 ⊗ Si ⊗ 1 +
1 ⊗ 1 ⊗ Si, with

Sx = 1√
2

⎛
⎝0 1 0

1 0 1
0 1 0

⎞
⎠, Sy = 1√

2i

⎛
⎝ 0 1 0

−1 0 1
0 −1 0

⎞
⎠,

Sz =
⎛
⎝1 0 0

0 0 0
0 0 −1

⎞
⎠.

The matrix representation of (�Stotal )2 = (Sx
total )

2 + (Sy
total )

2 +
(Sz

total )
2 is therefore

(�Stotal )
2 = 1

4

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

15 0 0 0 0 0 0 0
0 7 4 0 4 0 0 0
0 4 7 0 4 0 0 0
0 0 0 7 0 4 4 0
0 4 4 0 7 0 0 0
0 0 0 4 0 7 4 0
0 0 0 4 0 4 7 0
0 0 0 0 0 0 0 15

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A4)

Symmetrizing removes Stotal = 1/2 states, so S (N=3) =
C′(�S2

total − 1
2 ( 1

2 + 1)1). Setting C′ = 1/3 gives

S (N=3) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0

0 1
3

1
3 0 1

3 0 0 0

0 1
3

1
3 0 1

3 0 0 0

0 0 0 1
3 0 1

3
1
3 0

0 1
3

1
3 0 1

3 0 0 0

0 0 0 1
3 0 1

3
1
3 0

0 0 0 1
3 0 1

3
1
3 0

0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A5)

APPENDIX B: NORM REDUCTION DUE TO LOCAL
SYMMETRIZATION S (N ) AND OVERLAP 〈ψVBS|ψpre-VBS〉

First, we show that 〈ψVBS|ψpre-VBS〉 = 〈ψVBS|ψVBS〉,
where |ψVBS〉 is the unnormalized VBS state. Noting that the
symmetrization operator S (N ) is Hermitian (S (N ) = (S (N ) )†)
and idempotent ((S (N ) )2 = S (N )), it follows that

〈ψVBS|ψVBS〉
= (〈ψpre-VBS| ⊗n

(
S (N )

n

)†)
(⊗nS (N )|ψpre-VBS〉)

= 〈ψpre-VBS|(⊗n(S (N )
n )2)|ψpre-VBS〉

= (〈ψpre-VBS| ⊗n
(
S (N )

n

)†)|ψpre-VBS〉
= 〈ψVBS|ψpre-VBS〉. (B1)

In terms of the normalized VBS state, |ψ̃VBS〉 ≡ |ψVBS〉√〈ψVBS|ψVBS〉 ,
Eq. (B1) can be expressed as

〈ψ̃VBS|ψpre-VBS〉 =
√

〈ψVBS|ψVBS〉. (B2)

Now, to arrive at Eq. (8) in the main text, we need to
show that, at each application of the symmetrization operator
S (N ), the norm of |ψpre-VBS〉 is reduced by a constant factor p,
ultimately leading to an exponentially vanishing overlap in the
number of sites N . We will derive this result explicitly for the
spin-1 and spin-3/2 VBS states first, and then we will present
the general case.

1. Spin-1 valence-bond-solid State

The matrix representation of S (N=2) for the spin-1 case is
given by (A3). Focusing only on the valence bonds involving
site n, |ψpre-VBS〉 can be written as

|ψpre-VBS〉 = 1√
2

(|↑〉n−1,R|↓〉n,L − |↓〉n−1,R|↑〉n,L )

⊗ 1√
2

(|↑〉n,R|↓〉n+1,L − |↓〉n,R|↑〉n+1,L ) ⊗ . . . ,

(B3)

where the ellipsis includes all remaining valence bonds, which
do not involve any of the two spins 1/2 from site n. Ex-
panding the tensor product of the two highlighted valence
bonds in the eigenbasis of S (N=2)—{|s, ms〉}, s ∈ {0, 1}, ms ∈
{−s,−s + 1, . . . , s − 1, s}—at site n gives

|ψpre-VBS〉 = 1

2

[
−|1, 1〉n ⊗ (|↓〉n−1,R|↓〉n+1,L )

− |1,−1〉n ⊗ (|↑〉n−1,R|↑〉n+1,L )

+ |1, 0〉n ⊗ 1√
2

(|↑〉n−1,R|↓〉n+1,L

+ |↓〉n−1,R|↑〉n+1,L ) + |0, 0〉n

⊗ 1√
2

(|↑〉n−1,R|↓〉n+1,L + |↓〉n−1,R|↑〉n+1,L )

]

⊗ . . . (B4)

Upon application of S (N=2) at site n, the first three terms
on the right-hand side of Eq. (B4) remain unchanged (since
|1, ms〉, ms ∈ {1, 0,−1}, are eigenstates of S (N=2) with eigen-
value 1), while the fourth term vanishes (since |0, 0〉 is an
eigenstate of S (N=2) with eigenvalue 0). As a result, assuming
|ψpre-VBS〉 is normalized, the norm is reduced from 1 to 3/4.
In general, applying the local symmetrization operator S (N=2)

at one site of a spin-1 |ψpre-VBS〉 state reduces the norm by a
factor 3/4.

Starting from a normalized spin-1 |ψpre-VBS〉, the applica-
tion of the N symmetrization operators in parallel leads to an
exponential decrease of the norm of the resulting |ψVBS〉 =⊗N

n=1 S (N=2)
n |ψpre-VBS〉. Asymptotically,

〈ψVBS|ψVBS〉 = (
3
4

)N
(spin 1). (B5)
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However, for finite one-dimensional spin-1 AKLT models,
there is a deviation from the asymptotic limit that depends on
the boundary conditions.

(i) For periodic boundary conditions (i.e., N-site ring),

〈ψVBS|ψVBS〉 = (3/4)N + 3(−1/4)N . (B6)

(ii) For open boundary conditions (i.e., a N-site chain
where the outermost spins 1/2 are not connected):

(a) If outermost spins are aligned (e.g., both |↑〉),
〈ψVBS|ψVBS〉 = (3/4)N − (−1/4)N . (B7)

(b) If the outermost spins are antialigned (e.g., one |↑〉
and another |↓〉),

〈ψVBS|ψVBS〉 = (3/4)N + (−1/4)N . (B8)

(c) If the outermost spins are neither aligned nor anti-
aligned, the finite-size correction takes values between
Eqs. (B7) and (B8).

Naturally, as N → ∞, in all cases the finite-size effects vanish
and the boundary conditions become redundant.

2. Spin-3/2 valence-bond-solid State

The local symmetrization operator for the spin-3/2 case
is given by Eq. (A5). Highlighting only the valence bonds
involving site n, and denoting the three nearest neighbors by
n′

s, s ∈ {1, 2, 3}, |ψpre-VBS〉 can be written as

|ψpre-VBS〉 = 1√
2

(|↑〉(n;n′
1 )|↓〉(n′

1;n) − |↓〉(n;n′
1 )|↑〉(n′

1;n) )

⊗ 1√
2

(|↑〉(n;n′
2 )|↓〉(n′

2;n) − |↓〉(n;n′
2 )|↑〉(n′

2;n) )

⊗ 1√
2

(|↑〉(n;n′
3 )|↓〉(n′

3;n) − |↓〉(n;n′
3 )|↑〉(n′

3;n)

)
⊗ . . . (B9)

Expanding the tensor product of the three highlighted valence
bonds in the eigenbasis of S (N=3) at site n gives

|ψpre-VBS〉 = 1

2
√

2

[∣∣∣∣3

2
,

3

2

〉
n

⊗ |↓↓↓〉n′ −
∣∣∣∣3

2
,−3

2

〉
n

⊗ |↑↑↑〉n′ −
∣∣∣∣3

2
,

1

2

〉
n

⊗ 1√
3

(|↑↓↓〉n′ + |↓↑↓〉n′ + |↓↓↑〉n′ )

−
∣∣∣∣3

2
,−1

2

〉
n

⊗ 1√
3

(|↑↑↓〉n′ + |↑↓↑〉n′ + |↓↑↑〉n′ ) +
∣∣∣∣1

2
,

1

2

〉
n

⊗ 1√
2

(|↑↓↓〉n′ − |↓↓↑〉n′ )

−
∣∣∣∣1

2
,

1

2

〉′

n

⊗
(

1√
6
|↓↓↑〉n′ −

√
2√
3
|↓↑↓〉n′ + 1√

6
|↑↓↓〉n′

)
+

∣∣∣∣1

2
,−1

2

〉
n

⊗ 1√
2

(|↓↑↑〉n′ − |↑↑↓〉n′ ) +
∣∣∣∣1

2
,−1

2

〉′

n

⊗
(

1√
6
|↓↑↑〉n′ −

√
2√
3
|↑↓↑〉n′ + 1√

6
|↑↑↓〉n′

)]
⊗ . . . (B10)

Upon application of S (N=3) at site n, the last four terms on
the right-hand side of Eq. (B10) vanish, which reduces the
norm from 1 to 1/2. Hence, applying the local symmetriza-
tion operator S (N=3) at one site of a spin- 3

2 |ψpre-VBS〉 state
decreases the norm by a factor 1/2. In the asymptotic limit,
regardless of the boundary conditions, the norm of the VBS
state |ψVBS〉 = ⊗N

n=1 S (N=3)
n |ψpre-VBS〉 at a lattice with N sites

is

〈ψVBS|ψVBS〉 =
(

1

2

)N

(spin 3/2). (B11)

3. General valence-bond-solid state

In general, ignoring finite-size effects, the norm of the
VBS, |ψVBS〉 = ⊗

n Sn|ψpre-VBS〉, is given by

〈ψVBS|ψVBS〉 =
(

2S + 1

22S

)N

≡ pN . (B12)

In words, p ≡ 2S+1
22S corresponds to the fraction of symmetric

spin states selected by S at each site or, equivalently, p is the
ratio between the number of states corresponding to the de-
sired local spin Nn/2 and the total number of states resulting
from adding the Nn spins 1/2.

For concreteness, let us consider the previous two exam-
ples plus the spin-2 VBS state on a square lattice.

(i) Spin-1 VBS: the addition of two spins 1/2 gives 1
2 ⊕

1
2 = 0, 1, so we have 2 × 1 + 1 = 3 spin-1 states and 2 × 0 +
1 = 1 spin-0 state, yielding p = 3/4.

(ii) Spin-3/2 VBS: adding three spins 1/2 gives 1
2 ⊕ 1

2 ⊕
1
2 = 1

2 , 1
2 , 3/2, so there are 2 × 3

2 + 1 = 4 spin-3/2 states and
2 × (2 × 1

2 + 1) = 4 spin 1/2 states, thus p = 4/8 = 1/2.
(iii) Spin-2 VBS: adding four spins 1/2 gives 1

2 ⊕ 1
2 ⊕

1
2 ⊕ 1

2 = 0, 0, 1, 1, 1, 2, so there are 2 × (2 × 0 + 1) = 2
spin-0 states, 3 × (2 × 1 + 1) = 9 spin-1 states and 2 × 2 +
1 = 5 spin-2 states, in which case p = 5/16.

APPENDIX C: INITIALIZATION OF MATRIX
PRODUCT STATES WITH PHYSICAL INDEX DIMENSION

D = 4 AND VIRTUAL INDEX DIMENSION D = 2
ON QUANTUM HARDWARE

This section explains how the MPS form of the 1D spin-1
VBS state can be exploited to construct the circuits shown
in Fig. 2 of the main text. In fact, this discussion applies
to an arbitrary left-canonical MPS with virtual and physi-
cal index dimensions � = 2 and d = 4, of which the spin-1
VBS state is one example. First, the case of open boundary
conditions will be considered, resulting in a deterministic
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FIG. 8. (a) Diagram of MPS with open boundary conditions, vir-
tual index dimension � = 2 and physical index dimension d = 4 for
N = 4 sites. (b) Scheme of retrosynthetic construction of quantum
circuit to initialize MPS defined in (a). Sequential application of
matrix product disentanglers (MPD) {D[i]}4

i=1 reverses the black-box
preparation of the MPS. Qubit labels serve to make connection with
tensor network diagrams used in step-by-step explanation. Inverse of
quantum circuit inside dashed-line box prepares MPS on 2N-qubit
register, in accordance with Fig. 2(c) in the main text.

scheme with N sequential operations for a chain of N sites.
Then, the case of periodic boundary conditions will be dis-
cussed, yielding a probabilistic method with O(1) success
probability.

The general method for the preparation of an MPS with
open boundary conditions was first introduced by Schön et al.
[54], and later adapted to digital quantum computing by Ran
[75], who explicitly discussed its application to a MPS with
d = � = 2. Here, we adapt this general method to the case
d = 4 and � = 2. We also extend it to the case of periodic
boundary conditions.

1. Open boundary conditions

Figure 8(a) shows the MPS we wish to prepare on a quan-
tum computer. Without essential loss of generality, the number
of sites is N = 4. The MPS is assumed to be in left-canonical
form, hence the directions of the arrows. Any MPS can be
turned into left-canonical form via a sequential application of
singular value decomposition at every site from left to right.
We assume the singular value at the last site is discarded, so
the MPS is normalized and can be initialized on a quantum
computer. Every tensor satisfies the left-normalization condi-
tion,

where the Einstein summation convention is implied in the
algebraic expression. Of course, for the tensor A1 at the first
site, β is just a singleton index, so the sum over it is redundant.

Likewise, for the tensor AN at the last site, α and γ are also
singleton indices, so the identity on the right-hand-side of this
equality is just the scalar 1.

As illustrated in Fig. 8(b), the derivation of the circuit that
initializes such a MPS will follow a retrosynthetic approach,
whereby we assume there is a black-box circuit that prepares
this MPS and our goal is to invert its effect, thereby retrieving
the fiducial state |0〉⊗2N . Each of the N steps of this process
involves the application of a unitary matrix product disentan-
gler (MPD) D[i], which disentangles site i from the remainder
of the MPS.

Let us begin with the first site. We wish to apply a
MPD, D[1], that cancels the action of A1. Making use of the
aforestated left-normalization condition, D[1] would simply
correspond to the adjoint of such local tensor, A†

1. How-
ever, A1 is not unitary, which is clear from the fact that
the dimensions of the incoming legs sL

1 and sR
1 (2 × 2 =

4) do not match that of the outgoing leg α (2). To ad-

dress this issue, we define an enlarged tensor A
′ sL

1 ,sR
1

1 α,Q1

that has an extra outgoing leg Q1 of dimension 2 relative

to A
sL

1 ,sR
1

1 α , so that the incoming and outgoing legs dimen-
sions are balanced. The original and enlarged tensors are
related by

A
sL

1 ,sR
1

1 α = A
′ sL

1 ,sR
1

1 α,0. (C1)

In words, the action of the enlarged tensor A′
1 is equivalent

to that of the original tensor A1 provided that the dummy
leg Q1 is set to 0 (or, in the language of gate-based quantum
computing, the corresponding qubit is in state |0〉). Replacing
A1 by A′

1 in the MPS diagram gives

As explained below, A′
1 can be constructed from A1 so

that its 4 × 4 matrix representation—after fusing (sL
1 , sR

1 ) and
(α, Q1)—is unitary. The MPD D[1] is therefore given by A′†

1 ,
which, being unitary, can be implemented as a two-qubit
operation on quantum hardware. The action of the MPD D[1]

on the MPS yields

where a dummy singleton index x was explicitly added in or-
der to make the connection to the left-normalization condition
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clearer. Naturally, the resulting sum over x is redundant. Prior
to the application of D[1], there were two open legs sL

1 and sR
1

encoding the local degree of freedom at site 1. After applying
D[1], one of those open legs, now termed Q1, is separated from
the MPS, as desired. The other encodes the virtual index α that
connects sites 1 and 2. This will be an input for the next MPD,
D[2].

The only missing element is how to construct the en-
larged tensor A′

1 from the original tensor A1. Merging all
incoming/outgoing legs into a single incoming/outgoing leg,
A1 and A′

1 are, respectively, 4 × 2 and 4 × 4 matrices. Because
A1 and A′

1 share the same incoming legs, the columns of A1

can be set as the first two columns of A′
1:

A′
1 =

⎛
⎝ ↑ ↑ ↑ ↑

A
sL

1 ,sR
1

1 0 A
sL

1 ,sR
1

1 1 �u �v
↓ ↓ ↓ ↓

⎞
⎠. (C2)

The fact that A1 is left-normalized ensures that A
sL

1 ,sR
1

1 0 and

A
sL

1 ,sR
1

1 1 are orthogonal to each other and normalized. For A′
1 to

be unitary, its columns (and rows) must form an orthonormal
set. Hence, to complete the construction of A′

1, we just need
to find the two remaining columns �u and �v, which must be
normalized four-dimensional vectors orthogonal to each other
and to the first two columns. Concretely, (�u, �v) span the kernel
of the 2 × 4 matrix

⎛
⎝← (

A
sL

1 ,sR
1

1 0
)† →

← (
A

sL
1 ,sR

1
1 1

)† →

⎞
⎠. (C3)

The MPD D[1] is simply given by the adjoint of Eq. (C2).
For the remaining sites, the construction of the respective

MPDs proceeds in a similar spirit to what was described for
the first site. The main difference is that more dummy outgo-
ing legs need to be introduced to ensure the enlarged tensor,
when cast in matrix form, is unitary. The resulting MPDs are
three-qubit operations. For the second site,

where A
α,sL

2 ,sR
2

2 β = A
′ α,sL

2 ,sR
2

2 β,0,0 and D[2] = A′†
2 . Similarly, for

the third site, we have

where A
β,sL

3 ,sR
3

3 γ = A
′ β,sL

3 ,sR
3

3 γ ,0,0 and D[3] = A′†
3 . Of the three

incoming legs, two encode the local degree of freedom at site
i = 2, 3, and the other is associated with the virtual index that
links sites i − 1 and i. After the application of the MPD D[i],
two of the legs become disentangled from the remainder of the
MPS, while the third contains the virtual index that connects
sites i and i + 1.

Finally, at the last site, since there are three incoming legs
and no outgoing ones, three dummy legs must be added, with

A
γ ,sL

4 ,sR
4

4 = A
′ γ ,sL

4 ,sR
4

4 0,0,0. After applying the respective MPD

D[4] = A′†
4 , all three remaining legs are disentangled.

Putting all pieces together, the sequential application of the
N MPDs {D[i]}N

i=1 reverses the black-box initialization of the
MPS [cf. Fig. 8(b)]. Hence, the quantum circuit that prepares
such MPS is given by the inverse of the circuit within the
dashed-line box in Fig. 8(b), in agreement with Fig. 2(c) in
the main text.

2. Periodic boundary conditions

The adaptation of the method discussed for a MPS with
open boundary conditions to the case of periodic boundary
conditions appears challenging at first glance. In the for-
mer case, starting from one of the two ends of the chain
(the left end, by hypothesis, since we assumed the MPS
is in left-canonical form) meant that only the physical in-
dices sL

1 and sR
1 appeared as inputs for the first MPD D[1],

which was just as well, since, given the black-box initial-
ization of the MPS, we had access to the physical indices
but not to the virtual ones. However, for a MPS with peri-
odic boundary conditions, regardless of the site from which
we start, there will always be an incoming virtual leg that
we cannot access. For example, let us consider the follow-
ing translationally invariant MPS for which the local rank-4
(2 × 2 × 2 × 2) tensor A is assumed to be left-normalized
(hence the arrows defining the directions of the legs in
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the diagram).

If we start from site 1 (any site will do, since they are all
equivalent), the first MPD, D[1], will take as inputs sL

1 , sR
1 ,

and δ, outputting the virtual index α. We do have access to
the physical indices sL

1 , sR
1 in our retrosynthetic approach [cf.

Fig. 8(b)] but not to the virtual index δ.
We therefore need a different approach to the first site.

Specifically, we will cast the local tensor A
δ,sL

1 ,sR
1
α at site 1 into

a 4 × 4 matrix A
(sL

1 ,sR
1 )
(α,δ) ≡ Ã by fusing the two physical in-

dices (sL
1 , sR

1 ) into a single index labeling the rows and the two
virtual indices (α, δ) into a single index labeling the columns.
Notice that, in this case, the dimensions of the inputs and
outputs coincide, so there seems to be no need to add dummy
legs to construct the MPD D[1]. The problem, however, is
that Ã is, in general, nonunitary, because we are fusing one
incoming index, δ, with an outgoing index, α. Hence, although
the MPD defined as D[1] = Ã† does produce the desired effect
of turning the two physical indices from site 1, sL

1 , and sR
1 ,

into the two virtual indices α and δ, implementing such 4 × 4
nonunitary matrix on quantum hardware is not immediately
obvious.

To address this problem, we will embed this 4 × 4 nonuni-
tary matrix Ã in an 8 × 8 unitary matrix UÃ. Ã will correspond
to the top-left quadrant of UÃ, in which case the most sig-
nificant qubit on which the three-qubit operation UÃ acts is an
ancilla prepared in |0〉 and projected onto |0〉 by postselection,
thus ensuring that the effective action of UÃ on the remaining
two qubits is the desired Ã. Then, the three-qubit D′

[1] that
appears in Fig. 2(d) in the main text is simply given by
D′

[1] = U †
Ã

. The probability of success is, in general, O(1); for
the spin-1 VBS state, 50% of trials are successful regardless
of N .

A general scheme to accomplish this embedding of a
N-qubit nonunitary operation in a (N + 1)-qubit gate was
presented by Lin et al. [78]. Applying it to the specific case
considered here, the goal is to find the 8 × 8 unitary matrix

UÃ =
⎛
⎝nÃ

B
C

⎞
⎠, (C4)

where C is a 4 × 4 matrix, B is a 8 × 4 matrix, and n is a
scalar that ensures that no column of Ã has norm greater than
1, otherwise it is impossible to ensure that all columns of
UÃ are orthonormal, which is a defining property of unitary
matrices. C can be derived from Ã by performing its singular
value decomposition, Ã = USV †, so that

C = U (1 − n2S)
1
2 V †, (C5)

where n is any scalar that satisfies the requirement

0 < n < 1/

√
max

({
s2

i

}4

i=1

)
, (C6)

with {si}4
i=1 the singular values of Ã [i.e., S =

diag(s1, s2, s3, s4)]. Having derived n and C from Ã,
we already have the first four columns of UÃ, which are
orthonormal. We just need to find the remaining four columns
(i.e., the matrix B), which can be accomplished similarly to
the way we completed the enlarged tensors for the MPS with
open boundary conditions. That is, the four columns of B
are the orthonormal basis that spans the kernel of the 4 × 8
matrix (

nÃ
C

)†

. (C7)

For sites i = 2, 3, . . . , N − 1, we can proceed exactly as
for the bulk sites in the MPS with open boundary conditions.
In this case, however, because of the translational invariance,
all MPDs D[2], D[3],..., D[N−1] are equal. For the particular
case of the spin-1 VBS state, using the definition of the local
tensor A stated in Eq. (11) in the main text and following the
steps described in the previous section of this Appendix, we
obtain

D†
[i]

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
√

2
3 0 0 0 0 0 − 1√

3

− 1√
6

0 0 a a c 0 0

− 1√
6

0 0 − 1√
12

− 1√
12

d 0 0

0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0

0 1√
6

0 1
2 − 1

2 0 0 1√
3

0 1√
6

0 − 1
2

1
2 0 0 1√

3

−
√

2
3 0 0 b b e 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(C8)

with a = 2
√

2
3 +

√
3

30 , b = −
√

5
12 − a2, c = −(1 + f 2 +

1
4 (1 + f )2)−

1
2 , where f = a− 1

2 b
1√
12

+ 1
2 b

, d = f c, and e = − c+d
2 .

The circuit for this three-qubit operation can be obtained via
the Cirq three_qubit_matrix_to_operations method
[77], resulting in a count of 20 CNOT gates.

For the final site, the rank-4 tensor A
γ ,sL

N=4,s
R
N=4

δ is turned
into a 16-dimensional vector by fusing all four indices into
a single one. This corresponds to the first column of the
enlarged A′

N=4, and the remaining columns have to be found
as in the case of open boundary conditions. There is, however,
one important difference: Because we fused three incoming
legs (γ , sL

N=4, sR
N=4) with an outgoing leg (δ), the vectorized

form of AN=4 is not guaranteed to be normalized, so we have
to normalize it explicitly. Of course, due to the extra bond
linking sites 1 and N, D[N=4] is a four-qubit gate as opposed
to the three-qubit gate found for a chain.

In any case, in the initialization of the MPS, D†
[N=4] is the

first operation, so only its action on the fiducial state |0〉⊗4
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FIG. 9. (a) High-level circuit for quantum amplitude amplifica-
tion algorithm. (b) Quantum circuit for oracle O that is suitable for
the application of quantum amplitude amplification to prepare spin-S
VBS state |ψVBS〉 defined on N-site lattice starting from |ψpre-VBS〉 =
V|0〉⊗2NS , where V is defined in Fig. 3(a). As in the Hadamard-test-
based method described in Fig. 3(c), all N site ancillas are initialized
in state |0〉. The extra ancilla required to apply the phase shift per the
phase kickback effect is initialized in state |1〉. All remaining 2NS
qubits correspond to the main register where |ψVBS〉 is ultimately
prepared.

matters. As a result, instead of having to find the basis gate
decomposition of a four-qubit gate D†

[N=4], we only have to
find the circuit that prepares the (normalized) vectorized form
of AN=4, which is a four-qubit state. For example, for the spin-
1 VBS state, the following state must be initialized:

√
3

6
(0, 2,−1, 0,−1, 0, 0, 0, 0, 0, 0, 1, 0, 1,−2, 0)T .

Using the Schmidt-decomposition-based method discussed in
Sec. IX of the main text, this can be accomplished with a total
of at most nine CNOT gates.

APPENDIX D: QUANTUM AMPLITUDE AMPLIFICATION
APPLIED TO PREPARATION OF VBS STATES

Figure 9(a) shows a schematic representation of the cir-
cuit corresponding to the quantum amplitude amplification
for the preparation of VBS states. The subcircuit V prepares
the initial state, |ψpre-VBS〉, and its structure can be found in
Fig. 3 in the main text. The only missing element is the oracle
that marks the target state, |ψVBS〉 = ⊗

n S (N=2S)
n |ψpre-VBS〉,

with a phase shift eiπ . An implementation of such oracle that
results in a circuit depth of O(N ) is presented in Fig. 9(b). The
first part corresponds to the layer of local Hadamard tests, of
constant depth relative to N , used in the probabilistic method
discussed in the main text. Then, the N ancillas are used as
control-qubits of a controlled-Z gate acting on an additional
ancilla initialized in |1〉. Such a gate can be implemented with
O(N ) depth (cf. Lemma 7.11 in Ref. [169]). If all ancillas are
in |1〉, the main 2NS-qubit register is in the fully symmetrized
state |ψVBS〉, and the controlled-Z gate is triggered, applying
a phase shift eiπ to the main register per the phase kickback

FIG. 10. Adaptation of Schmidt-decomposition-based method to
preparation of arbitrary three-qubit state |φ〉 = ∑3

i=0

∑1
j=0 M′

i, j |i〉 ⊗
| j〉. U ′ and V ′ can be obtained from the singular value decomposition
of M′ = U ′S′V ′. Single-qubit operation B′ prepares state B′|0〉 =∑1

l=0 s′
l |l〉, where {s′

0, s′
1} are the singular values of M′.

effect [170]. The final layer of local Hadamard tests resets the
ancillas, so that they can be reused in the following iteration.

Despite the O(N ) depth of the circuit that realizes the
oracle O, the number of iterations M corresponding to the
repetition of the subcircuit shown inside brackets in Fig. 9(a)
is exponential in N . Indeed, quantum amplitude amplifica-
tion amounts to a rotation in a two-dimensional subspace
spanned by {|ψ̃VBS〉, |ψ⊥

VBS〉}, where |ψ⊥
VBS〉 ≡ |ψpre-VBS〉 −

|ψ̃VBS〉. Since |〈ψ̃VBS|ψpre-VBS〉|2 = pN [cf. Eq. (8)], for N �
1, pN � 1, so the angle covered in each iteration is ∼2pN/2

[170], in which case maximizing the overlap with the target
state |ψVBS〉 takes O(p− N

2 ) iterations. Since all iterations have
to be implemented consecutively, this results in a total circuit
depth that is far beyond the capabilities of near-term quantum
hardware even for small N .

APPENDIX E: DETERMINISTIC PREPARATION
OF GENERAL 3-QUBIT STATES VIA

SCHMIDT DECOMPOSITION

As mentioned in Sec. IX of the main text, the application of
the Schmidt-decomposition-based method to the initialization
of the six-qubit islands |ψS=3/2

island 〉 = ∑7
i=0

∑7
j=0 Mi,j|i〉 ⊗ |j〉 of

the spin-3/2 VBS state involves the preparation of a three-
qubit state

∑7
k=0 sk|k〉, where {sk}7

k=0 are the singular values
of M. Even though the number of qubits is not even, the
Schmidt-decomposition-based method can be adapted to this
three-qubit case. Specifically, we can consider an asymmetric
bipartition with two qubits on one side and one qubit on
the other:

∑7
k=0 sk|k〉 = ∑3

i=0

∑1
j=0 M′

i, j |i〉 ⊗ | j〉. Perform-
ing the singular value decomposition of the 4 × 2 matrix
M′ whilst retaining the redundant all-zero rows of S (thus
ensuring U is unitary and not just left-normalized) gives M′ =
U′S′V′†, with

U′ =
⎛
⎝ ↑ ↑ ↑ ↑

|u′
0〉 |u′

1〉 |u′
2〉 |u′

3〉↓ ↓ ↓ ↓

⎞
⎠,

S′ =

⎛
⎜⎜⎜⎝

s′
0 0

0 s′
1

0 0

0 0

⎞
⎟⎟⎟⎠, V′ =

⎛
⎝ ↑ ↑

|v′
0〉 |v′

1〉↓ ↓

⎞
⎠. (E1)

Hence,
∑7

k=0 sk|k〉 = ∑1
l=0 s′

l |u′
l〉 ⊗ |v′

l〉, which can be pre-
pared via the quantum circuit shown in Fig. 10 below. B′ and
V ′ are both single-qubit operations, so their decomposition
involves no CNOT gates. U ′ is a two-qubit operation, so it can
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FIG. 11. (a) Scheme of quantum circuit that prepares |W4〉
state. For the general case |Wm〉, a sequence of two-qubit blocks
B( 1

m ), B( 1
m−1 ),..., B( 1

3 ), and B( 1
2 ) is applied in the staircaselike struc-

ture of (a), with the first qubit initialized in |1〉 and all remaining
m − 1 qubits in |0〉. (b) Basis gate decomposition of two-qubit block

B(p), with 0 < p < 1. θp = arcsin(cos(arctan(
√

1−p
p ))).

be decomposed in terms of, at most, three CNOT gates [110],
yielding a maximum of four CNOT gates to prepare an arbitrary
three-qubit state via this method.

APPENDIX F: PREPARATION OF |Wm〉 STATES

The |Wm〉 state is a m-qubit state defined as

|Wm〉 :=
m−1∑
i=0

|2i〉√
m

=
( |10 . . . 0〉√

m
+ |01 . . . 0〉√

m
+ · · · + |00 . . . 1〉√

m

)
.

Figure 11(a) shows the circuit that prepares such W state
for m = 4, as first presented in [116]. The key building block
of this circuit is the parameterized two-qubit subcircuit B(p),
with p ∈ (0, 1), shown in Fig. 11(b).

The generalization of this preparation scheme of |Wm〉 for
arbitrary m ∈ N is self-evident. It consists of applying the se-
quence of two-qubit blocks B( 1

m ), B( 1
m−1 ),..., B( 1

3 ), and B( 1
2 )

in the staircase-like structure of Fig. 11(a), with the first qubit
initialized in |1〉 and all remaining m − 1 qubits in |0〉. Hence,
a total of m − 1 executions of the B(p) block are required to
prepare |Wm〉. However, as alluded to in Sec. X of the main
text, the execution of such m − 1 B(p) blocks need not be
sequential; it is possible to exploit the freedom to choose
the target qubit of the final CNOT in the B(p) building block
to execute multiple such blocks in parallel, thus yielding a
O(ln m)-depth circuit, as opposed to the O(m) depth of the
sequential approach. In any case, the total number of blocks is
the same for both cases: m − 1 B(p).

Let us consider the case m = 4! = 24, which is relevant
for the construction of the Prepare oracle OP for the LCU im-
plementation of the symmetrization operator acting on N = 4
spins- 1

2 , S (N=4). 24 − 1 = 23 B(p) blocks are involved in the
preparation of |W24〉. Each B(p) takes two CNOT gates, so the
implementation of the prepare oracle OP for S (N=4) takes
23 × 2 = 46 CNOT gates.

APPENDIX G: CIRCUIT DEPTH IN PREPARATION OF
SPIN-1 AND SPIN-3/2 VALENCE-BOND-SOLID STATES

In this Appendix, the depth of the circuits that prepare the
spin-1 and spin-3/2 VBS states is determined, taking into
account the qubit connectivity constraints of the NISQ device.
The S = 1 and S = 3/2 cases will be examined separately.
All-to-all qubit connectivity will be assumed first, and then
the qubit connectivity arrangement obtained by embedding
these circuits on the IBM Quantum heavy-hex lattice [130],
as shown in Fig. 7 in Sec. XI, will be considered. The results
herein discussed are summarized in Table I on Sec. XI.

1. Spin-1 valence-bond-solid state

Regarding the spin-1 VBS state defined on a one-
dimensional lattice, assuming all-to-all qubit connectivity for
the moment, the probabilistic method without any mitigation
of the repetition overhead results in a circuit of depth eight
CNOT gates, 7 of which are associated with the local Hadamard
test (cf. decomposition of Fredkin gate in Ref. [94]) and 1
with the initialization of the product state of valence bonds
[cf. Fig. 3(a)]. The average number of repetitions in such
case is ( 4

3 )N (ignoring the finite-size effects discussed in Ap-
pendix B).

A quadratic reduction of this repetition overhead can be
achieved by preparing the four-qubit islands deterministically,
as discussed in Sec. IX, before applying the probabilistic
method to the remaining sublattice. This merely increases the
circuit depth from 8 to 11 CNOT gates, as the repetition over-
head mitigation layer takes four CNOT gates of depth, three
more than the initialization of the product state of valence
bonds.

Let us now assume the most restrictive case of linear
qubit connectivity. If the probabilistic method alone is imple-
mented, then all N ancillary qubits are required, one for each
site. These ancillas are placed between the two qubits that
encode the spin-1 of the respective site, so that the two qubits
forming a valence bond are connected to each other, thus
allowing all valence bonds to be initialized with depth one
CNOT. Then, in the implementation of the local Hadamard test,
given that the ancilla is between the two site qubits, we make
use of the circuit for the CSWAP in [94] that assumes linear
qubit connectivity and the placement of the control-qubit in
the central position of the three-qubit register. This takes nine
CNOT gates, ignoring the final network of three CNOT gates that
swap the ancilla with one of the site qubits, which is imma-
terial, since the ancilla is measured immediately afterwards.
Having discarded this SWAP gate, the qubit to be measured
must be changed accordingly; this is already accounted for in
the respective QASM file (cf. Appendix H). In total, the depth
is of 1 + 9 = 10 CNOT gates.

Alternatively, the O(1)-depth repetition overhead mitiga-
tion layer can be used to reduce the average number of
repetitions. The QISKIT transpile function was applied to
the original four-qubit island preparation circuit, imposing
the linear connectivity constraint via the coupling_map input.
After a few trials, a circuit with a depth of eight CNOT gates
was generated. The layer of local Hadamard tests at the sites
of the other sublattice must then be added, taking the same
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nine CNOT gates stated in the previous paragraph. The only
difference relative to the bare probabilistic method is that this
scheme requires only N/2 ancillas, placed between consecu-
tive four-qubit islands, as illustrated in Fig. 7(c) in Sec. XI. In
total, with linear qubit connectivity, the probabilistic method
preceded by the repetition overhead mitigation layer takes
8 + 9 = 17 CNOT gates of depth.

2. Spin-3/2 valence-bond-solid state

Ignoring qubit connectivity constraints, applying the prob-
abilistic method without mitigating the repetition overhead
to prepare the spin-3/2 VBS state defined on a honeycomb
lattice takes 27 CNOT gates of depth, 26 of which due to
the local Hadamard test at every site (cf. Sec. VII) and the
remaining CNOT due to the initialization of the product state
of valence bonds |ψpre-VBS〉.

If, instead, one initializes the six-qubit islands to sym-
metrize all sites of one sublattice deterministically before
applying the probabilistic method to the other sublattice, the
average repetition overhead is decreased from 2N to 2

N
2 at the

cost of increasing the circuit depth. Concretely, the initializa-
tion of the six-qubit islands takes 19 CNOT gates of depth,
which adds to the 26 CNOT gates from the local-Hadamard-test
layer to yield a total circuit depth of 19 + 26 = 45 CNOT gates.

Let us now take realistic qubit connectivity constraints into
account by considering the preparation of the spin-3/2 VBS
state on the IBM Quantum heavy-hex lattice, as illustrated in
Figs. 7(a) and 7(b). First, we will adopt the local Hadamard
test at all lattice sites, which corresponds to the case depicted
in Fig. 7(a). Then, we will assume the six-qubit islands are
initialized deterministically before the probabilistic method is
employed at half of the sites at which the wave function is yet
to be locally symmetrized, which is the method contemplated
in Fig. 7(b).

Regarding the bare probabilistic method, the first step
amounts to the initialization of all valence bonds, which are
represented by the orange curved lines in Fig. 7(a). This sim-
ply involves the execution of the two-qubit subcircuit shown
in Fig. 3(a) for each valence bond. All such circuits can still be
executed in parallel, so the depth of this first step is of 1 CNOT

gate. At this point, we have the prepared the |ψpre-VBS〉 state,
with sets of three adjacent valence bonds [the six qubits of
which are represented as black dots in Fig. 7(a)(i)] separated
from one another in the qubit heavy-hex lattice by redundant
qubits (shown as gray dots). Before we can proceed to the
local symmetrization at every site, we must ensure that all
three qubits that encode a local spin 3/2, plus the respective
site ancilla, are next to one another. To accomplish this, two
qubits from each set of three adjacent valence bonds are
displaced in the qubit lattice by swapping them with three
consecutive redundant qubits, as depicted by the curly arrows
included in Fig. 7(a)(i). One of these displaced qubits moves
to the left, while the other moves to the right. As a result of
these displacements, two out of every three valence bonds
are now defined between pairs of separated qubits, as illus-
trated in Fig. 7(a)(ii) by the stretching of the orange curved
lines.

We are now in a position to apply the local Hadamard test
with U = e−iπS (N=3)

[cf. Fig. 3(b)] at the sets of four qubits

FIG. 12. Illustration of the qubit coupling maps considered in
the implementation in the IBM Quantum heavy-hex lattice of the
initialization of the six-qubit islands (a) and the local Hadamard test
for the remaining sublattice (b) for the preparation of the spin-3/2
VBS state via the probabilistic method combined with the O(1)-
depth repetition overhead mitigation scheme. Numbering of qubits in
(a) ensures that qubit pairs (1,2), (3,4), and (5,6) form valence bonds,
and site encoded by qubit trio (1,3,5) is symmetrized, in agreement
with Fig. 7(b). Black square in (b) corresponds to site ancilla.

enclosed by the green boxes in Fig. 7(a)(ii). Notice that there
are two types of arrangements of these sets of four qubits,
one being T-shaped and the other having a linear shape. Each
corresponds to a different sublattice. The ancillary qubits are
identified as black squares. For the T-shaped arrangements,
the ancillary qubit corresponds to the redundant qubit from
Fig. 7(a)(i) between the two qubits that joined it from either
side. For the linear arrangement, in turn, the site ancilla is
the very first redundant qubit that is swapped with the left-
moving qubit that departed from there. The qubit connectivity
layout for the T-shaped set is shown in Fig. 12(b), while
that of the linear set can be identified with the (0, 1, 3, 5)
subset from Fig. 12(a), with the ancilla being qubit 0 in this
case. Applying the QISKIT transpile [97] function to the
controlled e−iπS (N=3)

and providing the coupling_map input
according to the layout of the T-shaped and linear sets, the
circuit depth increases from the 26 CNOT gates found without
any qubit connectivity constraints to 39 and 41 CNOT gates,
respectively. For the sake of reproducibility, the QASM files
corresponding to these basis gate decompositions are provided
(cf. Appendix H), since the QISKIT transpile function does
not always produce the same outcome, as this is a hard op-
timization problem. The circuits provided are the outcomes
with lowest CNOT depth and total count yielded by QISKIT

transpile over many trials. To sum up, the total circuit depth
corresponding to the preparation of the spin-3/2 VBS state on
the IBM Quantum heavy-hex lattice via the bare probabilistic
method is 1 + 9 + 41 = 51 CNOT gates, where the first term is
due to the initialization of the product state of valence bonds,
the second to the 3 SWAP gates required to place all qubits in
the right positions for the final step, and the third to the local
Hadamard test.

Alternatively, the spin-3/2 VBS state can be prepared by
first initializing the six-qubit islands deterministically and
then applying the probabilistic method at only half of the sites,
resulting in a quadratic reduction of the average number of
repetitions. Figure 7(b) illustrates the execution of this method
on the IBM Quantum heavy-hex lattice. The six-qubit islands
can be prepared in the same sets of six qubits considered
in the bare probabilistic method above for the initialization
of the valence bonds. Considering the qubit coupling map
shown in Fig. 12(a), the circuit depth is found to increase from
19 CNOT gates (assuming all-to-all connectivity) to 57 CNOT

gates. At this point, not only are all valence bonds already
initialized but all sites of one sublattice are symmetrized as
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well. Before the probabilistic method is applied at the T-
shaped sets of four qubits corresponding to the sites of the
other sublattice, the same three SWAP gates with redundant
qubits considered above need to be performed, even though
they are not explicitly shown in Fig. 7(b). The total circuit
depth of this method is therefore 57 + 9 + 39 = 105 CNOT

gates.

APPENDIX H: OpenQASM INSTRUCTION FILES

To foster the reproducibility of the methods herein pre-
sented, we have made available the following QASM files in
Ref. [171] as .txt files.

(1) S_1_Hadamard_test_all_to_all.qasm
(2) S_1_Hadamard_test_linear.qasm
(3) S_1_4Q_island_all_to_all.qasm
(4) S_1_4Q_island_linear.qasm
(5) S_3_2_Hadamard_test_all_to_all.qasm
(6) S_3_2_Hadamard_test_heavy_hex_linear_

box .qasm
(7) S_3_2_Hadamard_test_heavy_hex_T_box.qasm
(8) S_3_2_6Q_island_all_to_all.qasm
(9) S_3_2_6Q_island_heavy_hex.qasm
We note that the .txt files can be resaved in .qasm format

in any text editor. The use of these QASM files is described
below.

1. S = 1 VBS state via bare probabilistic method

First, the product state of valence bonds, |ψpre-VBS〉, must
be initialized by applying at every pair of qubits representing a
lattice link the two-qubit subcircuit presented in Fig. 3(a), for
which no QASM file is provided, given its simple structure.

Then, the local Hadamard test subcircuit must be applied at
all sets of three qubits associated with one site (two encoding
the local spin-1 and the remaining acting as the site ancilla).
Depending on whether the qubit connectivity between these
three qubits is all-to-all or linear, the three-qubit circuits corre-
sponding to the QASM files 1 and 2 from the list above should
be used, respectively.

In both cases, the whole structure of the local Hadamard
test is already included, namely, the Hadamard gates acting
on the ancilla before and after the controlled e−iπS (N=2)

, the Z

gate on the ancilla before the Fredkin gate to account for the
global phase factor in Eq. (18) (so that the desired outcome of
the ancilla measurement is |1〉), and the actual measurement
of the ancilla at the end. In QASM file 1, the ancilla is the
most significant qubit, q[2]. In QASM file 2, the ancilla qubit
is initially q[1], in agreement with the fact that the ancilla
should be between the two site qubits to ease the initialization
of the valence bonds [cf. Fig. 7(c)]. However, at the end of the
circuit of QASM file 2, the ancilla becomes encoded in q[0]
because a SWAP gate is skipped, as discussed in Appendix G.
As a result, the measured qubit is q[0], not q[1].

2. S = 1 VBS state via preparation of four-qubit islands
and probabilistic method at one sublattice

With respect to the bare probabilistic method described
above, the initialization of the product state of valence bonds
is replaced by the deterministic preparation of the four-qubit

islands [cf. Fig. 4(a)] using the circuits from the QASM files 3
and 4 for all-to-all and linear qubit connectivity, respectively.

In both cases the valence bonds are prepared at qubit
pairs (q[0],q[1]) and (q[2],q[3]), and the symmetrized site is
encoded by the qubit pair (q[1],q[2]), in agreement with the
discussion from Sec. IX. A schematic diagram of the circuit
corresponding to QASM file 3 is shown in Fig. 5(b), and the
details of the single-qubit operations can be inferred from the
QASM file.

Then, the local Hadamard test must be applied at the re-
maining half of the sites using the circuits from QASM files 1
or 2, as described in the previous case.

3. S = 3/2 VBS state via bare probabilistic method

First, all valence bonds are prepared in parallel by apply-
ing the two-qubit subcircuit in Fig. 3(a) at every qubit pair
representing a lattice link, just like in the spin-1 case. Then, if
the IBM Q heavy-hex lattice [130] is considered, the three
consecutive SWAP gates represented by the curly arrows in
Fig. 7(a)(i) must be applied to place all three qubits encoding
each local spin-3/2 next to one another.

The local Hadamard test is then applied to these three
qubits, plus the respective ancilla, represented by the black
squares in Fig. 7(a)(ii). In the heavy-hex lattice, there are
two different circuits for this four-qubit operation, one for
each sublattice. QASM file 6 applies to the sublattice as-
sociated with the linear-shaped green boxes in Fig. 7(a)(ii),
and QASM file 7 to the other sublattice corresponding to
the T-shaped green boxes [cf. numbered coupling scheme in
Fig. 12(b)].

If instead a quantum processor with all-to-all connectiv-
ity is used, the circuit from QASM file 5 should be used
to implement the local Hadamard test. In QASM files 5, 6,
and 7, the site ancilla is always the most significant qubit,
q[3]. As in the spin-1 case, all elements of the Hadamard
test are already included, including the measurement of the
ancilla.

4. S = 3/2 VBS state via preparation of six-qubit islands
and probabilistic method at one sublattice

The starting point corresponds to the deterministic initial-
ization of the 6-qubit islands [cf. Fig. 4(b)]. For a quantum
computer with all-to-all connectivity between the six qubits,
the circuit to be used is provided in QASM file 8 from
the list above. If, instead, the IBM Quantum heavy-hex
[130] architecture is used, the circuit to prepare the 6-
qubit islands is given by QASM file 9, which adopts the
coupling map shown in Fig. 12(a). In both cases, the va-
lence bonds are associated with the qubit pairs (q[0],q[1]),
(q[2],q[3]), and (q[4],q[5]). The site at the center of this is-
land that is already symmetrized in this step is encoded by
(q[1],q[3],q[5]).

The remaining part corresponds to applying the local sym-
metrization operator at the sites of the other sublattice. For
the case of all-to-all connectivity, the corresponding local
Hadamard test is implemented via the 4-qubit subcircuit given
in QASM file 5. In the case of the IBM Quantum heavy-hex
architecture [130], first, the sequence of three SWAP gates
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must be applied to place all three qubits associated with
each site of this sublattice next to each other, and then the

local Hadamard test is executed through the circuit in QASM
file 7.
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