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Nonlinear quantum logic with colliding graphene plasmons
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Graphene has emerged as a promising platform to bring nonlinear quantum optics to the nanoscale, where a
large intrinsic optical nonlinearity enables long-lived and actively tunable plasmon polaritons to strongly interact.
Here we theoretically study the collision between two counter-propagating plasmons in a graphene nanoribbon,
where transversal subwavelength confinement endows propagating plasmons with a flat band dispersion that
enhances their interaction. This scenario presents interesting possibilities towards the implementation of multi-
mode polaritonic gates that circumvent limitations imposed by the Shapiro no-go theorem for photonic gates in
nonlinear optical fibers. As a paradigmatic example we demonstrate the feasibility of a high-fidelity conditional
π phase shift (CZ), where the gate performance is fundamentally limited only by the single-plasmon lifetime.
These results open exciting avenues towards quantum information and many-body applications with strongly
interacting polaritons.
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I. INTRODUCTION

The integration of a photonic gate within an optical waveg-
uide constitutes a long-standing challenge in quantum optics
that is—as elucidated by the Shapiro theorem—tantamount
to overcoming practical limitations associated with the large
entanglement spread in momentum space produced by mul-
tiphoton scattering [1–4]. Because these restrictions usually
apply to copropagating particles governed by a linear disper-
sion relation and interacting via a local Kerr-like nonlinearity,
they are typically circumvented by invoking nonlocal interac-
tions, which specifically have been exploited in the context of
electromagnetically induced transparency (EIT) with Rydberg
atoms [5–8], as well as in engineered discrete networks of
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cavities [9–13] and chiral waveguides [14]. However, similar
strategies have yet to be identified in an integrated photonic
platform that can bring quantum optical logic to the nanoscale.

Plasmon polaritons—quasiparticles that emerge when light
hybridizes with collective oscillations of conduction electrons
at a metal-dielectric interface—exhibit enhanced dispersion,
extending well beyond the light line; the large wave vectors
attained by plasmons correspond to an intense concentra-
tion of electromagnetic energy on length scales far below
the wavelength of the light that excites them [15–17]. Metal
nanostructures supporting plasmon resonances have thus been
actively explored to enhance nonlinear light-matter interac-
tions on nanometer-length scales [18–20]. However, both
low intrinsic optical nonlinearity and high Ohmic losses en-
countered in conventional plasmonic materials limit practical
implementation of single-photon-level nonlinearity [21].

Graphene has recently emerged as a promising mate-
rial platform for both plasmonics and nonlinear optics: the
long-lived [22–25] and electrically tunable plasmons sup-
ported by the atomically thin carbon layer can intensify
optical near-fields that drive its relatively large intrinsic op-
tical nonlinearity [26–29], where the latter attribute stems
from a linear electronic dispersion relation that renders charge
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FIG. 1. (a) Two counterpropagating single-plasmon pulses strongly interact in a graphene nanoribbon via a two-plasmon absorption process
to acquire a relative π phase after the scattering event. The process is mapped in a relative coordinate frame to the simple problem of a massive
particle scattered by a delta potential. (b) Sketch of the electronic band structure for doped graphene; when h̄ω < 2EF − h̄vFk, single-plasmon
absorption via electron-hole pair excitation is suppressed, while two-plasmon absorption can occur via a nonlinear interband transition.

carrier motion anharmonic [30,31]. The excitement surround-
ing the appealing nonlinear and optoelectronic properties of
graphene has naturally stimulated efforts to trigger quantum
nonlinear optical processes based on plasmon polaritons in
integrated nanophotonic platforms [26,28,32,33], including
plasmon gates [34] and entangled plasmon pair generation via
spontaneous parametric down-conversion [35].

Here we propose to exploit the strong optical nonlin-
earity, enhanced by the flat dispersion of guided plasmons
in graphene nanoribbons, to collide counterpropagating po-
laritons and effectively implement an integrated control-Z
(CZ) gate within a plasmonic waveguide. Our proposal relies
crucially on the relatively large propensity for two-plasmon
absorption in graphene [31,33,34], which we show here to
manifest in the interaction of propagating polaritons as a re-
flective potential. Such a scenario, in a more generic context,
is closely related to a Tonks-Girardeau gas [36–39], which
represents the strongly interacting limit of the well-known
Lieb-Liniger model for massive bosons with contact interac-
tion [40]. The CZ gate comprised of colliding plasmons in
a graphene nanoribbon is practically limited by the intrinsic
single-plasmon absorption rate that is commonly quantified
by the quality factor of the associated optical resonance; as we
show here, the proposed CZ gate is robust under realistic val-
ues commensurate with experiments in graphene plasmonics.

II. MODEL

We envision a system where incoming single-photon
pulses of frequency ω, propagating in a low-loss photonic
waveguide, are converted to plasmons via injection into a
nonlinear (active) region comprised of a graphene nanoribbon
in the R = (x, y) plane with length L and width W � L,
as depicted in Fig. 1(a). Assuming W to be much smaller
than the incident light wavelength, we describe highly con-
fined plasmons in the quasistatic limit using a scalar potential
φk (x)eiky, which is decomposed in the longitudinal wave vec-
tor k to exploit translational invariance in the y direction.
Then, defining the graphene nanoribbon by a two-dimensional
conductivity σ (1)(R, ω) = fRσ (1)

ω , where σ (1)
ω is the local lin-

ear conductivity of extended graphene and fR is a geometrical
parameter that is 1 within the ribbon structure and zero every-
where else [41,42], we express the self-consistent potential as

φk (θ ) = η(1)
ω MkW φk (θ ), where η(1)

ω = iσ (1)
ω /ωW contains the

dependence on size and intrinsic conductivity, θ ≡ x/W is a
normalized coordinate, and

Mqφ(θ ) ≡ 2
∫

dθ ′K0(q|θ − θ ′|)

× {∂θ ′[ fθ ′∂θ ′φ(θ ′)] − q2 fθ ′φ(θ ′)} (1)

is an integrodifferential operator given in terms of the modi-
fied Bessel function K0 and normalized wave vector q ≡ kW .
Following the prescription of Ref. [42], we express M in a
discretized real-space basis to extract the eigenvalues ηn,k and
eigenvectors φn,k (θ ) that define polaritonic modes supported
by the nanoribbon geometry.

Transverse confinement provided by the ribbon along the x
direction leads to distinct branches in the polariton dispersion
relation, which we explicitly compute by invoking the linear
conductivity of graphene described in the local limit of the
random phase approximation (LRPA) [26],

σ (1)
ω = ie2

π h̄2

EF

ω + iγD
+ e2

4h̄

[

(h̄ω − 2EF)

+ i

π
log

∣∣∣∣ h̄ω − 2EF

h̄ω + 2EF

∣∣∣∣
]
, (2)

where e is the elementary charge and EF the Fermi energy.
The first term in the conductivity accounts for intraband mo-
tion of free charge carriers offset by a phenomenological
damping rate γD, while the second term describes interband
transitions between the Dirac cones shown in Fig. 1(b). The
resulting dispersion for the first three modes is shown in
Fig. 2(a). Importantly, the strong light-matter hybridization
associated with plasmon polaritons pushes their dispersion
well beyond the light line of free-space photons, endowing
the propagating quasiparticles with an effective mass m =
h̄(∂2

k ωn,k|k=kp )−1 and a slow group velocity vg = ∂kωn,k|k=kp

that are characterized by expanding the plasmon dispersion
relation around a given plasmon resonance frequency ωp ≡
ωn,kp at k = ±kp according to ωn,k = ωp ± vg(k ∓ kp) +
h̄/(2m)(k ∓ kp)2 + · · · . For small wave vectors, we find that
the higher-order polariton modes corresponding to n > 1 are
well approximated by truncating beyond the quadratic terms
in the above expansion, as revealed in Fig. 2(b) by the
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FIG. 2. (a) Plasmon dispersion for the first three modes of a
W = 20 nm wide nanoribbon doped to a Fermi energy EF = 0.1 eV.
The gray areas indicate regions where damping from single-plasmon
absorption occurs due to electron-hole pair excitation. (b) Computed
plasmon group velocity (solid curves) compared with that corre-
sponding to a quadratic dispersion, vg(k) � vg(kp) + h̄(k − kp)/m
(dashed curves). The results are obtained using the linear graphene
conductivity obtained in the local random phase approximation,
while the vertical line in both panels indicates the plasmon wave
vector kW = 1 considered throughout the proposal.

comparison with the numerically extracted group velocity of
the n = 2 and n = 3 modes (black dashed curves) for values
near kW � 1.

The LRPA conductivity in Eq. (2) that is used to obtain
the dispersion relation predicts a sign change in the imaginary
part of the conductivity at the frequency ωplasma � 5EF/3,
which can be interpreted as the plasma frequency beyond
which doped graphene ceases to exhibit metallic behavior.
Such a feature significantly deviates the plasmon dispersion
near and above the Fermi energy EF from that predicted by the
purely intraband Drude model conductivity (see Appendix A 2
for details), becoming particularly important for higher-order
polariton modes. Here the bands are flattened, leading to
large effective polariton masses that can exceed the electron
mass of 10−31 kg. Incidentally, the engineering of flat bands
in graphene nanoribbons presents an alternative to utilizing
a Bragg grating for engineering slowly propagating polariton
modes [43].

Plasmon propagation along the graphene nanoribbon can
be described in a second-quantization formalism for massive
particles by the effective Hamiltonian

H0 = −
∑

ν=R,L

∫ L

0
dyâ†

ν (y)

(
h̄2

2m

∂2

∂y2
± ih̄v̄g

∂

∂y

)
âν (y), (3)

where âR(L)(y) and â†
R(L)(y) are the bosonic field opera-

tors respectively annihilating and creating a right-propagating
(left-propagating) plasmon at position y and v̄g = vg −

(h̄/m)kp. Graphene plasmons are understood as well-defined
and long-lived excitations only in the absence of incoherent
scattering processes involving phonons or defects, and can be
further damped by electron-hole pair excitation channels [23].
Fortunately, owing to the Pauli principle, the latter process is
suppressed in highly doped graphene, where absorption via
intraband and interband transitions is prohibited for plasmon
energies within h̄vFk < h̄ωp < 2EF − h̄vFk, as illustrated in
Fig. 1(b). The remaining decoherence mechanisms, mainly
related to phonon and defect scattering [23], are incorporated
in the single-plasmon absorption rate γ1 = ωp/Q, which we
characterize by the quality factor Q. The incoherent scattering
processes captured in γ1 limit plasmon propagation by im-
posing a decay e−2γ1τ , where τ = L/vg represents the time it
takes to propagate over a distance L; as will be discussed later,
single-plasmon absorption mainly affects the free evolution of
plasmons and not their interaction dynamics.

Beyond single-plasmon absorption, plasmon pairs can be
efficiently absorbed within a certain frequency range via in-
terband transitions [33,34], as illustrated in Fig. 1(b). The
associated nonlinear process is encoded in the real part of
the third-order conductivity σ (3)

ω , which admits analytical ex-
pression in the local limit of the random phase approximation
[31]. In a one-dimensional ribbon, this process is effectively
captured by a per-length two-plasmon absorption (TPA) rate
that we estimate as

γ2 =
h̄ω3

pRe
{
σ (3)

ωp

}
ξ

(3)
kp[

Im
{
σ

(1)
ω − ω∂ωσ

(1)
ω

}∣∣
ω=ωp

ξ
(1)
kp

]2 , (4)

where ξ
( j)
kp

= ∫
dx|ukp (x)| j+1 is a factor depending on the

integral of the electric field mode functions ukp (x) (see Ap-
pendix A for further details). Crucially, the rate of TPA in
graphene can exceed the single-plasmon decay rate, leading
to strong nonlinear effects [33,34]. We model the nonlin-
ear absorption-induced interaction as a dissipative local Kerr
nonlinearity described by the effective Hamiltonian for prop-
agating massive interacting plasmons,

H = H0 − i
γ2

2

∑
νν ′=R,L

∫
dyâ†

ν (y)â†
ν ′ (y)âν (y)âν ′ (y). (5)

Note that although the Hamiltonian of Eq. (5) is formally
non-Hermitian, it entirely captures (in the absence of external
energy sources) the dynamics occurring within a given excita-
tion subspace.

III. TWO-PLASMON DYNAMICS

Local Kerr nonlinearities are known to lead to a no-go
theorem for the implementation of gates among coprop-
agating photons in nonlinear optical fibers [1,2,4,10]. To
circumvent this limitation, we consider the peculiar case of
a strong hard-core collision between two slow counterprop-
agating plasmons interacting in the active region via TPA,
as depicted in Fig. 1(a). Importantly, we specifically con-
sider the higher (n > 1) dispersion branches, where the flat
plasmon dispersion diminishes the contribution of the ki-
netic term in the Hamiltonian, thus enhancing interactions
among plasmons. The collision between two plasmons can
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FIG. 3. (a) Fidelity and (b) success probability as functions of the nanoribbon width W and Fermi energy EF for the second (n = 2, left
panel) and third (n = 3, right panel) plasmon modes. White curves indicate the plasmon energy h̄ω = EF, while the purple lines show the
optical phonon energy in graphene; gray areas indicate regions where interband transitions become important and the plasmon is no longer a
long-lived excitation. In each plot the ribbon length was selected to yield a higher success probability, and in (b) the quality factor was set to
Q = 1000. (c) Fidelity and success probability (with Q = 150 and Q = 1000) for different dispersion modes (n) obtained by optimizing over
the parameter range of EF and W used in (a) and (b); the inset shows a zoom of the fidelity. (d) Optimal success probability as a function of Q
for the second and third modes; the inset shows a zoom of the area with Q ∈ [50, 150] indicated by the black dashed box. To obtain the curves
we fixed EF = 0.1 eV and we optimized with respect to the ribbon width and length. The optimal ribbon width W (in nanometers) and length
L (normalized respect to the pulse width) used to obtain the curves in (d) are shown in (e). In all plots the pulse wave vector was set to kW = 1
and the width to σ = W/�k with �k = 0.9.

be conveniently described in a relative coordinate frame that
effectively maps the interaction to the simple problem of a
single massive particle scattered by a delta function potential,
as sketched in Fig. 1(a) (see Appendix C for details). The
single-particle scattering is then described by the scattering
matrix S = ∫

dk(r| − k〉〈k| + t |k〉〈k|) that yields the output
state |ψout〉 = S|ψin〉 corresponding to an incoming input state
|ψin〉, where

r = − 1

1 + 2πλa/λp
, (6a)

t = 1

1 + λp/(2πλa)
(6b)

are the reflection and the transmission coefficients that depend
on the ratio between the plasmon wavelength λp = 2π/|kp|
and the absorption length

λa = 2

γ2

(
2vg

|kp| − h̄

m

)
(7)

associated with a two-plasmon absorption-induced interac-
tion. Incidentally, Eq. (7) explicitly shows that the band
flattening enhances plasmon interactions, with perfect refec-
tion (and thus perfect repulsive collision in the original frame)
occurring when λa = 0 is satisfied by the group velocity vg =
h̄kp/(2m) that corresponds to a completely flat dispersion for
the considered terms up to the second order in the original
dispersion expansion. Importantly, a reflection from the poten-
tial in the single-particle picture is accompanied by a π -phase
shift [minus sign in the reflection coefficient of Eqs. (6)],

which corresponds to a relative π -phase shift between the
two colliding plasmons. Note that the transmission and re-
flection probabilities T = |t |2 and R = |r|2 do not perfectly
sum to one since the two-plasmon interaction is inherently
dissipative, and lead to a large two-plasmon absorption at
intermediate λ/λa ratios.

IV. CZ PLASMON GATE

As mentioned in the previous section, the key idea un-
derlying our gate proposal is based on the observation that
the quasi-flat bands of the higher (n > 1) modes can strongly
enhance the plasmon interaction, leading, in the “Zeno”-like
limit of λp/λa 
 1 [44,45], to an almost perfect collision that
endows the plasmons with a relative (conditional) π -phase
shift and thus implementing a CZ gate. An initial figure of
merit to estimate the efficiency of this process is given by the
reflection probability, R = |r|2, which for a ratio of λp/λa ∼
103 is on the order of R ∼ 0.99. A more realistic estimate for
gate performance can be achieved by considering two coun-
terpropagating Gaussian pulses, |ψin〉 = ∫

dkψ (k)|k〉 with
ψ (k) =

√
σ/

√
πe−(k−k0 )2σ 2/2, where k0 = kp is the central

wave vector and σ the pulse width. A quantitative figure of
merit for the efficiency of the gate is then given by the ideal
state fidelity F = |〈ψin(−k0)|ψout (k0)〉|2, which is merely the
probability to obtain the same initial pulse reflected up to a
phase shift, and can be straightforwardly computed by calcu-
lating the output state from the S matrix. The values of the
computed fidelity as a function of the nanoribbon width and
Fermi energy are shown in Fig. 3(a), which exhibits isolines
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with similar fidelities corresponding to the same plasmon
frequency, e.g., the isoline associated with h̄ωp = EF is shown
by the white curve in the figure.

The computed fidelity evaluates the efficiency of the scat-
tering process without taking into account single-plasmon
absorption during propagation of the two pulses. As discussed
above, the main sources of single-plasmon absorption are
interband electron-hole pair excitation and phonon scattering;
the former process is highly suppressed if the plasmon fre-
quencies lie below the interband transition region (above the
gray area in Fig. 3), while the latter effect is strongly reduced
when the plasmon frequency lies below the optical phonon
line at h̄ωph < 0.2 eV (below the purple line in Fig. 3) [23].
Importantly, Fig. 3 shows that high fidelities of F > 0.98
can be achieved for plasmon frequencies away from both
regions. The average plasmon lifetime is then given by the
single-plasmon decay rate γ1 = ωp/Q in terms of a quality
factor Q that accounts for all remaining sources of damping,
mainly attributable to defect scattering [23]. In this regime,
large quality factors Q > 100 are within experimental capa-
bility, while even higher values up to Q ∼ 1000 have been
theoretically predicted [25].

Having encoded the remaining sources of damping into the
quality factor Q, we can define a more accurate estimation of
the gate performance in terms of the success probability Pp.
To estimate this quantity we first observe that, as previously
mentioned, the signal detection probability is overall damped
by an exponential factor e−2γ1τ , where τ = L/vg is the time
required for a plasmon to traverse the ribbon. This contribu-
tion clearly enhances the probability of plasmon absorption
during the gate protocol and penalizes “too slow” group ve-
locities, such as those associated with higher-order plasmon
dispersion branches. While such losses are clearly reduced
in shorter ribbons, any benefit must be compared against the
spatial length ∼σ of the counterpropagating pulses; when
σ � L, there is a significant probability that the two excita-
tions never overlap in the ribbon at the same time. On the other
hand, one could reduce σ , but this increases the frequency
bandwidth, while the large phase shift only occurs within a
limited bandwidth. We account for this trade-off by estimating
the probability of having a single plasmon within the length
L, which for a Gaussian pulse reads Pp = ∫ L/2

−L/2 dy|ψ (y −
�L)|2 = [erf ( �L+L/2

2σ
) − ( �L−L/2

2σ
)], where we included the

effect of a relative delay of the two pulses assuming that the
scattering event occurs at a distance �L from the middle of
the ribbon. In this way we define the success probability

Psucc = Fe−2γ1τ
1

2

[
erf

(
�L + L/2

2σ

)
−

(
�L − L/2

2σ

)]
, (8)

which is shown in Fig. 3(b) for the second and third mode
using an optimal ribbon length, assuming a collision at the
center of the ribbon, �L = 0, and fixing the quality factor
to Q = 1000. Note that for the ribbon lengths considered,
L ∼ σ , acquired delays of the order of �L/L = 0.1 affect the
predicted success probability by less than 1% with respect to a
perfect central collision. Thus, we did not explicitly take into
account these deviations in Fig. 3(b).

The optimal success probability achievable in each mode
(within the low loss region) is plotted in Fig. 3(c) for two

different quality factors, and exhibits an opposite trend with
respect to the one exhibited in the case of optimal fidelity
(blue dots), i.e., becoming more damped for slower, more
massive plasmons. Such behavior suggests that even if
extremely high fidelities F � 0.99 can be ideally reached
by higher-order modes, the second and the third modes are
the ones exhibiting optimal operational conditions. Indeed, a
convenient trade-off between high conditional fidelities and
good gate success probability can be achieved for quality
factors of Q f = 150 and Q f = 1000, which we predict to
be respectively on the order of Psucc ∼ 20% and Psucc ∼ 50%
for the second mode. A broader panoramic over the possible
success probabilities achievable with the two considered
modes for different quality factors is shown in Fig. 3(d),
while the corresponding optimal ribbon width and length
are plotted in Fig. 3(e). Figure 3(d) illustrates how the gate
performance progressively approaches the ideal lossless one
for large quality factors, Q � 104. Importantly, in the range of
quality factors Q ∈ [50, 150] achievable in realistic devices
shown in the inset of Fig. 3(d), success probabilities in the
range of Psucc ∼ 5% − 20% can be reached. This makes
our proposal comparable with state-of-the-art platforms for
implementing photon-photon gates, e.g., cavity QED [46].
These results indicate that overall good gate performance
can be obtained in the proposed setup, with single-plasmon
absorption representing the primary limitation.

Our discussion up to now does not account for possible
in-plane scattering processes induced by defects or disorder
in the structure [47], which may eventually lead to Anderson
localization [48]. For massive particles, the Anderson local-
ization length roughly scales as L−1

loc ∼ W [ε/vg(kp)]2 [49–51],
where ε characterizes the disorder strength. This result shows
that the effects of disorder are enhanced by slow-light ef-
fects. While we do not know of any straightforward way to
determine ε for a realistic graphene system based on simple
physical considerations, we note that the localization length
is in principle an experimentally measurable quantity. For our
purposes, it is then clearly important to ensure that the sample
is clean enough to have an associated localization length larger
than the ribbon active region, i.e., Lloc � L.

V. GENERAL CONSIDERATIONS AND CONCLUSIONS

In summary, we have shown that by engineering graphene
nanoribbons it is possible to induce flat dispersion that en-
hances the plasmon interaction originating from nonlinear
absorption. In the limit of strong interactions, the model ef-
fectively behaves as a Tonks-Girardeau gas [36,37], such that
counterpropagating plasmons undergo elastic collisions that
can be exploited to implement an integrated CZ gate. To
describe the plasmon collision process, we have introduced
a phenomenological Hamiltonian in Eq. (5) that strongly
simplifies an otherwise complex many-body problem. In par-
ticular, we treat two-dimensional (2D) plasmons—collective
charge oscillations dressed by the electromagnetic field—as
well-defined bosonic excitations interacting locally via TPA
at a fixed per-length rate γ2. The present simplifying assump-
tion is informed by current knowledge of nonlinear optical
processes in graphene, and should be reasonable within a
small frequency range, such as that considered in our proposal
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involving flat plasmon dispersion branches around ωp �
1.5EF. The assumption of local interactions can be further
validated by considering that the natural length of the plasmon
interaction should be set by the Fermi length LF = 2πvF/EF,
which, for Fermi energies of EF � 0.1, is on the order of
LF � 40 nm and thus commensurate with the considered pulse
widths.

Even if theoretically feasible, the current proposal presents
important experimental challenges which are not only re-
stricted by the fabrication of high-quality nanostructures.
Indeed, the precise excitation of individual propagating plas-
mons is still at the edge of the state of the art; nevertheless,
promising proposals exist to efficiently couple far-field light to
propagating plasmons [52], while experiments have demon-
strated almost perfect absorption into acoustic graphene
plasmons. On the other hand, the occurrence of strong non-
linear multiplasmon absorption [33] could make the current
proposal realizable with weak coherent plasmon pulses. We
also remark that, for moderately doped ribbons of width
�10 nm considered in our proposal, the gate performance
will be only minimally affected by edge-termination geometry
(i.e., armchair or zigzag edges) [53], although ribbons with
armchair edges are preferable to avoid additional plasmon
damping due to the presence of edge states in the electronic
spectrum of zigzag ribbons. We finally note that the model
described by Eq. (4) constitutes a rather generic description
of massive particles interacting via a contact-like interaction
in one dimension, with the fundamental ingredient relying on
the strong ratio between the interaction and the kinetic term.
Such ideas could also then be implementable in other suitable
platforms such as nonlinear resonator arrays in circuit QED
[54], atomic waveguides [55], newly available 2D material
heterostructures [56,57], and confined excitons in transition-
metal dichalcogenide (TMDs) [58].

The data produced in this manuscript can be provided upon
request.
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APPENDIX A: OPTICAL RESPONSE OF STRUCTURED
2D MATERIALS IN THE QUASISTATIC LIMIT

Invoking the quasistatic approximation, we describe the
optical properties of a nanostructured 2D material in the R =
(x, y) plane using the scalar potential

�(r, ω) = 1

εeff

∫
d2R′ ρ

ind(R′, ω)

|r − R′| , (A1)

where εeff = (εa + εb)/2 accounts for screening of the
induced charge density ρ ind by dielectric media with per-
mittivity εa and εb respectively above and below the 2D
material. The induced charge is obtained from the continuity
equation ρ ind(R, ω) = −(i/ω)∇R · j(R, ω), while the use of
Ohm’s law j = σ (1)E and E = −∇� allows us to express the
potential in Eq. (A1) self-consistently as

�(r, ω) = i

εeffω

∫
d2R′

|r − R′|∇R′ · [σ (1)(R′, ω)∇R′�(R′, ω)],

(A2)
where σ (1)(R, ω) is an isotropic 2D conductivity character-
izing the intrinsic linear optical response of the 2D material.
Following the method of Ref. [59], the 2D nanostructure mor-
phology is contained in the conductivity by assuming it has
the form σ (1)(R, ω) = fRσ (1)

ω , where fR is 1 within the 2D
structure but zero everywhere else, and the potential within the
2D material is expressed in terms of a reduced 2D coordinate
vector �θ = R/D as

�(�θ, ω) = η(1)
ω

∫
d2�θ ′ 1

|�θ − �θ ′|∇�θ ′ · [ f�θ ′∇�θ ′�(�θ ′, ω)], (A3)

where the dimensionless parameter η(1)
ω = iσ (1)

ω /εeffωD con-
tains all dependence on the intrinsic conductivity of the 2D
material (in the local limit), its dielectric environment, and
characteristic size D (e.g., the diameter of a disk or the side
length of a square).

1. Guided modes in 2D nanoribbons

We characterize the 2D nanoribbon geometry by a finite
width W along x̂ but infinite extension in ŷ, so that transla-
tional invariance in the latter dimension suggests a Fourier
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decomposition of the potential in wave vector components k
according to �(R) = φ(x)eiky. Following the prescription of
Ref. [42], we write the self-consistent potential of Eq. (A3) in
terms of the normalized coordinate θ ≡ x/W as

φ(θ ) = η(1)
ω Mφ(θ ), (A4)

where M = VD is a product of the differential operator

Dφ(θ ) ≡ {∂θ [ fθ ∂θφ(θ )] − k2W 2 fθφ(θ )} (A5)

and an integral operator

Vφ(θ ) = 2
∫

dθ ′K0(kW
∣∣θ − θ ′∣∣)φ(θ ′) (A6)

involving the modified Bessel function K0. Discretizing θ ∈
[0, 1] in N equally spaced points as {θl}N

l=1 such that h =
θl+1 − θl for all l , we assign φl ≡ φ(θl ) and fl ≡ f (θl ) to
represent D as Dφl = ∑

l ′ Dll ′φl ′ , where

Dll ′ = 1

2h2
[δl−1,l ′ ( fl−1 + fl ) − δll ′ ( fl−1 + 2 fl + fl+1)

+ δl+1,l ′ ( fl + fl+1) − δll ′ fl k
2W 2] (A7)

is obtained using central differences [42], while the boundary
condition associated with the vanishing of normal current
∂θφ(θ )|θ=0 = ∂θφ(θ )|θ=1 = 0 at the ends of the ribbon leads
to

D1l ′ = 1

2h2
( f1 + f2)(−δ1l ′ + δ2l ′ ) − δ1l ′ f1k2W 2 (A8a)

DNl ′ = 1

2h2
( fN−1 + fN )(δN−1,l ′ − δNl ′ ) − δNl ′ fN k2W 2.

(A8b)

Meanwhile, assuming a slowly varying φ(θ ), the matrix de-
composition of V is

Vll ′ = 2
∫ θl′+h/2

θl′−h/2
dθ ′K0(q

∣∣θl − θ ′∣∣)
=

∑
θ̃=θll′ ±h/2

(±π )θ̃[K0(q|θ̃ |)L−1(q|θ̃ |)

+ K1(q|θ̃ |)L0(q|θ̃ |)], (A9)

where θll ′ ≡ θl − θl ′ , q ≡ kW is the normalized wave vector,
and Ln denotes the modified Struve function of order n [60].
Note that in the q → 0 limit, charge neutrality enables re-
placement of K0(q|θ − θ ′|) → − log|θ − θ ′| in the kernel of
the operator V , so that Eq. (A9) becomes

Vll ′ = 2
∑
±

(±)(θll ′ ± h/2)(1 − log|θll ′ ± h/2|). (A10)

2. Plasmon dispersion in graphene nanoribbons

The solution of Mφn,k = η−1
n,kφn,k yields the eigenmodes

φn,k (θ ) and eigenvalues η−1
n,k of the nanoribbon geome-

try, while comparison to Eq. (A4) leads to the dispersion

FIG. 4. (a) Dispersion relation for the first three plasmon modes
supported by a graphene nanoribbon of width W = 20 nm and doped
to a Fermi energy EF = 0.1 eV as predicted using the Drude model
(gray curves), the LRPA (red curves), and the full RPA taking into
account nonlocal effects (blue dots). The black dashed line indicates
the threshold where single-plasmon absorption via Landau damping
kicks in. (b) Group velocity vg for the second and third modes in
(a) as a function of the normalized wave vector in the LRPA and
RPA.

condition

−ηn,k = Im
{
σ (1)

ωn,k

}
εeffωn,kW

. (A11)

In the main text, the dispersion relation of mode n in a
graphene nanoribbon is found by inserting the conductivity of
extended graphene in Eq. (2), obtained within the local limit
of the RPA. As mentioned in the main text, the presence of
the interband term in the LRPA conductivity modifies the dis-
persion relation with respect to that obtained with the Drude
model. For a direct comparison, the solutions of Eq. (A11)
are plotted as red curves in Fig. 4 for the LRPA conductiv-
ity given in Eq. (2), contrasted with the solutions obtained
solely from the intraband contribution (Drude) or by adopt-
ing a more sophisticated model that incorporates nonlocal
effects (RPA), i.e., for σ (1)

ω → σ (1)(k, ω) in Eq. (A11), where
σ (1)(k, ω) is reported in Ref. [26]. The zero of the imaginary
part of the LRPA conductivity at h̄ωplasma � 5EF/3 flattens
the plasmon bands compared to the simple Drude case [see
Fig. 4(a)], which instead captures the dispersion only in the
low-frequency h̄ω < EF regime. On the other hand, nonlocal
effects captured in the full RPA conductivity emerge at higher
frequencies h̄ω � EF, becoming particularly prominent for
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large plasmon wave vectors h̄kvF ∼ EF; the effect of these
corrections is shown in Fig. 4(b), which indicates that the
LRPA conductivity faithfully captures the plasmon dispersion
for wave vectors kW � 1 considered in this work.

3. Mode normalization

The modes supported by a graphene nanoribbon are
normalized according to well-established procedures for
quantizing the electromagnetic field in dispersive media
[61,62], leading to the condition

1

4π
Re

{∫
d3rE∗

ω(r)

[
ε(r, ω) + ω

2

∂

∂ω
ε(r, ω)

]
Eω(r)

}
= h̄ω

2
,

(A12)
where

ε(r, ω) = εr + 4π i

ω
σ (1)(R, ω)δ(z) (A13)

is the dielectric function associated with a single 2D layer
characterized by a surface conductivity σ embedded in a
homogeneous medium with relative dielectric permittivity εr .
Here we again assume a conductivity of the form σ (R, ω) =
fRσ (1)

ω , so that the nanoribbon geometry is described by the
dimensionless factor fR that takes a value of unity within the
structure and zero everywhere else; the normalization condi-
tion is now

1

4π
Re

{(
εr + ω

2

∂εr

∂ω

)∫
d3rE∗

ω(r) · Eω(r)

+ 2π i

ω

∂

∂ω

(
ωσ (1)

ω

) ∫
d2R fRE∗

ω(R) · Eω(R)

}
= h̄ω

2
.

(A14)

Working in the quasistatic limit, the first integral above can
be equated to the second by expressing the field as E = −∇�

and integrating by parts, i.e.,∫
d3rE∗

ω(r) · Eω(r) = 4π

εr

∫
d3r�∗

ω(r)ρω(r), (A15)

where Gauss’ law ∇ · E = 4πρ/εr is invoked; for the 2D
induced charge ρ(r) = ρ(R)δ(z), we integrate over z to write∫

d3r�∗
ω(r)ρω(r) = − iσ (1)

ω

ω

∫
d2R fRE∗

ω(R) · Eω(R),

(A16)
where the continuity equation ρ = −(i/ω)∇R · j =
−(iσ (1)

ω /ω)∇R · ( fRE) was used to eliminate the charge
density before again integrating by parts. With the above
result, the normalization condition becomes

Re

{(
εr + ω

2

∂εr

∂ω

)
σ (1)

ω

iεrω
+ i

2ω

∂

∂ω

(
ωσ (1)

ω

)}

×
∫

d2R fRE∗
ω(R) · Eω(R) = h̄ω

2
, (A17)

and reduces to

Re

{
σ (1)

ω

iω
+ i

2ω

∂

∂ω

(
ωσ (1)

ω

)} ∫
d2R fRE∗

ω(R) · Eω(R) = h̄ω

2
(A18)

for a dispersionless environment.

The field in the ribbon can be expressed as Eω(R) =∑
n En,kun,k (x)eiky, where En,k is its amplitude and un,k =

x̂∂xφn,k (x) + ŷikφn,k (x) are obtained by decomposing the po-
tential in eigenmodes satisfying Eq. (A4); the normalization
condition then becomes, for a single mode,

1

2ωn,k
Im

⎧⎨
⎩

[
2σ (1)

ω − ∂
(
ωσ (1)

ω

)
∂ω

]
ω=ωn,k

⎫⎬
⎭LE2

n,kξn,k = 1

2
h̄ωn,k,

(A19)
where L is the mode length in y and

ξ
(1)
n,k =

∫
dx|un,k (x)|2 (A20)

is the quantity depending on the mode function integral ap-
pearing in the main text, which scales as the ribbon width,
i.e., ξ (1)

n,k ∼ W . From the above expressions, we isolate the field
amplitude

E2
n,k = h̄ω2

n,k

Lξn,kIm
{[

σ
(1)
ω − ω∂ωσ

(1)
ω

]
ω=ωn,k

} . (A21)

APPENDIX B: PLASMON ABSORPTION RATES

1. Single-plasmon absorption

In order to estimate the single-plasmon decay rate we first
evaluate the power absorbed by the ribbon, which is obtained
from

P(1) =
〈∫

d2Rj(1)(R, t ) · E(R, t )

〉
, (B1)

where j(1)(R, t ) is the current to linear order and 〈. . . 〉 de-
notes the time average. For harmonic fields we insert j(1)(t ) =
j(1)
ω e−iωt + c.c. and E(t ) = Eωe−iωt + c.c. into Eq. (B1) to

find, after dropping the fast-oscillating terms which average
to zero,

P = 2Re
{
σ (1)

ω

} ∫
d2R|Eω(R)|2, (B2)

having expressed the current in terms of the linear conductiv-
ity via Ohm’s law j(1)

ω = σ (1)
ω Eω. Equating the absorbed power

with that dissipated at a rate γ1 by the waveguide, we obtain
the expression

γ1 = 2Re
{
σ (1)

ω

}
h̄ω

∫
d2R|Eω(R)|2 = 2Re

{
σ (1)

ω

}
Im

{
σ

(1)
ω − ω∂ωσ

(1)
ω

}
(B3)

by using the mode normalization previously derived. The
above equation establishes the rate of single-plasmon absorp-
tion in the ribbon; while for the Drude model the absorption
rate coincides with the inelastic scattering rate, γ1(ω) = γD,
the absorption rate predicted from the LRPA and RPA conduc-
tivities exhibits deviations as shown in Fig. 5(a), which arise
from the different mode normalization factors. Importantly,
even with the inclusion of the interband transition term, the
dissipation rate does not exhibit a strong intrinsic frequency
dependence, and remains on the same scale as the Drude
rate. For this reason, we operationally define the total single-
plasmon dissipation rate as a quantity set overall by the quality
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FIG. 5. (a) Single-plasmon absorption rate vs frequency calcu-
lated for the Drude model (gray line), LRPA (red line), and RPA with
kW = 1 (blue dots). The nanoribbon width was set to W = 20 nm.
(b) Normalized two-plasmon absorption rate vs frequency calculated
within LRPA for two different values of the nanoribbon width. In
both plots we set EF = 0.1 and γD = EF/100. The gray area indicates
the frequencies above h̄ωplasma � 5EF/3 where plasmons cease to
exist.

factor Q according to γ1(ω) = ω/Q, implicitly capturing all
forms of dissipation.

2. Two-plasmon absorption

To evaluate the two-plasmon absorption rate appearing in
the model Hamiltonian, we compute the work done by the
nonlinear current j(3)(r, t ) on the plasmon field E(r, t ) within
a graphene layer occupying the R = (x, y) plane, such that the
absorbed power reads

P(3) =
〈∫

d2Rj(3)(R, t ) · E(R, t )

〉
. (B4)

Decomposing the nonlinear current in its frequency com-
ponents as j(3)(R, t ) = j(3)

ω e−iωt + c.c., and analogously the
plasmon field, we obtain

P(3) = 2Re
{
σ (3)

ω

} ∫
d2R|Eω(R)|4 (B5)

by writing j(3)
ω = σ (3)

ω Eω(R)|Eω(R)|2. The power absorption
for a specific mode with index n and wave vector k is then
given by

P(3)
n,k = 2Re

{
σ (3)

ωn,k

}
E4

n,kLξ
(3)
n,k , (B6)

where ξ
(3)
n,k = ∫

dx|un,k (x)|4. We associate the power absorp-
tion above with two-plasmon absorption at the rate �(3)(ωn,k )

according to P(3) = 2h̄ωn,k�
(3), which becomes

�(3) = h̄ω3
n,k

L

Re{σ (3)(ωn,k )}ξ (3)
n,k[

Im
{[

σ
(1)
ω − ω∂ωσ

(1)
ω

]
ω=ωn,k

}
ξ

(1)
n,k

]2 . (B7)

With the above result quantifying the two-plasmon absorption
rate associated with a single mode, we finally obtain the rate
of two-plasmon absorption per length as γ2 = �(3)L, which is
the TPA rate used in the effective model. The evaluated two-
plasmon absorption rate normalized with respect to the ribbon
wavelength and the Fermi energy as function of the frequency
is shown in Fig. 5(b) for two different ribbon widths, and
is found to exhibit a large enhancement in the energy range
between EF < h̄ω < h̄ωplasma that is considered in the main
text to achieve a strong plasmon interaction.

APPENDIX C: PLASMON SCATTERING

1. Effective model

The effective model presented in the main text that
describes plasmon-plasmon interactions is based on an ex-
pansion of the plasmon dispersion obtained in Appendix A 2
around a given plasmon resonance ωp � ωn,kp at momenta k =
±kp. For plasmon frequencies away from the mode cutoff,
we can separatet the corresponding free plasmon momentum
space Hamiltonian into right (R) and left (L) branches accord-
ing to

H0 =
∫

dkωkâ†
k âk

∼
∫ kp+�k

kp−�k
dkRωkR â†

kR
âkR +

∫ −kp+�k

−kp−�k
dkLωkL â†

kL
âkL ,

(C1)

where ωkν
= ω̄p ± v̄gkν + h̄

2m k2
ν is the approximate disper-

sion for the two branches labeled by ν = R, L (±), while
we have defined ω̄p = −vgkp + (h̄/2m)k2

p and v̄g = vg −
(h̄/m)kp. To proceed further we transform the above Hamilto-
nian to position space by defining the Fourier transform âkν

=
1√
2π

∫
dyâν (y)e−ikνy in terms of the left and right bosonic

operators âν (y), which fulfill bosonic commutation rules
[âν (y), â†

ν ′ (y′)] = δ(y − y′)δνν ′ if the two branches are well
distinguished such that we can extend the limit of integration
in k space toward ±∞. Such a transformation leads to the free
plasmon position space Hamiltonian presented in the main
text,

H0 = −
∑

ν

∫ L

0
dyâ†

ν (y)

(
h̄2

2m

∂2

∂y2
± ih̄v̄g

∂

∂y

)
âν (y), (C2)

where we have omitted the frequency shift associated with
the plasmon frequency term ω̄p. The plasmon nonlinearity is
described as a local dissipative two-body interaction, which in
momentum space reads as

HI = −i
γ2

2

∫
dq

∫
dk

∫
d p â†(k + q)â†(p − q)â(p)â(k),

(C3)
where k and p are the incoming momenta of the two plasmons
and q is the exchanged momentum. Proceeding as before, we
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separate the left and right contributions according to

HI = −i
γ2

2

∑
νν ′

∫
dqdkνd pν ′ â†(kν + q)â†(pν ′ − q)

× â(pν ′ )â(kν ), (C4)

where the integration limits for kν and pν are the same
as in Eq. (C1), while q takes values within the range q ∈
[−�q,�q]. Transforming the above Hamiltonian to position
space, we finally obtain the interaction Hamiltonian presented
in the main text,

HI = −i
γ2

2

∑
νν ′

∫
dyâ†

ν (y)â†
ν ′ (y)âν (y)âν ′ (y). (C5)

2. Transmission and reflection coefficients

The two-plasmon dynamics can be fully reconstructed by
finding the eigenstates of the stationary Schrödinger equation
H|ψ〉 = h̄ω|ψ〉, which can be solved using the generic ansatz

|ψ〉 =
∑
νν ′

∫
dy1

∫
dy2ψνν ′ (y1, y2)â†

ν (y1)â†
ν ′ (y2), (C6)

taking into account all the field components. In our problem
we are interested in the specific scenario of two counter-
propagating plasmons, for which the equations describing
the copropagating component ψνν ′ are completely decoupled
from their counterpropagating counterparts ψνν ′ . Consider-
ing that ψRL(y1, y2) = ψLR(y1, y2), we define ψRL = φR and
ψLR = φL to obtain a single wave equation depending on
only one variable, i.e., the two-plasmon relative coordinate

ρ = |y1 − y2|, which explicitly reads

ω[ψR(ρ) + ψL(ρ)]

= − h̄

m

∂2

∂ρ2
[ψR(ρ) + ψL(ρ)]

− 2iv̄g
∂

∂ρ
[ψR(ρ) − ψL(ρ)] − iγ2δ(ρ)[ψR(ρ)

+ ψL(ρ)]. (C7)

To solve the above equation, we consider a plasmon imping-
ing from the left and make use of the ansatz

ψR(ρ) = eikρθ (−ρ) + teikρθ (ρ)

ψL(ρ) = te−ikρθ (−ρ), (C8)

where t = 1 + r ensures continuity of the solution at r = 0
and θ (ρ) is the Heaviside step function; by imposing the
boundary conditions coming from the delta function, we ob-
tain transmission and reflection coefficients

t =
(

1 + γ2

4v̄g + 2h̄k/m

)−1

r = −
(

1 + 4v̄g + 2h̄k/m

γ2

)−1

.

(C9)
These coefficients can be rewritten in the same form
as the main text, r = −[1 + 2πλa/λp]−1 and t = [1 +
λp/(2πλa)]−1, by defining the absorption length

λa = 4v̄g

kpγ2
+ 2h̄

mγ2
= 4vg

kpγ2
− 2h̄

mγ2
, (C10)

where we have expressed the right hand side (RHS) in terms
of the original group velocity at the plasmon resonance.
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